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Super-Turing synaptic resistor circuits for
intelligent morphing wing
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Neurobiological circuits in the brain, operating in Super-Turing mode, process information while
simultaneously modifying their synaptic connections through learning, allowing them to dynamically
adapt to changes. In contrast, artificial intelligence systems based on computers operate in Turing
mode and lack the ability to concurrently infer and learn, making them vulnerable to failure under
dynamically changing conditions. Here we show a synaptic resistor circuit that operates in Super-
Turing mode, enabling concurrent learning and inference. The circuit controls a morphing wing to
reduce its drag-to-lift force ratio and recover from stalls in complex aerodynamic environments. The
synaptic resistor circuit demonstrates superior performance, faster learning speeds, enhanced
adaptability, and reduced power consumption compared to artificial neural networks and human
operators on the same task. By overcoming the fundamental limitations of computers, synaptic
resistor circuits offer high-speed concurrent learning and inference, ultra-low power consumption,
error correction, and agile adaptability for artificial intelligence systems.

Artificial intelligence (AI) draws its foundational concepts from the brain.
Within the brain, intricate neurobiological circuits process vast amounts of
incoming spike signals in parallel, generating synaptic currents that trigger
output spikes in analog parallel mode1–5. Concurrently, the synaptic weights
(conductance) can be dynamically modified by the processed signals
through learning mechanisms like spike-time-dependent plasticity
(STDP)3,5. Thememories in the human brain can be continuouslymodified
over time, enabling humans to navigate changes and respond effectively to
novel situations6,7. In stark contrast, computers operating on the Turing
model excel at executing pre-programmed inference algorithms, whether
human-designed or derived from machine learning8–18. While AI systems,
such as self-driving cars14 and large language models16, can surpass human
performance in specific,well-defineddomains, their inability to learnduring
inference renders them vulnerable to environmental changes, hardware
errors, or taskmodifications.Although the human brain can also operate on
fixed, pre-learned algorithms (Turing mode)19,20, its unique ability to con-
currently infer and learn, termedSuper-Turing computing19,20, distinguishes
it from computers. For instance, computers can derive the algorithms to
optimize wing shapes through off-site machine learning processes, but they
cannot continuously adapt wing shapes like a bird in complex and rapidly
changing aerodynamic environments while in flight21–24. Similarly, human
intervention becomes necessary when self-driving cars encounter unfore-
seen scenarios14,25. Computer-based AI systems currently necessitate

extensive data and energy-intensive off-site learning to broaden the
operational domain, contrasting with the brain’s efficient and continuous
adaptation. Consequently, AI inference algorithms, trained on limited
datasets, often struggle with the infinite complexity and unpredictable
dynamics of the real world. Conversely, due to the “Turing constraint”,
computers require the expansionof learningdomains for various conditions
using “big data” and “deep-learning” technology, resulting in longer
learning latency and higher energy consumption compared to the human
brain8–16. As a result, the computationally demanding learning processes
typically occur on large, energy-intensive remote computers to generate
inference algorithms, which are subsequently deployed on power-
constrained edge computers8–13,16,25–28. However, the AI inference algo-
rithms derived from limited off-site training data often prove inadequate
when applied to the unbounded complexity and unpredictable dynamics of
real-world environments. Consequently, the computationally intensive
learning processes often take place on large, power-hungry off-site com-
puters to derive inference algorithms, which are then deployed on edge
devices with power constraints8–13,16,25–28. The AI inference algorithms
developed from finite training domains are limited in their effectiveness
when applied to real-world environments with infinite complexity and
unpredictable dynamic changes.

The super-Turing computing model has been postulated
theoretically19,20, but it was not established in terms of the concurrent
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inference and learning functionalities of neurobiological circuits. Neuro-
morphic computing circuits, built with digital transistors10–13,25,26,28 or analog
devices like floating-gate transistors29,30, memristors31–35, and phase-change
memory resistors36, aim to mimic biological neural networks for energy-
efficient in-memory computing and in-situ learning. While learning algo-
rithms like STDP have been successfully implemented in both digital and
analog circuits, the resulting inference algorithms can only be executed after
the learning phase is complete10–13,25,26,28–36. Consequently, these neuro-
morphic circuits are constrained to sequential learning and inference,
preventing them from achieving super-Turing computing with simulta-
neous inference and learning10–13,25,26,28–36. The challenge remains: how can
we design an electronic circuit capable of super-Turing computing—one
that performs concurrent learning and inference, achieves high-energy
efficiency, allows rapid learning, and adapts to dynamic environments?

In this article, we present a synaptic resistor (synstor)37–41 circuit cap-
able of operating in super-Turing mode, with concurrent inference and
learning functionalities, to control a morphing wing in a wind tunnel —a
complex and dynamic setting distinct from conventional AI test environ-
ments. We first introduce a super-Turing computing model based on a
synstor circuit. We fabricated a synstor circuit, designed to mimic synapses
by integrating inference, memory, and learning capabilities within each
synstor to enable concurrent inference and learning in analog parallelmode.
The synstor circuits accelerate learning speed, improve adaptability to
dynamically changing environments, spontaneously correct device con-
ductance errors, and reduce its operational conductance and power con-
sumption by circumventing the need for sequential inference-learning and
iterative learning-testing processes in the circuits of other neuromorphic
devices.We then conducted experiments using the synstor circuit, humans,
and a computer-based artificial neural network (ANN) to control a
morphing wing. The objective was to minimize the drag-to-lift force ratio,
reduce the fluctuation of the forces, and recover the wing from stall con-
ditions by optimizing its shape in complex aerodynamic environments
within a wind tunnel. Our results demonstrate that the synstor circuit and
humans, operating in the super-Turing mode, outperform the ANN,
operating in the Turing mode, in terms of learning speed, performance,
power consumption, and adaptability to changing environments.

Synstor circuit for intelligent systems
To emulate a neurobiological network, a circuit withM input andN output
electrodes linked through M ×N synstors is illustrated in Fig. 1a. When
voltage pulses (x) are applied to the input electrodes, they generate currents
(I) through the synstors at the output electrodes, implementing an inference
algorithm:

I ¼ Wx ð1Þ

where W represents the synstor conductance matrix. The excitatory or
inhibitory currents (I) stimulate or suppress voltage pulses (y) from neuron
and interface circuits, leading to changes in the system state (s)—such as the
configuration of a morphing wing (Fig. 1b). Sensors monitor the system
state s (e.g., the lift-to-drag force ratio), and this feedback is converted back
into input signals (x) by the interface and neuron circuits. The control
objective is to minimize the objective function E ¼ 1

2 s
2.

In contrast to Turing-mode computing circuits, where inference
algorithms (typically represented by W) remain static during inference
computation, the synaptic weights (W) in our synstor circuit, similar to
biological neural networks, can dynamically adapt through a concurrent
correlative learning rule4,

_W ¼ α z � x ð2Þ

where α denotes a learning coefficient, z denotes voltage pulses triggered at
the output electrodes of the circuit, and z � x represents the outer product
between z andx (i.e., dwnm

dt ¼ α znxm). TheSTDP learning rule
3,5 is alsooneof

correlative learning rules4 and can be represented by Eq. 2, where the
temporalmean z ¼ 0 (Methods, Eq. 4), and the covariance between zn and
yn0 , < zn; yn0 > ¼ ηn δnn0 with ηn ≤ 0 (Methods, Eq. 5). The concurrent
execution of inference (I ¼ Wx, Eq. 1) and learning ( _W ¼ αz � x, Eq. 2)
in a synstor circuit can result in the change rate of E (Methods):

dE
dt

≤ 0 ð3Þ

Fig. 1 | A super-Turing synstor circuit for an intelligent morphing wing. a A
crossbar circuit is depicted, featuring synstors connecting presynaptic and post-
synaptic neuron circuits. The input voltage pulses applied to the input electrode are
represented by the vector x. The output voltage pulses from the postsynaptic neuron
form the vector y, while the voltage pulses applied to the output electrode are given
by the vector z. The resulting current at the nth output electrode is represented by the
vector i with elements in, which induces y and v from the postsynaptic neuron
circuit. I induces y and z from the postsynaptic neuron circuit. b System states (s) are

detected by sensors and converted into input voltage pulses (x) through the pre-
synaptic neuron circuit. These input pulses drive the synstor circuit, which operates
in super-Turingmode, concurrently executing an inference algorithm (I ¼ Wx) and
modifying its conductance matrix (W) according to a learning rule ( _W ¼ α z

N
x).

The output (y) from the synstor circuit controls actuators that modify the system
states (s). The goal is to minimize an objective function (E ¼ 1

2 s
2). When E reaches

its minimum, W ¼ Ŵ and _W ¼ 0. Under this condition, the circuit only executes
the inference algorithm I ¼ Ŵx in Turing mode.
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Under this condition, E functions as a Lyapunov function for W .
When E reaches its minimum value, dE

dt

� �
¼ 0, andW ¼ Ŵ ¼ argmin

W
E

remains unchanged ( _W ¼ 0). The circuit operates in Turing mode,
executing the inference algorithm I ¼ Ŵx (Fig. 1). When dE

dt

� �
< 0, _W≠0,

the circuit operates in the super-Turing mode, simultaneously performing
inference and learning to adjustW toward Ŵ ¼ argmin

W
E and reduce E. A

synstor circuit can operate as a conventional computing circuit in
Turing mode, executing a fixed optimal inference algorithm. When the
inference algorithm deviates from its optimal form due to environmental
changes, task modifications, conductance errors, or other factors, the
synstor circuit can spontaneously switch to super-Turing mode, simulta-
neously executing and optimizing the inference algorithm through learning
to reduce E.

A synstor circuit (Fig. 2a) was fabricated following the methods
detailed and illustrated in Fig. S1. Each synstor comprises a Si channel with
Schottky contacts formed by Ti input and output electrodes via a metallic
TiSi0.9 layer42. Additionally, each synstor incorporates a vertical hetero-
junction stacked on the Si channel, consisting of a SiO2 dielectric, a ferro-
electric Hf0.5Zr0.5Ο2 layer, and a WO2.8 conductive reference electrode
(Fig. 2b).During all electrical tests of this circuit (as detailed in theMethods),
the reference electrodes were grounded. The electric tests of the synstor
circuit (Methods) demonstrated its unique ability to execute both the
inference (In ¼

P
m wnmxm, Eq. 1) and learning ( _wnm ¼ αznxm, Eq. 2)

algorithms concurrently in super-Turing mode using the same type of
signals. As shown in Fig. 2c, when voltage pulses (xm) are applied to them

th

input electrode, they induce currents that flow through the synstors to
grounded output electrodes (zn ¼ 0), while the conductance of the synstors
remains unchanged. The synstors connected to the grounded output elec-
trodes simultaneously execute the inference (In ¼

P
m wnmxm) and

learning ( _wnm ¼ αznxm ¼ 0) algorithms.Concurrently, the conductanceof
other synstors experiencingpositive ornegative voltagepulseswith the same
amplitudes (i.e., xm ¼ zn > 0 or xm ¼ zn < 0) is modified according to the
learning algorithm _wnm ¼ αznxm with α < 0 or α > 0. As shown in experi-
ments (Fig. S2a), devicemodeling (Methods), and an equivalent circuit for a
synstor (Fig. 2b), when a single voltage pulse (xm) is applied to the input
electrode with respect to the grounded output electrode (zn ¼ 0), the vol-
tage primarily drops across the Schottky contact between the input electrode
and Si channel42. As a result, the Hf0.5Zr0.5O2 layer beyond the Schottky
contact experiences a small electric field that is insufficient to alter the
ferroelectric domains or the synstor conductance. However, when voltage
pulses (xm ¼ zn) are simultaneously applied to the input and output elec-
trodes of a synstor, there is no voltage drop across the Schottky contacts or
the Si channel. Instead, the voltage primarily drops across the Hf0.5Zr0.5Ο2

layer, generating a large electronic field that progressively switches the
individual ferroelectric domains within the layer43, thereby attracting or
repelling the holes in the p-type Si channel, and increasing or decreasing the
synstor conductance in analog mode. The oxygen vacancies with higher
defect energy in the Hf0.5Zr0.5O2 layer tended to diffuse toward the WO2.8

reference electrode with lower defect energy, which effectively enhances the
quality of the Hf0.5Zr0.5O2 ferroelectric layer and improves device perfor-
mance. Initially, the fabricated devices exhibited conductance variability,
with an average conductance of 2:7 nS and a standard deviation of 2:1 nS.
However, this variation was reduced to a standard deviation of 0:015 nS
(Fig. S2) after tuning the devices to a target conductance value using a train
of paired xm ¼ zn pulses with a duration of 10 μs and an amplitude of�4V
(or 4V). As a result, the synstor conductance can be precisely modified
across 1000 analog conductance levels within a range of 1� 60nS (Fig. S2b)
with a tuning accuracy of ~0.1 nS (Figs. S2c, d), 1:6× 1011 repetitive tuning
cycles, and nonvolatile conductance retention time for over a year (Fig. S3e).
During learning processes for various applications, we applied voltage
pulses in the same manner to ensure precise tuning of device conductance
and accurate execution of algorithms. The materials characterization and
device properties of Hf0.5Zr0.5O2 synstors will be detailed in a separate
report. Compared with other neuromorphic circuits composed of analog
devices such as floating-gate transistors29,30, memristors31–35, and phase-

change memory resistors36, the synstor circuit has the unique capability to
execute inference and learning algorithms concurrently in analog parallel
mode using pulse signals (x and z) with the same amplitudes (Fig. 2d). This
enables the synstor circuit to operate in both super-Turing and Turing
modes with very low conductance and power consumption, dynamically
modifying the inference algorithm while executing it, adapting to dyna-
mically changing environments, and correcting conductance errors in the
circuit. However, as shown in the nonvolatile conductance retention test
(Fig. S2e), after tuning the synstors to distinct analog conductance levels,
their conductancewasmonitored over 106s at room temperature.While the
projected conductance levels remained distinct without overlap for a year,
gradual shifts in conductance were observed over time. In Turing
mode, where the synstor circuit operates without real-time learning, these
conductance shifts can lead to computational errors. In contrast, in super-
Turing mode, where real-time learning is enabled, the circuit can dynami-
cally adjust the conductance to adapt to changing environments and correct
errors, which makes synstor circuits more suited for super-Turing com-
puting than traditional Turing computing.

Morphing wing controlled by a synstor circuit
Amorphing wing in a wind tunnel, as described in previous studies44,45, was
controlled by the synstor circuit (Fig. 3, Methods). The lift force (FL) and
drag force (FD) on the wing were detected by strain gauges, with data
processed by a computer (Fig. S3a). The sensing signals (s), represented by
the drag-to-lift force ratio (s1 ¼ FD=FL) and the magnitude of the fluc-
tuation of the drag-to-lift force ratio (s2), were transformed into voltage
pulses (x1 and x2) and fed into the synstor circuit. The firing rate of x pulses
increased monotonically with increasing amplitudes of s. A 2× 2 synstor
circuit, composed of two input electrodes, two output electrodes, and four
synstors, processed the input voltage pulses (x1 and x2) applied to the input
electrodes. These pulses generated currents (I1 and I2) through the synstors
at the output electrodes, implementing the inference algorithm (I ¼ W x,
Eq. 1). The currents (I1 and I2) triggered voltage pulses (y1 or y2) through
neuron circuits to increase or decrease the actuation voltage (Va) applied on
macro fiber composite (MFC) piezoelectric actuators44,45, thereby adjusting
the shape and states (s1 and s2) of thewing (Methods, Figs. S4, 5a, 6a). The y1
or y2 pulses increased or decreased the actuation voltage (Va) applied on
macro fiber composite (MFC) piezoelectric actuators44,45, thereby altering
the shape and states (s) of thewing. The experimentswere conducted in two
different settings: one at a low angle of attack (8�) with the wing at pre-stall
condition (Fig. S5a), and another at a high angle of attack (18�), exceeding
the stall angle of the wing, thus introducing a chaotic aerodynamic envir-
onment at stall condition (Fig. S6a). The conductance matrix (W) of the
synstor circuit was initialized to random values before each experiment
started to ensure that the circuit had no prior learning experience or pre-
defined algorithm. When y pulses were triggered, z pulses satisfying the
conditions z ¼ 0 (Eq. 4) and znyn0 ¼ ηn δnn0 (Eq. 5) with ηn ≤ 0 were also
triggered at the output electrodes of the synstor circuit to modify W
according to the correlative learning rule _W ¼ αz�x (Eq. 2) in super-
Turing mode. The objective of the experiments was to minimize the
objective function E ¼ 1

2 s
2, representing both the drag-to-lift force ratio

(s1 ¼ FD=FL) and its fluctuation (s2), and to recover the wing from the
stall state.

Morphing wing controlled by human operators
In the experiments involving a morphing wing controlled by human
operators (Fig. 3, Methods), operators with no prior knowledge of the wing
or its control system visually received the sensing signals (s) displayed on a
computer monitor and were tasked with minimizing the objective function
E ¼ 1

2 s
2 (Fig. S3b). These experimentswere performedwith thewing under

the same pre-stall and stall conditions as those used for the synstor circuit.
The s signals were processed by the human neurobiological circuits for
inference (I ¼ Wx, Eq. 1), prompting the operators to generate actuation
signals (y) bypressing twokeys on akeyboard to adjust the actuation voltage
Va, thereby modifying the wing shape and its states s. The firing rates of
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y pulses corresponded to the duration of keystrokes (Figs. S5b, S6b). The
conductance matrixes (W) of synapses in the human neurobiological cir-
cuits could be concurrently adjusted according to the STDP learning
rule _W ¼ αz� x.

Morphing wing controlled by ANN
In the experimentswhere amorphingwingwas controlled by a state-of-the-
art ANN with optimal structure and learning parameters (Fig. 3, Methods,
Figs. S3c, S7), a computer received the sensing signals (s), executed the

Fig. 2 | A Hf0.5Zr0.5O2-based synstor circuit. a An optical image shows a 20× 20
synstor crossbar, composed of 20 rows of Ti input electrodes and 20 columns of Ti
output electrodes. b A schematic illustration of a synstor composed of a vertical
heterojunction of a Si channel, a SiO2 dielectric layer, a ferroelectric Hf0.5Zr0.5Ο2

layer, and a WO2.8 conductive reference (Ref) electrode. The Si channel connects
with a TiSi0.9 layer and Ti input and output electrodes. An equivalent circuit for the
synstor is also shown, featuring diodes representing the Schottky contacts between
the Si channel andTi input/output electrodes via the TiSi0.9 layer, a transistor formed
by the Si channel and SiO₂ dielectric layer, and a capacitor (CHZO) representing the
Hf0.5Zr0.5Ο2 ferroelectric layer beneath the WO2.8 reference electrode. c Voltage
pulses (x1) applied on the first input electrode, voltage pulses applied on the first (z1)

and second (z2) output electrodes, and currents flowing on the first (I1) and second
(I2) output electrodes are shown against over time. The inference (I1 ¼ w11x1 and
I2 ¼ w21x1) and learning algorithms (dw11=dt ¼ αz1x1 and dw21=dt ¼ αz2x1) are
executed concurrently in the circuit in parallel analog mode under the various
conditions, including (1) x1 ¼ 4:2V , z1 ¼ z2 ¼ 0, with dw11=dt ¼ dw21=dt ¼ 0; (2)
x1 ¼ 4:2V , z1 ¼ 4:2V , z2 ¼ 0, with dw11=dt > 0 and dw21=dt ¼ 0; (3) x1 ¼ �2:1V ,
z1 ¼ 0, z2 ¼ �2:1V , with dw11=dt ¼ 0, and dw21=dt < 0; (4) x1 ¼ �2:1V ,
z1 ¼ �2:1V , z2 ¼ 0, with dw11=dt < 0 and dw21=dt ¼ 0; and (5) x1 ¼ 4:2V , z1 ¼ 0,
z2 ¼ 4:2V , with dw11=dt ¼ 0 and dw21=dt > 0. dComparative analysis of biological
synapses3, and analog neuromorphic devices including synstors (this work),
floating-gate transistors29,30, memristors31–35, and phase-change memory resistors36.
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inference algorithm (I ¼ Wx, Eq. 1) within the ANN, and triggered
actuation pulses (y) to adjust the actuation voltage Va, thereby modifying
the shape and states (s) of thewing.These experimentswere performedwith
the wing under the same pre-stall and stall conditions as those used for the
synstor circuit and human operators (Figs. S5c, S6c). To ensure a fair
comparison, we used the policy gradient-based RL algorithm,Monte-Carlo
Policy Gradient with baseline, as the benchmark. Since the actions were
discrete,wedidnot use continuous action-basedRLalgorithms suchas deep
deterministic policy gradient (DDPG). Similar to the synstor trials, the
synaptic weightmatrices (W) in theANNwere initialized to random values
before the learning experiment began. Due to the large data size, the time
required to execute the learning algorithm was longer than that needed to
execute the inference algorithm, therefore inference and learning were
executed sequentially in Turing mode. In the offline learning process, the
inferencedata, includingx,y, andWðnÞ fromthenth inferenceepisode,were
saved in the computer. The weight matrix WðnÞ was then modified to
Wðnþ 1Þ in the nth learning episode according to a reinforcement learning
algorithm46 (Methods, Supplementary Materials). The inference algorithm
(I ¼ Wx) was subsequently executed iteratively based onWðnþ 1Þ in the
nþ 1ð Þth episode.

Results
In the pre-stall condition with an 8� angle of attack, the synstor circuit,
human operators, and ANN successfully learned to adjust the wing shape,
minimizing the drag-to-lift force ratio (s1) and the objective function E ¼
1
2 s

2 (Fig. 4 and Supplementary Materials Movie S1). The fluctuation in the
drag-to-lift force ratio (s2) is inherently small under the pre-stall condition,
and the change in s2 remains negligible throughout the experimental pro-
cess. When the wing was set in a stall condition with an 18� angle of attack,
the synstor circuit and a few human operators successfully learned to adjust
thewing shape,minimizing s1, s2, andE, thus recovering thewing state from
stall (Fig. 5 and Supplementary Materials Movie S2). However, the ANN
was unable to reduce s1, s2, or E in sequential inference and learning trials
under the stall condition.

∂E
∂y can be extrapolated from the experimental data of E and y using

Eq. 10, Methods. ∂E∂y and E are displayed versus time for synstor and human
neurobiological circuits in both pre-stall and stall conditions (Figs. 4d, 5d).
At the initial stage of the experiments, ∂E∂y ≠0, thus the change rate in E due

to learning, ∂E
∂t

� �
L
¼ ∂E

∂W
_W ¼ P

n 2 αj jηn ∂E
∂Ex

� �
∂Ex
∂yn

� �2 ∂yn
∂In

� �
¼ P

n 2 αj jηn
∂E
∂yn

� �
∂Ex
∂yn

� �
∂yn
∂In

� �
< 0 (Methods, Eq. 9), resulting in dE

dt

� �
< 0 and _W≠0. The

synstor and human neurobiological circuits operate in super-Turing mode,
simultaneously performing inference and learning to adjust W toward

Ŵ ¼ argmin
W

E, reducing ∂E
∂yn

��� ��� and E. At the late stage of the experiments,

∂E
∂y � 0, ∂E

∂t

� �
L
� 0,E reaches itsminimumvaluewith dE

dt

� �
� 0.Under this

condition, _W � 0 andW � Ŵ, at which point the synstor and neurobio-
logical circuits operate in Turing mode, executing only the inference algo-
rithm I ¼ Ŵx. At the initial stageof the experiment forANNin thepre-stall

condition, ∂E∂y ≠0 (Fig. 4d), ∂E
∂W ≠0 (Fig. S8a), and dE

dt

� �
< 0. The computer

sequentially executes the inference and learning algorithms inTuringmode,

adjustingW towardŴ ¼ argmin
W

E during learning, and reducing ∂E
∂yn

��� ��� and
E during inference. At the late stage of the experiment, ∂E∂y,

∂E
∂W, and

dE
dt

� �
approach to zero, E reaches its minimum value, and W � Ŵ. In the stall
condition, the wing experiences a chaotic aerodynamic environment,
resulting in largerfluctuations in s1, s2, orE (Fig. 5) compared to thepre-stall
condition (Fig. 4). Due to the chaotic changes in the environment, Ŵ ¼
argmin

W
E varies dynamically, but W cannot be adjusted in real-time to

adapt to these changes during inference. As a result, the sequential inference
and learning fail to adjustW toward Ŵ or reduce E (Fig. S8b).

TheE � t curves can be best fitted by E tð Þ ¼ E 0ð Þ � Ee

� �
e�t=TL þ Ee

(Eq. 12) to extrapolate the initial learning time TL and the equilibrium
objective functionEe when t≫TL, and _E � 0.Under this equilibrium,both

Fig. 3 | System schematic showing a wing controlled by a synstor circuit, human
operators, and a computer-based artificial neural network (ANN). a A schematic
shows the experimental settings where a synstor circuit (left), human operators
(middle), and an ANN (right) all receive sensing signals of wing states (s), including
the drag-to-lift force ratio (s1) and its fluctuationmagnitude (s2), from the wing. The
wing shape and its states (s) are modified by actuation signals (y). b An image
displaying the morphing wing utilized in the wind tunnel experiments. During
inference processes, the sensing signals s are converted to input signals (x),
sequentially triggering output currents I according to the inference algorithm

I ¼ W x. In the synstor or human neurobiological circuits, the conductance
matrixes (W) of synstors or synapses and inference algorithm I ¼ WðtÞx can be
concurrentlymodified following the correlative learning rule _WðtÞ ¼ α z

N
x. In the

sequential inference and learning processes of ANN, the inference data, including x,
y, and WðnÞ from the nth inference episode are sent to a computer. Subsequently,
WðnÞ is modified toWðnþ 1Þ in the nth learning episode according to a reinfor-
cement learning algorithmW nþ 1ð Þ ¼ f ½W nð Þ; x nð Þ; y nð Þ�. The inference algo-
rithm I ¼ W nþ 1ð Þx is then executed iteratively in the nþ 1ð Þth inference episode
in the Turing mode.
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synstor circuits and human neurobiological circuits operate in Turing
mode, with _W � 0 andW � Ŵ ¼ argmin

W
E, and _E � 0. In the pre-stall

conditionwith thewingat an8� angle of attack, the averageTL of the synstor
circuit (4:6 s with a standard division σ ¼ 0:5 s) in multiple trials is shorter
than that of the human operators (16:8 s with σ ¼ 2:2 s), and superior to
that of the ANN (2656 s with σ ¼ 192 s) (Fig. 6a). The average Ee of the
synstor circuit (1:4 a.u.withσ ¼ 0:2) andhumans (3:7 a.u.withσ ¼ 0:8) in
their multiple trials is superior to that of the ANN (4:3 a.u. with σ ¼ 0:9)
(Fig. 6a). Adaptability to the environment is represented by the successful
rate in minimizing E toward Ee in multiple trials. In the pre-stall condition,
the adaptability for the synstor circuit, human operators, andANN is 100%
with σ ¼ 0 (Fig. 6a).

In the stall conditionwith thewing at an18� angle of attack, the average
TL of the synstor circuit (33:2s with σ ¼ 2:5 s) across multiple trials is
shorter than that of the human operators (55:8s with σ ¼ 7:5 s), and
superior to that of the ANN (> 34000 s) (Fig. 6b). The average Ee of the
synstor circuit (1:9 a.u. with σ ¼ 0:5) across multiple trials is better than
that of humans (30:0 a.u. with σ ¼ 7:1) and the ANN (55:4 a.u.
with σ ¼ 2:5) (Fig. 6b). Adaptability to the environment is measured by
the success rate in recovering the wing from stall and minimizing E
toward Ee across multiple trials. The adaptability of the synstor circuit to
the aerodynamic environment (100% with σ ¼ 0) is better than that of
humans (20%with σ ¼ 17%), and is superior to that of the ANN (0%with
σ ¼ 0) across their multiple trials (Fig. 6b). The power consumption of the
synstor circuit (28 nW, Methods) for the concurrent execution of the
inference and learning algorithmswas eight orders ofmagnitude lower than
the aggregate power consumption of the computer (5.0W, Methods)
executing the learning and inference algorithms sequentially. Estimating the
power consumption of the human brain for inference and learning is
difficult.

Discussions and conclusions
We have created a synstor circuit model that mimics a neurobiological
circuit by simultaneously executing inference (I ¼ Wx, Eq. 1) and learning
( _W ¼ α z� x, Eq. 2) algorithms in super-Turing mode. Theoretical ana-
lysis shows that this concurrent operation within a system can optimize the
objective function of the system E ¼ 1

2 s
2 of the system with s representing

the state of the system. When the inference algorithm deviates from its
optimal form due to environmental shifts, conductance inaccuracies, or
other influences, the synstor circuit actively corrects and optimizes it
through simultaneous learning, driving the conductance matrix (W)
towards its ideal state (Ŵ ¼ argmin

W
E) and minimizing the objective

function E. Once the inference algorithm in the synstor circuit approaches
its optimal configuration (i.e., W ¼ Ŵ), the circuit can operate in Turing
mode, functioning as a conventional neuromorphic circuit executing a
fixed, optimized inference algorithm (I ¼ Ŵ x).

A synstor circuit was fabricated with a vertical stack comprising a Si
channel, SiO2 dielectric layer, ferroelectric Hf0.5Zr0.5O2 layer, and a WO2.8

reference electrode. Each synstor also features lateral Schottky contacts
between the Si channel and TiSi0.9/Ti input/output electrodes. Applying
paired voltage pulses (xm and zn) to these electrodes progressively tunes the
ferroelectric domains in theHf0.5Zr0.5O2 layer, enabling analog conductance
adjustment based on a correlative learning rule ( _wnm ¼ αznxm). Con-
versely, a single input voltage pulse (xm) induces current according to both
an inference algorithm (In ¼

P
m wnmxm) and the learning algo-

rithm ( _wnm ¼ 0).
Under this condition, the voltage primarily drops laterally across the

Schottky junction and does notmodify the ferroelectric domains within the
Hf0.5Zr0.5O2 layer, or the synstor conductance (i.e., _wnm ¼ 0 when xm≠0
and zn ¼ 0) as per the learning rule ( _wnm ¼ αznxm). Unlike other

Fig. 4 | Experiment results and analysis for the
wing in pre-stall condition with an 8° angle of
attack. a The drag-to-lift force ratios, s1 ¼ FD=FL,
b the magnitude of the fluctuation of the drag-to-lift
force ratio, s2, and c the objective function, E ¼ 1

2 s
2

(arbitrary unit), dE and ∂E
∂yn

(arbitrary unit,Methods)
for the wing controlled by a synstor circuit (left), a
human (middle), and an ANN (right) are displayed
versus time t (gray and black lines), where t repre-
sents concurrent inference and learning time in
synstor and human neurological circuits, and the
cumulative time for sequential inference and learn-
ing in the ANN. The average values of s1 and E are
also shown versus time t (red lines). The E � t
curves are best fitted byE tð Þ ¼ E 0ð Þ � Ee

� �
e�t=TL þ

Ee (green lines).
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neuromorphic circuits, the synstor circuit has the unique capability to
execute inference and learning algorithms concurrently in analog parallel
mode, allowing the circuit to operate in both super-Turing and Turing
modes. During inference algorithm execution, it can dynamically optimize
the algorithm via learning, adapt to environmental changes, and correct the
circuit conductance matrix. Unlike other neuromorphic circuits, this
synstor circuit uniquely enables concurrent execution of inference and
learning algorithms in analog parallel mode, allowing for dynamic algo-
rithmoptimization, adaptation to environmental changes, and correctionof
the conductancematrix of the circuit during inference, thus supporting both
Super-Turing and Turing operation.

Experiments were conducted to control a morphing wing in a wind
tunnel by a synstor circuit, humans, and a computer-based ANN in both
pre-stall (8� angle of attack) and stall condition (18� angle of attack). The
experimental objective was to minimize the drag-to-lift force ratio
(s1 ¼ FD=FL), its fluctuation (s2), and objective function E ¼ 1

2 s
2, reco-

vering the wing from stall by optimizing the shape of a morphing wing.
Without prior learning, a synstor circuit and humans executed learning
and inference concurrently in Super-Turing mode, while the ANN
executed inference and learning sequentially in Turing mode. In a
synstor or neurobiological circuit, the conductance of each synstor or
synapse can be dynamically adjusted and optimized in parallel analog
mode to adapt to environmental changes. In contrast, an ANN cannot
adjust its W matrix during inference in response to environmental
changes; it requires sequential inference and learning to determine the
statistically optimalW matrix across all conditions. Consequently, in the
pre-stall condition, the synstor circuit and humans exhibited learning
times (TL) two orders of magnitude shorter than the ANN. In the stall
condition, the synstor circuit and a few humans successfully optimized

the wing shape and adapted to the chaotic aerodynamic environment,
recovering the wing from the stall. In contrast, the ANN failed to recover
the wing from the stall. In stall condition, the wing faces a chaotic
aerodynamic environment. During the inference process, both synstor
and human neurobiological circuits can adjust and optimize their W
matrices in response to these chaotic changes, allowing the wing to
recover from the stall. In contrast, the ANN cannot adapt its W matrix
during inference in response to environmental changes and fails to derive
the statistically optimal W matrix across chaotic environments, leading
to failure in recovering the wing from the stall. For the same reasons, the
wing performance, measured by the post-learning equilibrium objective
function (Ee), was superior for both the synstor circuit and humans
compared to the ANN. The single-layer synstor circuit can execute
learning and inference concurrently in real-time, dynamically optimizing
its W matrix and inference algorithms, triggering optimal output
actuation signals (y) to minimize the objective function (E). Conversely,
the ANN and other neuromorphic circuits require additional time and
energy for sequential data storage, learning algorithm execution, and data
transfer between circuits. Moreover, the conductance ( < 60nS) and
power consumption ( < 100nW) of synstors are lower than that of
transistors ( < 1mS and < 1mW)11–13,47, memristors (~ < 10mS and
< 1mW)31–35, and phase-change memory resistors ( < 10mS and
< 1mW)36. Consequently, the power consumption of the synstor and
neuron circuits (28 nW) for concurrent inference and learning is eight
orders of magnitude lower than the aggregate power consumption
(5.0W) of the computer executing the learning and inference algorithms
sequentially in the ANN. The speed to execute these algorithms in analog
parallel mode scales linearly with the number of synstors (MN) in an
M ×N synstor circuit37,38,41. Synstor circuits offer a brain-inspired super-

Fig. 5 | Experiment results and analysis for the
wing in stall condition with an 18° angle of attack.
a The drag-to-lift force ratios, s1 ¼ FD=FL , b the
magnitude of the fluctuation of the drag-to-lift force
ratio, s2, and c the objective function, E ¼ 1

2 s
2

(arbitrary unit), dE and ∂E
∂yn

(arbitrary unit,Methods)
for the wing controlled by a synstor circuit (left), a
human (middle), and an ANN (right) are displayed
versus time t (gray and black lines), where t repre-
sents concurrent inference and learning time in
synstor and human neurological circuits, and the
cumulative time for sequential inference and learn-
ing in the ANN. The average values of s1 and E are
also shown versus time t (red lines). The E � t
curves are best fitted byE tð Þ ¼ E 0ð Þ � Ee

� �
e�t=TL þ

Ee (green lines).
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Turing computing platform for AI systems with extremely low power
consumption, high-speed real-time learning and inference, self-
correction of errors, and agile adaptability to dynamic complex
environments.

Methods
Theoretical analysis of synstor circuits in super-Turing mode
The temporalmean of the z voltage pulses applied to the output electrode of
the synstor circuit:

z ¼ 0 ð4Þ

and the covariance between zn and yn0 ,

znyn0 ¼ < zn; yn0 > ¼ ηn δnn0 ð5Þ

where < zn; yn0 > ¼ ðzn � znÞðyn0 � yn0 Þ ¼ znðyn0 � yn0 Þ ¼ znyn0 due to

zn ¼ 0, δnn0 denotes theKronecker deltawith δnn0 ¼
0when n0≠n
1when n0 ¼ n

�
, and

ηn represents a parameter with ηn ≤ 0.

The learning rule observed in synapses within neurobiological circuits,
known as STDP3,5, can also be formulated as dW

dt ¼ α z � x (Eq. 2) or

dwnm
dt ¼ α znxm with zn tð Þ ¼ A�e

ðt�tynÞ=τ�when t < tyn
�Aþe

�ðt�tynÞ=τþwhen t ≥ tyn

�
, where tyn

denotes the moment when a pulse (y) is triggered at the nth postsynaptic
neuron, Aþ > 0 and A� > 0 denote amplitude constants, and τþ > 0 and
τ� > 0 denote time constants. In STDP, z also satisfies the conditions z ¼ 0
(Eq. 4) and znyn0 ¼ ηn δnn0 (Eq. 5) with ηn ≥ 0 for STDP and ηn ≤ 0 for
anti-STDP5.

The change rate of objective function E due to learning (modification
ofW),

∂E
∂t

� 	
L

¼ ∂E
∂W

_W ¼
X
n

∂E
∂Ex

� 	
∂Ex

∂yn

� 	
∂yn
∂In

� 	
2 αj jznEx ð6Þ

where E ¼ 1
2

P
m s2m, Ex ¼ 1

2

P
m x2m,

∂E
∂t

� �
L ¼ ∂E

∂W
_W ¼ P

n;m
∂E

∂wnm

� �

_wnm ¼ P
n;m

∂E
∂Ex

� �
∂Ex
∂yn

� �
∂yn
∂In

� �
∂In
∂wnm

� �
_wnm ¼ P

n;m
∂E
∂Ex

� �
∂Ex
∂yn

� �
∂yn
∂In

� �
xm

ðαznxmÞ ¼
P

n
∂E
∂Ex

� �
∂Ex
∂yn

� �
∂yn
∂In

� �
2 αj jznEx , with

∂In
∂wnm

¼ xm due to In ¼P
m wnmxm (Eq. 1), and _wnm ¼ αznxm (Eq. 2). Ex and yn are discontinuous

pulse functions and not differentiable; thus, ∂E
∂Ex

, ∂Ex∂yn
, and ∂yn

∂In
in Eq. 6 need to

be derived through fitting experimental data. The change of Ex within a

learning period can be expressed in a linear model as:

δEx ¼
X
n0

∂Ex

∂yn0

� 	
δyn0 þ δE0

x ð7Þ

where
P

n0
∂Ex
∂yn0

� �
δyn0 represents the change in Ex due to δyn0 with

∂Ex
∂yn0

� �
as

coefficients in the model, and δE0
x represents the part of δEx unrelated to

δyn0 . By multiplying both sides of Eq. 7 by zn and then taking the temporal
average over the learning period, we get

znEx ¼
∂Ex

∂yn

� 	
ηn ð8Þ

where znEx ¼ znδEx ¼
P

n0
∂Ex
∂yn0

� �
znδyn0 þ zn δE0

x ¼
P

n0
∂Ex
∂yn0

� �

znyn0 ¼ ∂Ex
∂yn0

� �
ηn, znδE

0
x ¼ 0, znδEx ¼ znðEx � Exð0ÞÞ ¼ znEx , znδyn0 ¼

znðyn0 � yn0 ð0ÞÞ ¼ znyn0 due to zn ¼ 0 (Eq. 4), and
P

n0
∂Ex
∂yn0

� �
znyn0 ¼

∂Ex
∂yn0

� �
ηn because znyn0 ¼ ηn δnn0 (Eq. 5). The partial derivative,

∂E
∂Ex

, can be

derived as a coefficient from a linear model, δE ¼ ∂E
∂Ex

� �
δEx þ δE0, where

∂E
∂Ex

� �
δEx represents the change in E due to δEx , and δE0 represents the

change of the part of δE unrelated to δEx . By multiplying both sides of the
equation byEx � Ex and then taking the temporal average over the learning

period, < E; Ex > ¼ < δE; Ex > ¼ ∂E
∂Ex

� �
< δEx; Ex > þ < δE0; Ex > ¼

∂E
∂Ex

� �
< Ex; Ex > , thus ∂E

∂Ex
¼ < E; Ex > = < Ex; Ex > . In the circuit, E

increases monotonically with increasing Ex , thus
∂E
∂Ex

≥ 0. The partial deri-

vative, ∂yn
∂In
, can be derived as a coefficient from a linear model,

δyn ¼ ∂yn
∂In

� �
δIn þ δy0n, where

∂yn
∂In

� �
δIn represents the change in yn due to

δIn, and δy0n represents the change of the part of δyn unrelated to δIn. By
multiplying both sides of the equation by In � In and then taking the

temporal average over the learning period, < yn; In > ¼ < δyn; In > ¼
∂yn
∂In

� �
< δIn; In > þ < δy0n; In > ¼ ∂yn

∂In

� �
< In; In > , thus

∂yn
∂In

¼ < yn; In > =

< In; In > . In the circuit, yn increasesmonotonicallywith increasing In, thus
∂yn
∂In

≥ 0. Based on Eq. 6, the change rate of E due to learning within the

learning period, ∂E
∂t

� �
L
¼ ∂E

∂t

� �
L
¼ P

n
∂E
∂Ex

� �
∂Ex
∂yn

� �
∂yn
∂In

� �
2 αj jznEx ¼

P
n

∂E
∂Ex

� �
∂Ex
∂yn

� �
∂yn
∂In

� �
2 αj jznEx ¼

P
n 2 αj jηn ∂E

∂Ex

� �
∂Ex
∂yn

� �2 ∂yn
∂In

� �
, where

Fig. 6 | Comparative analysis of synstor circuit,
human operators, and ANN. The average learning
time (TL), equilibrium objective function (Ee),
adaptability to the changing environment, and
power consumption across multiple trials for the
wing controlled by the synstor circuit (blue), human
operators (green), and ANN (red) a in the pre-stall
condition with the wing at an 8� angle of attack and
b in the stall condition with the wing at an 18� angle
of attack.
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znEx ¼ ∂Ex
∂yn

ηn (Eq. 8). During the learning process, ηn ≤ 0 (Eq. 5), ∂E
∂Ex

≥ 0,

and ∂yn
∂In

≥ 0, thus

∂E
∂t

� 	
L

¼ ∂E
∂W

_W ¼
X
n

2 αj jηn
∂E
∂Ex

� 	
∂Ex

∂yn

� 	2 ∂yn
∂In

� 	
≤ 0 ð9Þ

The overall change rate of E, dE
dt ¼ ∂E

∂t

� �
L
þ ∂E

∂t

� �
0
, where ∂E

∂t

� �
0

represents the change rate of E unrelated to learning. When the system

and learning parameters, suchasα,ηn,
∂Ex
∂yn

��� ���, and ∂yn
∂In
, are adjusted tomeet the

condition ∂E
∂t

� �
L
≤ � ∂E

∂t

� �
0
, then dE

dt ≤ 0 (Eq. 3).

Synstor circuit fabrications and characterization
The synstor circuit was fabricated on a silicon-on-insulator wafer fea-
turing a 220 nm p-doped Si layer on a 3-µm-thick buried silicon oxide
layer. Ultraviolet (UV) photolithography and reactive ion etching (RIE;
Oxford Plasmalab 80 Plus RIE) were used to fabricate 5 µm × 40 µm Si
channels. After thermal oxidation to form a 3.5-nm-thick SiO2 layer and
subsequent etching to define contact areas, 300-nm-thick Ti input/out-
put electrodes were fabricated by UV photolithography, e-beam eva-
poration, and a lift-off process. The chip was annealed in forming gas
(5% H2 in N2) at 460 °C for 30min to form a titanium silicide layer
sandwiched between the Si channel and Ti input/output electrodes. A
12.6-nm-thick Hf0.5Zr0.5O2 layer was deposited on the chip by atomic
layer deposition (Fiji Ultratech ALD) at 200 °C using tetra-
kis(dimethylamino)hafnium(IV) and tetrakis(dimethylamino)zirconiu-
m(IV) precursors. An 80-nm-thick W oxide layer was deposited on the
Hf0.5Zr0.5O2 layer by magnetron sputtering (Denton Discovery), and W
oxide reference electrodes were patterned by lifting off a photoresist layer.
A rapid thermal anneal (Modular Process Technology RTP-600xp) at
500 °C crystallized the Hf0.5Zr0.5O2 layer and formed a WO2.8 reference
electrode. Finally, the Hf0.5Zr0.5O2 was etched from the contact pads. The
synstor features an active area of 200 µm2. Based on our device simula-
tions, an HfZrO-based synstor can be miniaturized to an active area of
~0.002 µm2 using the 28 nm fabrication techniques for HfZrO-based
ferroelectric transistors48,49. Structural and material composition profiles
of the synstor chip were characterized using STEM (scanning trans-
mission electron microscopy), EDX (energy-dispersive X-ray spectro-
scopy), and EELS (electron energy loss spectroscopy) analysis. EDX
analysis was performed using JEOL JEM-2800 TEM operated at 200 kV.
Atomic resolution STEM and EELS analysis was performed with a JEOL
Grand ARM TEM operated at 300 kV with a spherical aberration
corrector.

Computer-aided device simulation
Based on the properties of synstors and their circuits, we have designed and
simulated synstors by a technology computer-aided design (TCAD) simu-
lator (Sentaurus Device, Synopsys). The simulator performed numerical
calculations of the device physics by solvingPoisson’s equationdescribing the
electrostatics and drift-diffusion carrier transport under a set of boundary
conditions definedby the device structure.Quasi-stationary simulationswere
conducted under various voltage biases on the input/output electrodes of the
synstors with respect to the grounded reference electrodes. The band dia-
grams of the synstors were extracted from these simulations, the electronic
properties of the synstors were analyzed, and an equivalent circuit (Fig. 2b)
was established to emulate these electronic properties.

Electrical tests of synstor circuits
During the electric tests, the reference electrodes of the synstors were always
grounded. Current-voltage characteristics were measured with a Keithley
4200 semiconductor parameter analyzer. The electrical voltage pulses
applied to the input and output electrodes of the devices and circuits were

generated by FPGA (National Instruments, cRIO-9063), computer-
controlled modules (National Instruments, NI-9264), and a Tektronix
AFG3152C waveform/function generator. Currents flowing through the
synstorsweremeasured by a semiconductor parameter analyzer, computer-
controlled circuit modules (National Instruments, NI-9205 and NI-9403),
and an oscilloscope (Tektronix TDS 3054B). Testing protocols were pro-
grammed (NI LabVIEW) and implemented in an embedded FPGA
(Xilinx), a microcontroller, and a reconfigurable I/O interface (NI
CompactRIO).

Neuron circuits
Neuron circuits were designed in our laboratory to emulate the functions of
biological neurons, and were fabricated in Taiwan Semiconductor Manu-
facturing Company (TSMC) according to our design. The structure and
properties of theneuron circuitwill be detailed in a separate report. Currents
from excitatory (or inhibitory) synstors, I, are mirrored by transistors,
leading the current I to a capacitor of a transistor gate, thereby increasing
(decreasing) its potential Vm. A leakage current, Ib, controlled by the vol-
tage,Vb, reducesVm.WhenVm reaches a threshold value, anoutput y pulse
is triggered. The neuron circuit fabricated by TSMC was tested by injecting
the current I into the neuron circuit, and measuring the voltage pulses
output from the neuron circuit. As shown in Fig. S4, when I < Ith (a
threshold current), no pulse is output from the neuron circuit.When I ≥ Ith,
the frequency of the pulses output from the neuron circuit (f out) increases
with increasing I. The Ith and f out � I relation can be adjusted by adjusting
the control voltage (Vb). A digital circuit processes the y pulses and generate
z pulses, with level shifters converting logic signals from the digital circuit to
the desired voltage levels in the neuron circuit. As shown in Figs. S5a, S6a,
when a yn pulse is triggered at t ¼ tn from the nth neuron circuit, a 80-ms-
wide �2:1V (4:2V) zn pulses is triggered simultaneously at the nth (n;th)
output electrode connected with excitatory (inhibitory) synstors, and a 80-
ms-wide4:2V (�2:1V) zn pulse is triggered at then

;th (nth) output electrode
connected with the inhibitory (excitatory) synstors at t ¼ tn þ td , with
td ¼ 1:2s. The y and z pulses satisfy the conditions z ¼ 0 (Eq. 4)
and znyn0 ¼ ηn δnn0 (Eq. 5) with ηn ≤ 0. To minimize power consumption,
all the analog transistors in the neuron circuit are operated in their sub-
threshold region. The circuit simulations indicate that the average power
consumption of the neuron circuit (including z pulse generation)
is 0.27 nW.

Morphing wing and wind tunnel
During reinforcement learning, the discrete action space comprised 500
distinct voltage levels used to either raise or lower the activation voltage
applied to the piezoelectric actuators of the morphing wing. The wing is
made of a NACA 0012 airfoil with 12-inch chord and 15-inch span
rectangular profile. This morphing edge consisted of two macro fiber
composite (MFC) piezoelectric actuators, each bonded to 0.001-inch
stainless steel shims to create bending. Due to the antagonistic design of
the morphing tail, two voltages opposite in sign but proportional in
magnitude were supplied to the dual MFC system so that each MFC
actuates the tail in the same direction. Therefore, although we only
reported the actuation voltage, Va, for one MFC, the second MFC
received a separate voltage appropriately. Through a flexure box inter-
face, the two MFC actuate antagonistically to smoothly and rapidly
deflect the trailing edge and modify the camber of the airfoil, providing a
multifunctional system acting as both skin and actuator44,45. An increase
in actuation voltage causes the trailing edge of the morphing wing to
deflect upward, while a decrease in voltage results in a downward
deflection of the trailing edge. The design was scalable to multiple pie-
zoelectric actuators along the spanwise edge (spanwise morphing trail
edge) to achieve a continuous change in wing shape. The morphing wing
experiments were performed in the open-loop wind tunnel facility at
Stanford University with a square test section of 33 inch × 33 inch. The
wind speed in the wind tunnel was set at 10:0m=s. The lift (FL) and drag
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(FD) forces on the wing were measured with strain gauges (OMEGA
SGD-5/350-LY13) attached to a morphing wing mounting shaft.

Experimental setup for a morphing wing controlled by a synstor
circuit
As shown in Figs. S5a, 6a, the lift and drag forces on the wing were recorded
by the strain gauges (OMEGA SGD-5/350-LY13), which was then con-
nected toNI-9236DAQ for analog to digital conversion and then processed
by PC. The sensing signals, s, including the drag-to-lift force ratio
(s1 ¼ FD=FL), and themagnitude of the fluctuation of the drag-to-lift force
ratio (s2)were converted tovoltagepulses, x, withan amplitude of�2:1V or
4:2V and a duration of 10ns. The x pulses were input to the synstor circuit
via an interface circuit (FPGA, Xilinx, Kintex-7). The firing rate of x pulses
increasedmonotonically with increasing s. The x signals generated currents
via the synstor circuit by following the inference algorithm I ¼ Wx (Eq. 1),
the currents, I, flowed through the synstors to neuron/interface circuits,
triggering the actuation pulses, y, to modify the shape of the wing. When y
pulses were triggered, z pulses satisfying the conditions z ¼ 0 (Eq. 4)
and znyn0 ¼ ηn δnn0 (Eq. 5) with ηn ≤ 0 were also triggered at the output
electrodes of the synstor circuit via the neuron circuits to modify W
according to the learning rule _W ¼ αz� x (Eq. 2) during the real-time
learningprocess. The output pulses from theneuron circuitswere converted
to actuation voltage,Va, via an interface circuit (FPGA, Xilinx, Kintex-7) to
control the wing.

Experimental setup for a morphing wing controlled by human
operators
In the experimentswith themorphingwing controlledbyhumansunder the
same environment of the synstor circuit experiments (Figs. S5b, S6b),
humanoperatorswithout anypriorknowledgeof themorphingwing and its
control system visually received sensing signals (s) displayed on a computer
monitor, and were instructed to minimize the s or E ¼ 1

2 s
2 values. The

human operators triggered actuation pulses y to change wing shape by
pressing two keys in a keyboard. The firing rates of y pulses were propor-
tional to the keystroke times.

Experimental setup for a morphing wing controlled by ANN
In the experiments with the morphing wing controlled by ANN under
the same environment of the synstor circuit experiments (Figs. S5c, S6c),
a Dell computer with Intel i7-8700 CPU received the s signals, executed
the inference algorithm (I ¼ Wx, Eq. 1) in ANN with three layers of
nine neurons and 20 synapses (Fig. S7), and triggered actuation pulses, y,
to change wing shape. We tested ANNs with various structures and
learning parameters, selecting the optimal structures (nine neurons and
20 synapses) and learning parameters (a learning rate of 5× 10�9a:u: and
a discount factor of 0:99995 a:u:) with the shortest learning time and
lowest objective function for the experiments. Before the experiment
started, the synaptic weight matrix, W, in the ANN was also set to
random values, the same as for the synstor trials. Due to the large data
size, the time for executing the learning algorithm was much longer than
executing the inference algorithm. The ANN controller with synaptic
weight matrixes WðnÞ controlled the wing for 30 s in the same envir-
onment as the synstor circuit in its nth round of trial, and the experi-
mental data collected from this inference experiment was used to execute
a policy gradient-based deep reinforcement learning algorithm46 for
about 600s, modifying WðnÞ to Wðnþ 1Þ. The modified Wðnþ 1Þ was
sequentially sent back for the ðnþ 1Þth round of experiment to control
the wing iteratively. In the case of pre-stall condition, after 40 iterative
offline learning processes, the weights in the ANN gradually evolved
from uncorrelated random values to stable correlated values, the ANN
controller progressively learned to control the wing and the objective
function E ¼ 1

2 s
2 was gradually decreased and minimized to a stable

value. However, due to a highly chaotic environment during the stall
condition, the ANN weights continuously oscillated and never stabilized
in the experiments performed for 57 iterative offline learning processes.

Without real-time learning functionality, the computer was not able to
dynamically optimize W in ANN to control the wing in the chaotic stall
condition, and the wing failed to recover the wing from the stall and
minimize the objective function E ¼ 1

2 s
2.

Analysis of ∂E
∂yn

� �
during learning processes

During the learning processes of the synstor circuits, humans, andANN, ∂E∂yn
can be derived from a linear model δE ¼ P

n0
∂E
∂yn0

� �
δyn0 þ δE0, where

P
n0

∂E
∂yn0

� �
δyn0 represents the change in E due to learning (δyn0 ) with

∂E
∂yn0

� �
as coefficients in the model, and δE0 represents the part of δE unrelated to
δyn0 . By multiplying both sides of the equation by yn � yn and then taking

the temporal average over a learning period, < E; yn > ¼ < δE; yn > ¼
P

n0
∂E
∂yn0

� �
< δyn0 ; yn > þ < δE0; yn > ¼ ∂E

∂yn

� �
< yn; yn > , where the

covariance < δE0; yn > ¼ 0, < δyn0 ; yn > ¼ < yn0 ; yn > ¼ < yn; yn >

δnn0 , and
P

n0
∂E
∂yn0

� �
< δyn0 ; yn > ¼ P

n0
∂E
∂yn0

� �
< yn; yn > δnn0 ¼

∂E
∂yn

� �
< yn; yn > , thus

∂E
∂yn

� 	
¼ < E; yn > = < yn; yn > ð10Þ

When ∂E
∂y ≠0, and

∂E
∂W ¼ ∂E

∂y
∂y
∂W ≠0, the circuit operates in the super-Turing

mode, simultaneously performing inference and learning to adjust W
toward Ŵ ¼ argmin

W
E, while ∂E

∂W

�� �� gradually decreases toward 0. When E
reaches itsminimumvalue, ∂E∂y ¼ 0, and ∂E

∂W ¼ ∂E
∂y

∂y
∂W ¼ 0, _W ¼ 0, andW ¼

Ŵ ¼ argmin
W

E remains unchanged, the circuit operates in the Turing
mode (Figs. 4d, 5d).

Analysis of ∂E
∂W

� �
during ANN learning processes

During the ANN learning processes, ∂E∂W can be derived from a linear model

δE ¼ P
n0;m0

∂E
∂wn0m0

� �
δwn0m0 þ δE0, where

P
n0;m0

∂E
∂wn0m0

� �
δwn0m0 repre-

sents the change inE due to learning (δwn0m0 ),with ∂E
∂wn0m0

� �
as coefficients in

the model, and δE0 represents the part of δE unrelated to δwnm. By mul-
tiplying both sides of the equation by wnm � wnm and then taking the
temporal average over a learning period, <E;wnm > ¼ < δE;wnm > ¼P

n0;m0
∂E

∂wn0m0

� �
< δwn0m0 ;wnm >þ < δE0;wnm > ¼ ∂E

∂wnm

� �
<wnm;wnm > ,

where the covariance < δE0;wnm > ¼ 0, < δwn0m0 ;wnm > ¼
<wn0m0 ;wnm > ¼ <wnm;wnm > δnn0δmm0 , and

P
n0;m0

∂E
∂wn0m0

� �
< δwn0m0 ;

wnm > ¼ ∂E
∂wnm

� �
<wnm;wnm > , leading to:

∂E
∂wnm

� 	
¼ ½ < E;wnm > = <wnm;wnm > �= <wnm;wnm > ð11Þ

During theANNlearningprocess ofANN, ∂E
∂wnm

� �
canbe derived from

E and W data based on Eq. 11 (Fig. S8). However, during the learning
processes of the synstor and human neurobiological circuits,Wwas neither
measured nor recorded, thus ∂E

∂wnm
cannot be derived.

Analysis of the objective function E during learning processes
During the learning processes of the synstor circuits, humans, and ANN, the
average change rate of objective function, _E


 �
, is a nonlinear function of time,

but can be best fitted by a linear dynamic model _Eh i ¼ �ð Eh i � EeÞ=TL
and its solution over the learning processes,

E tð Þ
 � ¼ E 0ð Þ � Ee

� �
e�t=TL þ Ee ð12Þ

where the fitting parameter TL represents the average learning
time, and Ee represents the equilibrium objective function when t≫TL
and _Eh i � 0 (Figs. 4c, 5c). In this condition, both synstor circuits
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and human neurobiological circuits operate in Turing mode, with
_W � 0 and W � Ŵ ¼ argmin

W
E, after the learning processes

conclude.

Power consumption of inference and learning by the synstor
circuit
During learning in the synstor circuit, conductance tuning was per-
formed by applying a pair of voltage pulses with identical amplitudes to
the input and output electrodes at the same time. These pulses charge
the capacitor formed between the reference electrode and the silicon
channel but did not drive current through the Si channel, unlike during
inference. The average power consumption for learning in the synstor
circuit can be estimated as: PL � cT V

2
a f p, where cT is the total capa-

citance of the synstors in the circuit, Va is the magnitude of pulses, and
f p is the average frequency of the pulses applied for learning. In the
learning process of the synstor circuit, the parameters are approxi-
mately, cT � 3:5pF, Va ¼ 4:2V , and f p � 0:6Hz, resulting
in PL � 8:8pW.

During inference in the synstor circuit, voltage pulses were applied to
the input electrodes of the synstors, while their output electrodes were held
at ground potential. The average power consumption of the circuit for
inference,

P ¼ I�x ¼ ðwxÞ�x � wT V
2
aDp ð13Þ

where wT denotes the total conductance of the synstors in the circuit, Va
denotes the magnitude of pulses, Dp denotes the average duty-cycle of the
pulses. During the inference in the synstor circuit for the wing,wT � 40 nS,
Va ¼ 4:2V , and Dp ¼ 0:04, thus P � 28 nW (Fig. 6). The power
consumption for learning is substantially lower than that required for
inference. As a result, inference power primarily determines the overall
power consumption of the synstor circuit.

Power consumption of sequential inference and learning in ANN
by the computer
According to analysis from Python toolkits “keras_flops” and “pyperf”, the
speeds for sequentially executing the inference and learning programs in
ANN on the computer were estimated to be 1:24KFLOPS and 2:0GFLOPS,
respectively. With a computing energy efficiency of 0:4GFLOPS=W 50, the
power consumption for sequentially executing the inference and learning
programs on the computer was 3:1 μW and 5:0W, respectively. The
aggregate power consumption of the ANN for sequential inference and
learning is 5:0W (Fig. 6).

Data availability
All data are available in themain text, Supplementary Information, or upon
request from the corresponding author.

Code availability
The source codes supporting this research are available on GitHub: https://
github.com/Deo-Atharva/Morphing-Wing/tree/main] (https://github.
com/Deo-Atharva/Morphing-Wing/tree/main.
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