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Underwater acoustics plays a vital role in climate science, marine ecosystems, environmental
monitoring, mineral exploration, and oceanography. Accurate underwater sound speed data is crucial
for acoustic modeling and applications such as sonar systems. However, limited data and
computational constraints hinder real-time, high-resolution mapping of three-dimensional sound
speed fields. We present an integrated approach that combines remote sensing, machine learning,
and underwater acoustics to estimate sound speed across vast ocean regions. By analyzing sea
surface temperature and salinity from satellite observations, we use machine learning to rapidly and
accurately predict 3D underwater sound speed. Incorporating spatial and temporal variables enables
detailed, real-time mapping. Validation against in-situ profiles and Argo float data confirms the
model’s accuracy across seasons, regions, and timeframes. This approach advances underwater
sound speed prediction beyond traditional limits. Acoustic propagation modeling further
demonstrates thepotential of ourmodel for applications in underwater detection, communication, and
noise analysis.

Underwater sound propagation1–7 is crucial for imaging and communica-
tion systems in the ocean, as electromagnetic waves do not transmit well in
water. The characteristics of sound propagation are determined by the
sound speed distribution, which varies spatially and temporally due to
changes in temperature and salinity. Accurate sound speed distribution is
essential for predicting underwater sound propagation1,8–12, which is critical
for designing and implementing sonar systems. Real-time, accurate 3D
sound fields can greatly improve the performance of underwater detection,
navigation, communication systems.

Direct measurement of underwater sound speed, though possible with
instruments like Acoustic Doppler Velocimeters, is often limited to specific
times and locations. Alternatively, empirical sound speed formulas use in-
situ measurements of salinity, temperature, and pressure (CTD data) to
calculate sound speed13–17, but these methods require extensive ocean sur-
veys, which are costly and time consuming. Consequently, the sound speed
fields obtained from these measurements are limited.

Data assimilation techniques aim to address the challenge of limited in-
situmeasurements by integrating sparse observationswithmodel data, such
as those from the Modular Ocean Data Assimilation System18. However,
these methods face challenges, including selecting an appropriate assim-
ilation radius. Choosing a too-small radius can lead to inaccuracies, while a
too-large one may oversimplify the data. Consequently, these techniques
may not always fully capture the complexity of the ocean environment.

Acoustic tomography offers another method for estimating 3D sound
speed by using soundwaves of a source and receiver network to infer sound
speed profiles (SSPs)19–22. However, this technique has limitations, including
restricted spatial resolution and depth range (typically limited to 2–3 km),
and it can be affected by interference from biological and man-made
sources. Additionally, the matched-field inversion techniques used in
acoustic tomography to address data scarcity by employing an array of
hydrophones are less effective in large or complex ocean environments23–25.

High-resolution 3D ocean circulation models, like the Estimating the
Circulation and Climate of the Ocean project26, provide an alternative to
direct in-situ CTDmeasurements.While thesemodels offer comprehensive
3D sound speed fields, they are less suitable for real-time applications due to
high computational demands and potential delays.

Machine learning (ML), especially deep learning, offers significant
advantages over traditional methods in addressing real-time and high-
resolution challenges in underwater acoustics. These models can excel in
capturing complex, nonlinear relationships among environmental para-
meters such as temperature, salinity, and pressure27, crucial for underwater
applications. Unlike methods reliant on linear assumptions, ML models
utilize large datasets and neural networks to achieve high accuracy and real-
time capabilities28. They can dynamically integrate diverse data sources, like
satellite imagery, enhancing adaptability to environmental changes and
improving efficiency in real-time applications. Consequently, ML has
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superior performance over traditional algorithms in underwater acoustics,
leading to improved prediction accuracy and efficiency, especially for real-
time and high-resolution tasks27,29.

This studyproposes to rapidlypredict global ocean sound speed innear
real-time using sea surface temperature (SST) and salinity data. By lever-
aging satellite observations and ML algorithms, the approach aims to
overcome the limitations of traditional methods, providing efficient, real-
time predictions for applications requiring immediate data. The model is
trained using inputs such as time, depth, location (longitude, latitude), SST,
and surface salinity (Fig. 1A), covering different months, days, and hours.
Initially, it is trained with in-situ CTD data to compute sound speed
(Fig. 1A). Once trained, the model can predict sound speed using near real-
time satellite data (Fig. 1B), eliminating the need for costly and geo-
graphically limited in-situ measurements. This method enables rapid pre-
diction of 3D sound speed fields, advancing underwater acoustics through
the effective use of ML.

In our model, the training utilizes data inputs covering different hours
and times to catch the relationship of sound speed with specific times and
locations. Besides this, the month has been added as an additional input to
assist in catching up on the influence of the season on the sound speed.
Utilization of the month as a direct input of the model should not be
confused with a time-averaged model. Our model makes a prediction of
sound speed values, which is real-time since the prediction is based on the
updated inputs of the sea surface data at specific hours and times.

Our model’s ability to predict sound speed has been rigorously vali-
dated using datasets spanning the training time window, beyond it, and
across diverse seasons and locations, demonstrating accurate, real-time,
high-resolution 3D sound speed mapping. While specific regions showed
lower prediction accuracy, these were addressed with region-specific
models. Further analysis indicated the model’s suitability for underwater
acoustic applications, particularly involving low- to mid-frequency sources
such as detection, communication, and noise propagation. Additionally,

this study showcased sound speed prediction using satellite observations,
highlighting the model’s versatility and its potential for integration into
various underwater contexts,with detailed results supporting thesefindings.

Results
For a comprehensive understanding of our methodology, including the data
sources, ML models, evaluation metrics, and detailed model comparisons,
refer to the Materials and Methods section in the supplementary materials.
We employed two advanced models—Deep Neural Network (DNN) and
K-nearest Neighbor (KNN)—to predict underwater sound speed based on
surface data. Standard evaluation metrics, specifically Root Mean Squared
Error (RMSE) andR-squared (R2) scores,were used to assess theperformance
of thesemodels. Our analysis revealed that theKNNmodel outperformed the
DNNmodel, leading us to select KNN for subsequent analyzes.

Table 1 provides an overview of the datasets used for both training and
prediction. Our analysis utilized three primary datasets: (1) the World
Ocean Circulation Experiment (WOCE) dataset, which includes ~29 mil-
lion data instances collected from 1992 to 1998 (see Fig. 3A)30; (2) WOA
dataset,whichoffersmonthly averageddata from2004 to2023with a 1° × 1°
horizontal resolution down to 2000m depth31; and (3) the Physical

Fig. 1 | Schematic diagrams of predictive model
phases for underwater sound speed estimation.
A Training Phase: The model learns from input
parameters including month, depth, latitude, long-
itude, surface temperature, and surface salinity,
along with sound speed data derived from Con-
ductivity, Temperature, and Depth (CTD) mea-
surements. These sound speed values are used to
establish relationships between the inputs and the
target output.BPrediction Phase: Themodel applies
the learned relationships from the training phase to
predict underwater sound speed using the same
input parameters but without the need for
CTD data.
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CTD Data

Predictive
Model

Month

Depth

Surface Salinity

Latitude

Longitude

Surface
Temperature

Sound SpeedPredictive
Model

(A)

(B)

Table 1 | Section and data set overview

Section Training data set Prediction data set

Prediction within training time
window

WOCE (80%) WOCE (20%)

Prediction beyond training time
window

WOCE (80%) WOA (2015)

Global predictions WOCE (80%) WOA (2015)

Regional Model WOA (2004) WOA (2004)

Satellite data-based predictions WOCE(80%) PODCC (2023)
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Oceanography Distributed Active Archive Center (PODAAC), which
provides daily updates on satellite-observed SST32 and salinity33.

In addition to predictions based on satellite data (Table 1), other pre-
dictions incorporated temperature and salinity at zero depth from the CTD
data within the datasets as surface inputs to train and forecast sound speed
fields. These predictions were then compared with sound speed calculated
from CTD data at various depths within the datasets (See the “Methods”
section for details about the calculation).

Insights into model performance
Westart from interpreting thephysicsbehind theeffectivenessof ourmodel in
predicting underwater sound speed based on sea surface data. To do this, we
analyzed the correlation between surface sound speed and sound speed at
various depths usingCTDdata from the 2015WOA31. This analysis evaluated
correlation values from the surface to depths of up to 2000m for bothMarch
andSeptember (Fig. 2), representing summerandwinter seasons, respectively.

The high correlation values observed in the upper 500m (Fig. 2)
indicate a strong influence of surface parameters on sound speed in this
region. This finding predicts our model’s ability to accurately capture the
vertical SSP based on surface conditions, which is crucial given that tem-
perature and salinity, both of which vary at the surface, predominantly
influence sound speed in the upper ocean. The results demonstrate the
model’s proficiency in leveraging surface data for accurate sound speed
predictions in these upper layers.

As depth increases, correlation values decrease (Fig. 2), suggesting that
surface conditions have a diminished influence on sound speed. In deeper
regions, pressure becomes the dominant factor affecting sound speed. Here,
the model relies on historical data patterns to predict sound speed, effec-
tively managing the complexities associated with deeper ocean profiles. By
integrating historical data, the model should maintain robust predictive
accuracy even in deeper regions where surface parameters are less relevant.

With these results, ourmodel should effectively use surface parameters
for sound speed predictions in the upper ocean while adapting to the stable

pressure influences in deeper waters, ensuring comprehensive prediction
capabilities across varying ocean depths.

Prediction within the training time window
We trained our model using 80% of the WOCE dataset30 and ensure robust
performance evaluation by employing a 5-fold cross-validation (see Sup-
plementary). Figure 3A shows amap of theCTDdata collection locations for
theWOCE dataset.We then predicted sound speed values for 5million data
instances from the remaining 20% of the data reserved for testing. Figure 3B
shows an illustrative example of one predicted SSP, which closely aligns with
theCTD-calculated values, demonstrating themodel’s potential applicability.

To further evaluate the model’s efficacy, we conducted a detailed error
analysis by comparing the predicted sound speed values with those calcu-
lated using CTD data. We categorized prediction errors into bins across
different depth ranges. The symmetry in the heatmap (Fig. 3C) suggests an
equal likelihood of positive and negative errors, with a sharp peak indicating
consistent model performance and minimal significant outliers. The error
distribution heatmap (Fig. 3C) reveals the greatest dispersion near the
surface (0–1000m), where the ocean exhibits significant variability, with
error magnitudes ranging from −12 to 12m/s, and over 99% of errors
within ±0.5 m/s. The mean absolute error (Fig. 3D) shows a depth-
dependent variation, peaking at 0.16m/s around 100m and then stabilizing
at greater depths, consistent with the heatmap analysis.

Overall, the results showa trend of improving prediction accuracywith
depth. The model faces challenges in the upper ocean, where wind and
ocean interactions introduce greater variability, but it performs better in the
deep ocean, where pressure predominantly influences sound speed. How-
ever, those large-magnitude errors predominantly found at shallow depths
are infrequent, highlighting themodel’s overall effectiveness in sound speed
prediction, at least within the training time window.

Prediction beyond the training time window
Our model was trained using in-situ CTD data from the WOCE dataset,
collected between 1990 and 199830. A key question is whether this model,
trained on historical data, can accurately predict SSPs beyond this period. To
investigate this, we applied ourmodel to predict sound speed using theWOA
dataset31, which providesmonthly averaged data on temperature and salinity
for specific depths, latitudes, and longitudes.We compared these predictions
with SSPs derived from CTD data within the WOA dataset in 2015.

We examined SSPs at various latitudes along 150° West longitude in
January to assess the model’s ability to replicate latitude-dependent
underwater sound speed variations. The model’s predictions (dashed
lines) closely align with SSPs calculated from CTD data in theWOA (solid
lines) (Fig. 4A). The model effectively captured key relationships, such as
higher sound speed values at lower latitudes corresponding to warmer
surface temperatures and lower sound speed values at higher latitudes
associated with cooler temperatures. It also accurately predicted minimal
variations in sound speed across different latitudes in deep ocean regions.
These results demonstrate the model’s capability to reproduce the depen-
dence of sound speed on latitude, validating its predictive accuracy and its
ability to generalize beyond the training data.

We analyzed predictions forMarch and September 2015, representing
winter and summer in the northern hemisphere (and vice versa in the
southern hemisphere), to evaluate the model’s ability to capture seasonal
variations in sound speed. We focused on the North Atlantic, a region
known for significant seasonal fluctuations. Comparison of calculated
profiles usingmonthly averaged CTD data from theWOAdataset with our
model’s predictions (Fig. 4B) showed strong agreement. The model accu-
rately reflected expected seasonal patterns, demonstrating lower surface
sound speeds inMarch (winter) and higher values in September (summer),
consistent with typical temperature variations. The predictions also main-
tained consistency in deeper ocean regions across seasons, underscoring the
model’s reliability in capturing surface variability and deep-water stability.

Expanding our analysis to the southern hemisphere, we tested the
model’s predictions for the Indian Ocean, focusing on inverse seasonal

Fig. 2 | Correlation analysis of sound speeds at various depths using the WOA
dataset 2015.Thisfigure shows thecorrelationbetween surface sound speed and sound
speeds at various depths,with blue representingMarch and red representing September.
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trends compared to the northern hemisphere. The model predictions suc-
cessfullymirrored established seasonal trendsof sound speed in the southern
hemisphere (Fig. 4C). Results accurately reflected higher sound speed values
associatedwithwarmer surface temperatures inMarch (summer) and lower
values due to colder temperatures in September (winter), demonstrating the
model’s consistency across different global regions.

These comprehensive analyzes (Fig. 4A–C) validate our model’s pre-
dictive capabilities across different latitudes and seasons beyond the training
period. Figure 4D further compares our model’s forecast with the CTD-
derived sound speed field along a meridional cross-section at 150°W
longitude for January 2015. The results underscore our model’s precision
and reliability inpredicting global sound speeddistributions, highlighting its
significant potential for practical applications in ocean acoustics.

Themodel’s predictive accuracy is bolstered by its ability to interpret the
relationships between sound speed and key environmental parameters, such
as temperature, salinity, and pressure. The variation of these environmental
parameters over the years or decades within the same seasons is not as
profound as the seasonal variation within a year. The seasonal variations are
pronounced enough to significantly change sound speed. By effectively
capturing these seasonal fluctuations, the model adeptly manages smaller
interannual changes, enabling it tomake accurate predictions even beyond its
initial training period. In otherwords, given themodel’s ability to capture the
strong seasonal variations in sound speed, it appears not surprising that the
MLmodel demonstrates proficiency inpredicting ocean sound speedbeyond
its training period. By integrating robust historical datasets like WOCE, the
model incorporates these parameters into its framework, allowing it to
leverage long-term temperature trends for informed predictions. Its

adaptability is crucial, as it identifies recurring patterns and integrates both
seasonal and long-term climate trends for effective generalization. This
integration ensures the model’s relevance and accuracy, providing reliable
predictions even in scenarios beyond its primary training scope.

Global predictions
Weevaluatedourmodel’s global performanceusing theWOA31 datasets for
March and September 2015, representing winter and summer in the
northern hemisphere. This analysis compared model-predicted sound
speedswith those derived fromCTDdata across ~19million data points at a
1° × 1° resolution, as defined by the WOA dataset. This global assessment
provides a broad view of the model’s accuracy across diverse ocean condi-
tions and locations.

Depth-based heatmaps of prediction errors for March and September
2015 (Fig. 5A, B) reveal that the model maintains accuracy throughout the
water column,withmorepronouncederrorsnear the surface (0–500m)due to
complexdynamics in theupperocean.Despite some increasederrordispersion
at shallower depths, there is no significant rise in error with depth, reflecting
reliable performance even in deeper waters. The symmetric distribution and
peak near zero indicate consistent model performance with few significant
outliers. These results for predictions beyond the training periods align with
those inFig. 3C forpredictionswithin the trainingperiod, further validating the
model’s performance across different datasets and temporal scales.

In the heatmaps (Fig. 5A, B), over 95% of errors fall within ±20m/s,
with error magnitudes ranging from−60 to 60m/s. The MAE distribution
across depths (Fig. 5C) peaks at around 8m/s between 0 and 200m and
decreaseswith depth, consistentwith the depth-based heatmaps. Compared

(A)

(B) (C) (D)

Fig. 3 | WOCE data locations and depth-based comparison between predicted
and calculated sound speed values. AMap showing the locations where CTD data
were collected for the WOCE dataset. B Sound speed profile in the North Pacific at
150°W longitude and 30°N latitude, comparing calculated (solid line) and predicted

(dashed line) sound speed values. C Error distribution heatmap, where the color
intensity indicates the number of predictions falling within specific error ranges.
D Variation of Mean Absolute Error (MAE) with depth, illustrating the model’s
accuracy across different depths.
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to predictions within the training period (Fig. 3C), these global predictions
beyond the training period show a larger error range due to expanded data
coverage and temporal extrapolation. Despite these challenges, the model’s
performance in capturing seasonal variations over all depths validates its
robustness across diverse oceanographic conditions throughout the year.

To evaluate themodel’s global performance,we calculated theMAEfor
each location and averaged it across all depths. Contour plots for March
(Fig. 6A) and September (Fig. 6B) show MAE distribution across latitudes
and longitudes, withmost of theworld’s oceans exhibiting low errors within
8m/s (as indicated by the blue shading). The plots also highlight regions
with notably higher errors (marked by red squares), reflecting the model’s
challenges in dynamic regions or areas with limited data. These are regions:
(I) TheArctic region near Greenland and Iceland (area 1 in Fig. 6) shows

errors as high as 38m/s. This large error is due to variable temperature
and salinity profiles resulting from seasonal sea ice dynamics and
limited trainingdata34.Climate change impacts, such as accelerated ice
melt and shifting ocean currents–factors not fully captured by

historical data35—further exacerbate prediction errors. These com-
plexities contribute to an unpredictable environment, challenging the
model’s accuracy in this region.

(II) The North Atlantic near the United States and Canada (area 2 in
Fig. 6) exhibits significant errors influencedby theGulf Stream’swarm
water transport and strong currents36. Coastal regions generally show
higher errors due to rapidly changing environments.

(III) TheMediterraneanSea (area3 inFig. 6) shows increasederrorsdue to its
complexwatermasses, seasonal variations, and high evaporation rates37.

(IV) A small area in the South PacificOcean (area 4 in Fig. 6) displays high
errors, potentially due to localized oceanographic phenomena and
insufficient training data.

(V) The Japan Sea (area 5 in Fig. 6) shows errors up to 51m/s, influenced
by the Kuroshio current and complex oceanographic features38.These
factors, including encountering unfamiliar oceanic conditions and
long-term changes, highlight themodel’s limitations and the need for
ongoing refinement and potential region-specific adjustments.

(A) (B) (C)

(D)

Fig. 4 | Comparison of sound speed profiles predicted by our model cmodel with
those calculated fromCTDdata cdata in theWOAdataset for 2015, representing a
time beyond the training data. A Variations in sound speed profiles at 150°W
longitude across four different latitudes in January, with colors denoting: blue for
15°S, red for 15°N, black for 55°N, andmagenta for 60°S.B Seasonal variations in the

Atlantic Ocean at 39°W and 54°N, with blue representing March and red repre-
senting September.C Seasonal variations in the IndianOcean at 83°E and 40°S, with
blue representingMarch and red representing September.DA comparison of sound
speed fields along a meridional cross-section at 150°W longitude in January.
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Regional model
Our examination of the global model’s performance across various marine
environments identified certain limitations in specific oceanic regions. For
example, in the Arctic region near Greenland and Iceland (area 1 in Fig. 6),
insufficient training data (Fig. 7A) likely contributed to a significant increase
in error, with a maximum MAE of 35m/s (Fig. 7B).

To address the challenges posed by data scarcity in specific areas, we
developed a regional model. This model, trained with inputs similar to the
global model, uses CTD data to calculate sound speed as its target while
incorporating surface data. For training, we utilized the 2004 World Ocean

Atlas (WOA) dataset, focusing exclusively on the Arctic region with a hor-
izontal resolution of 1° × 1°, and comprising~380,000data instances (Fig. 7C).

The regional model significantly improved performance, reducing the
maximum prediction error from 35 m/s to 13m/s in the Arctic region
(Fig. 7D). This result highlights the advantages of using regional models
with more focused datasets to tackle specific environmental challenges,
particularly in regionswhere globalmodelsmay fail to capture intricate local
oceanographic details.

However, while the reduction from 35m/s to 13m/s is notable, the
remaining maximum error of 13m/s is still somewhat higher than the
average MAE of 5m/s achieved with the global model. This residual error
underscores the ongoing challenge posed by the Arctic’s complex ocean
dynamics for achieving precise sound speed predictions.

Influence of prediction error on underwater sound propagation
To evaluate the impact of sound speed prediction errors on underwater
sound propagation, we used the Bellhop ray tracing module in Python, a
well-established tool for ocean acousticmodeling39. Our analysis focused on
transmission loss (TL), which measures the reduction in acoustic signal
strength over distance and provides insights into sound propagation in the
ocean11. We examined TL at 200 Hz and 15 kHz to represent low- and
middle-frequencyunderwater soundwaves. Low-frequencywaves (200 Hz)
generally travel longer distances with less attenuation, while middle-
frequency waves (15 kHz) experience greater attenuation and, conse-
quently, more TL. Therefore, we used a 50 km range for the low-frequency
scenario, while for the mid-frequency scenario, a 20 km range was selected.

We selected a location in the South Atlantic (6°E longitude, 11°S lati-
tude) where the prediction error was close to the depth-averaged MAE
(Fig. 5E), providing a representative scenario.Our analysis involved a sound
source at 840m depth (where sound speed is minimal) in March 2015. We
used the SSP predicted by ourMLmodel (Fig. 8A) to simulate TL for both a
200Hz source (Fig. 8B) and a 15 kHz source (Fig. 8C). For comparison, we
also used the SSP derived from CTD data in the WOA (Fig. 8D) for TL
simulations (low-frequency in Fig. 8E, mid-frequency in Fig. 8F). The TL
results illustrate how acoustic energy is distributed over distance and depth,
revealing areas of high and low TL due to interference patterns.

Discrepancies between predicted and actual SSPs (Fig. 8G), ranging
from −2 to 10m/s, can affect propagation paths and TL patterns. Differ-
ences in TL simulations based on predicted versus actual SSPs for both low-
frequency (Fig. 8H) and mid-frequency (Fig. 8I) show that TL differences

1

2 3

4

5

(A)

(B)

Fig. 6 | Mean absolute error distribution averaged over all depths based on
WOA data. A Distribution for March. B Distribution for September.

Fig. 5 | Comparative analysis of prediction errors
in sound speed for March and September 2015
using our model based onWOA data. Top panels:
A, B show depth-based heatmaps of prediction
errors forMarch and September 2015, with the color
spectrum from blue to red indicating error fre-
quency, and gray areas representing fewer than 50
predictions. Bottom Panel: C presents the Mean
Absolute Error (MAE) as a function of depth for
March (blue) and September (red) 2015.

(A) (B)

(C)
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Fig. 7 | Comparative analysis of sound speed pre-
diction errors using local and global models in the
iceland region. A Distribution of CTD data loca-
tions used for the global model. B Spatial contour
plot of prediction errors from the global model.
C Distribution of CTD data locations used for the
regional model.D Spatial contour plot of prediction
errors from the regional model.
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Fig. 8 | Transmission loss analysis for March 2015 at 840 m depth in the South
Atlantic (6°E, 11°S). Top Row: A Predicted sound speed profile Cmodel with input
values (red dots) and interpolated profile (blue line). B Transmission loss for a
200 Hz source based on the predicted profile. C Transmission loss for a 15 kHz
source based on the predicted profile. Middle Row:D Sound speed profileCdata from

CTD data. E Transmission loss for a 200 Hz source using the CTD profile.
F Transmission loss for a 15 kHz source using the CTD profile. Bottom Row:
G Differences in sound speed between predicted and CTD profiles
(Δc = cmodel− cdata). H Transmission loss differences for the 200 Hz source.
I Transmission loss differences for the 15 kHz source.
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generally fallwithin ±3 dB (light green color).Only a fewareas exhibit larger
TL variations, indicated by reddish or blue colors. These larger differences
are typically observed near ray caustics or regions with path interference,
where TL is highly sensitive to input parameters.

The model’s consistent performance across frequencies, with TL dis-
crepancies generally within ±3 dB, suggests its effectiveness for various
acoustic applications, including naval assessments, oceanographic surveys,
and studies of anthropogenic noise impacts, particularly for low to mid-
frequency sources. However, it may not be suitable for applications
requiring TL accuracy beyond ±3 dB, high-frequency acoustics (above
1000 kHz) without further validation, or complex environments with rapid
oceanographic changes or intricate bathymetry. For such critical applica-
tions, it is advisable to use this model in conjunction with advanced pro-
pagation tools or in-situ measurements to improve accuracy.

Satellite data-based predictions
OurMLapproach leverages near real-timeSSTand sea surface salinity (SSS)
data from remote sensing satellites to predict underwater sound speed. This
methodology overcomes the limitations of traditional in-situ measure-
ments, which are often expensive and geographically constrained, by pro-
viding high-resolution, three-dimensional sound speed predictions for any
location and time. Such real-time capabilities are not available with tradi-
tional in-situ data, which is typically limited to specific years.

To illustrate the high-resolutionmapping capabilities of ourmodel, we
utilized sea surface parameters from the PODAAC, which provides daily
updates on satellite-observed surface conditions. For example, we used
SST32 (Fig. 9A) and SSS33 (Fig. 9B) data for November 8, 2023, as inputs to
our model to predict sound speed variations at a depth of 50m globally
(Fig. 9C). The results show higher sound speeds near the equator and lower
sound speeds in polar regions as expected, demonstrating the correctness of
the model.

Unlike traditional 3D ocean circulation models, which face challenges
with real-time data delivery due to high computational demands, our ML
approach offers rapid predictions for specific coordinates anddepths.While
3Doceancirculationmodels provide valuable insights, ourML-basedmodel
has significant potential to enhance sound speed predictions, especially for
applications requiring timely data.

Discussion
Our research introduces a machine-learning model for predicting under-
water SSPs using surface data and spatial information. Trained and vali-
dated on theWOCE andWOAdatasets, the KNNmodel outperformed the
DNN model in capturing local sound speed variations and handling non-
linearities, with over 99% of prediction errors within ±0.5m/s during the
training period. The strong correlation between surface and depth-specific
sound speeds validates our approach, particularly in the upper 500m,where
temperature and salinity are significant. As depth increases, the model’s
reliance on historical data becomes crucial, demonstrating its adaptability
from surface-influenced to pressure-dominated regions.

Themodel demonstrates robust generalization across different seasons
and periods, extending beyond the training time window. The MLmodel’s
predictive strength in ocean sound speed is largely attributed to its ability to
capture the strong dependency of sound speed on temperature, particularly
its sensitivity to seasonal variations, which are more significant than inter-
annual changes. The model effectively extrapolates beyond its training data
by integrating relationships among key environmental factors such as
salinity and pressure and leveraging robust historical datasets like WOCE.
Its adaptability in recognizing patterns allows it to adjust to climatic fluc-
tuations, ensuring reliable and accurate predictions of underwater SSPs
across various temporal and spatial contexts, even beyond its initial training
period, thereby maintaining its relevance in ocean acoustics.

Our model offers computational efficiency and rapid predictions
compared to traditional 3D ocean circulation models. The model’s rapid,
real-time prediction capability stems from its exceptional adaptability to
various temporal granularities of input data. It is designed to provideflexible
sound speed forecasts across different temporal scales, such asmonthly and
daily averages, ensuring precise and reliable predictions. This adaptability
enables themodel to cater to a wide range of oceanographic applications by
tailoring its predictions to the data’s temporal characteristics. As a result, the
model efficiently generates consistent and robust 3D sound speed estimates,
supporting diverse oceanographic initiatives and delivering accurate sound
speed projections under various environmental conditions.

Since themodel adapts seamlessly to the granularity of the input data, it
aligns its outputs accordingly. For instance, when provided with monthly
average data, the model forecasts monthly average sound speeds (Fig. 4). It
accurately predicts daily sound speedswhenupdatedwith daily satellite data
(Fig. 9C). Given adequate input data, similar predictions are possible for
even finer temporal granularity, such as hourly estimates. This flexibility
underscores the model’s robust performance across diverse temporal and
spatial resolutions, making it a valuable asset for a wide variety of oceano-
graphic applications, ensuring precise and reliable sound speed estimates
under varying data conditions.

The model excels at identifying anomalies and can be retrained with
new datasets to maintain accuracy across diverse marine environments.
Performance varied with depth, improving in deeper waters andwithmean
absolute error peaking at around 8m/s in the upper ocean, where wind
mixing, wave dynamics, and surface currents are prevalent. Regional and
seasonal differences, especially in data-scarce areas like the Arctic, highlight

Fig. 9 | Satellite observations andmodel predictions for November 8, 2023. A Sea
surface temperature as observed from satellite data.B Sea surface salinity as observed
from satellite data.C Predicted underwater sound speed at a depth of 50 m based on
the observed satellite data.
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the need for region-specific adjustments andmore frequent data collection.
Our Arctic regional model reduced the maximum prediction error from
35m/s to 13m/s, indicating that similar approaches could enhance sound
speed mapping in other complex marine regions.

The relationship between global and regional models is critical for
improving underwater sound speed prediction across varying marine
environments. Global models serve as a robust foundational dataset that
informs regional models, facilitating the identification of local anomalies
and enhancing prediction accuracy through localized training. Although
both models use the same input parameters, regional models benefit from
high-resolution local data, adapting effectively to specific areas’ complex
dynamics for greater predictive accuracy, whereas global models, being
generalized, may miss localized phenomena. Integrating both modeling
approaches and utilizing region-specific datasets creates a comprehensive
framework that employs global data while customizing predictions to the
nuanced regional conditions. This approach leads to more accurate and
reliable sound speed estimations in diverse oceanic locations and addresses
unique environmental challenges in targeted marine regions.

Integrating ourmodel with acoustic propagation simulations highlights
its practical value. Comparison of TL patterns with CTD data shows reliable
projections, with TL differences generally within ±3 dB. This result suggests
the model is suitable for a series of underwater applications involving low to
mid-frequency sources, such as underwater detection, communication, and
noise propagation. Although there are variations near ray caustics, themodel
remains accurate for underwater acoustic assessments.

Despite its strengths, the model’s error margin, while small compared
to the average seawater sound speed of about 1500m/s, can be significant to
some applications that require high accuracy, for example, accurate
underwater positioning systems. Underwater positioning systems use
acoustic signals to track the location of underwater objects. In this scenario,
acoustic travel time is extracted from acoustic signals and combined with
sound speed to estimate the distance to the object. Therefore, a better sound
speed model can significantly improve the position accuracy. Considering
an object located about 15 kmaway (yielding a one-way acoustic travel time
of 10 s), a 10m/s sound speed error from our model will lead to a distance
estimation error of 100m, which is about only 1% of the total distance of
15 km. This estimation error is good for most applications unless higher
accuracy is required. The model may not be suitable for high-frequency
acoustics or rapidly changing oceanographic environments. For these
applications, combining this model with advanced propagation tools or in-
situ measurements is recommended for enhanced accuracy.

Future research should focus on: (i) developing adaptive modeling
techniques for regional and dynamic conditions, (ii) integrating real-time
data to improve predictions, (iii) combining global and local prediction
strategies, (iv) integrating physical oceanographic principles with ML, and
(v) including additional parameters such as current velocities and seabed
characteristics to improve accuracy.

Conclusion
In summary,while ourmodel represents a significant advancement in sound
speed prediction, it highlights the complexities of oceanographic modeling.
Continued interdisciplinary collaboration between oceanographers, data
scientists, and acoustic experts is essential for refining predictive tools and
understanding global ocean dynamics and underwater acoustics. Com-
parative analysis with authoritative data sources, such as NOAA or Navy
forecasts, will be crucial for bridging gaps in real-time acousticmodeling and
aligning our model with practical marine applications.

Methods
Data sets
The primary dataset for model training and testing is sourced from the
WOCE30, which was collected from 1990 to 1998 as part of the World
Climate Research Program. This dataset includes in-situ measurements of
key climate-related variables such as temperature, salinity, and depth,
gathered using various instruments on a fleet of research vessels. These

vessels covered the Atlantic, Pacific, Indian, and SouthernOceans, stopping
approximately every 60 km for data collection. Our model utilizes the CTD
data along with corresponding location and time information from 294
cruises.

For model validation beyond the training dataset, we use the WOA31

dataset, maintained by the National Oceanographic Data Center (NODC).
The WOA includes extensive oceanographic data from ARGO floats,
covering a spatial resolution of 1° by 1° and including parameters such as
temperature, salinity, nutrients, and oxygen content. It spans the upper
2000mof the ocean but excludes some high-latitude regions. By integrating
historical data fromvarious sources, theWOAprovides adynamic overview
of the ocean’s state, serving as a crucial benchmark for assessing ourmodel’s
accuracy and reliability.

Preprocessing of data sets
To ensure the accuracy and reliability of our machine-learning model for
predicting oceanic SSPs, we undertook comprehensive preprocessing of the
WOCE raw data, which initially comprised ~29 million records. The first
significant step in preprocessing involved addressingmissing values, as they
can severely impact the performance of ML algorithms. Rows with null
values were systematically identified and removed. This approach was
chosen over imputation (which estimates missing values based on available
data) to maintain dataset integrity and avoid introducing biases.

In parallel, we employed rigorous methods to identify and remove
outliers to enhance the overall quality of the dataset. A 95% confidence
interval was established based on the distribution of the dataset, which served
as a benchmark for detecting outliers. This was complemented by the use of
boxplots for visual validation. Specifically, data points exceeding 1.5 times the
interquartile range from the lower and upper quartiles were classified as
outliers and subsequently removed. This dual methodology ensured the
systematic removal of erroneous records while preserving legitimate varia-
tions within the data, resulting in around 2 million records being discarded.
Consequently, the refined dataset consists of ~27 million records.

Following the cleanup process, each record in the refined dataset
included critical oceanographic parameters, such as location (longitude and
latitude), time (month), depth, salinity, temperature, SSS, and SST. We
performed the necessary conversions and computations to enhance data
utility: depth values were converted to pressure using the function
gsw.pfromz(depth, latitude), and sound speed was calculated utilizing the
equation provided by the gsw.soundspeed(SA, CT, p) function from the
Thermodynamic Equation of Seawater 2010 (TEOS-10)40.Cyclic parameter
conversions were applied to account for the cyclical nature of variables such
as month and longitude. For compatibility withML algorithms, the dataset
was normalized using the standard scaler functionality from the scikit-learn
Python package, which standardizes feature ranges and improves model
performance and convergence.

For model training, we allocated 80% of the refined dataset while the
remaining 20% was reserved for testing the model’s generalization cap-
abilities. We employed a 5-fold cross-validation technique to assess the
model’s performance across various data subsets. This approach provides a
robust estimate of the model’s efficacy and aids in mitigating overfitting,
ultimately ensuring that the model remains applicable for real-world
scenarios.

Models and training
Our study employs two advanced models to handle high-dimensional,
nonlinear data for predicting sound speed: the DNN and the KNN. These
models are selected to leverage their strengths in interpreting nonlinear
associations within the complex marine environment.

The DNN, characterized by multiple layers, is adept at discerning
complex, non-linear associations among varied inputs and outputs.
Training of the DNN network utilized the backpropagation algorithm for
effective learning and adaptation to data patterns. Hyperparameter opti-
mization, essential for maximizing performance, was performed using the
Keras tuner package’s random search function to evaluate various
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combinations of hyperparameters (number of layers, nodes per layer,
learning rate). The objective was to minimize the MAE, chosen for its
efficacy in predicting marine environmental behavior. This fine-tuning
process improved the DNN model’s ability to capture complex dynamics
and accurately represent nonlinear relationships within the data. The
architecture of the DNNs model is showcased in Supplementary Fig. 1.

The KNN model, chosen for its simplicity and interpretability, com-
plements the DNN approach. This supervised ML algorithm leverages the
entire training dataset without requiring learning weights or predefined
functions. It assumes that similar instances are close to each other and
predicts based on the majority class among k nearest neighbors. We opti-
mized the KNN model’s performance by experimenting with different ’k’
values to determine the optimal number of nearest neighbors for predic-
tions. RMSE was used as the evaluation metric during training to assess
prediction error magnitude. Additionally, the Euclidean distance function
was used to calculate instance distances, enhancing the model’s ability to
capture underlying patterns in underwater sound speed data.

The model training process and the selection of the best model for
further investigation are detailed in the supplementary material. Learning
curves for the DNN model training and the K-NN model training are
presented in Supplementary Fig. 2. Additionally, scatter plots in Supple-
mentary Fig. 3 and statisticalmetrics in Supplementary Table 1 illustrate the
strengths and weaknesses of each model.

Data availability
The oceanographic data that support the findings of this study are publicly
available from the following sources: Conductivity, Temperature, and
Depth (CTD) measurements from the NOAA National Centers for
Environmental Information (NCEI) repository, including the WOCE
Global Data Resource (accession number NODC-WOCE-GDR, https://
www.ncei.noaa.gov/archive/accession/NODC-WOCE-GDR); CTD data
from theWOA (accession number NCEI-WOA18, https://www.ncei.noaa.
gov/archive/accession/NCEI-WOA18); and SST and salinity data from the
PODAAC with 10.5067/GHOST-4RM02 and https://doi.org/10.5067/
SMP10-4U7CS. These datasets are freely accessible and can be retrieved
by the public.

Code availability
The Python codes used for this work are available at https://zenodo.org/
records/1492650641.
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