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Arsenic contaminants exist in different chemical forms with varying toxicity and mobility, making on-
site analysis challenging. Here, afluorogenic method is developed for the efficient detection of arsenite
and arsenate ions using a portable platform directly in an aqueous phase. During sensing, the
aggregation-induced emission (AIE) probe TPE-Cys/TPE-2Cys exhibits low fluorescence when
dissolved, but reacts with the As(lll) to form organic arsenic complexes with low solubility, inducing a
turn-on fluorescence for quantitative analysis. Using a prior reduction strategy, the As(V) can be
converted to As(lll) and further analyzed in a sequential detection. Using a specialized laser-induced
fluorescence instrument, this strategy allows on-site analysis of As(lll) and As(V) species with
sensitivity down to 0.14 ppb in environmental samples, showing that As(lll) dominates while the As(V)/
As(lll) ratio varies in a constitutional equilibrium. The system has potential for the practical analysis of
complex arsenic, revealing the dynamic arsenic transformations in the environment.

Arsenic contamination of water resources is a major public health threat'’,
with approximately 230 million people currently suffering from arsenic
poisoning’. Arsenic contaminants can accumulate in tissues such as the
liver, kidneys and bones through respiratory, dietary or dermal exposure,
leading to chronic and acute toxic arsenic poisoning™’. They can disrupt the
digestive and nervous systems, cause skin disorders, black foot, neuropathy,
blood vessel damage, and increase the risk of heart disease’. As a group of
human carcinogens, long-term exposure to arsenic can cause cancer of the
liver, lung, kidney, and bladder’. Therefore, the detection and real-time
analysis of arsenic species present in industrial effluents and natural waters is
essential for public health and sustainable economic development.

In the natural aqueous environment, arsenic contaminants exist in
various forms with different oxidation valences®, including mainly inorganic
arsenite As(III), arsenate As(V), and organic arsenic (such as mono-
methylarsenic acid, dimethylarsenic acid, and trimethylarsenic acid)"*".
These arsenic species also combine with natural organic substances to form
various composite structures''. The toxicity of the different forms of arsenic
varies considerably: As(III) » As(V) > organic arsenic, and importantly, they
can be rapidly transformed into each other'’. For example, As(1II) is easily
oxidized to the As(V) by Fe’* species, usually within 1-3 minutes"™",
whereas, under flooding conditions, As(V) can be converted to the more

toxic trivalent As(IIT) with microbial activity'”. In general, the equilibrium
between As(III) and As(V) varies with the pH and oxygen content of the
chemical environment'®, while arsenite As(III) is 25-60 times more toxic
than arsenate As(V) and is also much more mobile in natural environments'
7. Therefore, how to accurately analyze the chemical dynamic components
of co-existing and variable arsenic in situ under complex conditions remains
one of the key technical challenges to be solved.

Currently, a number of analytic methods have been proposed for
arsenic detection in water, including atomic emission/absorption
spectrometry'®” and inductively coupled plasma mass spectrometry”’.
These measurements are mostly unable to accurately distinguish between
arsenic species of different valence states, and often require complicated pre-
treatment protocols for environmental samples, expensive instrumentation
with limited portability, and professional operation, making them ineffec-
tive for on-site detection. Molecular fluorescence-based chemical sensing is
a class of analytical methods that are highly sensitive to different metal
valences/forms. In particular, fluorogenic sensing using aggregation-
induced emission (AIE) sensors has emerged in recent years as a versatile
and potent strategy for the on-site detection and analysis of a range of water
contaminants™**, AIE fluorophores with a flexible molecular backbone
emits weakly when dissolved in good solvents in molecular form, but their
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Fig. 1 | The chemical processes of the As(III)/As(V) sensing system in this work. a The probe reacts with As(III). b The probe reacts with As(V). ¢ The reducing agent

reduces As(V) to As(III).

luminescence is enhanced when aggregated in poor solvents or solid forms
due to restricted intramolecular motion (RIM)™*. This fluorogenic
response can also be activated by many other molecular rigidification effects
such as metal coordination, molecular encapsulation, physical adsorption
and so on. Such AIE-based contaminant analysis has a high degree of anti-
interference capability and sensitivity. It effectively avoids the problems of
signal selectivity and background interference caused by heavy metal
quenching fluorescence in traditional fluorescence analysis. In addition,
specific target aggregation can be used as an additional concentration
strategy in the detection process. These features make it effective for prac-
tical on-site analysis in remote locations.

In this work, we report a fluorogenic sensing system for the sensitive
and efficient simultaneous quantification of As(III) and As(V) components
in aqueous phase. It utilized cystine-functionalized tetraphenylethene
derivatives such as TPE-Cys, consisting of an AlE-active tetra-
phenylethylene core and N-acylated cysteine moieties (Fig. 1). During
sensing, the prototypical TPE-Cys reacts with As(III) via a thiol-As(III)
coordination reaction in a ‘click’ fashion to form the organic compound
As(TPE-Cys);, which spontaneously aggregates in the aqueous phase to
induce turn-on fluorescence (Fig. 1a)'. In comparison, this probe reacts
with the As(V) to form the disulfide complex (TPE-Cys-S-S-Cys-TPE),
which has good solubility in water and maintains low emission (Fig. 1b).
This system has been shown to detect As(III) in mixed tetrahydrofuran
(THF)/water solvents, but has not been developed for direct on-site analysis
of water samples'®. In this work, the structural design of the probe, e.g. TPE-
2Cys with additional cysteine moieties (Supplementary Fig. 2), as well as the
environmental solvent properties (such as ionic strength and pH) were
investigated to further enhance the aggregation-induced emission sensing
performance. Importantly, we propose a strategy to measure the total
arsenic by using L-ascorbic acid as a suitable reducing agent to rapidly
transfer the As(V) to the As(IIl) (Fig. 1c). Fitted to a home-built laser-

induced fluorescence analytical setup, this chemical sensing system
demonstrates excellent performance for environmental water samples,
providing selective and quantitative detection of trivalent arsenic and
pentavalent arsenic with good sensitivity (down to 0.14 ppb). We studied the
As(I1I)-thiol reaction-based fluorogenic process and also discussed the key
issues for the on-site implementation of the fluorogenic As(III)/As(V)
measurement system for natural groundwater samples, providing a solid
basis for further field testing.

Results and Discussion

Determination of As(lll)

The probe TPE-Cys exhibited limited solubility in ultrapure water, with
partial dissolution occurring at a concentration of 10 uM. The solubility of
these probes increased when the carboxylic acid substituent underwent
complete deprotonated in a slightly basic pH environment. The probe
displayed enhanced fluorescence when the molecules were precipitated out
in a mixed solution (Supplementary Fig. 3). Upon dissolution at 10 pM in an
aqueous pH = 7.2 solution, the probe exhibited a faint fluorescence emission
at 474 nm (black line, Fig. 2a), which was predominantly attributed to the
unrestricted rotational motions of the Ph rings, resulting in the populated
non-radiative decay of the photoexcited states. As expected, the addition of
Arsenite solution lighted up a sky-blue fluorescence which peaked at
474 nm by 320 nm light excitation (Fig. 2a). The luminescence exhibited a
gradual progression over the course of several minutes (Supplementary
Fig. 4), rather than an immediate response. The light up process was clearly
visualized under a hand-held ultraviolet (UV)-lamp (inset image of Fig. 2b).
When the final concentration of the probe was fixed at 10 M, a stoichio-
metric titration study showed that the fluorescence signal increased stepwise
with the addition of As(III) ions. By plotting the intensity of the fluorescence
at 474 nm against the equivalence ratio [As(III)]/[TPE-Cys], a linear rela-
tionship with R*=0.957 was established in the range of 0.08 ~ 9 uM for
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[As(III)] ions with a LOD (Limit of detection) of 5.78 ppb/77 nM (Fig. 2b).
With a further increase of [As(III)] from <10 equiv. of [TPE-Cys], the
fluorescence intensity reached a relatively steady plateau.

The fluorescence sensing process was accompanied by the formation of
micro/nano-sized aggregates. By examining the UV-vis adsorption spectra
of the TPE-Cys solution before and after the addition of As(III), we can see
that there was an obvious trailing phenomenon in the range of 400-700 nm
without any obvious change in the peak shape, which may be a result of Mie
scattering of nanoaggregates formed by the reaction of As(IIl) with the
probe (Fig. 2¢). In addition, dynamic light scattering (DLS) characterization
of the mixture ([TPE-Cys] = 10 uM, [As(III)] = 10 uM) gave an effective
diameter size (Eff. d.) = ~96.4 nm with a polydispersion index (PDI) of 0.31
(Fig. 2d). When the mixture was rapidly dried out on a dry silicon wafer,
micro/nano-sized aggregates were observed to be partially fused together by
scanning electron microscopy (Fig. 2d), which correlated with the DLS
result. These colloidal aggregates showed good colloidal stability within
hours and fluoresced steadily, which is suitable for robust quantification
measurement in fluorescence analysis.

Interestingly, the sensor system can distinguish between trivalent and
pentavalent arsenic species. Under similar conditions, the addition of
arsenate As(V) didn’t lead to a increase in fluorescence (Supplementary
Fig. 5). It was shown that the As(V) reacted with the probe, but was likely
oxidised to form an S-S bridged dimer (TPE-Cys-S-S-Cys-TPE) (Fig. 1b)"*.
This dimer component is similar to the probe in solution and is likely to
remain dispersed in aqueous solutions, thus not affecting the overall
fluorescence response in the measurement. In a controlled experiment with
both As(III) and As(V), the mixture showed increasing fluorescence,
reaching a relatively stable plateau after ~40 min (Supplementary Fig. 6). In
this case, both As(V) and As(III) species reacted with the Cys moiety. The

As(V) first led to the formation of the dimer, which then underwent
exchange equilibrium to give the final As(TPE-Cys); complex (Fig. 1a).

Determination of [As(lll) + As(V)]

In view of the selective chemistry between the probe and As(IIT) and As(V)
species, an investigation was conducted into a number of reducing agents
with the potential to convert As(V) to As(III) prior to measurement in
aqueous solutions'"”. Ascorbic acid was identified as an effective reducing
agent, suitable for the quantification of total arsenic [As(III) + As(V)]*. By
employing this prior reducing strategy, a quantitative relationship between
fluorescence intensity and concentrations of total arsenic solutions was
established in the laboratory (Fig. 3). In the optimized protocol, the reducing
agent was added to the sample solution at a final concentration of 100 uM.
Subsequently, an aliquot of the TPE-Cys probe solution (final concentration
of 10 uM) was added. Following a gentle shaking, the fluorescence emission
spectrum was recorded, demonstrating a pronounced emission response at
Ex/Em = 320/474 nm. By plotting the intensity of the fluorescence max-
imum against the equivalence ratio [total arsenic]/[TPE-Cys], a linear
relationship with R*=0.990 was established in the range of LDR (Linear
dynamic range) = 0.1 ~9 uM (Fig. 3b). It is notable that the linear rela-
tionship and molar ratio of arsenic ions to cysteine groups at 1:3 near the
plateau indicates that the sensing process is closely related to the stoichio-
metric coordination reaction-driven assembly. The limit of detection (LOD)
was calculated to be 4.65 ppb/62 nM, which meets the 10 ppb alarming limit
for drinking water set by the World Health Organization (WHO)>. Com-
pared with earlier reports™ ", TPE-Cys has a lower detection limit and an
appropriate linear range (Supplementary Table 1). It is noteworthy that the
use of the ascorbate reducing agent also facilitated the measurement process,
with the fluorescence response reaching a steady state within minutes. The
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probe TPE-Cys has almost no fluorescence response to As(V) without the
addition of the reducing agent ascorbic acid (Supplementary Fig. 5). In the
absence of ascorbate in the arsenic solution, the probe was unable to achieve
an instantaneous fluorescence response during the detection of trivalent
arsenic, necessitating a prolonged signal stabilization period (approximately
30 min, Supplementary Fig. 4).

With reference to the above protocols, we carried out experiments for
the quantitative detection of As(III) and As(V) based on the fluorescence
difference in the presence and absence of reducing reagent. The As(V)
content was obtained indirectly by substitution of the fluorescence curves
and linear fitting of As(IIT) and [As(V) + As(III)], as in a proof-of-concept
study using a series of arsenic samples (Table 1). These samples were pre-
pared by diluting a standard solution of Na3;AsO; (100 uM) and left for
months. Therefore, part of the As(III) species were oxidized to As(V) by the
oxygen in the air. As shown, the ratio of trivalent arsenic to pentavalent
arsenic, As(III)/As(V), remained relatively stable in the range 0f 0.40-0.71 as
the total arsenic concentration increased (Table 1). It is reasonable that the
increasing ratio of As(III) in the mixture is probably due to the limited access
of oxygen oxidation at high As(IIl) concentrations. In this sense, this
method provides a quick and efficient way to check the quality of variable
arsenic samples.

Sensing performance in the presence of interferences

In order to explore this method for aqueous environmental samples, this
sensor system was next evaluated in the presence of interfering factors,
including various metal cations and anions commonly encountered in
practical water analysis. The AIE sensor was tested in a range of pH solutions
(Supplementary Fig. 7). The maximum fluorescence response was main-
tained at a relatively stable level from slightly acidic to slightly basic aqueous

Table 1 | Quantitative analysis of As(lll) and As(V) in laboratory
samples

Entry Total As®[uM]  As(lll) [uM] As(V)[UM]  As(lll)/As(V)
1 1.002 0.286 0.716 0.40
2 1.995 0.638 1.357 0.47
3 3.010 1.130 1.880 0.60
4 4.003 1.589 2.414 0.66
5 4.998 1.975 3.023 0.65
6 6.007 2.247 3.760 0.60
7 7.008 2.648 4.360 0.61
8 7.911 3.394 4517 0.75
9 9.002 3.732 5.270 0.71

@ Samples were prepared by diluting a standard solution of NazAsO3 (100 pM) and exposed to air for
months.

solutions, indicating a robust quantification method. Since trivalent/pen-
tavalent arsenic species are present in aqueous solution as anions, we
investigated the selectivity and interference of the probe to common anionic
components in water. As shown, the system only showed obvious fluores-
cence response only to trivalent arsenic [AsOs”], and other anions
(including CI, T, HCO5, NO5, Br, SO, CH;COO, PO,*, H,PO,,
HPO,*, AsO,”,) cannot light the probe (Fig. 4a, b). Furthermore, the probe
system retained the sensitive and stable response to trivalent arsenic
([AsO5™] = 10 uM) without being affected by the presence of other anions
(30 uM) (Fig. 4c). These results suggest that this system may be effective for
water samples with high concentrations of halogen salts, which are com-
monly encountered in environmental water analysis. The sensitivity of TPE-
Cys (10 uM) to different metal ions was then measured in aqueous phos-
phate solution at pH = 7.2. Since arsenic exists in the form of anionic
arsenate or arsenite, the cationic shielding agent EGTA (glycol diethyl ether
diamine tetraacetic acid) was used to shield cationic metal ions that can bind
to the cysteine moiety. As shown, metal ions (10 uM) including Cu**, Ni**,
Co’", Ca*, Fe’", Cr’, AI'*, Pb*", Mn’*, K", Na™, Fe**, Mg’", Zn** and Cd**
could not activate the AIE fluorescence in the presence of the shielding
agent, as compared to the blank group (Fig. 4d). Importantly, the fluores-
cence response of the probe (10 pM) to As(III) (10 uM) in the presence of
EGTA (30 pM) was not affected by the presence of these cationic metal ions
(30 uM), including in particular Fe’*, Cu’*, Ni** and Co’*, which are
conventionally interfering ions in environmental samples (Fig. 4f).

Sensing analysis of groundwater samples

As shown above, the sensing system for both As(III) and As(V) is quite
unique and has the advantages of low detection limit, wide linear detection
range, good selectivity and strong anti-interference ability. Considering the
requirements of environmental water analysis in terms of portability,
reliability and convenience, we envisioned to integrate this fluorescence
sensing system into a homemade fibre-based portable fluorescence plat-
form. The platform consists of a conventional LIFs (Laser-induced Fluor-
escence Setup), designed to fit the sensor system and allow sensitive and
convenient analysis of natural samples (Supplementary Fig. 3). The
homemade device is mainly divided into three parts: (1) the underwater
detector consisting of an optical module, a liquid chamber and a pump, (2)
the spectral analysis module, (3) the drive control and data processing
module (Supplementary Fig. 3). During the detection process, the under-
water detector operates in a completely sealed state with the aid of an electric
pump. This design allows the detector to enter groundwater wells for
groundwater testing. The titration calibration was performed using this
portable fluorescence platform and showed a good linear relationship of
R*=0.99 in the range of 0-400 ppb for As(III) (Supplementary Fig. 9). The
fluorescence intensity of the probe solution without As species was
repeatedly tested 10 times to obtain the mean value k and the standard
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deviations. As a result, the LOD of the probe was obtained by the formula
LOD =3 s/k, as 0.14 ppb, by using the specific sensor system.

The workflow is illustrated in Fig. 5. Two aliquots of water samples
were pumped from the natural water sources and filtered through a 450 nm
filter membrane. One water sample was directly subjected to the sensor
system consisting of the shielding EGTA agent and the probing TPE-Cys
solution, which was then measured to indicate the [As(II)] in the sample. In
parallel, the other sample was first treated with the reducing agent (sodium
ascorbate) for 2 min and then mixed with the sensing aliquot consisting of
the shielding EGTA agent and the probe. Fluorescence was then measured
and compared to the calibration curves. The total analysis of both samples
would give information on As(III) and As(III) 4+ As(V), which can be used
to deduce the As(V) concentration in the absence of other types of
arsenic ions.

Prior to analysis, the natural water samples were filtered in order to
remove insoluble particles. The water sample was initially treated with the
shielding agent EGTA, after which it was divided into two portions. Sub-
sequently, one of the samples was then combined with the reducing agent.
Each solution sample was combined with a 1 mM probe solution, resulting
in a test solution with a total volume of 5 mL in the detector. The fluores-
cence intensities of the solutions were recorded, thereby allowing the con-
centrations of As(IIT) and As(V) to be determined.

The fluorescence sensor protocol was then employed for the quan-
tification of As(IIl) and As(V) in natural groundwater samples (Table 2).
The groundwater sampling sites are from a conventional smelter in
southwest China with a geologically high heavy metal background area.
The arsenic smelter was in operation from 1992 to 2003. The depth of
groundwater sampling was approximately 15 metres. Table 2 presents a
summary of the arsenic component values from three different environ-
mental samples obtained through the current fluorescence analysis
method, and by atomic fluorescence spectrometry (AFS) analysis. The
[As(III) + As(V)] values obtained using the novel fluorescence method
demonstrated a robust correlation with the conventional AFS results (203.9

vs 210.0 ppb, 353.3 vs 357.0 ppb, 384.9 vs 400.5 ppb), thereby sub-
stantiating the satisfactory accuracy of the method. To be noted, a com-
prehensive metal analysis revealed the presence of Zn**, Ni**, Cd*" and
Pd** as the predominant ions, in addition to arsenic, with varying con-
centrations observed across the three different samples. Furthermore, the
AIE-based method yielded results for both [As(V)] and [As(I)], indi-
cating that the ratio of As(V)/As(IIl) in the three environmental samples
was approximately 47.2%, 15.6%, and 15.4%. The distinctly different
As(IIT)/As(V) ratios suggest the existence of a complex arsenic dynamic
within natural systems, which may be amenable to modulation by a range
of oxidative chemical components. In the quantitative measurement, the
recovery ratio of natural samples was found to be 97.1%, 98.9%, and 96.1%,
with a relative standard deviation (RSD) of 8.3%, 4.4%, and 6.6% for the
three sites, respectively. These results suggest that the current fluorescent
methods are effective for practical analysis.

Conclusions

In complex environments, arsenite and arsenate are capable of undergoing
conversion processes to one another. Moreover, arsenite is markedly more
toxic and mobile than arsenate. In this study, a fluorescence sensing system
was developed for the on-site quantitative sensing of As(IIl) and As(V) in an
aqueous phase using a portable fluorescence platform. The use of the L-
ascorbic acid agent and the incorporation of suitable buffering and shielding
reagents in the protocol enable this cascade sensing system to demonstrate
excellent performance for environmental samples. This enables the selective
and quantitative detection of both As(III) and As(V) with high sensitivity
down to 4.65 ppb. In a proof-of-concept study, the protocol was employed
to analyze underground water samples on-site, providing both As(III) and
As(V) values that correlated with the AFS measurement. This method
allows for the accurate analysis of the dynamic equilibrium between As(III)
and As(V), revealing that As(III) is the predominant form while the As(V)/
As(III) ratio varies in accordance with the chemical environment for
underground samples. These findings suggest that the current sensing
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Fig. 5 | Work-flow of the arsenic sensing system.

system has potential for the analysis of complex arsenic forms, and may
facilitate the elucidation of the dynamic arsenic network within the envir-
onmental context.

Methods

Chemicals and instruments

The probe TPE-Cys was synthesized according to a modified protocol in the
supporting information (Supplementary Fig. 1)'*. The probe TPE-2Cys was
synthesized according to the synthetic route in the supporting information
(Supplementary Fig. 2). The optofibre-based portable fluorescence platform
used in this work was designed and assembled in the laboratory (c.f., Sup-
plementary Fig. 3 for more information) and was used in our previous

publications™ ™.

Preparation of sodium arsenite and sodium arsenite

mother liquor

(1) 20.0 mg of arsenic trioxide was weighed and dissolved in a 100 mL
beaker, 5 mL of 0.1 M sodium hydroxide was added to dissolve the arsenic
trioxide completely, 0.1 M HCl was added to make the pH = 7, the solution
was transferred to a 100 mL graduated flask and 1 mM sodium arsenite

Table 2 | Quantification analysis of arsenic in natural water
samples

Entry As(lll)* Total As(V)® Recovery(%) RSD Asby Major
[ppb]  As® [ppb] % AFS® lons®
[ppb] (n=3) (ppb)
X1-1# 138.6 2039 654 97.1 8.3 210.0 Zn?t
Niz*
X1-2# 305.5 353.3 47.8 98.9 4.4 357.0 Zn*"
NiZ*
Cd2+
X2-1# 333.4 3849 515 96.1 6.6 400.5 Zn?t
Pd2+
Cd2+

2Measured by the method in this work. "Measured by the referring AFS mass method. °confirmed by
independent analysis using the AFS mass method. Recovery ratio was measured by the ratio of total
arsenic concentration measured by fluorescence method to that measured by AFS. RSD (%):
relative standard deviation, showing the solution is tested repeatedly for 3 times, reflecting the
precision of the test results with n = 3.

mother liquor was prepared. (2) 0.042 g of sodium arsenate was weighed
and then completely dissolved in deionised water by ultrasonication. The
mother liquor of 1 mM sodium arsenate was prepared in a volumetric flask
with a fixed volume of 100 mL. The above solution can be used to dilute the
mother liquor to the required concentration according to the needs of the
subsequent experiments.

Conventional procedure for the quantification of As(lll)

(1) Standard curve of ion concentration versus fluorescence intensity. Fol-
lowing the mixing of 1.78 mL deionized water with 0.20 mL sodium arsenite
solution of varying concentrations, the addition of 0.02 mL TPE-Cys
standard solution (1 mM), agitation, and a 30-minute standing period, the
mixture was then examined in the fluorescence spectrometer. The fluor-
escence peak intensities corresponding to the concentrations of sodium
arsenite were plotted on the ion concentration-fluorescence intensity
standard curve, with the X and Y axes, respectively. (2) Sample testing:
1.78 mL of water was thoroughly mixed with 0.20 mL of the sample solu-
tion, and 0.02 mL of the TPE-Cys (1 mM) standard solution was added. The
fluorescence intensity of the sample was then checked under the same test
conditions as in (1).

Conventional procedure for the quantification of total arsenic
(1) A standard curve of ion concentration versus fluorescence intensity was
constructed. A reducing agent (L-ascorbic acid, 1 mM) was introduced to
the mother liquor of sodium arsenite employed in the aforementioned
experiment, resulting in the reduction of As(V) in the solution to As(III).
Subsequently, 1.78 mL of deionised water was combined with 0.20 mL of
arsenic solutions at varying concentrations, and 0.02 mL of a TPE-Cys
solution (1 mM) was introduced. Following oscillation and mixing, test after
balancing for 1 min, excitation/emission slit parameters were modified in
order to record the fluorescence spectrum. The fluorescence peak intensities
corresponding to the concentrations of total arsenic were plotted on the ion
concentration-fluorescence intensity standard curve, with the X and Y axes,
respectively, representing these variables. (2) Sample testing: 1.78 mL of
deionised water was combined with 0.20 mL of the sample solution and
0.02mL of the TPE-Cys (1 mM) standard solution. The fluorescence
intensity of the sample was then evaluated under the identical test condi-
tions as those employed in (1).
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Tests to evaluate the sensing performance in the presence of
interferences

In the experiment, 1 mM probe TPE-Cys solution was combined with a
certain concentration of metal ions (Cu*", Ni*", Co*", Ca?", Fe**, Cr’T, AI*Y,
Pb**, Mn™*, K, Na*, Fe**, Mg™", Zn*", Hg’", Cd**, As’"). After mixing and
balancing the salt solution for 1 min, the selectivity of the probe is reflected
based on the change in fluorescence intensity of the probe at 474 nm.
Similarly for anion selectivity, a 10 pM probe TPE-Cys solution is combined
with a certain concentration of anions (CI, I, HCO;, NO5, Br, SO,
CH,COO, PO,*, H,PO,, HPO,*, AsO,*) The salt solution was mixed and
the selectivity of the probe was reflected according to the change of fluor-
escence intensity of the probe at 474 nm. In the interference experiment, we
first added 20 puL of 1 mM probe into a certain concentration of different
metal salt solutions (30 uM) to test the fluorescence intensity of their mix-
tures, and then added a final concentration of 10 uM of trivalent arsenic
water solution to them, and then tested the fluorescence intensity of their
mixtures.

Sensing analysis of groundwater samples

The contents of As(III) and As(V) in water samples were determined by
probe TPE-Cys. The groundwater comes from a conventional smelter in
southwest China with a geologically high heavy metal background area. The
samples contains many kinds of metal ions. Firstly, a certain amount of
cationic shielding agent is added to the water sample to shield the inter-
ference of other metal ions. Then the fluorescence intensity was measured by
adding 50 pL of 10°M probe TPE-Cys solution and configuring a total
volume of 5 mL test solution. After adding the reducing agent L-ascorbic
acid to the water sample, balance for 1 min, fluorescence detection was
performed. The actual concentration of As(III) was obtained by substituting
the fluorescence intensity of the solution without reducing agent into the
above linear equation, and the total amount of arsenic was obtained by
substituting the fluorescence intensity of the solution with reducing agent
into the above linear equation. The arsenic pentavalent content is obtained
indirectly by subtracting the actual arsenic trivalent content from the total
arsenic content. The total arsenic content was compared with the arsenic
concentration determined by AFS method, and the recovery rate was
obtained.

Data availability

The data used in this study are available from the corresponding author
upon reasonable request. The source data underlying the graphs and charts
in the main figures are uploaded as Supplementary Data 1.
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