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Controlling aerodynamic forces in turbulent conditions is crucial for UAV operation. Traditional
reactive methods often struggle due to unpredictable flow and sensor noise. We present FALCON
(Fourier Adaptive Learning and Control), a model-based reinforcement learning framework for
effective modeling and control of aerodynamic forces under turbulent flows. FALCON leverages two
key insights: turbulent dynamics arewell-modeled in the frequencydomain, andmost turbulent energy
is concentrated in low-frequencies. FALCON learns a concise Fourier basis to model system
dynamics from 35 s of flow data. To address sensor limitations, FALCON models dynamics using a
short history of actions and measurements. With this approach, FALCON applies model predictive
control for safe and efficient control. Tested in the Caltech wind tunnel under highly turbulent
conditions, FALCON learns to control the underlying nonlinear dynamics with less than 9min of data,
consistently outperforming state-of-the-art methods. We provide guarantees for FALCON, ensuring
stability and robustness.

Turbulent atmospheric winds often contain transient flowdisturbances and
aerodynamic forces that can affect a variety of systems and structures1.
These forces are particularly significant for aerodynamic technologies like
unmanned aerial vehicles (UAVs) and wind turbines, which rely on fluid
interaction for regular operation and can be damaged when operating in
turbulent conditions2–4. Developing active control strategies to mitigate the
effects of these turbulent forces is one of the most important challenges in
the safe deployment of UAV technologies or extending the lifetime and
reliability ofwind turbines5–7.Developingandutilizing complexflowmodels
for control is challenging in real-time due to sensor noise, low-latency, and
high-frequency control requirements8–10. For example, modeling the flow
requires advanced computational fluid dynamics (CFD) solvers that are
often too slow for real-time application and fail under noisy settings11.

Conventional control strategies for UAVs, such as proportional-
integral-derivative (PID) controllers, are designed to reactively correct
inertial deviations from the desired trajectory without taking into con-
sideration the underlying flow dynamics or the source of the
disturbance12–14. These approaches are often insufficient for maintaining
stability in extreme atmospheric turbulence, which prevents deployment of
these technologies in safety-critical scenarios such as deploying unmanned
aerial vehicles (UAV) in densely populated urban areas15–17, such as Fig. 1A.
A line of work proposes adding Dryden or von Karman turbulencemodels,

a simplified side dynamics, as a correction to the base dynamical model18–20.
Such corrections are inspired by first-order physics and introduce ordinary
differential equations (ODE) correction to the UAV dynamics. These
approaches are also oftenused inpractice and comewith the limitations that
the correction is known, and an Euler method with fine time resolution is
needed for the ODE correction.

In contrast, biological swimmers and flyers have the ability to directly
observe and respond to the physics responsible for changes in motion21–24.
By drawing inspiration from these biological systems, there have been
considerable efforts to improve control strategies for UAVs by using easily
measurable flow quantities, such as pressure, to anticipate and mitigate the
effects of turbulent disturbances25–30. The majority of these works again
utilize the flow-sensing information within PID control frameworks which
limits their desirable performance to low velocities25–28 or they consider
uniform wind/flow scenarios where the eddies and gusts have smaller scale
than the UAVs which result in small aerodynamic disturbances29,30.

To tap the potential of flow-sensing in designing disturbance rejection
policies, reinforcement learning (RL), a machine learning area, has been
recognized as a promising framework, due to its ability to learn and adapt to
the unmodeled dynamics and design nonlinear policies with various
objectives. Most of the prior works on RL for flow control have focused on
model-free RL techniques and developed in CFD simulations. Model-free
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RLmethods do not construct an explicit model of the system dynamics and
aim to learn the control policies directly through interactions with the
system31. Therefore, they are the most intuitive choices for policy design in
environments difficult to model such as turbulent flow dynamics. Among
these model-free RL works, Bieker et al.32 introduced a novel framework
with online learning to predict and control flow in a 2D CFD simulation.
Gunnarson et al.33 introduced an algorithm to navigate a simulated
“swimmer” across an unsteady flow in a 2D simulation. In the experimental
studies, Fan et al.34 demonstrated the first experimental applications of
model-free RL in fluid mechanics. Recently, Renn and Gharib35 used a
model-free RL method for controlling the aerodynamic forces on an airfoil
under turbulent flow in an experimental setting (similar to the one con-
sidered in this work) and achieved state-of-the-art disturbance rejection
performance, outperforming PID control. They also documented that the
power spectrum of the turbulent flow at high Reynolds numbers is domi-
nated by the low-frequency components which inspired the development of
the algorithm in this work. However, despite this strong empirical perfor-
mance, their method suffers fromwell-known limitations of themodel-free

RL methods, namely, extensive and laborious data collection, and brittle
policies.

In this work, we take on the challenge of designing a model-based RL
framework for flow-informed aerodynamic control in a highly turbulent
and vortical environment to overcome these limitations. Unlike their
model-free counterparts, model-based RL methods pursue joint objectives
of model learning and policy optimization36. They are strong alternatives to
model-free methods due to their sample efficiency, ability to adapt to
changing conditions and to generalize to unseen conditions via the learned
model. Moreover, most real-world systems are governed by physics, which
can be incorporated into model learning. This also enables them to gen-
eralize better to out-of-distribution samples, which is crucial in safety-
critical tasks. However, despite these promises, most of the current model-
basedRLmethods are rarely implemented in real-world systemsdue to their
need for highly accuratemodels and the challenges that partial observability
brings.

In most real-world dynamical systems, the system state is hidden, and
instead, the controlling agent observes a nonlinear and noisy measurement
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Fig. 1 | Problem and Experiment Setup. A Complex airflow structures in urban
environments. B The wing has 9 sensors to measure the airflow (8 equally spaced
pressure taps and 1 pitot tube) and is mounted on a one-dimensional load cell to
measure the lift. Trailing-edge flaps change orientation to manipulate the aero-
dynamic forces. C Experiment setup to create irregular turbulent wake of a bluff
body under high wind speeds. D Smoke visualization of the turbulent wake of a
cylinder at a smaller Reynolds number. This image is obtained at the Caltech Real
Weather Wind Tunnel system at a significantly lower flow speed than the experi-
ments conducted in this work for visualization purposes. The actual flow conditions

used in our studies were too turbulent to have clear smoke visualization. E Under a
uniform flowU∞, symmetric airfoils do not have any vertical aerodynamic forces on
them when they are aligned with the airflow. However, altering the position of a
trailing edge flap on the airfoil can modify the lift coefficient CL, yielding an upward
or downward aerodynamic lift force. F Outline of FALCON, a model-based rein-
forcement learning framework that allows effective modeling and control of the
aerodynamic forces due to turbulent flow dynamics and achieves state-of-the-art
disturbance rejection performance.
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of the state, e.g. through sensors. This partial observability brings uncer-
tainties inmodeling the systemdynamics anddesigning the policies37. It also
violates the common design assumption of the Markov property in the
collected samples, which significantly complicates the modeling task38.
These challenges make model-based RL remarkably difficult in real-world
systems. To remedy these challenges, the majority of the model-based RL
methods rely on the expressive power of deep neural networks (DNN) in
modeling the dynamics. However, these approaches require a vast number
of samples and usually yield black-box models. Thus, these methods are
most relevant in stationary and safe environments such as robotic
manipulations39. However, under unsteady conditions such as complex
turbulent flow fields, we require efficient and adaptive modeling for gen-
eralizable learning.

In this article, we propose an efficient model-based RL algorithm,
Fourier Adaptive Learning and Control (FALCON), for online control of
unknown partially observable nonlinear dynamical systems, in particular
for disturbance rejection under extreme flow conditions for which the
turbulence dynamics and future events are a priori unknown (Fig. 1F).
FALCON leverages the domain knowledge that the underlying turbulent
flow dynamics are well-modeled in the frequency domain and that most of
the energy in the turbulent flows is present in low-frequency
components35,40. Therefore, it learns the underlying partially observable
system in a succinct Fourier Series basis. In short, FALCON constructs a
highly selective and nonlinear feature representation of the system in which
the dynamical evolution is approximately linear (in the feature space),
resulting in an end-to-end highly nonlinear and accurate model of the
underlying system dynamics. The Fourier coefficients provide good
inductive bias to learn this cross-coupling automatically from observations.
The soundness of model learning using constructed Fourier bases is theo-
retically guaranteed, and the algorithmdesign in thiswork ismainly towards
low error in the next step prediction. In this work, we evaluate the accuracy
and soundness of the learnedmodel using controller performance equipped
with the learned model, which is the quantity of interest in RL and control.
The low error prediction error is sufficient to achieve the learning and
control guarantee and arrive at the proposed practical algorithm. FALCON
consists of twomain parts: a warm-up phase and adaptive control in epochs
phase. In the warm-up phase, using only a small amount of flow data
(35 seconds-equivalent to approximately 85 vortex shedding interactions)
FALCON recovers a succinct Fourier basis that explains the collected data
and enforces that this learned basis is mostly composed of low-frequency
components following the prior observations on turbulentflowdynamics. It
then uses this basis to learn the unknown linear coefficients that best fit the
acquireddataon the learnedFourier basis during the adaptive control phase.

In the control design, FALCON uses model predictive control (MPC)
and efficiently solves a short-horizon planning problem at every time step
with the learned system dynamics. This recurrent short-horizon planning
approach allows FALCON to adapt to the sudden changes in the flowwhile
designing more sophisticated policies that consider future flow effects in
contrast to the conventional purely reactive controllers. Moreover, the
simple yet physically accurate dynamics learning approach of FALCON
further facilitates the effective control design, which results in a sample-
efficient and high-frequency control policy. During the adaptive control
phase, FALCON refines its model estimate, i.e., the linear coefficients, in
epochs in order to improve the learned model, which in turn improves the
performance of the MPC policy. Overall, FALCON provides a simple,
efficient, and interpretable dynamics modeling and an adaptive policy
design method for the flow-predictive aerodynamic control problem and
significantly outperforms the state-of-the-art model-free RL methods and
conventional control strategies, i.e., PID, using only a total of 9min of
training data representative of approximately 1300 vortex shedding cycles.
FALCON easily incorporates the physical and safety constraints in the
policy design and builds on a fundamental understanding of how well
nonlinear systems can be approximated and how these approximation
errors affect the control performance, which we support with rigorous
theory.

We implement FALCON on an experimental aerodynamic testbed
that abstracts the fundamental physics involved inflight through a turbulent
atmospheric flow and is specifically relevant for fixed-wing UAV applica-
tions. This testbed consists of a 3D-printed airfoil with actuated trailing edge
flaps and an array of pressure sensors tomeasure the surrounding flow (Fig.
1B). The system is mounted in a closed-loop wind tunnel on a load cell
measuring the aerodynamic lifting force acting on the airfoil. The testbed is
placed in the wake of a bluff body at a Reynolds number of 230, 000, which
generates a highly turbulent and vortical environment (Fig. 1C). This setting
is on the upper-intermediate range of turbulent spectrum, and follows the
description of realistic fixed-wing UAV flights with indicated Reynolds
numbers ranging from 30, 000 to 500, 00041. The aerodynamic control goal
is set to minimize the standard deviation of the lift forces by adjusting the
position of the trailing-edgeflaps in response to incoming disturbanceswith
the help of flow sensors (Fig. 1E). In free flight, this would be equivalent to
minimizing the inertial deviations along the lifting axis.

Through these wind tunnel experiments, we report that FALCON
achieves 37% better disturbance rejection performance than the state-of-
the-art model-free RL method35, using only a single trajectory and 8 times
less data.Moreover, we document a performance improvement of 45%over
the conventional reactive PID controller. Overall, we find that the superior
performance of FALCON is consistent over independent runs in the highly
irregular unsteady turbulent flow dynamics, demonstrating the adaptation
and generalization capability of FALCON to the unseen conditions.

Results
Novel Model-based RL Framework: Fourier Adaptive Learning
and Control (FALCON)
FALCON has two main phases: a warm-up and an adaptive control in
epochs phase (Fig. 2). The warm-up phase is a short initial period, where
FALCONcollects initial data about the fully unknown system. The goal is to
purely explore the system and recover a coarse model of the dynamics. To
that end, FALCON executes smooth and safe actions, i.e., time-correlated
Gaussian inputs, that safely excite the system (see Methods for other var-
iants). Since FALCON relies on pressure sensors on the airfoil to measure
the system dynamics, it operates under partial observability. The chaotic
dynamics of the systems undergo quick transients from their earlier states,
forgetting them, making the current dynamics more heavily dictated by
recent observations and actions than earlier ones. To overcome the uncer-
tainties that partial observability brings, FALCONuses the recent history of
actions andmeasurements tomodel the system dynamics. At the end of the
warm-up phase, FALCONuses the data collected to learn themost relevant
Fourier basis that explains the observed turbulent dynamics. FALCON is
data efficient and requires only 35 s of flow data during the warm-up phase
to recover an informative Fourier basis. This 35 s of flow data include fewer
than 1500 samples taken over a period spanning approximately 85 vortex
shedding events.

FALCON incorporates several key features that achieve data and
computational efficiency in the basis learning process. In particular,
FALCON uses ℓ1-constrained (sparse) Fourier basis, as well as least
absolute shrinkage and selection operator (lasso)42 to recover a succinct
basis representation (see details in Methods). This improved basis
selection yields a significantly compact model representation while
allowing physically accurate modeling of the underlying system
dynamics due to the low-frequency dominant choice of Fourier basis,
i.e., sparse Fourier basis vectors43. Indeed, spectral methods and modal
analyses for modeling turbulent fluid dynamics are well-established
concepts44,45, and it is known that large eddies with low frequencies
contain the most energy in turbulent flows40. This inductive bias in
modeling via sparse Fourier basis reduces the number of samples
required to learn the turbulent dynamics with small modeling errors and
alleviates the computational burden in the predictive control design,
facilitating high-frequency control actions. FALCONallows flexibility in
the basis learning procedure such that the number of Fourier basis used
in model learning could be easily adjusted based on the prior knowledge
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of the system dynamics, the difficulty of the learning task, and the
computational budget.

After recovering a succinct Fourier basis formodel learning, FALCON
starts the adaptive control in epochs phase, Fig. 2A. It estimates the model
dynamics as a linearmodel in the learnedFourier basis and aims to learn the
unknown linear coefficients that best fit the acquired data onto this basis. In
particular, FALCON solves an online least-squares problem that has a
closed-formsolution to learn these linear coefficients. This interpretable and
lightweight model learning allows online and/or batch updates for com-
putational efficiency and comes with strong learning theoretical guarantees
for the robustness of modeling (see Materials).

During this phase, FALCONdesigns an online control policy based on
this learnedmodelwhile improving the systemdynamicsmodel in anonline
fashion over time. This process goes in epochs with doubling duration, i.e.,
each epoch is double the length in seconds of the previous epoch, where at
the end of each epoch FALCON updates its linear coefficient estimates on
the model for better-refined dynamics modeling and control. This epoch
schedule reduces the number of model updates towards the later stages of
adaptive control where the dynamics are already well-modeled and only
small tuning is required to further improve.We would like to highlight that
FALCON is a single trajectory algorithm in the sense that it does not require
a reset between epochs, which makes it efficient in the data collection
process.

As the online control policy, FALCON uses model predictive control
(MPC) with the estimated model dynamics to design the control inputs
during the adaptive control phase. For controlling nonlinear dynamical
systems such as aerodynamic control in turbulent flow considered in this

work, finding the optimal solution to the control problem is usually
challenging46. As a practical and efficient alternative, MPC policies have
been the dominant choice for designing controllers in nonlinear dynamical
systems47. Given the initial conditions, the transition dynamics (can be an
estimated model or a nominal model), the running costs, and the terminal
costs at any given time step, the objective inMPC is to solve a short horizon
optimal control problem and execute the first action of the solution
sequence. This process is then continued as we gather new observations.
Intuitively, instead of trying to solve the challenging global optimal control
problem,MPCmyopically solves a locally optimal control problem.Usually
physical or safety constraints on actions, observations, and dynamics are
added in theMPC formulation due to its simplicity of implementation. The
choice of the MPC policy depends on the control task. In general, the MPC
policies are either optimization-based48 or sampling-based49. However,
sampling-based methods are usually preferred in model-based RL due to
challenging nonlinear system dynamics and complicated cost and con-
straint functions50.

Therefore, at every time step of the adaptive control phase, FALCON
deploys a Cross-Entropy Method (CEM) policy, a sampling-based MPC
policy49, to design control actions using the most recent system dynamics
estimate as the transition dynamics. CEM maintains a distribution, pre-
dominantly Gaussian, to sample action roll-outs for the short planning
horizon and iteratively updates this distribution to assign a higher prob-
ability near lower cost action sequences based on the estimated system
dynamics. After a certain number of updates, it executes the first action on
the lowest cost-achieving action sequence in the sampled roll-outs (see
further details of MPC design and CEM in particular in Methods).
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Fig. 2 | FALCON Framework. It consists of two phases: Warm-Up and Adaptive
Control in Epochs. A Adaptive Control in Epochs: FALCON models the system
dynamics as a linearmap of the representation of a short history (h-length) of action-
measurement pairs in the succinct Fourier basis learned in the warm-up phase.
FALCON learns the unknown linear coefficients that best model the dynamics via
online least squares. It updates the estimated system dynamics, i.e., the linear
coefficients, at the end of each epoch, and during the epochs, it uses Cross-Entropy
Method (CEM), a sampling-basedMPCmethod, to control the airfoil under extreme
turbulence using the estimated system dynamics while satisfying desired lift and

safety requirements. BWarm-up: It is a one-time 35 s process before starting the
adaptive control phase for safely collecting some exploratory data about the
unknown system to recover a relevant Fourier basis to be used in learning and
adaptive control. To achieve this FALCON forms h-length subsequences of action-
measurement pairs (a short history) from the safely collected dataset and solves the
lasso problem on the ℓ1-constrained Fourier basis representation of these sub-
sequences. FALCON selects the Fourier basis vectors that correspond to non-zero
coefficients in the solution of the lasso problem as the succinct Fourier basis ϕ(⋅) for
the entire adaptive control in epochs phase for learning and control of the system.
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FALCON takes in the most recent short history of actions and measure-
ments as the initial condition for short-horizon MPC objective. For the
running and terminal control costs FALCON can utilize any kind of cost
functions as long as they can be evaluated efficiently depending on the
control task. In our experiments, we design the cost function of FALCON
basedonour aerodynamic control objective such thatFALCONavoids large
lift forces and prevents rapid changes in lift forces and fast/jittery action
changes. The first two design choices are clear from the control goal, i.e.,
minimizing the mean and the standard deviation of the overall lift forces,
whereas, the last one is more subtle. In our experiments, we observed that
non-smooth changes in actions cause additional lift forces on the airfoil (see
further discussion on cost design choice in Materials). Furthermore, in the
policy design FALCON includes action constraints due to mechanical
restraints of the aerodynamics testbed as we shortly discuss in the next
section.

FALCON can easily include further safety or physical constraints
within its MPC framework. This makes FALCON a reliable algorithm for
safety-critical tasks such as free flight through turbulence. Moreover, the
recurrent short-horizon planning approach throughCEMallows FALCON
to design sophisticated policies that consider future flow effects through the
use of estimated model dynamics. Thus, rather than designing purely
reactive policies that cancel out the instantaneous aerodynamic forces,
FALCON designs flow-predictive disturbance rejection policies which aim
to minimize the lift forces while accounting for unsteady flow dynamics. In
this way, FALCON adapts to sudden changes in the flow while avoiding
overcompensation of the aerodynamic disturbances by maintaining an
overall understanding of the flowfield. The simple, yet physically sound and
accurate dynamics learning approach of FALCON facilitates this effective
control design, which results in a sample-efficient and high-frequency
(42Hz) state-of-the-art control policy with generalizable performance.

The construction of FALCON is modular such that different basis
functions, e.g. wavelets51, could be utilized in learning the underlying system
dynamics depending on the domain knowledge about the system, while the
MPC framework could be selected based on the specific needs, e.g.
optimization-based MPC for simpler model dynamics. This interchange-
able design of FALCON makes it a viable model-based RL method for
designing diverse online/adaptive control strategies for various tasks (see
Discussion). Moreover, it also allows for the derivation of strong theoretical
guarantees for the robustness of model learning and the control perfor-
mance under modeling error, see the Methods section. In particular, we
prove that a wide range of partially observable nonlinear dynamical systems
such as dynamical systems governed by partial differential equations could
be learned with arbitrary modeling error using Fourier basis for FALCON.
We also show that this effective model learning allows stable control design
for robustMPC frameworks and the systems controlled by FALCONfollow
a trajectory close to the systems regulatedwith the sameMPCpolicy thathas
access to perfect system dynamics information. Finally, we formalize the
performance guarantee of FALCON such that the control performance of
FALCON converges to the idealizedMPC controller that knows the perfect
system dynamics. These rigorous theoretical results display the reliability of
FALCON while attaining state-of-the-art performance in predictive flow
control.

Experimental aerodynamic testbed
In this work, we abstract the problem of stabilizing an aerodynamic system
under turbulence to basic components while maintaining the core com-
plexity of the physics involved. We utilize an experimental aerodynamics
testbed that captures and generalizes the fundamental physics involved in
flight through a turbulent environment35. The aerodynamic testbed consists
of a symmetric generic airfoil with motorized trailing-edge flaps and inte-
gratedflow sensors (Fig. 1B). The trailing-edgeflapshave an actuation range
of [-40∘, 40∘], and are mapped linearly from the action space of [−1, 1],
yielding 1-dimensional control action per time step. Similar to flap systems
on conventional airplanes, actuating the trailing-edge flaps generates a
lifting force that can offset the aerodynamic forces associated with flow

disturbances as shown in Fig. 1E. The testbed is equipped with nine sensors
which are placed 10cm apart along the spanwise axis. Observations of the
surrounding flow are measured through a series of eight pressure tap flow
sensors built into thebodyof the airfoil,with a single pitot-static tube located
at the center of the airfoil. The pressure taps, placed near the leading edge of
the airfoil, provide valuable information on incoming pressure differentials
between the upper and lower surface of the airfoil. The pitot-static tube
measures the total pressure of the incoming flow which is approximately
proportional to the mean velocity of the flow. The aerodynamic testbed is
mounted on a one-dimensional load cell which is used to observe the lift
forces acting on the airfoil, which serves the same effective role as an inertial
measurement unit on conventional UAVs. Combined with nine flow sen-
sors, we obtain 10-dimensionalmeasurements per time step. Further details
on aerodynamics testbed design are provided in Methods.

Turbulent environment
We study control in the context of a canonical problem in fluid dynamics:
the turbulent wake of a bluff body. When placed incident to winds, bluff
bodies produce an oscillating vortical wake commonly known as a Kármán
vortex street52.At sufficientwind speeds, thiswakebecomeshighly turbulent
and can result in significant forces43, as visualized with smoke in Fig. 1D.
This photo is captured at Caltech Center for Autonomous Systems and
Technologies (CAST) fan-array wind tunnel with a standard cylinder at a
lower wind speed than the experiments presented in this work. Figure 1D
depicts the turbulent wake of the cylinder where the vortex shedding is
irregular. This phenomenon is famously responsible for the 1940 collapse of
the Tacoma Narrows Bridge53.

All of the quantitative results in this work were obtained from the
experiments conducted in Caltech’s Lucas Adaptive Wall Wind Tunnel, a
closed-loop wind tunnel. As discussed previously, our experiments were
performed in the wake of a bluff body at a mean flow speed of 6.81m/s,
which corresponds to a Reynolds number of ReD = 230,000 over the bluff
body. The bluff body consisted of a cylinder with a diameter of 30 cmwith a
normal flat plate fixed asymmetrically that increased the effective diameter
to 53 cm, as shown in Fig. 1C. This construction is used to encourage vortex
dislocation which results in less regular vortex shedding events54. Further,
the bluff body was mounted to the walls of the tunnel with elastic cords to
allow for dynamic oscillations which may also encourage less regularity in
shedding events (see Methods for details).

We used particle image velocimetry (PIV) to visualize a portion of the
turbulent flow field in our experimental environment (see Methods for
details). Figure 3 presents the PIV measurements of the vorticity field
contextualized in the wind tunnel. The complex vorticity patterns clearly
demonstrate the chaotic and unsteady turbulentflowdynamics, with strong
three-dimensional effects likely present in our experimental setting.
Moreover, through hot-wire anemometer measurements in the wind tun-
nel, we record a turbulence intensity of 10.8%.

Baseline control methods
To test theperformanceof FALCON,wedeploy severalRLbaselines and the
industry-standard responsive control strategy of PID (Proportional-Inte-
gral-Derivative) control in our aerodynamics testbed. In particular, we
compare FALCONwith the twin delayed deepdeterministic policy gradient
algorithm TD355, its variant known as LSTM-TD356, and soft actor-critic
algorithm SAC57 (see Methods for a detailed overview of these methods).
Thesemethods are the state-of-the-art off-the-shelfmodel-free RLmethods
deployed inmany real-world control tasks34,35,58,59. They are off-policy actor-
critic algorithms that utilize neural networks for control policies. Off-policy
methods are usually preferred over on-policy methods in real-world
dynamical systemswithunsteadydynamics since they can learn fromawide
range of experiences, including observations from previous policies, which
makes them more robust to changes in the environment. Another advan-
tage of off-policymethods is that they can learn anoptimal policy evenwhen
the current policy is significantly sub-optimal, which is usually the case for
challenging real-world control tasks due to the lackof clearly superior expert
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policy. These all combined allow off-policy methods to be more stable
during the learning process, which leads to better convergence and gen-
eralization performance31.

The TD3 algorithm has previously demonstrated success in experi-
mental flow control in different settings34. To improve performance in
partially observable systems, such as the turbulent flow dynamicsmeasured
by sensors, LSTM-TD3 utilizes recurrent long-short-termmemory (LSTM)
cells in the neural network structure of TD3. The addition of LSTMcells has
been previously shown to improve the performance in prediction and
control of highly unsteady stochastic environments like turbulent flow
fields60. In particular, recently, LSTM-TD3 has been demonstrated to
achieve state-of-the-art performance in disturbance rejection in a similar
experimental setting studied in this work35. Therefore, LSTM-TD3 provides
the ultimate baseline for FALCON. In their implementations, bothTD3and
LSTM-TD3 have nearly identical parameters besides the additional LSTM
structure of LSTM-TD3 for an additional memory element in the policy.
While TD3 and LSTM-TD3 provide deterministic policies, SAC designs
stochastic policies, which is shown to achieve significant success in various
real-world tasks such as quadrupedal robots and voltage control57,61. It
provides a sample efficient alternative policy design method compared to
TD3 and LSTM-TD3.

Due to the stochasticity in the process of training RL algorithms, we
trained each of the agents presented here with three independent random
seeds and present the average training results to display their performances.
Unlike FALCON, the model-free methods work in episodes with reset for
retraining.We train themodel-freemethods for 200 episodesof 800 samples
per episode and use the best-performing agent for each algorithm in pre-
senting their final performance. The feedback gains of the PID controller
were tunedmanually to achieve constant zero lift using the readings of load
cell measurements. In our experiments, we run an exhaustive grid search
over the feedback coefficients and report the best-performing controller. All
methods, including FALCON, are implemented with 42 Hz sensing and
control frequency.

Superior performance and sample efficiency of FALCON
First,weprovide the results on the training of themethods. Inpresenting the
training behavior, we exclude the warm-up of each method. Note that the
warm-up phase of FALCON requires only 1500 samples, which corre-
sponds to approximately 85 vortex shedding cycles from the upstream bluff
body. Figure 4 shows the moving average of the mean and standard
deviation of the lift forces on the airfoil for the best-performing policy of
each method over the first 42,000 samples collected. In this plot, while the
data collection procedure of FALCON does not pause in between model
updates (epochs), the model-free algorithms pause (end of their episode)
and train for some time to update their policy. From these plots, we observe
that FALCONquicklyfinds the unknown linear coefficients to represent the

system dynamics in the learned Fourier basis and achieves significantly
better performance than model-free methods with fewer samples. We also
note that during the 40,000 sample period shown, FALCON has only 25
learning updates while the other algorithms shown have 50. As the model-
free algorithms used for comparison typically requiremore data, we trained
these algorithms for a total of 200 episodes (equivalent to 160,000 samples),
the remainder of which can be seen in Fig. 5. The training behavior of
FALCON indicates that FALCON agents consistently improve throughout
training and require significantly less training time to outperform state-of-
the-art model-free methods due to its physically accurate model learning
procedure and efficient control design.

Even though FALCONcan suffer frommodel uncertainty and execute
sub-optimal actions at the beginning of training due to unsteady flow
dynamics (see the outlier bump in the standard deviation of lift in Fig. 4
around t = 6000), FALCON effectively explores the state-space to improve
the accuracy of the model and hence the performance of the controller to
bring the standarddeviation in the lift forces todesirable values.After 10,000
samples, i.e., 4 min of training of FALCON, the average standard deviation
of lift forces on the aerodynamics testbed remains stable at a level sig-
nificantly better than other tested methods. Similarly, the mean lift forces
achievedvia FALCONconsistently outperform that ofmodel-freemethods.

Among the model-free methods, Fig. 4 shows that LSTM-TD3 is the
secondbest-performingalgorithmbyoutperformingTD3slightly,while SAC
fails to achieve acceptableperformance.Note thatLSTM-TD3andTD3share
the same policy constructions except the LSTM part that adopts latent states
in the policy. Combined with the superior performance of FALCON, this
highlights the importance of a latent state representation in achieving
desirable learning and control performance in partially observable real-world
settings. Similar to FALCON, LSTM-TD3 achieves consistent performance
after sufficient samples, yet it requires an order of magnitude more than
FALCON. Despite our significant efforts in hyperparameter tuning, SAC
agents failed to learn desirable policies thatminimize the aerodynamic forces.
Even the best-performing agent significantly underperformed compared to
othermodel-free policies,which indicates that stochastic policies such as SAC
might not be suitable for controlling unsteady dynamical systems.

From our experiments, we observe that FALCON is more robust to
hyperparameter tuning and has a notably more stable training process (Fig.
4) compared to model-free methods. In particular, in our training process,
tuning FALCON requires only a few trials on the history of modeling
(number of past observation-action pairs used), the sparsity weight in lasso
for recovering a succinct basis, and the planning horizon for CEM. On the
other hand, model-free methods require extensive hyperparameter search
to achieve some learning behavior. This extensive search is significantly
time-consuming and laborious in real-world problems, e.g. the training
process of model-free methods corresponds to an hour of training for each
hyperparameter configuration in our setting. This process becomes

(a) (b)

Fig. 3 | Turbulent Flow Field and Vorticity Measurements Inside the Wind Tunnel. a Particle Image Velocimetry (PIV) Visualization of the Turbulent Flow Field.
b Depiction of PIV measurement location in the wind tunnel
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unfeasible in online resource-constrained settings, which are typically the
scenarios for adaptive control systems.

Our experiments overall showed that FALCON consistently achieves
better andmore stable training performance thanmodel-free methods while
converging to its optimal policywithorders ofmagnitude fewer samples.This
superior performance and sample efficiency show that the simple yet efficient
partially observable dynamics modeling approach of FALCON reduces the
complexity of the aerodynamic control under turbulence problem sig-
nificantly. Combined with the efficient predictive control design, FALCON
agents learn to reject the flow disturbance effectively. The model learned by
FALCON also aligns well with established knowledge regarding spectral
energy content; in particular, the improved basis selection with ℓ1-constraint
and lasso enforces themodel to have relatively low frequencies corresponding
to the dominant energy-containing eddies. In our experiments, we observe
that FALCON recovers model estimates which put significant weight on the
low-frequency basis, e.g. DC components, and some high-frequency com-
ponents (see Methods). This shows that via using the relevant basis for
learning, FALCON learns a physically meaningful model, which contributes
to training stability and disturbance rejection performance of FALCON.

To further investigate the effect of the concise Fourier basis-based
model learning approach of FALCON, we implemented a reasonably sized
deep neural network for model learning and combined it with CEM-based
policy design as FALCON. However, despite our significant efforts in
tuning, this approach failed to learn a reliable model for control design due
to unsteady and chaotic flow conditions, which resulted in a performance
significantly worse than the reported algorithms in this work. This outcome
highlights that black-box dynamics modeling methods such as deep neural
networks can fail in unsteady systems such as turbulent flow dynamics.

Consistent and generalizable performance of FALCON
Next, we study the generalization performance of FALCON and other
methods including the PID controller. Table 1 presents the average

performance of the best-performing policies by each method in 10 inde-
pendent 90-second length runs, i.e., 4000 samples, as well as the number of
samples required to train the respective “best” policies.We report themean
and standard deviation of the lift forces on the airfoil averaged over these
runs. As discussed before, the standard deviation of the lift forces is the key
metric for disturbance rejection and aerodynamic flow control. Table 1
shows that FALCON improves upon the prior state-of-the-art performance
in flow disturbance rejection under extreme turbulence by 37%. Further,
FALCONachieves this performance using only 8.7min of data, whereas the
model-free algorithms can take hours to train in the same setting35. This
significant improvement with 8 times fewer samples shows that FALCON
adapts and generalizes across independent runs despite remarkably differ-
ent training conditions due to unsteady and chaotic turbulent flow
dynamics. Moreover, FALCON outperforms the industry standard PID
controller as well as TD3 policy by more than 45%. Similar to the training

×104×104

×103 ×103

Fig. 4 |Evolution of themean ( Lift ) and standard deviation (σ) of the lift forces for the best-performing agents of each algorithm shown over the first 40,000 samples. The full
training performance for the model-free algorithms can be found in Fig. 5.

×105×105

×103 ×103

Fig. 5 | Evolution of the mean ( Lift ) and standard deviation (σ) of the lift forces for the best-performing agents of each algorithm shown over the full 200 episodes for which
the model-free algorithms were trained (160,000 samples).

Table 1 | Disturbance rejection performance of the methods
over 10 independent 90 seconds test runs

Average Over
10 Tests

Std Over 10 Tests

Control
Method

Training
Samples

Absolute
Mean
Lift (mN)

Std in
Lift
(mN)

Absolute
Mean
Lift (mN)

Std in
Lift
(mN)

PID N/A 6 271 1 8

TD355 1.71 × 105 183 267 4 9

SAC57 1.51 × 105 268 395 213 64

LSTM-
TD335

1.76 × 105 139 236 16 5

FALCON 2.20 × 104 2 148 10 13

The best average absolute mean performance achieved by FALCON is highlighted in bold.
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performance, we have observed that the SAC policy failed to achieve
acceptable performance in disturbance rejection while requiring less
training data to converge compared to other model-free methods. This
result also suggests that stochastic policies might not be effective in con-
trolling unknown unsteady or chaotic systems.

We also document that FALCON achieves the best average absolute
mean performance. In particular, it outperforms PID control which is
designed to keep the absolute mean close to zero. Even though it is a
secondary andeasy-to-offsetmetric in aerodynamic control,weobserve that
model-freemethods attain significantly higher absolutemean lift compared
to FALCON and PID controllers. Among these methods, LSTM-TD3 also
achieves the lowest absolute mean.

Finally, we present the standard deviation in these performance
metrics over 10 independent runs to test the consistency of the control
methods’performance inTable 1.We see that the performance of FALCON
is consistent over the unsteady dynamicswithminimal change over the runs
and it almost matches the consistency of the non-learning-based PID
controller. Notably, besides SAC, other RL methods also perform con-
sistently over these independent runs, where LSTM-TD3 which uses
memory units in their policy construction, akin to FALCON, outperforms
TD3. These results overall show that FALCON is able to generalize its
performance to unseen disturbances and consistently provides the state-of-
the-art predictive-flow disturbance rejection in extreme turbulent flow
dynamics.

Discussion
We have designed and demonstrated FALCON, the first model-based RL
method that can effectively learn to control aerodynamic forces acting on an
airfoil under extreme turbulencewithwhichconventionalmethods struggle.
Our results indicate that combining flow sensing with physically sound
model learning and efficient control design allows state-of-the-art dis-
turbance rejection despite the chaotic nonlinear turbulent dynamics.
Besides the superior performance, the physics-informed lightweight design
for learning and control of FALCON allows an order of magnitude
improvement over the number of samples required to achieve desirable
control performance compared to prior RLmethods. Further, we document
that our method has a stable training procedure and a consistent perfor-
mance even under highly irregular unsteady dynamics of turbulent flow.
These results indicate the potential to use this method to stabilize systems
such as UAVs under extreme turbulence in free-flight scenarios.

We observed that FALCON improves the aerodynamic control per-
formance of prior state-of-the-art LSTM-TD335 by 37%. Even though
LSTM-TD3 is a model-free RL algorithm, it shares a similarity with FAL-
CON that it uses recurrent LSTM cells to utilize a history of observations in
the policy design. With this construction, LSTM-TD3 is able to capture the
latent state dynamics in designing policies. This allows LSTM-TD3 to
handle partial observability in system dynamics due to sensor measure-
ments, and design policies based on modeled latent states. Due to the
structural similarities of LSTM-TD3 and TD3 algorithms, the superior
performanceof LSTM-TD3overTD3 shouldbe attributed to the latent state
modeling via LSTM cells.

In contrast to FALCON, the modeling of latent states in LSTM-based
policy design is mostly black box and without any physical interpretation.
On the other hand, in FALCON, the flow dynamics are captured by sig-
nificant low-frequency and some high-frequency model components with
learned linear mixing coefficients using a history of observations and
actions. Our proposedmodeling approach in FALCON is motivated by the
prior studies on turbulent flow dynamics that observe a well-defined fre-
quency spectrum with significant low-frequency energy content for highly
turbulent flows35,40. The interpretable dynamics modeling of flow dis-
turbances of FALCON simplifies the disturbance rejection task to a low-
dimensional learning-to-control problem, where learning and control
design are executed efficiently. Moreover, this principled approach allows
theoretical guarantees on sample-efficient model learning, robustness
against imperfect learning, and control performance under modeling error

which are derived for FALCON in the Methods section. All these results
highlight the importanceof deploying domain knowledge inmodel learning
for unsteady and chaotic systems such as turbulent flow fields.

The industry-standard method to tackle similar problems relies on
extensive engineering efforts in developing/tuning complexmodels that are
often accompaniedbynon-physical domain jargonparameterization.These
advanced and many decades-long efforts are behind many successes
observed in practice on large aircraft, includingBoeing 787 gust rejection. In
our current work, we establish early learningmethods for similar problems.
In the future step of learning-based endeavors and studies, we plan to
collaborate with industry partners to advance the learning methods and
further address additional real-world challenges, enabling field experts to
tackle daily design programs.

FALCON exhibits a modular structure, where the model learning and
control components could be replaced depending on the task. The Fourier
basis is deployed in FALCON and our experiments due to prior studies
which showed that turbulent flow dynamics have a well-defined power
spectrum dominated by the low-frequency components. Due to such
underlying physics, the choice of Fourier basis allows theoretically guar-
anteed learning of the underlying system (see Methods). In particular, we
rigorously show that themodeling error of suchunderlying systems couldbe
made arbitrarily small with sufficient basis and data points from the system.
This approach is in contrast to black-boxmodeling of the system dynamics,
e.g. via deep neural networks, which naively uses purely data-driven basis
functions, which may cause instability and fragility in model learning and
control. In fact, our experiments with deep neural network modeling
showed that in such temporally unsteady systems, it is hard to fully char-
acterize the system dynamics without incorporating domain knowledge.
This insufficient learning caused significantly inferior control policies.

The modeling capabilities of FALCON could be improved by adding
nonlinearities to themodeling via Fourier basis. The composition of Fourier
basis learning with nonlinear functions has shown success in learning the
solution operators of partial differential equations62. Adopting such a
modeling approach could further extend the model learning capabilities of
FALCON and improve its aerodynamic control performance. Different
basis vectors such as RandomFourier Features (RFF) have been deployed in
prior model-based RL works63. Incorporating them along the Fourier basis
can also extend the class of systems that could be learned via FALCON.
Finally, different modeling approaches, such as modeling the pressure/lift
differences on the sensors via the history of observations and actions, could
be deployed to improve the sample efficiency and performance further. In
our experiments, we tried this approach but did not observe a change. Yet,
this approach could be helpful in deploying FALCON in more challenging
turbulent environments.

In the control design, FALCON adopts CEM, a sampling-based MPC
method, to exploit the learned accurate model. By design, CEM provides a
transparent control design method in terms of what control cost is to be
minimized and for how long of a trajectory should be considered in planning.
This transparency is significant when incorporating domain knowledge and
experimental observations directly in the control design. In particular, during
our experiments,weobserved thathaving rapid changes in theflap angles, i.e.,
too much variation in consecutive actions, results in a slight increase in lift
forces on the airfoil.With this observation,we added a term in the cost design
of FALCON which prevents these changes to a certain extent and improves
aerodynamic control performance. This cost design is also intuitive for
general flight control since it also reduces the wear and tear on the actuators.
Moreover, due to this transparency, FALCON includes safety and physical
constraints easily in the control design problem by simply eliminating tra-
jectories or action sequences that violate these constraints.

This is in stark contrast with the black-box controllers provided by the
model-free RL algorithms. These methods are very sensitive to many
hyperparameters which control the neural network architecture and
training procedure, yet, the effect of each hyperparameter on the perfor-
mance is unclear. This lack of transparency leads to a reliance on intuition,
experience, and trial and error when tuning these hyperparameters, making
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the process time-consuming and frustrating. Even though the data pre-
sented for eachmodel-freemethod took around 6 hours in the wind tunnel
through training and testing, the actual process of hyperparameter tuning
required dozens of additional hours for each algorithm. This presents a
challenge in dynamic experimental environments, such as aerodynamic
control under turbulence. On the other hand, the whole process of tuning,
training, and testing of FALCON took around 9 wind tunnel hours in total.

In the aerodynamic control problem studied in this work, we con-
sidered 1-dimensional control actions with a 5 time-step planning horizon.
This results in a relatively small search space tofindoptimal actions forCEM.
This was particularly important in the control design of FALCON since the
sampling-basedMPCmethods as CEMcan be inefficient in longer planning
horizons or larger action spaces.One can increase thenumber of samplesper
iteration in higher dimensional control problems, yet thismight cause delays
in control and poor performance. In order to deploy FALCON in higher
dimensional control settings, utilizing a more efficient model predictive
control method based on first-order optimization might be useful. This can
be easily achieved with the same model learning module of FALCON and
replacing CEM due to the modular structure of FALCON. Interior-Point
Methods (IP) and Sequential Quadratic Programming (SQP) are two well-
known algorithms for numerically solving these nonlinear optimization
problems64. Forhigh-dimensional problems, they canbe further improved to
exploit the sparsity in the control design and achieve desirable performance
without sacrificing efficiency65. SQP methods are particularly good candi-
dates in the controldesign since theyuse the result of theprevious iteration to
warm-start the next iteration of the control design similar to CEM.

In the warm-up phase, the proposed approach of solving the lasso
problem over ℓ1-constrained Fourier basis is able to learn a concise and
effective basis for representing the system dynamics in a data-efficient way.
This requires only 35 s of flow data at 42 Hz which is collected with time-
correlated Gaussian inputs. This is equivalent to approximately 85 vortex-
shedding cycles, however, due to the irregular shape and dynamicmotion of
the bluff body, it is likely that the wing-vortex interactions varied sig-
nificantly during this period. Finding the solution to lasso takes about 7min
on a standard desktop computer, a CPU-based MacBook Pro, and this
problem is solvedonlyonce at the endof thewarm-upphase. It is opposed to
the often-the-case deep learning approaches that have limited applicability
to the onboard control chip devices. This effective succinct basis repre-
sentation for the underlying dynamics allows FALCON to design control
actions in less than 10ms within the CEM model predictive control fra-
mework which yields 42Hz sensing and control frequency. The fast
adaptive control approach allows FALCON react to the changes in the flow
field rapidly while still reasoning about how tomitigate upcoming turbulent
disturbances on the systemvia the learned andupdatedmodel dynamics.To
achieve this fast control design, FALCON leverages the parallel computing
on GPU and samples a significant amount of initial action roll-out in CEM
to overcome possible localminima in designing control actions. In this end-
to-end control loop, serial communications between the controller and
sensors, and actuators are the main bottleneck.

To further improve the disturbance rejection performance of FAL-
CON, increasing the control frequency is one of the future developments to
focus on. This could be achieved by reducing the code execution time and
communication delays. Deploying a faster implementation of FALCON
using C++ or utilizing a more computationally efficient MPC framework
such as CEM-GD66 which combines zeroth and first-order optimization
methods could allow us to achieve sub-5ms control design duration.
Moreover, having a streamlined communication layer could also reduce the
latency between the controller and sensors or actuators significantly.

In thiswork, we have developed amodel-based reinforcement learning
method, FALCON, on a generic aerodynamic testbed for flow-informed
aerodynamic control under extreme turbulence. FALCON was tested on a
single-dimensional aerodynamic control system, yet it can be extended and
adapted to systems with higher degrees of freedom. In particular, we can
consider other forces andmoments in three dimensions, besides the vertical
lift forces acting on the testbed. Our experiments are conducted under the

Reynolds number of ReD = 230,000. In order to ensure the generalizable
performance of FALCONacross a range of Reynolds numbers, i.e., different
turbulence characteristics, and different geometries of airfoils, further
investigation is required.

The findings of this work hold potential in the deployment of next-
generation technologies, including but not limited to flow-sensing UAVs
capable of stableflight inwindyurbanareas andflow-informedwind turbines
with gust protection. In the fixed-wing UAVs, FALCON is a promising
algorithm for the inner-loop attitude control forfixed-wing vehicles. Thiswill
allow drones to maintain stable flight in extreme conditions by reducing the
impact of turbulent disturbances. We believe that model-based RLmethods,
and FALCON in particular, could be used for full-stack control and navi-
gation using flow information and simulated environments. The testbed in
this work emulates stabilizing a UAV at a constant altitude. Future work will
consider using FALCONwith a trajectory planner such that FALCON aims
to maintain the desired location coming from the planner and interacts with
theplanner to achieve energy efficient and safe navigation, similar to theprior
work in computational fluid dynamics33. To accomplish this will require
overcoming challenges such as sim-to-real transfer and distribution shift in
data, where the data efficiency and fast adaptation capabilities of FALCON
would be critical. We suggest using indicators of changes in turbulent con-
ditions in hierarchical planning to control the frequency of model updates
withinFALCON.Another strategywouldbeusingmeta-learning tomake the
model learning process adaptive in basis selection and model updates for
different turbulent conditions with different basis representations.

Methods
Overview
Wemodel the underlying turbulent dynamics as the following discrete-time
nonlinear time-invariant system:

ytþ1 ¼ f ðut ; . . . ; ut�hþ1; yt ; . . . ; yt�hþ1Þ þ et : ð1Þ

Here yt 2 Rdy denotes the observation (measurements) from the system at
time t; ut 2 Rdu denotes the control input at time t, and et is some process
noise. We consider the setting where the dynamics are governed by an
unknown nonlinear function f : RhðduþdyÞ ! Rdy that maps past h
observations and inputs to the next observation and with an additive noise
et. These systems are denoted as Nonlinear Autoregressive Exogenous
(NARX) systems and they are the central choices of dynamicsmodeling for
nonlinear systems due to their input and output-dependent
parametrization67. In particular, the model given in (1) is an order-hNARX
system and ismainly used to capture partially observable nonlinear systems
with fading memory68,69.

Let C0:T( ⋅ , ⋅ ) denote the sequence of cost functions on inputs and
observations, which define the objective for the controlling agent. The
stochastic optimal control problem is defined as,

min
u0;...;uT

E
XT
t¼0

Ctðyt ; utÞjy0
" #

ð2Þ

subject to dynamics given in (1) with initial condition of y0 and where ut is
chosen causally. For nonlinear dynamical systems such as (1), finding the
optimal solution to this problem is usually challenging46. As a practical and
efficient alternative, model predictive control (MPC) has been adopted for
designing controllers in nonlinear dynamical systems47. InMPC, at any time
step t, given the initial conditions, the transition dynamics (can be an esti-
mated model f̂ ), running and terminal cost functions Ct:t+τ( ⋅ , ⋅ ), the
planner solves:

min
ut ;...;utþτ

Ptþτ

s¼t
Csðys; usÞ

s:t: ytþ1 ¼ f̂ ðut; . . . ; ut�hþ1; yt; . . . ; yt�hþ1Þ;
ð3Þ
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a short τ-step optimal control problem, and executes the first action ut and
continues this process as it gathers new observations. Intuitively, instead of
trying to solve the challenging global optimal control problem, MPC
myopically solves a locally optimal control problem (3). Note that (3) pre-
sents an unconstrained MPC problem, and usually physical or safety con-
straints are added to the formulation.ThismakesMPCaviable approach for
control design in model-based RL, thus, we will adopt it in our control
design. Since we do not know the underlying dynamics f, we need to learn it
from the data collected from the system. We achieve this by learning the
underlying system on a Fourier basis.

A Fourier series is an expansion of a periodic function in terms of an
infinite sum of complex exponentials, or sines and cosines. They are one
of the most popular choices of the set of basis in representing periodic
functions or periodic extensions of functions in a bounded domain due

to their ability to approximate functions arbitrarily70. Consider the
domain Ω = (0, 2π)d in Rd . Let Wm;2

p ðΩÞ denote the Sobolev space of
order m for periodic functions. For a nonlinear function (or its periodic
extension), �Fð�Þ : Rd ! R, that lives in Wm;2

p ðΩÞ, one can write its
Fourier series as

�FðxÞ ¼ a0 þ
X
ω

aω cos ω>x
� �þ bω sin ω>x

� �� �
ð4Þ

whereω = [ω1,…,ωd],ωj∈ {1, 2,…}, 1 ≤ j ≤ d and aω, bω are Fourier series
coefficients. Note that this representation can be on infinitely many bases.
However, in approximating �Fð�Þ, one can choose only a finite number of
basis amongω andfind thebest approximationon this basis. To this end, the
popular choice is to consider the nth order Fourier expansion and
approximate �FðxÞ inωwhereωj∈ {1,…,n}. This corresponds toD=1+2nd

basis functions and results in a D-dimensional Fourier series feature
representation:

ϕðxÞ ¼ 1; cosðω>
1 xÞ; sinðω>

1 xÞ; :::; cosðω>
ðD�1Þ=2xÞ; sinðω>

ðD�1Þ=2xÞ
h i>

:

ð5Þ

One can choose the truncated Fourier series representation to approximate
�FðxÞ such that for

w ¼ ½a0; aω1
; bω1

; :::; aωðD�1Þ=2
; bωðD�1Þ=2

�>;

the approximation isw⊤ϕ(x). However, this does not correspond to the best
approximation in this basis inLp-norms for 1≤p≤∞70. For thebestLp-norm
approximation using (5), one needs to solve for the optimal coefficients
a0; a

�
ωi
and b�ωi

for i ∈ {1,…, (D − 1)/2}.

FALCON algorithm
In this section, we present the methodology and the algorithmic details of
our proposed model-based RL method Fourier Adaptive Learning and
Control (FALCON). FALCON learns the model dynamics in Fourier basis
through interaction with the system and deploys MPC using the learned
model for control design. The outline of FALCON is given in Alg. 1.
FALCON has two phases: Warm-up and Adaptive Control in Epochs.

Algorithm 1. FALCON

FALCON starts with a short warm-up period to collect some data
about the unknown system. In this phase, the goal is to purely explore the
system and recover a coarse model of the dynamics. Therefore, FALCON
focuses on safely exciting the system for Tw time steps. The predominant
choice for such a task is to use isotropic Gaussian inputs, ut � Nð0; σuIÞ.
However, for certain tasks, one may require smoother or safer exploration.
This is usually the case in safety-critical control tasks likeflight control under
turbulence35 or bipedal/quadrupedal walking71. In these situations, FAL-
CON can use time-correlated inputs for smooth actions such that it avoids
jerky and sudden changes in the actions. To this end, for some γ ∈ [0, 1],
FALCON can use the following control inputs

u1 ¼ η1
ut ¼ γut�1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� γ2

p
ηt

where ηt � Nð0; σηIÞ. We deploy this controller with γ = 0.8 during the
warm-upphase inour experiments.Moreover, FALCONcandeployknown
safe nominal controllers, such as trajectory generators72 or PID controller,
accompanied with isotropic excitements, i.e., ut = K(yt)+ ηt where K( ⋅ ) is
the nominal controller and ηt � Nð0; σηIÞ.

After the warm-up, FALCON starts adaptive control of the underlying
system. It uses epochs of doubling length starting with an initial epoch of tep
time steps, i.e., each ith epoch is 2i−1tep time steps for i=1, 2, . . . . FALCON is
a single trajectory algorithm and does not require a reset between epochs.
This makes FALCON efficient in data collection in the experiments.

At the end of thewarm-up, FALCONestimates themodel dynamics as
a linear model in Fourier basis. To this end, it generates Tw − h +
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1 subsequences of h input-output pairs,

si ¼ y>i�1; . . . ; y
>
i�h; u

>
i�1; . . . ; u

>
i�h

� �> 2 RhðdyþduÞ

for h≤ i≤Tw. Using (1), one canwrite the systemdynamics as yt=F(st)+ et.
To estimate the unknownnonlinear function F, FALCONconsiders the nth
order Fourier expansion of F and generates D-dimensional Fourier series
representations of all st as given in (6), ϕ(st). The order of the Fourier
expansion, thus the dimension D, is an important hyperparameter of
FALCON. This choice depends onmany factors including prior knowledge
of the system dynamics, the difficulty of the learning task, and the com-
putational budget. As explained in the Overview section ofMethods, a wide
range of nonlinear systems can be represented as linear models in the
Fourier basis. Therefore, FALCON considers the following model for esti-
mating the system dynamics F,

yt � Θ>
� ϕðstÞ þ et ; ð6Þ

for an unknown Θ� 2 RD× dy . To recover an estimate ofΘ* solves a least-
squares problem,

min
Θ

λ k Θk2Fþ k YTw
� Θ>ΦTw

k2F ð7Þ

for some λ > 0, where Yt ¼ ½yt ; :::; yh� 2 Rdy × t�hþ1;Φt ¼ ½ϕðstÞ;
:::; ϕðshÞ� 2 RD× t�hþ1. The solution to this problem is given as Θ̂1 ¼
ðΦTw

Φ>
Tw

þ λIÞ�1
ΦTw

Y>
Tw
: Using Θ̂1, FALCON estimates the system

dynamics as F̂1ðsÞ ¼ Θ̂
>
1 ϕðsÞ: FALCON repeats this dynamics estimation

process at the beginning of each epoch using all the data gathered so far.
Note that for large D, computing the closed-form solution could be
computationally demanding or cause numerical errors. Instead, the model
estimates can be updated recursively throughout the epochs using online
updates, which we utilize in our implementation for the experiments. In
particular, FALCON stores only the current model estimate, i.e., the model
estimate at time step t in epoch i: Θ̂i;t , and the inverse designmatrix (sample

covariance matrix), i.e., V�1
t�1 ¼ ðΦtΦ

>
t þ λIÞ�1

. Using these the model
estimates can be updated recursively throughout the epochs using online or
batch updates via

Θ̂i;t ¼ Θ̂i;t�1 þ
V�1

t�1ϕðstÞ yt � Θ̂
>
i;t�1ϕðstÞ

� �>

1þ ϕðstÞ>V�1
t�1ϕðstÞ

; ð8Þ

where V�1
t�1 is also updated recursively73,

V�1
t ¼ V�1

t�1 �
V�1

t�1ϕðstÞϕðstÞ>V�1
t�1

1þ ϕðstÞ>V�1
t�1ϕðstÞ

:

Note that FALCON uses the initial most recent model estimate at the
beginning of the epoch for the control design during the entire epoch. These
online update rules are used to efficiently update the model estimates in the
background at each time stepwith the newdata such that at the beginningof
thenext epoch, there is nodelay inupdating themodel estimate.This feature
is important in real-time control systems where any delay in the system can
cause further problems and compromise safety.

Note that as the order of the Fourier basis increases, D increases
exponentially in the system’s dimension. For large h, i.e., higher order
NARX models, this may cause an additional computational burden. To
remedy this, we propose to use ℓ1-constrained Fourier basis and Least
Absolute Shrinkage and Selection Operator, i.e., lasso42, for an improved
basis selection in FALCON after the warm-up period. In particular, instead
of generating the bases ωis for all n, we only consider the ℓ1-constrained
bases, i.e., ∥ωi∥1 ≤ n. The ℓ1 constraint reduces the number of basis vectors

from 1þ 2nhðdyþduÞ to 2D0 basis vectors where

D0 ¼ hðdy þ duÞ þ n

n

	 

: ð9Þ

We then solve the lasso problem for the warm-up samples that are
represented in these ℓ1-constrained Fourier basis vectors. Lasso is the ℓ1-
regularized least squares method to recover sparse models, with few non-
zero coefficients. Given the data points gatheredduring thewarm-up period
Tw, using D0 number basis vectors with ∥ωi∥1 ≤ n, FALCON forms the
following feature representations for sh; . . . ; sTw

generated via Tw:

ϕðsiÞ ¼ cos ω>
1 si

� �
; sin ω>

1 si
� �

; . . . ; cos ω>
D0 si

� �
; sin ω>

D0 si
� �� �>

:

FALCON then solves the lasso problem:

min
W

1
2Tw

k YTw
�W>ΦTw

k2F þ α k Wk1 ð10Þ

for some α > 0. FALCON then uses the basis vectors that have nonzero
feature coefficients (entries) in the solution of (10), W⋆, for learning the
model dynamics in the adaptive control phase. The choice of α determines
the sparsity of themodel learnedW⋆which in turn determines the number
of basis vectors, D, used in model learning, i.e., bigger α results fewer non-
zero entries inW⋆ and fewer basis vectors for estimating thedynamics in the
adaptive control period. This improved basis selection significantly
decreases D and reduces the computational burden and the samples
required to learn the dynamics.

Once FALCON has an estimated model, it uses an MPC policy to
design the control inputs during the epoch. The choice of the MPC policy
depends on the control task. In general, the MPC policies are either
optimization-based48 or sampling-based49. However, sampling-based
methods are usually preferred in model-based RL due to challenging non-
linear system dynamics and complicated cost functions50. Thus, FALCON
uses Cross-EntropyMethod (CEM) as theMPCpolicy. CEM is a sampling-
based (zeroth order) MPC policy to solve the problem given in (3). CEM
maintains a distribution, predominantly Gaussian, to sample action roll-
outs for the planning horizon and iteratively updates this distribution to
assign a higher probability near lower-cost action sequences based on the
estimated dynamics. After a certain number of updates (once it converges),
it executes the first action on the lowest cost-achieving action sequence in
the sampled roll-outs. The CEM algorithm is given in full detail in
Algorithm 2.

Algorithm 2. Cross Entropy Method (CEM)
1: Input:τ;K;M; 0<γ<1;N; σ init ; F̂ð�Þ; yt:t�hþ1; ut�1:t�hþ1;Ct:ðtþτ�1Þ;Nðμ; σ2IÞ
2: for i = 1, 2,…,M do
3: if i = 1 then
4: Set the mean μ to the best action sequence from the previous time-
step by shifting (Warm-Start)

5: Set the variance σ = σinit
6: Sample Kγi−1 action sequences ujt:tþτ�1 of τ length

using Nðμ; σ2IÞ; j 2 f1; . . . ;Kγi�1g
7: Compute the trajectory roll-outs 8ujt:tþτ�1 using F̂ð�Þ with initial yt:t

−h+1, ut−1:t−h+1

8: Compute the cost of each trajectory roll-out using Ct:(t+τ−1)

9: Sample best N action sequences according to their acquired costs
10: Update μ and σ to fit the Gaussian distribution to the bestN action

sequences
11: Execute the first action of (i) the best action sequence of the Mth

iteration or (ii) a newly sampled action sequence using Nðμ; σ2IÞ
At any time step t, FALCON uses the most recent dynamics estimate

F̂kð�Þ, the lasth input-output pairs as the initial condition, and thenext τ cost
functions Ct:(t+τ) in solving the problem in (3) for the planning horizon τ.
FALCON executes the first action ut in the solution of (3), receives the
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output yt+1, and constructs st+1 and ϕ(st+1). FALCON repeats this adaptive
control process throughout the epoch. Note that any safety or physical
constraint can be easily included in the MPC policy design problem (3),
whichmakesFALCONareliable algorithm for safety-critical environments.

Implementation details of FALCON
We use an order-4 NARX model for learning the underlying system
dynamics, h = 4. In our experiments, we deduce that this is optimal to
overcome the uncertainties of partial observability and reasonable com-
putational complexity.With this choice, st in the systemmodeling becomes
44-dimensional vector. To estimate the unknown nonlinear system F, we
consider the 3rd order Fourier expansion. However, to reduce the com-
putational complexity for such a high-dimensional learning problem, we
only use ∥ωi∥1 ≤ 3 constrained basis vectors and use lasso to identify the
most relevant basis vectors using the warm-up data as described in
Appendix. At the end of this procedure, we obtain D = 319 dimensional
Fourier series representation for learning the model dynamics.

The control goal in disturbance rejection is to minimize the mean
and the standard deviation of the lift forces acting on the airfoil. Thus,
we design our cost function to penalize large lift forces, rapid changes
in lift forces, and fast/jittery action changes. FALCON has a warm-up
duration of around 35 s, i.e., Tw = 1500 samples, using the time-
correlated sum of Gaussian inputs for smooth exploration to collect
some data about the unknown system dynamics and recover the most
relevant Fourier basis. The epochs of the adaptive control period are
approximately 38 seconds, tep = 1600 samples per epoch. FALCON
uses Cross-Entropy Method (CEM) as the MPC policy. CEM is a
sampling-based MPC policy to solve the problem given in (3)49. CEM
maintains a distribution, predominantly Gaussian, to sample action
roll-outs for the planning horizon and iteratively updates this dis-
tribution to assign a higher probability near lower-cost action
sequences based on the estimated dynamics. After a certain number of
updates, it executes the first action on the lowest cost-achieving action
sequence in the sampled roll-outs. The CEM algorithm is given in full
detail in Algorithm 2.

We compare FALCONwith severalmodel-free RLmethods, including
TD355, LSTM-TD356, SAC57, and the industry-standard responsive control
strategy of PID (Proportional-Integral-Derivative) controller. Of all these
algorithms, LSTM-TD3 has been demonstrated to achieve state-of-the-art
performance in disturbance rejection35. Unlike FALCON, the model-free
methods work in episodes with reset for retraining.We train themodel-free
methods for 200 episodes of 800 samples per episode and test the best-
performing policy in presenting the results. All methods, including FAL-
CON, are implemented with 42 Hz sensing and control frequency.

Adaptive control design
FALCON uses CEM as the MPC policy. CEM is a sampling-based (zeroth
order) MPC policy to solve the problem given in (3)49. CEM maintains a
distribution, predominantly Gaussian, to sample action roll-outs for the
planning horizon and iteratively updates this distribution to assign a higher
probability near lower-cost action sequences based on the estimated
dynamics. After a certain number of updates (once it converges), it executes
the first action on the lowest cost-achieving action sequence in the sampled
roll-outs. For the planning horizon, FALCON uses τ = 5 in CEM. Fur-
thermore, FALCONsamplesK=1000 trajectories in thefirst action roll-out
of CEM and decays the number of samples in each update. In prior works,
this sampling strategyhas beenobserved as an efficientway to avoidpossible
local minima in finding the optimal action actions66. The CEM algorithm is
given in full detail in Algorithm 2.

Table 2 summarizes the hyperparameters for FALCON in our
experiments. In order to achieve the desired control and sensing frequency
number of CEM samples (K) and iterations (M) create a trade-off in the
implementation. Maintaining this control and sensing frequency is crucial
in order to avoid undersampling the turbulent dynamics.

Stability and performance guarantees

1. We derive the learning guarantees for using the Fourier series as a basis
for learning the dynamics. In particular, we prove that FALCON learns
any partially observable nonlinear system that belongs to an extended
Sobolev space of periodic functions with the near-optimal estimation
error rate of ~O ðTε�0:5Þ, after T samples where ε depends on the
smoothness of the Sobolev space and 0 ≤ ε < 0.5.

2. We show that FALCON attains ~O ð
ffiffiffiffi
T

p
Þ regret against the agent who

has access to the underlying dynamics and uses the same control
design. To the best of our knowledge, FALCON is the first efficient RL
algorithm that achieves ~O ð

ffiffiffiffi
T

p
Þ regret in online control of nonlinear

dynamical systems, Table 3.

Most of the model-based RL methods with guarantees are developed
for linear systems due to their simplicity74–82. The central goal of these works
is to derive finite-time learning and regret guarantees. Recently, there has
been a growing interest to extend these results to nonlinear systems.83,84

consider themodel learning problembymodeling the underlying system as
a linear function of a knownnonlinear basis.85 study the regretminimization
in this setting and propose an approach which attains ~O ð

ffiffiffiffi
T

p
Þ regret, but is

not computationally or memory efficient.63 use kernel approximation to
learn the underlying system and design an efficient RL algorithm, yet,
achieve ~O ðT2=3Þ regret. Further, the empirical performances of these
methods are demonstrated only on simulation. FALCON provides sig-
nificant improvements upon these prior works in terms of regret guarantee
and efficiency (Table 3). To the best of our knowledge, FALCON is the first
efficient RL algorithm to attain ~O ð

ffiffiffiffi
T

p
Þ regret in partially observable non-

linear systems and achieve effective performance in a challenging real-
world task.

In this section, we provide the learning and regret guarantees of
FALCON. The technical details and the proofs are given in Supplementary
Material. First, let Fið�Þ : RhðdyþduÞ ! R denote the ithmapping of F from
input to output, i.e., yt,i = Fi(st) + et,i. We assume the following regularities
on the system.

Assumption 1. The system F( ⋅ ) is L-Lipschitz and (λ, α, K)-exponentially
input-to-output stable (e-IOS), i.e.,

k jE½yt jyt0 ; ut ; . . . ut0 � k ≤ λαt�t0 k yt0 k þK sup
i2½t0 :t�

k ui k;

Table 2 | Hyperparameters of FALCON in our experiments

Hyperparameter Range Best

NARX-order (h) 3−5 4

Fourier Series Coef. (D) 100−700 319

Planning Horizon (τ) 3−8 5

CEM Samples (K) 150−1500 1000

CEM Iteration (M) 4−7 6

CEM Number of Elites (N) 10−30 30

Table 3 | Comparison of Works with Regret Guarantees in
Nonlinear Dynamical Systems

Work Regret
Result

Learning
Basis

Computational
Efficiency

Memory
Efficiency

85
ffiffiffiffi
T

p
Known No No

63 T2/3 Unknown Yes Yes

This Work
ffiffiffi
T

p
Unknown Yes Yes
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for t > t0, λ,K > 0 and 0 < α < 1.Moreover, Fi (or its periodic extension) lives
inWm;2

p ð½0; 2π�hðdyþduÞÞ, for all 1 ≤ i ≤ dy.
This assumption is inspired by the chaotic nature of the systems that

indicate a fast transitory phase from their earlier states, making the current
dynamics forget the much earlier states. Please note that if the system
dynamics show complex behavior that does not satisfy this assumption, the
method introduced in this work is no longer directly applicable. The first
assumption is required to avoid blow-ups in the output due to noise and
unmodeled dynamics. The Sobolev space assumption guarantees that the
underlying system can be represented on the Fourier basis. For simplicity,
we assume that et � Nð0; σ2e IÞ, yet our technical results hold for sub-
Gaussian noise. Finally, we have the following property on the costCt( ⋅ , ⋅ ).

Assumption 2. For any y; y0 and u; u0 such that maxfk y � y0 k; k u�
u0 kg≤ Γ and Buy ¼ maxfk y k; k u kg, for all t; jCtðy; uÞ �
Ctðy0; u0Þj≤Rðk y � y0k2þ k u� u0k2Þ and 0≤Ctðy; uÞ≤RB2

uy .
The regret of FALCON is computed with respect to the policy π⋆ that

uses the same MPC policy at each time step with the true transition
dynamics F in the control design. Thus, the goal of FALCON is tominimize
RegretðTÞ ¼ PT

t¼1ðCtðyt ; utÞ � Ctðyπ?t ; uπ?t ÞÞ. For consistent and reliable
initial estimation of the underlying system, we assume that FALCON uses
bounded persistently exciting inputs during the warm-up period. Given
these inputs, we have the following learning guarantee.

Proposition 3. Let αm ¼ supi;ksk≤ S k ∂mFiðsÞkL1 and d = h(dy + du).
Using nth order Fourier basis for learning the model for sufficiently
large n, after the warm-up of Tw, with high probability
supksk≤ S k FðsÞ � F̂ðsÞk1 ¼ ~O ðndT�0:5

w þ αmn
�mÞ.

Here ~O ð�Þ presents the order up to logarithmic terms. The proof is
given in Supplementary Material, where we use standard least-squares
estimation error analysis and the multivariate analog of Jackson’s theorem
for trigonometric polynomial approximation86. This result shows that the
underlying system can be identifiedwith the optimal rate of 1=

ffiffiffiffi
T

p
, yet, due

to the properties of the underlying system, there exists a constant term in the
estimation error.Note that this constant termdepends on the smoothness of
the system. For nonlinear systems that live in high-order Sobolev spacesm,
this constant term can be small. In the extreme case of infinitely differ-
entiable systems, this constant term approaches to 0. Thus, we have
supksk≤ S k FðsÞ � F̂ðsÞk1 ¼ ~O ðTε�0:5

w Þ after warm-up, where ε depends
on the smoothness of the system and the order of Fourier basis. Next, we
focus on the adaptive control task.Wehave the following assumption on the
MPC policy that FALCON deploys.

Assumption 4. The MPC policy with F( ⋅ ) achieves e-IOS, i.e.,
8t > t0; k yt k ≤ ð1� ρÞt�t0 k yt0 k þMsupi2½t0 :t� k ei k, forM > 0 and 0 <
ρ < 1. The MPC policy with planning model F̂ð�Þ, such that
supksk≤ S k FðsÞ � F̂ðsÞk1 ≤ ϵ, achieves e-IOS with ρ/2 and 2M and syn-
thesizes persistently exciting inputs which are locally Lo-Lipschitz in
planning model.

This assumption states that MPC stabilizes the underlying system by
using anymodel within a neighborhood around the underlying system for
planning. This assumption ismild andone can show that it holds for linear
systems. Intuitively, this assumption holds for nonlinear systems with
valid linearization for bounded inputs. Finally, the last statement allows
consistent estimation during the adaptive control with reasonable varia-
tions in the input due to model dynamics used in planning. In practice,
this condition is usually satisfied by the combination of unmodelled
system dynamics, systemnoise, and sampling-basedMPCpolicies63. Note
that for a long enough warm-up Tw, the model estimation error can be
made small enough to achieve stabilization via the MPC policy. Once
FALCON is guaranteed to stabilize the dynamics, it safely regulates the
system.

Theorem 5. Suppose Assumptions 1, 2, and 4 hold. Let Tw be chosen long
enough such that the MPC policy of FALCON stabilizes the underlying

systemdynamics.Then,withhighprobability, for large enoughT, FALCON
attains regret of REGRETðTÞ ¼ ~O ð

ffiffiffiffi
T

p
þ ϵ0TÞ, where ϵ0 depends on the

smoothness of the underlying system. For sufficiently smooth systems, it
achieves REGRETðTÞ ¼ ~O ð

ffiffiffiffi
T

p
Þ.

The proof is given in Supplementary Material. This shows that FAL-
CONis thefirst efficientRLalgorithm that attains ~O ð

ffiffiffiffi
T

p
Þ regret in adaptive

control of partially observable nonlinear systems. Note that this result
applies to various systems that are governed by partial differential equations
since FALCONonly requires the periodic extension of themodel dynamics
to live in the Sobolev space of periodic functions. Moreover, for infinitely
smoothsystems, e.g. sinusoidal systems, one can improveProposition3, and
this in turn would give significantly improved regret upper bound for
FALCON.

Corollary 6. Under the setting of Theorem 5, for an infinitely smooth
system, i.e., Fi 2 W1;2

p ð½0; 2π�hðdyþduÞÞ for 1 ≤ i ≤ dy, with high probability,

FALCON attains REGRET(T) = polylog(T).

This shows that for a certain class of dynamical systems, using the
domain knowledge on the system dynamics, FALCON can achieve almost
logarithmic regret even if the underlying system is unknown.

Wing system design and manufacturing
The wing system was designed with a standard NACA0012 airfoil shape,
which was previously studied for its dynamics in a bluff-body wake at a
similar Reynolds number35,87. Themodular wing bodywas 3Dprinted using
a combination of materials, allowing for various sensor configurations. The
centralmodule,madeofmicro carbonfiber-fillednylon (MarkforgedOnyx)
reinforced with carbon fibers for added strength and rigidity, housed the
primary electronics and secured the system to its mounting via a sweptback
fairing. Spanwise sections designed to house individual pressure sensors
were also printed using carbon fiber-filled nylon. Clear PLA was used to
print the sections between the sensors, which were aligned and connected
using carbon fiber spars to add rigidity. Trailing edge flaps were cut from
insulation foamand coveredwith an adhesive-backed coating for protection
and improved surface finish.

The wing had a spanwise length of 1m and a total chord length
of 25 cm with 5 cm trailing edge flaps. Using the mean flow velocity near
the leading edge, the system had a Reynolds number of approximately
Re≈ 110,000. Therewere 9 sensor locations distributed symmetrically about
the wing, with exactly 10cm between each location. The central sensor
location featured a pitot-static tube, with the rest of the sensor locations
featuring surface pressure taps. The pressure taps and the pitot-static tube
were printed using an SLA printer (Formlabs Form3) for improved surface
feature accuracy. Pressure taps were located at 0.4%, 0.7%, 1.5%, and 6% of
the chord length from the leading edge on both the pressure and suction
sides of the wing. The fairing on which the wing was mounted was rein-
forcedwith carbonfiberandaluminumandwas set backwith an angle of 60o

to reduce aerodynamic interactions between the fairing and the wing. The
fairing was connected to a set of vertically-aligned air bearings (NewWay),
which allowed for nearly frictionless motion along a single axis while con-
straining all other directions. The constrained fairing was mounted directly
to a single-axis load cell (Interface SM-50) that passed the signal through an
amplifier (InterfaceModel SGA) with a 50 Hz low pass filter, and the signal
was read by a DAQ (NI USB-6008).

The wing had a total of 9 ultra-low range digital pressure sensors
(Honeywell RSCDRRM2.5MDSE3) tomeasure pressure values, whichwere
communicated with a microcontroller (Teensy 4.0). The microcontroller
also controlled the high-speed brushless servomotors (MKSHBL6625) that
drove the trailing edge flaps. Due tomechanical restraints, the actuation for
the servomotors had amaximum/minimum position of+ 40o/−40o. Both
themicrocontroller and theDAQ communicatedwith a desktop computer,
which received measurements and sent actions. The full control loop
operated at approximately 42 Hz.
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Generation and characterizations of turbulence
The JohnW. LucasWind Tunnel (LWT) at Caltechwas used to conduct all
quantitative experiments discussed in this study. The wind tunnel is a
closed-loop design with a test section size of 130 cm × 180 cm. To generate
turbulence, an asymmetric bluff bodywasmounted to thewind tunnel using
bungee cords, creating awakeof irregular and turbulentflow.Thebluff body
consisted of a large diameter cylinder (30 cm) with an asymmetrically
mountedflat plate at the front, giving the entire bodyaneffectivediameter of
53 cm (Fig. 1C). To encourage vortex dislocation and add irregularity to
vortex shedding, the cylinder spanned the full width of the tunnel, while the
flat plate only had a width of 60 cm. The bluff body was positioned 170 cm
upstream of the wing system, with a vertical offset of 48 cm, and sparse
elastic bands were placed horizontally across the test section immediately
upstream of the bluff body to further increase turbulence intensity.

We used particle image velocimetry (PIV) (Fig. 3) to visualize a limited
portion of the bluff body wake. PIV is a quantitative flow visualization
technique capable of measuring the velocity fields of fluid flows88. Here we
performed two-dimensional, two-component (2D2C) PIV. This involves
using a laser sheet to illuminate small, dense, neutrally buoyant seed par-
ticles. Recording the illuminated particles with a high-speed camera, we can
estimate velocity fields by calculating the effective inter-frame displacement
of groups of particles via cross-correlation of subsequent images. Per-
forming these experiments in air, we used a 200mJ/pulse dual pulsed laser
(Lumibird Evergreen) to illuminate soap bubbles (15-micron mean dia-
meter) generatedwith a custom-built bubbler. Theflowwas recordedwith a
4 MP CCD camera (IMPERX Bobcat B2401).

Characterization of theflownear thewing systemwasperformedusing
a hot-wire anemometer (TSI IFA-300). The anemometer was mounted
approximately 2 cm upstream of the leading edge of the airfoil, and mea-
surements were taken at 1000Hz for 120 s. The turbulence intensity was
determined to be 10.8% using the hot-wire anemometer. We found the
dominant shedding frequency to be 2.44Hz, although as mentioned above
our oscillating bluff body encouraged irregularities in the shedding process.

Baseline algorithms
In our experiments, besides FALCON, we test several model-free RL
methods, including Twin Delayed DDPG (TD3)55, LSTM-TD356, Soft
Actor-Critic (SAC)57, and the industry-standard responsive control strategy
of PID controller. Of all these algorithms LSTM-TD3 has recently
demonstrated to achieve state-of-the-art performance in predictive flow
disturbance rejection35. Note that both TD3 and LSTM-TD3 provide
deterministic policies, whereas SAC designs stochastic policies. Unlike
FALCON, thesemodel-freemethodswork in episodeswhere the algorithms
stop retraining the policy parameters (reset). We train the model-free
methods for 200 episodes of 800 samples per episode and test the best-

performing policy in presenting the results. The full 200 episodes of training
for the best-performing policy in each method are shown in Fig. 5. All
methods were implemented using an NVIDIA GeForce RTX 3070 which
enabled a 42Hz frequency for sensing and control. The brief descriptions of
the algorithms are given below with the relevant hyperparameters in
Tables 4–7.

TD3 is a deterministic actor-critic type RL framework that builds on
previous value-based methods. TD3 injects noise into actions to enable
policy exploration (i.e., exploration noise), and injects noise into critic
updates to regularize and smooth the resulting policy (i.e., policy smoothing
noise). TD3 also uses delayed policy updates which decreases variance in
value estimates. For this work, we added gradient clipping to both actor and
critic networks to encourage more stable learning in a real-world setting.
TD3 has been proven effective in several simulated55 environments and has
previously been used for experimental flow control in a different setting34.
For further implementation details of TD3 please refer to55 and the code
provided in the submission.

LSTM-TD3 uses the same fundamental algorithm as TD3 but includes
LSTM cells for a recurrent actor-critic framework. It was modified from
TD3 to better address problems suffering from partial observability56. For
further implementation details of LSTM-TD3 please refer to56 and the code
provided in the submission.

Table 4 | Hyperparameters of TD3 in our experiments

Hyperparameter Range Best

Discount factor 0.95−0.99 0.99

Batch size 16−128 50

Replay buffer size 2−6 × 104 4 × 104

Target update rate 0.005 0.005

Actor learning rate 10−5−10−2 10−4

Critic learning rate 10−5−10−2 10−4

Exploration noise 0.025−0.2 0.05

Policy smoothing noise 0.025−0.2 0.05

Policy update delay 2−3 3

Target noise clip boundary 0.5 0.5

Actor gradient clip boundary 0.1−1 0.5

Critic gradient clip boundary 0.1−1 0.5

Table 7 | Hyperparameters of PID in our experiments

Hyperparameter Range Best

KP 0−15 10

KI 0−2 0.5

KD 0−5 2

Table 5 | Hyperparameters of LSTM-TD3 in our experiments

Hyperparameter Range Best

Discount factor 0.95−0.99 0.99

Batch size 16−128 50

Replay buffer size 2−6 × 104 4 × 104

Target update rate 0.005 0.005

Actor learning rate 10−5−10−2 10−4

Critic learning rate 10−5−10−2 10−4

Exploration noise 0.025−0.2 0.05

Policy smoothing noise 0.025−0.2 0.05

Policy update delay 2−3 3

Target noise clip boundary 0.5 0.5

Actor gradient clip boundary 0.1−1 0.5

Critic gradient clip boundary 0.1−1 0.5

LSTM Depth 3−15 10

Table 6 | Hyperparameters of SAC in our experiments

Hyperparameter Range Best

Discount factor 0.95−0.99 0.99

Batch size 32−256 128

Replay buffer size 2 × 104−6 × 104 4 × 104

Actor learning rate 10−5−10−2 5 × 10−4

Critic learning rate 10−5−10−2 10−3

Target smoothing coefficient 10−3−10−2 10−2

Target entropy −2 to −0.5 −0.5

Temperature learning rate 10−5−10−2 5 × 10−4
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TheSoftActor-Critic (SAC)method is basedon themaximumentropy
RL framework that wants to maximize the performance/reward con-
currentlymaximizing the entropyof thepolicy, i.e., increase the randomness
in the policy. Intuitively, this method results in a stochastic policy that
achieves good performance and provides themost randomness in achieving
this result. SAC uses a temperature parameter to weigh the entropy term
relative to the reward function. The ideal temperature parameter can be
automatically learned during training. This method is initially proposed for
real-world robotic learning to facilitate smooth exploration, tolerate unex-
pected perturbations/changes during execution, and improve robustness to
hyperparameters and sample efficiency. To this end, it requires relatively less
hyperparameters compared to other model-free RL methods. For further
implementation details of SACplease refer to57 and the code provided in the
submission.

PID control is the most prevalent method found in industrial and
commercial applications. PID controllers use a basic feedback control loop
that attempts tominimize the error between an observed value and a desired
setpoint. PID controllers weigh a proportional term, an integral term, and a
derivative term, all of which are tuned for each specific application. As the
name suggests, the proportional term contributes a control signal that is
directly proportional to the magnitude of the error. The integral term pro-
vides a signal that corresponds to the running accumulated error but is slow
to react. The derivative term sends a control signal that is proportional to the
error rate of change, which effectively smooths behavior. All three of these
terms are weighed through corresponding constant values (i.e., KP, KI, KD)
that can be found through various tuning methods. For further imple-
mentation details of PID please refer to the code provided in the submission.

Data availability
The data and the code used and/or analyzed during the current study are
available from the corresponding authors on request.
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