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Improving detectability of illegal fishing
activities across supply chains

Check for updates

Rodrigo Oyanedel1,2,3 , Stefan Gelcich2,4, E. J. Milner-Gulland3 & Chris Wilcox5,6

Improving detectability (i.e., enforcers’ capacity to detect illegal fishing activities) is vital for fisheries
management, food security, and livelihoods. Identifying factors linked to higher probabilities of illegal
activities and their detection across supply chains is essential for effective interventions. Using a
Bayesian Hierarchical Model and a large enforcement dataset from Chile, we evaluated determinants
of detectability and violation probability across supply chain actors, species, regulations, and effort
predictors. Our findings reveal an overall detectability rate of 7%, varying significantly across supply-
chain actors. Notably, those higher in the supply chain, such as processors and restaurants—despite
receiving less enforcement effort—show higher detection rates. This study offers insights to enhance
detectability and improve enforcement targeting, particularly where budgets are constrained. Our
approach complements technological advancements like satellitemonitoring and supports strategies
to reduce illegal fishing and promote compliance, contributing to better management and
sustainability of fisheries in Chile and beyond.

Fisheries are a crucial source of livelihood and nutritious food and can be a
critical economic activity for coastal communities1–3. However, these ben-
efits can be undermined by illegal activities that threaten local livelihoods,
drive stock overexploitation, and impede management and conservation
efforts4–6. A widely used tool for reducing illegal fishing activities is enfor-
cement, which can help incentivize compliance7–9. However, enforcement
efforts are not always effective at reducing illegal activities, or their effects
cannot be properly assessed10–12. As such, improving the capacity of enfor-
cers of fisheries regulations to detect illegal activities is crucial for main-
taining ecologically and economically sustainable legal fish trade, which
supports the nutrition of millions worldwide2.

Enhancing the capacity of enforcers to detect illegal activities presents a
critical challenge in fisheries and natural resource management and
enforcement8,13. Detecting clandestine behaviors is inherently difficult due
to their cryptic nature, yet essential for dissecting patterns that might
otherwise remain obscure5,14.Detectability, defined as the probability that an
enforcement action detects an illegal activity, can be improved by recog-
nizing that both illegal activities and their detection are not randomly dis-
tributed, but follow patterns and concentrate in space and time10,15,16.
Gaining insights into the factors that determine these patterns can con-
tribute to enhancing the detection of violations, ultimately reducing the
incidence of illegal fishing activities.

A commonly collected, yet seldom used, data source to assess the
detectability of illegal fishing activities is violations reports (i.e., information

gathered by enforcers when they encounter an illegal fishing event while
patrolling)16,17. However, these reports might suffer from unquantifiable
biases if the only information reported iswhatwas detected and not the type
and magnitude of effort expended18–20. This is because enforcement can be
reactive andnon-random innature (e.g., enforcers going to areaswhere they
expect to find a violation or are used to working, instead of distributing
enforcement effort in a more systematic way); therefore, enforcement data
are inherently biased8,21. A second source of bias arises because enforcement
canact as adisplacer of illegal activities, changing resourceuser behavior and
thereby reducing enforcers’ ability todetect occurrencesof illegal activity22,23.
Overcoming these biases requires that detectability analyses explicitly
consider the conditionality of violation data (i.e., detection can only occur
when there has been a violation), by understanding violation and detection
dynamics simultaneously19.

Improving the detectability of illegal fishing on the ground needs
research that can identify specific factors associatedwithhigherprobabilities
both of illegal activities and of their detection. This can then support
planning of enforcement strategies: how, when, where, and what to focus
enforcement on, includingwhat behaviors and bywhom15,16,24. For example,
variability between actors subject to enforcement, or the amount of time
invested in specific enforcement activities, can have diverse detectability
outcomes25. Factors associated with what to target when enforcing include
the species being fished and the type of violation26,27. For instance, there are
some species that, based on their attributes, are more likely to be traded
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illegally (e.g., totoaba fish in Chinese markets, due to its valuable swim
bladder)28–30. Various authors have explored how these, and other, factors
affect both the incidence of illegal activities and their detectability17,28,31.

While studies have explored how detectability varies between species
and contexts, most have focused narrowly on illegal fishing activities at
sea15,32. Studies that assess the detectability of illegal activities by actorsmore
broadly across in fisheries supply chains have been limited. Actors in fish
trade supply chains connect fishers with end markets, and therefore can be
critical enablers or blockers of illegal activities33–35. Moreover, supply chain
actors candisproportionately benefit from illegalfishing activities, capturing
most of the value that these activities generate17,36. Therefore, understanding
the involvement of supply chain actors canhelp improve our understanding
of illegal fishing dynamics and better direct enforcement efforts to the most
effective intervention points throughout the supply chain.

Here, we develop a BayesianHierarchicalModel to assess both illegal
fishing activities and their detectability by enforcers. To deal with the
conditionality of violations data, we model together the probability of
occurrence of violations, and conditioned on their presence, the detect-
ability of those violations, and their predictors. We use a large fisheries
enforcement dataset from Chile, which contains information on enfor-
cement efforts (e.g., time enforcing, size of patrolling group) and reports of
the violations detected. We focus on illegal fishing activities, defined as

those that contravene established national fisheries laws and regulations
(and therefore exclude unregulated activities). In the Chilean context, this
includes both “illegal” fishing (directly violating regulations) and “unre-
ported” fishing (failing to report ormisreporting catches to authorities), as
both are explicitly prohibited under Chilean fisheries law. Enforcement
patrols included in the dataset are similar in nature (all activities are done
on land), and cover all supply chain actors (e.g., fishers, traders, pro-
cessors, restaurants), all commercial fisheries, and legally binding reg-
ulations (most regulations address fishing-level violations, but Chile’s
traceability system ensures that illegally harvested products remain
detectable as violations throughout the supply chain, as downstream
actors cannot obtain valid documentation for products of illegal origin).
(Table 1 and Fig. 1). Applying our model, we assess determinants of
probability of occurrence of violations (fishery type, violation type) and of
detectability (patrolling time, patrol group size, actor type subject to
enforcement, and administrative region and year of the patrol), providing
relevant management insights to improve enforcement. Our approach of
modeling detection and occurrence of violations conditionally and
simultaneously can substantially advance understanding of the factors
affecting detectability where illegality is present, and clarify how to target
enforcement actions across the whole supply chain.

Results
Enforcement effort, violations and detectability over time, and
model performance
Total land-based enforcement effort was higher in the first part of the time-
period, droppingover time such that effort in 2020washalf that in2016 (Fig.
2 and Table S1). The number of violations recorded also drops over time,
with its minimum value in 2020. Detectability, as estimated by the model,
washighest in thefirst year of ourdataset (2014), dropped in 2015byaround
20% and then stayed at roughly the same level (around 75% of the 2014
value) except that it was significantly lower in 2016 (around half of the 2024
value), the year in which effort was highest but violations detected stayed
relatively constant. The model had strong predictive power (Table 2).
Overall, the model predicts 94% of violations and 99% of non-violations
correctly for the Chilean data set, with an F1-score of 0.95 (see “Methods”
and Supplementary Material).

Table1 |Predictors for the relativeprobability of a violationand
for detectability

Type of predictor Predictor Type/Range

Relative probability of a
violation

Species Categorical: 31 different species
or species groups

Type of violation Categorical: 7 different types

Number of
enforcers

Continuous: scaled from 0 to 1

Time enforcing Continuous: scaled from 0 to 1

Detectability Actor Categorical: 8 different actors

Region Categorical: 16 different
administrative regions

Fig. 1 | Schematic representation of a fisheries supply chain in Chile, and violation types originated at each step.Green dotted lines represent flow of products between
supply chain actors.
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Detectability and violation probability
Results suggest that, for commercial fisheries in Chile, the mean probability
of an enforcement action detecting a violation that has taken place is 0.18
(SD ± 0.14). The mean relative probability of a violation occurring in the
context of an enforcement action is 0.34 (SD ± 0.15). The overall probability
of observing a violation while on an enforcement patrol, considering both
probabilities, is much narrower, with a mean of 0.067 (SD ± 0.10). There-
fore, on average, about 7% of enforcement actions lead to violations being
detected.

Predictors of the probability of detecting a violation
Our results show that time spent carrying out an enforcement action had a
significant and positive effect (mean = 1.79, SD ± 0.14) on the probability of
detecting a violation, and the number of enforcers in the group carrying out
a particular action has a significantly negative effect (mean =−1.52, SD ±
0.45). The effect of geographical region on the probability of detecting a
violation is very heterogeneous, with two regions in the north having high
detectability (Antofagasta, Atacama), and Los Rios in the south and the
MobileUnit (whichmovesbetween regions) having lower detectability (Fig.
3a). Effort was relatively evenly distributed between regions, except for
Biobío and Los Lagos (two of themost important fishing regions in terms of
landings). These regions receive 19.6% and 23.5% of the national effort

despite having low probability of detection. There was no clear correlation
between the proportion of effort dedicated to each region and the prob-
ability of detection

Actors towards the end of supply chains (restaurants, marketers,
transporters) are associated with a higher probability of detection than
resource harvesters (small-scale and industrial fisheries) (Fig. 3b). By con-
trast, small-scale fishers (with a middling probability of detection) are
subject to 41% of the enforcement effort, while restaurants (with the highest
probability of detection) receive only 2% of the effort. There is no clear
relationship between enforcement effort and actor type.

Predictors of the relative probability of a violation
Enforcement effort varies betweenspecies groups,with sardine andanchovy
species having the highest proportion of enforcement actions (15%), and
common hake the next highest (8%). Several species groups receive <1% of
the effort. The effect of species on relative probability of violation is het-
erogeneous.Many species (including hake and kelp) have far higher relative
probabilities of a violation than anchovy species, while the probability for
Chilean seabass is significantly lower (Fig. 4a). Species groups receiving less
effort are slightly less likely to have a violation, but these estimates aremuch
less reliable due to low sample sizes. With regards to violation type, quotas,
bans andminimumsize limits have a lower relative probability of a violation
than access violations (related to access to fishing permits) (Fig. 4b).

Discussion
Improving enforcement is crucial to incentivize compliance and reduce the
negative impacts of illegal fishing activities6,37,38. We present an innovative
approach to understanding the capacity of enforcers to detect violations,
using a commonly collected but rarely used source of data (i.e., records from
enforcement agencies).Our approach splits themodeling approach into two
to deal with the conditionality of the process underlying enforcement
records (e.g., that detection can only occur when there has been a violation).
By doing so, we produced a model with an excellent fit for our case study
system (but see below for challenges in separating violation and detection
processes in other circumstances). Moreover, the model offers insights into

Fig. 2 | Temporal trends in effort and violations data, and detectability (as
estimated by the model). The graph illustrates the changes in enforcement effort
(blue), violations (orange), and detectability (green; scale on the right axis) over time.
Effort and violations are represented on a logarithmic scale to accommodate the

wide range of values observed in the dataset, with values ranging between 0 and 10.
Detectability is measured using a separate scale on the right axis due to differences
in units.

Table 2 | Model performance: data against model predictions

Dataset

Model Not detected Detected

Not detected 68737 275

Detected 169 4581

Total 68906 4856

The table displays the comparisonbetween dataset values (Dataset, columns) and predicted values
obtained from the model (Model, rows), in terms of violations detected and not detected in each
enforcement action.
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the factors associatedwith thedifferences indetectability andprobabilities of
relative violations, and variation in detectability in space and time. As such,
our approach can provide governments and enforcement agencies in our
case study (and more broadly) with crucial information about the current
efficiency of their efforts, enabling them to assess potential ways to improve
future targeting of enforcement efforts to maximize its impact on the

underlying rate of violations.While our empiricalfindings are specific to the
Chilean context, the hierarchical Bayesian modeling approach developed
here offers a methodological framework that can be adapted to assess
detectability and violation probabilities in diversefisheries contexts globally.

Our results show that, for our Chilean fisheries case study, the overall
probability of observing a violation while on an enforcement patrol on land

Fig. 3 | Predictors of the probability of detecting a
violation.Mean (dot) and 95% CI (lines) of log odd
ratios posteriors for probability of detection of a
violation, for a each region and b actor category,
with regards to the reference category (Arica region,
and Small-scale fisher, respectively). Values in par-
enthesis are the proportion of enforcement patrols
in each category (the enforcement effort dedicated
to that category). Region categories are sorted geo-
graphically from north to south (with the mobile
unit at the end), and actor is sorted by position in the
supply chain (except for no activity listed and
other actor).
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is around 7% (composed of a 34% violation probability and a 18% detect-
ability probability). Few studies have given comparable figures because it is
challenging to estimate detectability robustly, having controlled for enfor-
cement effort21,31. Studies which have done this tend to involve different
contexts, such as wire snares in terrestrial Protected Areas. For example, in
experimental trials of snare detection by ranger patrols31, found an average

snare detectability of 0.2 and21 found detectabilities of 0.15–0.26. These
studies found that critical factors associatedwithdetectabilitywere related to
effort (time spent searching for snares and the number of people in the
team). Our results are aligned with these with respect to the length of an
enforcement action. It is to be expected that the longer an enforcer searches,
the more violations they should find (at least up to a threshold)13,31.

Fig. 4 | Predictors of the relative probability of a
violation.Mean (dot) and 95% CI (lines) of log odd
ratios posteriors for the probability of a violation
occurring, for a species group and b violation type,
with regards to the reference category (Anchovy,
and Access, respectively). Values in parentheses are
the proportion of enforcement events in each cate-
gory (the enforcement effort dedicated to that
category). Categories are sorted by enforcement
effort.
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However, we found a significant negative correlation between detectability
and the number of enforcers in a group. This could be due to the increased
visibility of large groups of enforcers, allowing more opportunities for vio-
lators to perform avoidance strategies and evade detection.

In our case study, we found that actors further up the fisheries supply
chains towards end-users (transporters, marketers, restaurants) are asso-
ciated with an increased probability of detection compared to fishers
(whether small-scale or industrial). This could be due to operational char-
acteristics of actors further up in the supply chain, such as spatially explicit
operating points (e.g., restaurant compared to moving fishers) and product
stockpiling throughout the supply chain, which could facilitate enforcement
actions. Moreover, fishers are associated with lower probabilities of detec-
tion due to varied reasons such as better detection avoidance skills, ability to
move, and more resistance to enforcement activities10. The increase in
probability of detection which we uncovered, contrasts with the level of
enforcement effort targeted at these sectors, with particularly high levels of
effort targeting actorswith relatively lowprobability of detection (e.g., small-
scale fishers) and very low effort directed at actors with higher probability of
detection (e.g., restaurants). While our approach cannot assess causative
relationships, reasons for this discrepancymay include the traditional focus
of fisheries enforcement on harvesting activities rather than distribution
chains, with institutional structures and personnel historically oriented
toward monitoring fishers directly, which could lead to higher perceived
enforcement risk or ease of operation in familiar contexts. Enforcers may
favor targeting fishers because they have established protocols, training, and
experience in this domain,making themmore comfortable continuing these
practices despite potential efficiency gains from shifting focus to other
supply chain actors. Our result highlights the importance of increasing the
enforcement effort directed at these actors as a way to deter and reduce
illegal activities in fisheries. This is relevant for fisheries management in
Chile and more broadly. Indeed, there has been increasing recognition by
governmental authorities in Chile of the need to expand enforcement
activities from fishers to all actors involved in the commercialization of
fish39. Our results provide solid empirical evidence that this approach is
indeed the right path to follow.Moreover, our results are in line with recent
calls to consider blue foods as a key component of global food systems,
which necessitates consideration of all aspects of sustainability, including
supply chains, as productsmove fromproductiononone sideof theworld to
consumption on another3,40,41.

While our analysis focuses on the technical aspects of detection
probabilities, we recognize that decisions on enforcement strategies carry
significant ethical implications. Shifting enforcement focus across different
supply chain actors can have justice, equity, legitimacy and social impact.
For instance, small-scale fishers often represent socially and economically
vulnerable communities with limited livelihood alternatives42, compared to
downstream actors like processors and restaurant owners who typically
have greater economic resources and alternatives. This disparity should be
evaluated and considered when designing enforcement strategies, as it can
drive negative social consequences, resistance to regulations and lowered
legitimacy of laws11,43.

Our results with regard to species groups are in linewith previouswork
which identified specieswith a higher level of violations (e.g., commonhake,
loco, kelp spp.)11, and we also pinpoint species where there appears to be
relatively high probability of violations but no previous evidence (to our
knowledge) suggesting illegal activity (e.g., trophon snail, mussels). More-
over, most of the species identified as having high probabilities of violation
are also those with some the highest market importance in Chile, while the
unexpected findings for others, such as the Trophon snail, demand further
investigation into the underlying cause. This inconsistency could also be
explained by enforcement effort; species that have not been identified as
having relatively high levels of illegal activity in the literature, butwe identify
here, have been less heavily targeted by enforcers. Moreover, there are
intrinsic differences in fisheries and their supply chain that we are not
considering in this analysis and can also influence the heterogeneity in the
results (e.g., whether products are processed or not, traded fresh or frozen,

differences in markup prices along the supply chain, etc). Therefore, com-
bining our results with those fromother studies (e.g.11, could provide amore
complete picture of illegal fishing in Chile, by bringing together modeling
and on-the ground approaches to confirm and complement each other.

Overall, our model has the capacity (as shown with our case study) to
identify untapped potential for increasing and improving efforts towards
actors, species, or types of violationswithhigherdetectability or likelihoodof
violations. This can provide efficiency gains (i.e., better return on invest-
ment) by refocusing enforcement efforts to maximize detectability without
necessarily increasing enforcement costs. An example fromour case study is
restaurants, which had the highest detectability estimate, but where the least
effort is currently deployed. This discrepancy is in line with current enfor-
cement strategies inChile, which do not prioritize restaurants, with the high
detectability potentially explained a lack of avoidance strategies used by
restaurants due to the low likelihood of receiving enforcement. However, in
order to understand the effect of increasing enforcement effort towards a
particular target, it is important to consider the dynamismof illegal activities
and potential feedbacks, for example through assessing network-based
relationships between supply-chain actors, or deterrence or displacement of
illegal activity over time10,22. The extent to which the deterrent effect of
enforcement scales linearly with the perceived or actual probability of being
subject to an enforcement activity is likely to vary between actors, locations,
and with other factors (e.g., weather, landing activity, past enforcement
effort)21,31. Additionally, if the overall budget is limited, increases in effort
towards one target group will be accompanied by decreased effort
elsewhere8. Therefore, the overall impact on an agency’s budget of targeting
particular groups (and therefore the relative return on investment of refo-
cusing enforcement activities) is also an open question44.

Our approach and its application to the case study has provided
empirical insights that could guide further study, rather than a blueprint for
strategic analysis, especially for other contexts in LatinAmerica and beyond.
Annual reassessment and more complex models will be needed to account
for the dynamic response of actors to changes in emerging enforcement
strategies. This is key since there is a potential interdependence between
violation and detection probabilities. Improved detectability can deter
potential violators, possibly reducing violation rates as actors adjust their
behavior to avoid detection. However, lower violation probabilities may, in
turn, decrease detection, influencing the effectiveness of enforcement stra-
tegies over time. Building on this, future research should explore dynamic,
adaptivemanagement strategies that utilize the strengths of our approach in
order to optimize budget allocation adaptively, and which respond in real-
time to changes in behavior by updating effort allocation between actors and
geographies, as well as considering how changes in detectabilitymight affect
violationprobabilities andvice-versa. Furthermore,while our currentmodel
leverages “inter-annual” data to understand and predict enforcement out-
comes, future analysis could integrate “intra-annual” elements. By factoring
in seasonality, fishing seasons, and key socio-economic or cultural events
throughout the year, the temporal granularity of the model could be
improved. This enhancement could advance intra-annual precision of
enforcement activities, potentially elevating detectability and allowing for
the anticipation and strategic allocation of enforcement resources during
peak periods of illegal activity. Finally, a comprehensive economic analysis
of enforcement impacts on supply chain actors or different enforcement
strategieswasnotpossiblewithourdataset. Suchanalysiswould require data
on fines and/or seizures, as well as enforcement costs (personnel, transport,
equipment), which were not available for this study. Future research inte-
grating such data could provide valuable insights into how enforcement
strategies economically affect different supply chain actors, how these
impacts might influence compliance behaviors, and their return on
investment.

Despite these caveats, our approach canhelp advanceunderstandingof
illegality in fisheries in particular and other wildlife trade contexts more
broadly. Firstly, by providing a replicable approach to analyzing data from
enforcement and violations records. Indeed, our approach considers factors
associated with differences in detectability but also accounts for the
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conditionality of the data related to enforcement actions. Using a Bayesian
hierarchical approach with conditional logit functions, we can accom-
modate these data types more efficiently and provide insights into the fac-
tors associated with the modeling processes, considering the relative
probability of a violation and detectability together. While we tested the
model with a configuration in which factors are unambiguously associated
with one category or the other, this might not work everywhere; more
research is needed to determine and test which factors are associated with
detectability, probability of violations, or both in different circumstances.
Secondly,wepropose a shift in attention fromharvesters to thewhole supply
chain when dealing with illegality in fisheries and potentially wildlife mar-
kets in general. This is notwithout its challenges. Enforcement agentswould
require new sets of skills and training, while the risks associated with
enforcing rules vary with actor type. Different actors along the supply chain
mayhave different avoidance strategies10 or use different levels of violence to
prevent enforcement. Researchers would also need to broaden their meth-
odological approaches to account for actors and sectors that are usually not
on their radar, potentially including international criminal gangs45.

Research on detecting illegal activities has advanced strongly in recent
years, through the use of new technologies, for instance, satellite imagery
(e.g., Global Fishing Watch32). However, these technologies rarely cover
small-scale fisheries, which make up more than half of global catch and
employ the vastmajority offishers, but are usually neglected in illegalfishing
research46,47. Analyses like ours, which use datasets collected regularly by
enforcement agencies on the ground but are rarely used in detectability
research, can incentivize better data collection protocols. Expanding the
extent of data collection and analyses can provide amuch broader picture of
illegal fishing activities, resulting in positive feedback in which better data
are collected, which feeds better models, better informing effective man-
agement actions aimed at reducing the extent of illegal activities19. For these
data to effectively inform management, however, appropriate collection
protocols need to be in place to control biases. For instance, increased spatial
evenness of data collection can produce data that better represent the true
extent of illegal activities22 but this trades off with focusing effort in areas
with higher probability of detection and higher violation rates.

While we have focused exclusively on the capacity of the model to
explain the factors that affect the probability of a violation and its detection,
our approach could be usedprospectively byusing theposterior distribution
results to assess the effect of different hypothetical effort strategies on
detectability, and validating amodel trained on one part of the dataset using
the other part of the dataset as test data44. This is a key step for turning this
approach into a predictive tool that can better help reduce illegal activities,
which we left for future research due to current data availability limitations.
In applying this approach, however, there is a need to reduce imple-
mentation barriers. User-friendly apps, such as R Shiny (interactive app
from R analyses), can be used to bypass the need for Bayesian modeling
capacities at enforcement agencies, but strong quantitative skills will still be
needed for monitoring indicators (e.g., changes in detectability) institu-
tionally to improve the application of the analyses. Moreover, enforcement
agencies (e.g., SERNAPESCA) could implement empirical tests of how
shifts in enforcement effort affect the distribution of violations and the
ability to detect such violations (e.g., using ΔCPUE-ΔE plots13,). This can
further help to understand the functional form of relationships between, for
instance, deterrence and enforcement activity in a quasi-experimental set-
ting, as well as assessing responses in dynamic socio-ecological systems.
Finally, field trials would be informative on how to best deploy limited
budget in a dynamic socio-ecological system, acknowledging feedbacks and
trade-offs within strategies, forming the basis for an adaptive management
framework.

Fisheries are a crucial source of food and livelihood formillions around
theworld1–3. Improving enforcement canhelp reduce illegalfishing activities
and advance the sustainability of fisheries17. Our approach presents a novel
way to assess the capacity of enforcement todetect violations, andour results
show the need to expand these types of analyses to include not only fishers
but all actors involved in fisheries supply chains. Improving detectability is

an especially effective way to reduce illegal fishing activities in contexts
where enforcement agencies suffer from lowbudgets, limited capacities, and
where technological advances might not be available46,47. However, enfor-
cement would not solve all problems around illegal fishing27,48. It needs to be
complementedwith a better understanding of the diversemotivations (such
as instrumental, normative, or legitimacy-based) that drive people to engage
in illegal activities9,49–51, and of the trade-offs facing enforcement agencies in
complex and dynamic systems with multiple interacting supply chains.
Advancing the sustainability of fisheries requires improving the capacity of
enforcement agencies to detect illegal activities efficiently and effectively,
complementing other efforts that aim to promote compliance in the
long term.

Methods
Case study: Chile
Chile is one of the most important fishing nations in the world, with a
commercial sector contributing an average of 2.6 million tons a year and
directly employing more than 100,000 people39. Chile’s coast is highly
productive due to the cold, nutrient-rich Humboldt Current. Because the
country’s coastline spansmore than 4000 km on the north-south axis, there
are a great diversity of climates,fish species, andfisheries ranging fromdeep-
water industrial bottom-trawlers to coastal inshore gatherers52. Commercial
fisheries provide an essential economic activity, feeding a large domestic
market, concentrated at a central fishing terminal, and a key export sector27.
While fisheries are largely regulated in Chile, with science-informed quotas,
territorial user rights, and a fishers register, illegal activities are
widespread26,53. For some species, illegal landings are estimated to be larger
than legal ones5,36. SERNAPESCA is Chile’s central fisheries enforcement
agency, and reports on both its enforcement efforts and violations. This
agency has over 900 staff, 46 offices, and an annual budget of ~40
million USD.

Data
We used a dataset containing reports of each enforcement activity per-
formed in 2014–2020 by SERNAPESCA for commercial wild-caught fish-
eries across the country (n = 77,820). We obtained these anonymized data
via a data transparency request to SERNAPESCA, a legal mechanism in
Chile that is publicly available. Patrol activities by SERNAPESCA are all
carried out on land and do not include activities at sea. The same enforcers
target different actors throughout the supply chain, and are similarly
equipped for any of the actors they are targeting. As such, enforcement
activities are similar in nature, so factors that explain differences in
detectability can be assessed. It is important to note that Chile’s fisheries law
establishes amandatory traceability system that creates a direct link between
illegal fishing and downstream illegality. This system requires documenta-
tion to accompany fish products throughout the supply chain that must be
presented during inspections. Similarly, this system allows to differentiate
domestic and imported products (which are overseen by customs autho-
rities). When fish are caught illegally (e.g., during closed seasons, exceeding
quotas, or without proper licenses), no legal documentation can be issued.
Consequently, any downstream actor in possession of these products is
automatically in violation because they cannot provide the required trace-
ability documentation. This mechanism ensures that the illegal status of
products persists throughout the supply chain.

In the dataset, each enforcement activity has information on: date; time
spent enforcing; administrative region where the enforcement activity
occurred; the number of enforcers that participated; and the species, type of
violation, the actor targeted by a specific enforcement activity andwhether a
violation was found or not (Table S2). For species, actor, and type of vio-
lation, we considered all the categories establishedby SERNAPESCA (Table
S3). For the type of violations, the category “Other” included an ensemble of
minority class violations: activities in restricted areas such as Marine Parks,
Marine Reserves, or restricted zones, and operationswithin thefirst nautical
mile. Other violations involve unauthorized landing points, shark finning,
and obstruction of enforcement efforts. Additionally, they include issues
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with statistical reporting, such as failure to provide or falsification of
information.

We categorized predictors into two categories: those that predict
the relative probability of a violation and those that predict the
detectability by enforcers of the violation (Table 1). This can be chal-
lenging, because in reality predictors have complex interacting effects
on violations and detectability8. However, given data limitations we
were only able to fit models in which a predictor was assigned to one or
another category. In our model, species (i.e., fishery) and type of vio-
lation were categorized in the violation predictors category because
they directly affect what to target when enforcing and the likelihood of
an illegal fishing activity. For instance, some species have attributes
that makes them more attractive as targets of illegal activities (e.g.,
totoaba fish in Chinese markets, due to its valuable swim bladder)28–30;
and some types of violations aremuchmore profitable than others (e.g.,
fishing over the quota rather than fishing during reproductive ban
when there is no market)11.

In our model, predictors associated with detectability relate to
how, when, where and on whom to target enforcement. “How” pre-
dictors relate to the number of enforcers that participate in an enfor-
cement patrolling action (mean = 2.0; SD = 1.1), and the time they
spent enforcing (in minutes) (mean = 311.6; SD = 217.9). “When” and
“where” predictors are year in which the patrolling action took place,
and region (Chile’s administrative region where the enforcement
action took place), to control for geographical and long-term temporal
heterogeneity. Finally, the “who” predictor was the type of actor at
whom the enforcement is targeted (e.g., fisher, restaurateur, trans-
porter). With regard to the time predictor, we assume deterrence is
instantaneous and therefore any effect of enforcement happens in the
same time-period as the enforcement action. We assume this because
of data constraints: each specific enforcement action is targeted to a
specific combination of actor, violation, and species, and is bound to an
outcome at the same time-period, so we could not assume a more
realistic lagged effect of enforcement. For all predictors, from the raw
data, we collapsed similar categories (e.g., adding small-scale boats to
small-scale fishers) to reduce the number of predictor categories (Table
1). Moreover, when, in some cases, there was more than one actor, type
of violation, or actor as the target, we used the initial target objective of
the action as our predictor.

Model
Our Bayesian Hierarchical Model addresses the fundamental challenge in
analyzing enforcement data: detectability is conditional on the presence of a
violation. This conditionality creates a two-stage process that is challenging
to assess by standard statistical approaches. To address this, our model
explicitly represents this conditional relationship through two linked logistic
functions. The first function was used to predict the relative probability of a
violation (logitðviÞ). The second function was used to predict the detect-
ability if there was a violation (logitðpiÞ). This structure allows us to separate
these two processes and identify which factors influence each component.
Without this hierarchical structure, we would conflate factors affecting
violation rates with those affecting detection capabilities, potentially leading
to misleading conclusions about enforcement effectiveness. The Bayesian
implementation offers several advantages over frequentist approaches for
this application: it naturally accommodates the hierarchical structure
through probabilistic conditioning, it provides full posterior distributions
rather than point estimates, allowing us to better quantify uncertainty in our
estimates and it allows for more flexible incorporation of prior information
when available.

We implemented the conditionality by drawing an outcome from a
Bernoulli distribution with its probability parameterized by the violation
logit function (si).We thenmultiply this outcome (1 or 0) by the probability
obtained in the second logit function representing detection (Pi). The
product was a probability that we used as the p parameter of another
Bernoulli distribution (yi) to model the response variable from the data of

the presence or absence of a violation (see below):

yi � BernoulliðPiÞ ð1Þ

Pi ¼ pisi ð2Þ

si � BernoulliðviÞ ð3Þ

logitðpiÞ ¼ μp þ b1Ti þ b2Ni þ b3 R i½ �
h i

þ b4½A½i�� þ b5½Y ½i�� ð4Þ

logitðviÞ ¼ μv þ b6½V ½i�� þ b7½S½i�� ð5Þ

Where yi is the Bernoulli response variable (i.e., 1 or 0 representing presence
or absence of a violation) for each enforcement activity i; μp and μv are the
intercepts for the logit functions; b1...7 are the parameter estimates: b1;2 are
single estimates for each continuouspredictor (Ti is timeenforcing andNi is
the number of enforcers), and b3...7 are estimates for each category of the
categorical variables (½R½i�� is region, ½A½i�� is actor, ½Y ½i�� is year, ½V ½i�� is the
type of violation, and ½S½i�� is species). We used uninformative uniform
distribution priors b1...7 � Unif ð�2:2; 2:2Þ for the intercepts and the
continuous and categorical variable coefficients. These represent the log
odds ratio of the difference in the probability of each category (in this case,
we set the uninformative range to be −90 to 90%) to a reference category
which was set to zero for each variable. The range of −90% to 90% for the
uniform distribution priors was chosen to balance a non-informative prior,
which avoids introducing bias, with practical constraints on the prior space,
thus reducing the computational need of the model. This range is broad
enough to capture awide array of possible outcomes but prevents themodel
from exploring an excessively large parameter space.

We tried various model specifications, starting with a null model with
no predictors. We then added length of the enforcement visit (time in
hours), year, thenumber of enforcers present in the visit (group size) and the
categorical predictors (species, type of actor and violation, and region). Our
model then accounts for the variability of different regulatory frameworks
and rules by including type of violation as a predictor of violation prob-
ability, allowing us to estimate species-specific violation probabilities while
controlling for the regulation that was being enforced. This approach cap-
tures the composite effect of each species’ regulatory framework on the
likelihood of illegal activity. Moreover, we tested the use of polynomials to
account for potential non-linearities in the continuous variables (time and
group size) and an interaction term. Finally, we also tested some alternative
hypothesis for whether the spatial (administrative region) and temporal
(year) predictors were related to detection or violation. To ensure the
robustness of our model, we checked for collinearity among all predictors
and excluded those with high collinearity (r > 0.7). After several iterations,
the best fit model (with the lowest wAIC, see Table S4) included the con-
tinuous variables time and group size (scaled from 0 to 1), and actor, region,
and year as predictors of detectability. Species and type of violation were
included as predictors of the presence of a violation. We tested the final
model convergencewithRhat, a proxy for howwell chains (n = 3)mix.With
3000 iterations (600 for warmup and 2400 for sampling), all Rhat values for
model posterior parameters were <1.1, which is considered appropriate
convergence54. We then performed model fit verification via posterior
checks, but varied the threshold to determine if each activity was assigned as
a violation detected or not detected (0 or 1). The “normal” threshold would
be 0.5, but we varied this to see if the predictive capacity of the model could
increase, assessed with the F1 score. F1 is a score that combines precision
(correct positive predictions relative to total positive predictions) and recall
(correct positive predictions relative to total actual positives) and is
recommended for unbalanced samples where the aim is to improve pre-
diction on the positive minority class. The threshold that provided the
highest F1 score and, therefore, the better fit was 0.24 (Fig. S1), with an F1
value of 0.95. We use R Studio to run the model.
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Data availability
The data are available at: https://github.com/rodgpt/Detectability-of-illegal-
activities.
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