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Beyond depression symptoms: the default
mode network as a predictor of
antidepressant response
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Antidepressant efficacy for major depressive disorder (MDD) remains limited, with the neural
mechanisms underlying treatment response poorly understood. The default mode network (DMN),
particularly the connectivity between themedial prefrontal cortex (mPFC) and posterior cingulate cortex
(PCC), has been implicated in MDD pathophysiology and may be linked to treatment outcomes.
However, its potential as a biomarker for antidepressant response has not been validated. Here, we
investigate the relationship betweenDMN connectivity and antidepressant treatment response inMDD.
Resting-state fMRIdata fromfour largeMDDcohorts (n = 4271)wereanalyzedusingGranger causality to
examine directional effective connectivity (EC) within the DMN. Linear mixed-effects models compared
EC between recurrent MDD patients, first-episode drug-naïve patients, and healthy controls. We also
examined associations between EC, medication use, illness duration, depressive symptoms, and
treatment outcomes. Additionally, Support Vector Machine (SVM) classifiers and support vector
regression (SVR) were trained using EC from mPFC to PCC to predict treatment response. Our results
revealed that recurrentMDDpatientsexhibitedsignificantly reducedEC frommPFCtoPCCcompared to
healthy controls and first-episode patients, with this reduction correlating with antidepressant
medication use and illness duration. Importantly, DMN connectivity was associated with treatment
improvement rather than core depressive symptoms, including suicide, anhedonia, or emotional
blunting. Crucially, EC from mPFC to PCC predicted antidepressant treatment response, and SVM
classifiers demonstrated high predictive accuracy for therapeutic outcomes. In conclusion, reduced EC
from mPFC to PCC may serve as a biomarker for antidepressant treatment response in MDD, offering
insights into MDD neurobiology and supporting the clinical potential of DMN connectivity measures for
guiding treatmentdecisions.TheSAINT,Xijing_QG,andXijing_KGdatasetswereapprovedby theEthics
Committee of the First Affiliated Hospital, Fourth Military Medical University (approval numbers:
KY20202066-F-1, XJLL-KY20222111, and KY20222165-F-1, respectively) and registered with
clinicaltrials.gov (identifiers: NCT 04653337, NCT 05577481, and NCT 05544071, respectively).

Major depressive disorder (MDD) is a devastating psychiatric afflic-
tion, ranking as the second leading cause of global disability, boasting a
point prevalence that surpasses 4%1. Despite the widespread use of
antidepressant medication2, its therapeutic efficacy is not entirely
satisfactory with only a modest superiority over placebo (Cohen’s d

of ~0.3)3. Moreover, ~50% of patients with MDD could be treatment-
resistant depression4. However, the neural mechanisms that underlie
antidepressant treatment remain elusive, and the lack of reliable bio-
markers poses a hindrance to the effective prediction of treatment
responses.

1National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and
Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University, Xi’an, Shaanxi, China. 2Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi,
China. 3School of Biomedical Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China. 30These authors contributed equally: Kaizhong Zheng,
Liangjun Chen. *A list of authors and their affiliations appears at the end of the paper. e-mail: libjuan@163.com; chenbd@mail.xjtu.edu.cn

npj Mental Health Research |             (2026) 5:2 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s44184-025-00182-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44184-025-00182-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44184-025-00182-2&domain=pdf
mailto:libjuan@163.com
mailto:chenbd@mail.xjtu.edu.cn
www.nature.com/npjmentalhealth


Default mode network (DMN) is thought to play a pivotal role in
the pathophysiology of MDD. A plethora of evidence suggests a cor-
relation between the Default Mode Network and the primary clinical
symptom of rumination in major depression5,6. A recent study revealed
a decrease in functional connectivity (FC) within the DMN when
comparing 848 patients with MDD to 794 normal controls (NCs)7.
Importantly, this effect was only statistically significant in individuals
with recurrent MDD, as opposed to those with first-episode drug-naïve
(FEDN) MDD. Additionally, fMRI-characterization of DMN could
serve as a complement to the existing symptom-based diagnoses for
MDD. By incorporating increased functional connectivity in the DMN,
a support vector machine (SVM) classifier was able to effectively dis-
tinguish between patients with MDD and NCs, achieving an AUC of
90%8. Moreover, abnormal dynamic functional network connectivity
estimated from the DMN has been shown to be predictive of symptom
severity in MDD9.

Accumulating evidence shows that DMN might be closely asso-
ciated with treatment response for MDD. The identified hypercon-
nectivity within the DMN served as a distinguishing factor between
patients diagnosed with treatment-resistantMDD and those exhibiting
treatment sensitivity10. Moreover, research findings have suggested that
the observed hyperconnectivity within the DMN and the connections
between the DMN and the executive control network (ECN) offered
potential as indicators of successful treatment11. However, the valida-
tion of theDMNas a biomarker for antidepressant treatment is yet to be
established.

The medial prefrontal–limbic circuitry is thought to be a key neural
pathway underlying the therapeutic effects of antidepressant treatment12–14.
Previous studies have demonstrated that antidepressants could modulate
emotional processing, exerting neural effects within the prefrontal and
limbic circuitry12. In addition, both patients and healthy controls exhibited
increased activity in the medial prefrontal and core limbic regions in
response to positive emotions, while these regions showed decreased
activity to negative emotions following repeated administration of
antidepressants13. The therapeutic effects of antidepressant treatment are
mediated through “top-down” influences from the prefrontal cortex to the
limbic regions15. Thus, we further focused on two key regions of the DMN,
the medial prefrontal cortex (mPFC) and the posterior cingulate cortex
(PCC)—one located in the prefrontal cortex and the other within the limbic
system—to investigate the relationship between information flow from the
mPFC to the PCC and antidepressant treatment, and to evaluate its
potential as a biomarker.

In this study, we used an unprecedentedly large sample of 4133
(2142 MDD patients and 1991 NCs) to investigate abnormal effective
connectivity (EC) patterns within DMN and the validation of these
patterns as potential biomarkers for predicting responses to both
pharmacological and rTMS treatments was carried out using four
datasets. Finally, in this study, we found a new neuroimage biomarker
(EC from themPFC to the PCCwithinDMN) and demonstrate that (1)
significantly reduced EC frommPFC to PCCwas observed in recurrent
MDD patients compared with NCs and FEDNMDD patients (Fig. 1D,
E); (2) reduced EC frommPFC to PCC in recurrent MDD patients was
associated with illness duration and medication effect (Fig. 2); (3) EC
frommPFC to PCC is anticipated to be significantly reduced in patients
withMDDwho demonstrate improvement following pharmacological
treatment (Fig. 3). (4) EC from mPFC to PCC is associated
with antidepressant treatment improvement rather core depressive
symptoms including suicide, anhedonia, or emotional blunting
(Figs. 4 and 5); (5) EC from mPFC to PCC could reliably discriminate
between patients who responded positively to antidepressant treat-
ment and those who did not (Fig. 6); (6) EC from mPFC to PCC could
effectively predict therapeutic outcomes following antidepressant
treatment (Fig. 7). This new biomarker provides a way forward in
treatment evaluation, relapse prediction and understanding the
pathogenesis of MDD.

Methods
Participants
This study included four data sets for major depression (mddrest, SAINT,
Xijing_KG and Xijing_QG). All participants provided written informed
consent at their local institution. Further study details are provided in the
online supplement.

Themddrest data set collected by the REST-meta-MDD project7 from
the Depression Imaging REsearch ConsorTium (DIRECT)16 in 2017, is
currently the largest MDD dataset. Resting-state fMRI data from this data
set were shared from twenty-five study cohorts in China. In this study, we
used a sample of (n = 4133, 2142 MDD/1991 NCs) from both the first and
second releases.

The SAINT dataset was approved by the Ethics Committee of the First
Affiliated Hospital, Fourth Military Medical University (KY20202066-F-1)
onOctober 21, 2020, andwas registeredwith clinicaltrial.gov (identifier:NCT
04653337).All participantswere recruited fromtheDepartmentofPsychiatry
at the First Affiliated Hospital, Air Force Military University, from January
2021 to October 2021. Thirty-two subjects received the Stanford Accelerated
Intelligent Neuromodulation Therapy (SAINT)17. All treatments were
delivered with a Black Dolphin Navigation Robot system (SmarPhin S-50,
Solide BrainControlMedical TechnologyCo., Ltd, Xi’an, China). In a precise
experimental protocol, three consecutive sessions of intermittent theta-burst
stimulation (iTBS) were administered at 90% of the resting motor threshold
(RMT)within a span of 9min and 52 s. The subjects underwent a total of ten
iTBS sessions, comprising 18,000 pulses, with a 50-min interval between each
session. This daily regimen was sustained for five consecutive days, resulting
in each patient receiving a cumulative total of 90,000 pulses throughout the
entire treatment duration. According to exclusion and inclusion criteria,
twenty-six treatment-resistant patients with major depression were enrolled
in this study. Suicidal ideation severity was measured using the Chinese
Version of the Beck Scale for Suicide Ideation (BSI-CV).

The Xijing_KG dataset was collected through Randomized Clinical
Trials (RCTs). The dataset was approved by the Ethics Committee of the
First Affiliated Hospital, Fourth Military Medical University
(KY20222165-F-1) on May 24, 2023, and was registered with clinical-
trial.gov (identifier: NCT 05544071). All patients were recruited from the
Psychosomatic Department of Xijing Hospital between March 2023 and
April 2024. Inclusion criteria included (1) Diagnosis ofMDD according to
the criteria outlined in the Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition (DSM-V), and currently experiencing an episode;
(2) A total score greater than 17 on the Hamilton Depression Rating Scale
(HAMD-17) at screening and baseline; (3) A total score greater than 20 on
the Snaith-HamiltonPleasure Scale (SHAPS) at screening and baseline; (4)
No use of any antidepressant medications for at least 2 weeks prior to
screening. Exclusion criteria included (1) Substance use disorders,
excluding nicotine and caffeine; (2) Current diagnosis of any psychiatric
disorders other than MDD, Generalized Anxiety Disorder, Social Anxiety
Disorder, Panic Disorder, Agoraphobia, or Specific Phobias; (3) History of
schizophrenia or schizoaffective disorder, or current or past depressive
episodes with psychotic symptoms; (4) Other psychiatric disorders with
depressive symptoms as the primary manifestation, personality disorders,
or intellectual disabilities; (5) Significant clinical abnormalities identified
during screening that may affect participation in the study or compromise
safety, or that could interfere with the interpretation of study results; (6)
Any history deemed by the investigator to pose a risk to the subject or
interfere with the interpretation of study results; (7) Participation in other
drug clinical trials or device clinical trials within 1 month prior to enroll-
ment; (8) Presence of metal or electronic devices in the head or skull; (9)
History of epilepsy; (10) History of cardiovascular disease or cardiovas-
cular events; (11)History of obsessive-compulsive disorder; (12)History of
autism spectrum disorder; (13) Prior exposure to repetitive transcranial
magnetic stimulation (rTMS); (14) Any other conditions deemed by the
investigator as unsuitable for participation in the study.

Patients in Xijing_KG dataset enrolled in the study will receive a
selective serotonin reuptake inhibitor (SSRI), sertraline hydrochloride, at a
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daily dose of 100–150mg. During the initial treatment phase (days 1–3),
patients will receive 25mg/day, with an increase to 50mg/day on days 4–7.
In the absence of dose-limiting adverse events, the dosage will be titrated to
100mg/day during the second week and subsequently adjusted within the
range of 100–150mg/day to achieve optimal clinical response. Thereafter,
the dosage will be maintained as consistently as possible. The medication is
administered once daily, at a fixed time in the morning, either on an empty
stomach or following a meal. Clinical evaluations will be conducted at
baseline, immediately following the final session of repetitive transcranial
magnetic stimulation (rTMS), andat 15 and30dayspost-rTMS.Anhedonia
severity in patients with major depressive disorder (MDD) will be assessed
using the Snaith-Hamilton Pleasure Scale (SHAPS) and the Chinese Ver-
sion of the Temporal Experience of Pleasure Scale (CV-TEPS). Changes in
depressive symptoms will be evaluated using the Montgomery-Asberg
Depression Rating Scale (MADRS) and the 17-item Hamilton Depression
Rating Scale (HAMD-17). Suicidal ideation severity will be measured using
the Chinese Version of the Beck Scale for Suicide Ideation (BSI-CV).
Additionally, MRI scans will be performed at baseline and on the 15th day
after treatment.

The Xijing_QG dataset was collected through Randomized
Clinical Trials (RCTs). The dataset was approved by the Ethics Committee
of the First Affiliated Hospital, Fourth Military Medical University

(XJLL-KY20222111) on May 24, 2023, and was registered with clinical-
trial.gov (identifier: NCT 05577481). Patients were recruited from the
Department of Psychosomatic Medicine, Xijing Hospital, between March
2023 and January 2024. Inclusion Criteria included (1) Adults aged 18–60
years, right-handed; (2) Diagnosis of MDD based onDSM-V criteria; (3) A
total score >17 on the 17-itemHamilton Depression Rating Scale (HAMD-
17); (4) A score ≥6 on the Chinese Version of the Beck Scale for Suicide
Ideation (BSI-CV); (5) Normal findings in physical examination, medical
history, vital signs, and routine laboratory tests, including blood, urine, and
stool analyzes, liver and kidney function, electrolytes, electrocardiogram,
and electroencephalogram; (6) Informed of the safety profile of repetitive
transcranial magnetic stimulation (rTMS), expressed willingness to comply
with the treatment regimen, and provided signed informed consent.
Exclusion Criteria included (1) Age <18 or >60 years; (2) History of severe
physical illness or depression secondary to psychoactive substances or non-
dependent substances; (3) Presence of metallic or electronic implants, such
as intracranial metallic objects, cochlear implants, pacemakers, stents, or
othermetallic foreignbodies; (4)Riskof seizures, including ahistoryof brain
disease, head trauma, alcohol abuse, abnormal electroencephalogram
findings,MRI evidence of structural brain abnormalities, or a family history
of epilepsy; (5) Requiring immediate intervention due to suicidal behavior
or severe self-injury; (6) Presence of psychotic symptoms requiring the use

Fig. 1 | Reduced EC from mPFC to PCC within DMN in patients with
recurrent MDD. The average EC from mPFC to PCC was computed across 132
connections, as illustrated in (A). Violin plots depict the distribution of mean EC
from mPFC to PCC differences among various groups: BMDD vs. NC; C First
Episode Drug Naïve (FEDN)MDD vs. NC;D Recurrent MDD vs. NC; and E FEDN

MDDvs. RecurrentMDD. It is noteworthy that, for each comparison, only sites with
a sample size larger than 10 in each groupwere considered. The t values represent the
statistics for these comparisons in Linear Mixed-Effects Model (LMM) analyses.
*p < 0.05; **p < 0.01.
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of antipsychotic medications; (7) History of electroconvulsive therapy
(ECT) within 2months prior to enrollment; (8) Pregnant, breastfeeding, or
planning to conceive during the study period. Participants were required to
have received at least 6 weeks of treatment with SSRIs or SNRIs prior to
enrollment. During the study, the type of antidepressant was maintained,
and the dosage was kept as close as possible to the pre-enrollment regimen.
Concomitant use of medications for somatic diseases was permitted, pro-
vided the types and doses of these medications remained unchanged
throughout the study. The treatment was administered continuously for
15 days,with clinical scales and cognitive function assessments conducted at
baseline, day 7, and day 15 (end of treatment) following treatment. Emo-
tional blunting in patients with MDD was assessed using the Oxford

Depression Questionnaire (ODQ). Depressive symptom changes were
measured using the HAMD-17. MRI scans were performed at baseline and
at the conclusion of the 15-day treatment period.

fMRI Preprocessing
Standard preprocessing of the mddrest was done at each site using the
Data Processing Assistant for Resting-State fMRI (DPARSF, http://
rfmri.org/DPARSF). Functional data of SAINTwere preprocessed using
the Graph Theoretical Network Analysis (GRETNA, https://www.nitrc.
org/projects/gretna). Specifically, the initial ten volumes of each subject
were discarded to account for potential instability in the signal. Slice-
timing was performed to correct for temporal differences between slices.

Fig. 2 | The effects of illness duration andmedication status on reduced EC from
mPFC to PCC within DMN in MDD patients. The violin figures show the dis-
tribution of mean EC from mPFC to PCC within DMN for FEDN MDD patients
with long vs. short illness duration (A), for all MDD patients with long vs. short

illness duration (B), and for FEDNMDDpatients with vs. withoutmedication usage
(C). The t values represent the statistics for these comparisons in Linear Mixed-
Effects Model (LMM) analyses. *p < 0.05.

Fig. 3 | The effects of antidepressant treatment (medication and rTMS) on EC
from mPFC to PCC within DMN in MDD patients. The violin figures show the
distribution of mean EC frommPFC to PCC within DMN for MDD patients with a
positive medication response: pre- versus post-treatment (A), for MDD patients
with a negative medication response: pre- versus post-treatment (B), for MDD
patients with a positive rTMS response: pre- versus post-treatment (C), and for

MDDpatients with a negative rTMS response: pre- versus post-treatment (D). Here,
responders are identified as individuals exhibiting a reduction of 50% or greater on
the HAMD-17 scale following the specific antidepressant treatment (positive
response), while non-responders are those who do not meet this threshold (negative
response). *p < 0.05.
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Then, realignment was conducted to correct for head motion during the
acquisition by applying translation and rotation corrections to the fMRI
images at different time points. The high-resolution T1-weighted images

were co-registered with the functional images, and a segmentation
process was performed to classify the brain into gray matter, white
matter, and cerebrospinal fluid (CSF) compartments. The resulting
deformation parameters from the T1-weighted images to the Montreal
Neurological Institute (MNI) template was utilized to normalize the
resting-state fMRI data to a standard space. Additionally, a Gaussian
filter with a half maximum width of 6 mm was used to smooth the
functional images. Each participant’s time series was band-pass filtered
in the range of 0.01-0.1HZ. Finally, we regressed out the effects of head
motion, white matter and CSF signals.

Effective connectivity analysis
After preprocessing, we extracted time series for Dosenbach 160
functional regions of interest (ROIs)18. We then defined 33 DMN ROIs
as those overlapping with the DMN delineated by Yeo et al.19 and cal-
culated effective connectivity withinDMNROIs using granger causality
analysis (GCA)20. In accordance with prior research findings21,22, we
have delineated the Default Mode Network (DMN) into four principal
components (Fig. 1A). These encompass 12 ROIs situated in the medial
prefrontal cortex (mPFC), 11 ROIs located in the posterior cingulate
cortex (PCC), 6 ROIs in the left parietal cortex (LPC), and 4 ROIs in the
right parietal cortex (RPC). The analysis was performed using the
REST-GCA toolbox (https://rfmri.org/REST-GCA), the order is set to 1
according to the previous study23. Prior to performing Granger Caus-
ality Analysis (GCA), the stationarity of each regional time series was
assessed using the Augmented Dickey-Fuller (ADF) test. Time series
that failed to meet the stationarity requirement (p < 0.05) were con-
sidered non-stationary. These non-stationary series were then differ-
enced (first-order differentiation) iteratively until stationarity was
achieved. All subsequent GCA analyzes were conducted exclusively on
the preprocessed, stationary time series. Mean effective connectivity
(EC) from mPFC to PCC (averaged across 12 × 11 = 132 connections)
was computed (Fig. 1A). Granger causality analysis was executed using
MATLAB scripts.

Fig. 4 | Prediction of outcome specific to antidepressant treatment using EC
specifically from the medial prefrontal cortex (mPFC) to the posterior cingulate
cortex (PCC). Sensitivity-specificity curves based on model predictions for pre-
dicting the response to all treatment (213 responders versus 102 non-responders),
medication treatment (173 responders versus 56 non-responders) and rTMS
treatment (40 responders versus 46 non-responders). The calculation of area under
the curve (AUC) values was performed for each sensitivity-specificity curve.

Fig. 5 | Association of EC frommPFC toPCCwithBSI-CV,HAMD,ODQand SHAPS.Rows 1–3 correspond to the SAINT, Xijing_QG, andXijing_KGdatasets, respectively.
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Harmonization of site differences and covariates
To address site-specific artifacts and confounding effects, we employed the
ComBat harmonization method24,25 to control for site differences and
covariates in DMN EC. This approach enabled us to maintain biological
variability while minimizing site-related variation. For each EC value,
Combat model can be formulated as follows:

y ¼ const þ XTβþ γþ δε; ð1Þ

in which const represents the constant term; XT is a design matrix for the
covariates of interest (age, sex, head motion); β is the vector of coefficients
associated with X; γ represents additive site effects (location parameter),
while δ denotes multiplicative site effects (scale parameter).

Accordingly, the harmonized EC values were defined as:

yCombat ¼ y � dconst � XT β̂� γ̂

δ̂
þ dconst þ XT β̂; ð2Þ

where δ̂ and γ̂ represent the empirical Bayesian estimates of δ and γ,
respectively.

Group-level analysis
Linear mixed models (LMMs)26 were employed for between-group infer-
ence regarding EC frommPFC to PCC.This approach effectively controlled
for confounding variables, including diagnosis, age, sex, education, head
motion effects, and site-specific variations. The model was implemented
using MATLAB’s fitlme command (https://www.mathworks.com/help/

stats/fitlme.html), formulated as y ∼1 + Diagnosis + Age + Sex + Edu-
cation+Motion+ (1 | Site)+ (Diagnosis | Site). Thismodel provided t and
p values for the fixed effect of Diagnosis. Cohen’s d effect size was subse-

quently computed as d ¼ Tðn1þn2Þ
ffiffiffiffi

df
p

ffiffiffiffiffiffiffi

n1n2
p 27.

In addition, we utilized LMM to compare 2142 MDD patients with
1991 NCs. Considering that several sites reported whether patients with
MDDwere in theirfirst episode or recurrent, we compared 828first-episode
drug-naïve (FEDN)MDDpatientswith 812 correspondingnormal controls
(NCs) from nine sites and 310 recurrent MDD patients with 928 corre-
sponding NCs from ten sites. Furthermore, we conducted a comparison
between 516 FEDNMDD patients and 281 recurrent MDD patients from
nine sites. In this particular analysis, the LMM model incorporated the
replacement of the diagnosis variable with the FEDN or recurrent status to
investigate specific distinctions between these subgroups.Due to the skewed
distribution of illness duration, with the majority of cases being brief, we
opted to contrast the terciles with the longest and shortest illness durations
instead of usingDiagnosis in the LMM.Additionally, to assess the impact of
medication, we substituted Diagnosis with medication status (on/off,
assessed at the time of the scan) in the LMMmodel. Finally, we used paired t
test to compare the changes in EC between pre-treatment and post-
treatment MDD patients.

Prediction of antidepressant response using EC form
mPFC to PCC
Support Vector Machine (SVM)28 classifiers were employed to predict the
response to antidepressant treatment usingEC frommPFC toPCC. Inother

Fig. 7 | Association of EC from mPFC to PCC with symptom severity (HAMD). A All MDDs, B FEDN MDDs and C recurrent MDDs.

Fig. 6 | Predicting changes in HAMD scores following different treatment modalities using EC frommPFC to PCC. A All treatment, Bmedication treatment, C rTMS
treatment.
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words, the aim was to distinguish between patients who responded posi-
tively to antidepressant treatment and those who did not. In this study, we
used a total of 315 MDD patients including 213 patients who exhibited a
positive response to antidepressant treatment (Medication: 173 responders;
rTMS: 40 responders) and 102 patients who showed no response to anti-
depressant treatment (Medication: 56 non-responders; rTMS: 46 non-
responders). Specifically, 161 MDD patients from mddrest dataset (Medi-
cation: 145 responders versus 16 non-responders), 26 MDD patients from

SAINT dataset (rTMS: 20 responders versus 6 non-responders), 72 MDD
patients from Xijing_KG dataset (Medication: 9 responders versus 24 non-
responders; rTMS: 12 responders versus 27 non-responders) and 40 MDD
patients from Xijing_QG dataset (Medication: 3 responders versus 16 non-
responders; rTMS: 8 responders versus 13 non-responders). In the context
of the EC from mPFC to PCC, comprising 12 × 11 ¼ 132 connections, a
meticulous approachwas adopted tomitigate overfitting to noise in the data
and prevent inflation of prediction performance. Thus, we employed the
recursive feature elimination method29 to identify salient connections by
recursively eliminating the least important ones based on model perfor-
mance. This meticulous process yielded a selection of 38 connections for
further analysis. Additionally, we applied regularization techniques (L1
regularization), during the feature selection process. Subsequently, the 38
identified connections were employed to train a Support Vector Machine
(SVM) model utilizing the scikit-learn machine learning library30. In addi-
tion, we used the grid search function to generate candidate hyper-para-
meters, spanning from10�5 to 105 times the default values ofC. ThenCwas
set to 5. In addition, we utilized Support Vector Machine (SVM) with the
‘class_weight=balanced’ parameter, which adjusts the model to account for
class imbalances during training. Finally, we implemented five-fold cross
validation to assess performance and accuracy, area under the curve (AUC),
sensitivity, specificity, f1-score, Matthews Correlation Coefficient (MCC)31

were used as evaluating indicators. To further ensure the reliability of the
results, the entire feature selection and model training process was iterated
100 times, with the average performance serving as the final evaluation
metric. To assess the statistical significance of the machine learning-based
treatment prediction results, a nonparametric permutation test was con-
ducted. Specifically, the treatment response labels were randomly shuffled
across participants 1000 times, followed by the repeated application of
fivefold cross-validation to generate a distribution of classification accura-
cies. The p-value was calculated as the proportion of the cross-validated
accuracies from the permuted data that exceeded those obtained without
permutation.

Prediction of relative symptom improvement for rTMS treatment
using EC frommPFC to PCC
Wedeveloped an end-to-endmachine-learning algorithm forpredicting the
medication and rTMS treatment outcome using EC from mPFC to PCC
features. Specifically, support vector regression (SVR) model was used to
predict clinical improvements after medication or rTMS treatment for 138
patients with MDD (Medication: 52 participants; rTMS: 86 participants).
Clinical improvements were quantified by subtracting the post-treatment
scores from the pre-treatment scores on the 17-item Hamilton Depression
Rating Scale (HAMD-17)32. Recursive feature eliminationmethodwas used
to reduce the dimension of mPFC->PCC EC features and 38 salient con-
nections were retained according to performance of the model. In addition,
we used the grid search function to generate candidate hyper-parameters,
spanning from10�5 to 105 times the default values ofC. ThenCwas set to 9.

Table 1 | Characteristics of participants in REST-meta-
MDD cohort

Variable MDD
(N = 2930)

NC (N = 2445) Analysis

N % N % χ2 p

Male 1062 36.25 1031 42.17 19.66 <0.0001

Currently employed 2142 73.11 1991 81.43

Mean SD Mean SD t p

Age (years) 35.41 11.81 34.04 12.89 3.56 0.0004

Years of education 12.15 3.68 13.74 3.51 −14.23 <0.0001

MDDmajor depressive disorder, NC normal control.

Table 4 | Characteristics of participants in Xijing_QG cohort

Variable Pre-treatment
MDD (N = 49)

Post-treatment
MDD (N = 40)

Analysis

N % N %

Male 11 28 11 28

Active rTMS 21 53 21 53

Currently employed 40 82 40 82

Mean SD Mean SD t p

Age (years) 36.48 12.29 36.48 12.29 N/A N/A

ODQ 94.15 14.12 75.55 24.96 4.05 <0.0001

17-item HAMD score 16.15 5.04 10.08 6.07 4.81 <0.0001

HAMD Hamilton Depression Rating Scale, ODQ Oxford Depression Questionnaire.

Table 2 | Characteristics of participants in SAINT cohort

Variable Pre-treatment
MDD (N = 32)

Post-treatment
MDD (N = 32)

Analysis

N % N %

Male 6 19 6 19

Currently
employed

26 81 26 81

Mean SD Mean SD t p

Age (years) 27.54 11.02 27.54 11.02 NA NA

Years of
education

12.81 2.83 12.81 2.83 NA NA

17-item
HAMD score

27.69 4.05 5.92 4.37 18.83 <0.0001

MADRS
score

36.19 4.46 8.92 5.45 19.73 <0.0001

BSI-CV score 17.31 7.39 3.73 4.86 10.87 <0.0001

HAMDHamilton Depression Rating Scale,MADRSMontgomery-Asberg Depression Rating Scale;
BSI-CV Beck Scale for Suicidal ideation-Chinese Version.

Table 3 | Characteristics of participants in Xijing_KG cohort

Variable Pre-treatment
MDD (N = 75)

Post-
treatment
MDD (N = 75)

Analysis

N % N %

Male 23 31 23 31

Active rTMS 39 54 39 54

Currently employed 72 96 72 96

Mean SD Mean SD t p

Age (years) 14.83 1.22 14.83 1.22 N/A N/A

SHAPS 37.19 5.65 36.19 6.99 0.94 0.35

17-item HAMD score 21.78 5.51 14.61 7.81 6.32 <0.0001

HAMD Hamilton Depression Rating Scale, SHAPS Snaith Hamilton Pleasure Scale.
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The performance of five-out cross validationwas quantified using theMean
Absolute Error (mae), Root Mean Squared Error (rmse) and Pearson’s
correlation coefficient.

Results
Participant characteristics
In this study, 4133 participants in the mddrest dataset, 26MDD patients in
the SAINTdataset, 72MDDpatients in theXijing_KGdataset and 40MDD
patients in the Xijing_QG were enrolled. Tables 1–4 demonstrate the
demographic and clinical characteristics of the participants.

Reduced EC frommPFC to PCC within DMN in recurrent MDD
patients
Mean EC frommPFC to PCCwas compared with 2930MDD patients and
2445 NCs, but no significant change (t = 0.051, p = 0.960, d = 0.0015;
Fig. 1B) was observed. On subgroup analyzes, no significant change in
FEDNMDD patients compared with NCs (t = 0.371, p = 0.711, d = 0.0063;
Fig. 1C), while reduced EC from mPFC to PCC was observed in recurrent
MDD patients compared with NCs (t =−2.969, p = 0.003, d =−0.1416;
Fig. 1D). In addition, recurrent MDD patients showed significantly lower
EC than FEDNMDDpatients (t =−2.248, p = 0.025,d =−0.1690; Fig. 1D).

DMN connectivity was associated with illness duration and
medication status effect
The reduced EC observed frommPFC to PCC in recurrent MDD patients,
as opposed to its absence in FEDN MDD patients, may result from the
influence of illness duration or medication history. Significantly decreased
EC from mPFC to PCC (t =−2.295, p = 0.022, d =−0.1809; Fig. 2A) was
observed in the tercile with longest illness duration (≥24 mo, 1199 MDD
patients from 29 sites) compared with the tercile with shortest illness
duration (≤3mo, 301MDDpatients from 15 sites). To reduce the impact of
medication, we further examined the effect of illness duration in FEDN
MDDpatients. The tercile with longest illness duration (≥24mo, 478MDD
patients from 23 sites) showed lower EC (t =−1.970, p = 0.049,
d =−0.1998; Fig. 2B) than the tercile with shortest illness duration (≤3 mo,
272 MDD patients from 15 sites). Moreover, we conducted additional
examinations to scrutinize the impact of medication. In particular, we
compared individuals with FEDN MDDs (534 MDDs from 15 sites) with
first-episode MDDs on medication (700 MDDs from 18 sites) and
observed a significantly enhanced EC mPFC to PCC (t = 2.221, p = 0.027,
d = 0.1434; Fig. 2C).

Antidepressant treatment effect
Considering the association betweenmedication status and EC frommPFC
to PCC, we further investigated the changes of EC following the anti-
depressant treatment including medication treatment and rTMS treatment
on three external prospective treatment datasets. To gain a more accurate
understanding of the mechanisms, we divided the dataset based on treat-
ment response. Here, responders are identified as individuals exhibiting a
reduction of 50% or greater on the HAMD-17 scale following the specific
antidepressant treatment (positive response), while non-responders are
those who do not meet this threshold (negative response). Significantly

enhanced EC frommPFC to PCC (t = 2.128, p = 0.044, d = 0.9425; Fig. 3A)
was observed in the pre-treatment patients withMDDcomparedwith post-
treatment patients with MDD, when patients with MDD showed positive
response followingmedication treatment. Additionally, we further tested an
interaction between time and responder tomore directly assess whether EC
changes are specific to responders. Specifically, we employed a two-sample
t-test to compare the change in EC from mPFC to PCC, calculated by
subtracting pre-treatment values from post-treatment values, between
responders and non-responders. This analysis revealed no significant dif-
ference (t =−1.09), suggesting that the observed changes in EC are not
significantly different between responders and non-responders.

Association of DMN connectivity with depressive symptom
The investigation delving into the relationship between EC from mPFC to
PCC and HAMD scores underwent rigorous testing on REST-meta-MDD
dataset (2369 MDD patients). Surprisingly, the analysis did not unveil a
statistically significant correlation (Pearson’s r = 0.0069, p = 0.7359). When
assessing the impact of symptom severity in FEDN MDD patients
(n = 1022), the correlation failed to attain statistical significance (Pearson’s
r = 0.0496, p = 0.1134). Conversely, among patients with recurrent MDD
(n = 283), a significant correlation emerged (Pearson’s r = 0.1180,
p = 0.0473).

Furthermore,we further investigated the relationshipbetweenpre- and
post-treatmentDMNconnectivity (EC frommPFC to PCC) and depressive
symptoms (asmeasured byBCI-CV,ODQ, SHAPS, andHAMD), aswell as
the association between pre-treatment DMN connectivity and treatment
improvement (Fig. 5). Note that BCI-CV assesses suicidal ideation, ODQ
evaluates emotional blunting, SHAPS measures anhedonia, and HAMD
evaluates the severity of depression.We found thatDMNconnectivity, both
pre- and post-treatment, was unrelated to depressive symptoms. However,
as treatment progressed, pre-treatment DMN connectivity was able to
predict changes in SHAPS (r =−0.31, p = 0.008) and ODQ scores
(r = 0.34, p = 0.036).

DMN Connectivity characterizes medication response
We further used DMN EC and EC from mPFC to PCC for predicting the
response to all antidepressant treatment (213 responders versus 102 non-
responders), medication treatment (173 responders versus 56 non-
responders) and rTMS treatment (40 responders versus 46 non-respon-
ders). Briefly, we first trained SVM classifiers during the fivefold cross-
validation using the EC from mPFC to PCC features as input. To ensure
result stability, the process was iterated 100 times, with the average outcome
serving as the ultimate performance metric for the model. The classifier
achieved an accuracy of 78.6% (AUC, 76.5%; sensitivity, 81.2%; specificity,
71.8%; f1, 84.8%; MCC, 49.3%; permutation test-validated using 1000 per-
mutations, p < 0.001) for the all treatment, an accuracy of 87.8% (AUC,
86.9%; sensitivity, 88.5%; specificity, 85.2%; f1, 92.2%; MCC, 65.0%; per-
mutation test-validated using 1000 permutations, p < 0.001) for the medi-
cation treatment and an accuracy of 83.8% (AUC, 84.3%; sensitivity, 85.3%;
specificity, 83.3%; f1, 81.3%; MCC, 68.0%; permutation test-validated using
1000 permutations, p < 0.001) for the rTMS treatment. Figure 6 shows
sensitivity-specificity curves based on model predictions using EC from

Table 5 | Five-fold cross-validation performance across different biomarkers in antidepressant treatment (213 responders vs.
102 non-responders)

Biomarkers ACC AUC Sensitivity Specificity F1 MCC

FC (Whole Brain) 0.617 0.585 0.503 0.668 0.401 0.152

FC (DMN) 0.610 0.592 0.494 0.689 0.470 0.178

FC (mPFC-PCC) 0.590 0.565 0.465 0.665 0.421 0.123

Graph-theoretical measures 0.496 0.467 0.334 0.600 0.323 −0.063

Clinical predictors 0.630 0.610 0.565 0.655 0.376 0.165

Ours 0.786 0.765 0.812 0.718 0.848 0.493
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mPFC to PCC. Confusion Matrices and calibration plots are provided in
Supplementary Fig. S4.

Furthermore, we further compared our proposed biomarker with
several established biomarkers, including: (1) whole-brain functional con-
nectivity (FC), (2) default mode network (DMN) FC, (3) medial prefrontal
cortex - posterior cingulate cortex (mPFC-PCC) FC, (4) graph-theoretical
measures such as betweenness, degree, clustering coefficient, efficiency, and
local efficiency across five network nodes, and (5) clinical predictors
including age, sex, and pre-treatment Hamilton Depression Rating Scale
(HAMD) scores. To ensure robustness, we employed a Support Vector
Machine (SVM) for model training across all biomarkers. The comparison
results, summarized in Table 5, demonstrate that the effective connectivity
(EC) from themPFC to the PCC yielded the highest classification accuracy,
emphasizing the superior performance of our biomarker and its promising
potential for clinical application.

Prediction of relative symptom improvement for rTMS using
DMN connectivity
In addition to forecasting responses to medication treatment, we further
employed EC from mPFC to PCC for predicting the therapeutic outcomes
associated with medication and rTMS. We built prediction model using
support vector regressionmethod andmodel performancewas tested using
five-fold cross-validation (Fig. 7). The findings revealed a significant pre-
dictive capability of EC from mPFC to PCC for the observed changes in
treatment scores during fivefold cross-validation (All treatment: Fig. 5A,
Pearson’s r = 0.56, mae = 4.84, rmse = 6.36, p < 0.0001; Medication: Fig. 5B,
Pearson’s r = 0.75, mae = 2.72, rmse = 4.24, p < 0.0001; rTMS: Fig. 5C,
Pearson’s r = 0.72, mae = 4.07, rmse = 5.53, p < 0.0001).

Discussion
In this study, employing an exceptionally large sample size (n = 4133), we
identified a substantial reduction in top-down EC within the DMN, spe-
cifically frommPFC to PCC, in patients with recurrent MDD compared to
both NCs and those with FEDN MDDs. Additionally, the diminished EC
from mPFC to PCC in recurrent MDD patients showed associations with
being scanned while on antidepressant medication and the duration of
illness. Importantly, EC from mPFC to PCC demonstrated a remarkable
capacity to predict treatment outcomes for both antidepressant medication
and rTMS treatment.

Generally, the DMN is frequently partitioned into an anterior sub-
network, which is focused on the mPFC, and a posterior sub-network,
centered around the PCC33. Along the cortical midline, mPFC and PCC
demonstrated robust functional coherence with both sub-networks, sug-
gesting a potential role as functional hubs facilitating information transfer
between sub-networks34. EC stands apart from conventional functional
connectivity as it goes beyond simply computing the correlation among
time courses of interacting regions. Instead, it possesses the capability to
infer causal influences from one region to another, illustrating the direc-
tional flow of signals, including top-down and bottom-up processes, within
a brain network. Significantly reduced effective connection from mPFC to
PCCobserved in the recurrentMDDgroupmay imply a diminishedflowof
information from the anterior sub-network to the posterior sub-network
within the DMN. Due to both sub-networks contributing to specific pro-
cesses associated with self-generated thought34, this top-down regulation
within DMN could be linked to the predominant clinical symptom of
rumination inmajor depression5,6. Furthermore, the anatomical connection
between the PCC and mPFC through the cingulum bundle in brain
structure35 prompts the inquiry into whether structural abnormalities are
present in patients with recurrent MDD compared to NCs, necessitating
further investigation.

Significantly reduced EC from mPFC to PCC in recurrent MDD was
associated with illness duration and antidepressant medication treatment.
Specifically, we verified that the tercile with the longest illness duration (≥24
months) exhibited lower EC from mPFC to PCC compared to the tercile
with the shortest illness duration (≤3 months), and individuals with FEDN

MDDwhowere scannedwhile onmedication displayed decreasedEC from
mPFC to PCC compared with those without medication. These results are
consistentwith a previous study, where the EC from the right parietal cortex
(RPC) to the PCC within DMN exhibited a significant decrease in patients
with post-treatment MDD compared with NCs, after an eight-week treat-
ment period36. Our identification of a medication-induced decrease in EC
frommPFC to PCC implies that antidepressantmedications couldmitigate
depressive symptoms by reducing the EC frommPFC to PCC.Tominimize
the influenceofmedication,we conductedadditional analyzes to explore the
impact of illness duration in FEDN MDD patients. Among FEDN MDD
patients, those in the tercile with the longest illness duration (≥24 months)
displayed decreased EC from mPFC to PCC in comparison to those in the
tercile with the shortest illness duration (≤3 months). This result suggests
that the prolonged impact of the illness may lead to a lower EC frommPFC
toPCC.However, the identifiedmedication effect and illness duration effect
were observed in a retrospective cross-sectional sample, underscoring the
need for validation through longitudinal designs integratingmedication and
disease follow-up.

Another significant finding of the present study is the capacity of EC
frommPFC to PCCwithin DMN to reliably predict treatment responses to
bothmedication and rTMS. Despite receiving optimal treatment forMDD,
only 30% of patients achieve full recovery or remission. The remaining 70%
either respond without achieving remission (around 20%) or show no
response at all (50%)37, commonly termed as treatment-resistant depression
(TRD). Individuals with Treatment-Resistant Depression (TRD) bear the
highest direct and indirect medical costs among those with MDD38. Spe-
cifically, TRD individuals have twice the probability of hospitalization,
incurring a cost exceeding six times the mean total cost for non-treatment-
resistant depressed patients39. Hence, there is a pressing need for objective
biomarkers to identify TRD and inform individualized treatment decisions.
In this study, EC from mPFC to PCC reliably differentiated patients with
positive responses tomedication treatment from thosewho did not respond
and predicted therapeutic outcomes following rTMS treatment among
individualswithTRD.This suggests that the identified fMRI signature holds
promise as a neuroimaging biomarker for guiding treatment choices in the
context of antidepressant response. Furthermore, this might lead to
avoidable morbidity and economic costs if individuals are transitioned to
another intervention prematurely based on evidence indicating minimal
expected benefit from antidepressant treatment using our fMRI signature.

Our findings contribute to the growing body of evidence surrounding
the role of the default mode network (DMN) in brain function and its
potential as a therapeutic target. While repetitive transcranial magnetic
stimulation (rTMS) has been widely utilized in clinical practice, it has tra-
ditionally focused on the emotional network (sgACC) and cognitive control
network (DLPFC). Despite the known pivotal role of the DMN in various
cognitive and emotional processes, it has not yet been targeted for ther-
apeutic intervention.Our study reveals a significant association between the
DMNand treatment outcomes, providing strong evidence for the feasibility
of DMN-targeted interventions. This novel approach could offer new ave-
nues for therapeutic interventions, particularly for individuals with dis-
orders involving DMN dysfunction. Moving forward, targeted rTMS
stimulationwithin theDMNholds promise as a viable strategy for treating a
range of neuropsychiatric conditions, warranting further investigation into
its therapeutic potential.

The limitations of this study should be noted. First, our findings and
biomarkers need validation in independent datasets. In the future, inclusion
of UK BiobankMDD data and data from the ENIGMA-MDD consortium
could be considered for analysis. Second, we only considered pharmaco-
logical treatment and rTMS,while other treatmentswith potentially distinct
mechanisms of action, such as electroconvulsive therapy (ECT) or psy-
chotherapy, should also be taken into consideration. Third, we employed
fMRI signatures to distinguish patients exhibiting positive responses to
medication treatment from non-responders, but we did not conduct a
detailed investigation based on the specific types of medication. Finally,
despite our efforts to harmonize these datasets, residual site-specific
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differences may persist, and some of these variations may not be fully
accounted for or corrected by ComBat.

Data availability
Deidentified and anonymized data were contributed from studies approved
by local Institutional Review Boards. All study subjects provided written
informed consent at their local institution. Data of REST-meta-MDD I are
available at: http://rfmri.org/REST-meta-MDD. Data of REST-meta-MDD
II and SAINT used during the current study are available from the corre-
sponding author upon reasonable request.
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