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Prognostic early snapshot stratification of 
autism based on adaptive functioning

Veronica Mandelli    1,2, Isotta Landi2, Elena Maria Busuoli1,2, Eric Courchesne3, 
Karen Pierce3 & Michael V. Lombardo    2 

A major goal of precision medicine is to predict prognosis based on 
individualized information at the earliest possible points in development. 
Using early snapshots of adaptive functioning and unsupervised data-
driven discovery methods, we uncover highly stable early autism subtypes 
that yield information relevant to later prognosis. Data from the National 
Institute of Mental Health Data Archive (NDA) (n = 1,098) was used to 
uncover three early subtypes (<72 months) that generalize with 96% 
accuracy. Outcome data from NDA (n = 2,561; mean age, 13 years) also 
reproducibly clusters into three subtypes with 99% generalization accuracy. 
Early snapshot subtypes predict developmental trajectories in non-verbal 
cognitive, language and motor domains and are predictive of membership 
in different adaptive functioning outcome subtypes. Robust and prognosis-
relevant subtyping of autism based on early snapshots of adaptive 
functioning may aid future research work via prediction of these subtypes 
with our reproducible stratification model.

Autism is a clinical consensus label based on early difficulties in the 
domains of social-communication and restricted repetitive behaviors1. 
Although the label of autism helps maximize consensus and reliability 
amongst clinical diagnostic judgments based on behavior, it may be 
less useful for many other important clinical and translational research 
objectives, such as honing in on differential biology, outcomes and 
treatment responses2,3. With a view towards applying precision medi-
cine4,5 to the field of autism, we should aim to move closer to labels 
that have higher utility for these types of objectives. As a step in this 
direction, a recent Lancet commission has proposed a call to action 
for more precise labels, such as ‘profound autism’, to identify the most 
profoundly affected individuals, who require extra services and sup-
port6. Thus, a first-level distinction in the autism population should be 
made that separates out autistic individuals characterized by ‘disability’ 
versus ‘difference’ in developmental outcomes.

In this Article we characterize autism subtypes within the domain 
of adaptive functioning. There are several important reasons for why 
subtyping based on adaptive functioning may be important. First, adap-
tive functioning is a pivotal domain with high ecological validity and 

predictive power for explaining later life outcomes (for example, later 
independent living, educational attainment and employment)7–10, and 
is also associated with services and unmet needs11. Variability in adap-
tive functioning in the autism population is considerable, ranging from 
very profoundly affected individuals to those within typically develop-
ing (TD) norms12–14. Thus, distinctions within adaptive functioning are 
clearly needed to separate clinically meaningful and outcome-sensitive 
heterogeneity in autism. Second, adaptive functioning can be quickly 
measured throughout the lifespan with standardized clinical assess-
ment tools such as the Vineland Adaptive Behavior Scales (VABS)15,16. 
This tool offers the ability to carry out quick, repeated and afford-
able assessments of an individual throughout their lifespan and can 
be deployed in multiple settings. Other advantages of the VABS are 
age-normalized scores and the ability to interpret minimal clinically 
significant change12. Third, changing adaptive functioning has become 
one of the key objectives for intervention research12. Thus, stratifica-
tion models that can provide useful subtype labels may be impor-
tant for facilitating advances in personalizing interventions. Fourth, 
adaptive functioning can be disentangled from an individual’s level 
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developmental- and outcome-sensitive ways based on single snapshots 
of information at early stages in development. If there was a tool that 
allowed for highly robust and reproducible subtyping based on early 
single snapshots of adaptive functioning, this would potentially fill 
this gap and lead to further insights about how to predict treatment 
response and outcome in such individuals. Given this potential, we 
aimed to develop a stratification model that allows for data-driven 
discovery of robust and reproducible VABS subtypes based on a single 
snapshot of early VABS scores. We then show how subtypes are useful 
for predicting subsequent adaptive functioning outcome subtypes 
and developmental trajectories in non-verbal cognitive, language and 
motor domains.

Results
Identification of adaptive functioning subtypes
In our first analysis, we sought to test whether unsupervised data-driven 
stratifications could be made in autism based on early snapshots (≤72 
months) of adaptive functioning using the VABS. Our analysis approach 

of intellectual functioning13. Although there is a relationship between 
adaptive functioning and large differences in intellectual functioning 
(for example, contrasting individuals with IQ < 70 versus IQ ≥ 70), 
amongst those with IQ ≥ 70, the variability in adaptive functioning is 
still considerable, ranging from highly affected individuals to individu-
als within the normative range for their age12. As individuals become 
older, the potential discrepancy between IQ and adaptive functioning 
can widen13,17. Thus, subtyping based on adaptive functioning may be 
able to capture real-world, clinically meaningful variability between 
individuals, even within the range of intact intellectual functioning.

Previous longitudinal work has attempted to identify subtypes 
based on differential trajectories of the VABS over the first two decades 
of life14,17–19. Although this work is immensely important for describ-
ing how different types of individual develop in terms of adaptive 
functioning, it cannot be utilized for early stratification in impor-
tant clinical contexts such as intervention, because rich longitudinal 
information is not known about participants in such studies. A gap is 
present whereby there is a key need to be able to stratify individuals in 
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Fig. 1 | Schematic outlining the data analysis plan. a–c, The dataset used for 
initial data-driven discovery and validation through stability-based clustering 
is the NDA dataset (https://nda.nih.gov). NDA data are fed through the pipeline 
shown in a, which illustrates the reval algorithm pipeline. Once a robust and 

highly generalizable classifier is built from the NDA dataset, we apply that 
snapshot prediction model to the UCSD ACE longitudinal dataset. b,c, The 
analysis pipeline for applying the subtype prediction model (b) and then 
modeling developmental trajectories (c).
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applies stability-based relative clustering validation to identify data-
driven clusters that are stable and reproducible in independent datasets 
(Fig. 1). We found that a three-cluster solution is unequivocally the best 
cluster solution that minimizes normalized cluster stability. This model 
produces very high generalization accuracy (96%) in independent data 
(for example, the held-out National Institute of Mental Health Data 
Archive (NDA) Validation set; Fig. 2a and Supplementary Data 1). An 
equal male bias is present in each of the three subtypes (χ2(2) = 3.38, 
P = 0.19). Importantly, the three-subtype solution heavily deviates from 
the null hypothesis that the data originate from a single multivariate 
Gaussian distribution (P = 9.99 × 10−5). Plots of the Uniform Manifold 
Approximation and Projection (UMAP) reduced data show evidence of 
three distinct peaks, one for each of the three subtypes (Fig. 2b). To bet-
ter describe this three-subtype solution, we next plotted VABS scores 
for each subtype and in each VABS domain (Fig. 2c,d). We see a clear 
distinction between the subtypes in terms of ability—high, medium to 
low—that is preserved across each VABS domain. Although the subtype 
distributions overlap to some extent, the size of differences between 
subtypes is typically quite large (for example, Cohen’s d > 1) for each 
pairwise subtype comparison (Fig. 2c,d), and these effect sizes are 
robustly preserved in independent training and validation sets.

We next applied the same stratification approach to a much 
older NDA outcome-relevant cohort (n = 2,561; 6–61 years; mean age 
of 13 years). A three-subtype solution emerges from this dataset with 
99% generalization accuracy and strong rejection of the null hypothesis 
that data originate from a single multivariate Gaussian distribution 
(P = 9.99 × 10−5; Fig. 3a,b). One of the subtypes can be considered an 
extreme outlier subtype, because the scores are at floor levels near 
20 and have hardly any variability around this floor (Fig. 3c,d). This 
subtype is relatively small (n = 79) and comprises ~3% of all individu-
als in this older cohort. The remaining two subtypes can be described 
as relatively high or low and are both relatively large and equal in size 
(high, n = 1,444; low, n = 1,038).

Continuity of early snapshot subtypes at outcome
Although early development is quite variable, later-life outcomes tend 
to be much more stable6,18. Studies examining predictors of later-life 
adaptive functioning have shown that better adaptive functioning 
earlier in life predicts better later-life outcomes14. Thus, the presence 
of a high and low group at early ages may be prognostically sugges-
tive of good versus poor later-life outcome. However, the presence 
of a third subtype between these two (the medium subtype) may sug-
gest that this subtype is more uncertain regarding their later-life good 
versus poor outcomes. To test these predictions, we examined the 
correspondence of subtype labels in a subset of n = 130 individuals 
present in both the NDA early snapshot and older outcome datasets. 
As predicted, individuals in the early high or low subtypes are highly 
probable of remaining in that same high or low subtype at outcome 
(high = 82%, 95% CI = 69–93%; low = 84%, 95% CI = 71–94%; high and 
low combined = 83%, 95% CI = 75–91%). In contrast, the early snapshot 
medium subtype is much more ambiguous with respect to later subtype 
outcomes, with ~57% (95% CI = 43–71%) moving to the high outcome 
subtype, and the remaining 43% (95% CI = 28–56%) moving to the low 
outcome subtype (Fig. 3e). Corroborating this finding as well as previ-
ous work14, longitudinal VABS data show relatively flat or slightly declin-
ing standardized-score group-level trajectories throughout the time 
period up to 72 months and with no differences in trajectories between 
the subtypes (Supplementary Fig. 1 and Supplementary Data 2 and 3).

Developmental trajectories in adaptive functioning subtypes
In our next set of analyses we examined whether autism early adap-
tive functioning subtypes are distinctions that are sensitive to differ-
ential trajectories in non-verbal cognitive, language and fine motor 
domains, as measured by the Mullen Scales of Early Learning (MSEL) 
through the first five and a half years of life. In longitudinal NDA data, 

we find age*subtype interactions throughout MSEL visual reception 
(VR), expressive language (EL), receptive language (RL) and fine motor 
(FM) subscales. These differences in developmental trajectories are 
most pronounced for the low subtype when compared with the high or 
medium subtypes, whereas differences between the high and medium 
subtypes are less strong (Fig. 4a and Supplementary Data 2 and 3). 
Because clustering was applied to the first timepoint of the NDA data, 
these results are not independent of the clustering procedure and may 
be biased. Thus, in the next analysis we tested for subtype differences 
in the MSEL developmental trajectories using a large and completely 
independent dataset—the University of California, San Diego Autism 
Center of Excellence (UCSD ACE) dataset (n = 1,185). Again, we discover 
age*subtype interactions across all MSEL subscales. These effects are 
driven by age*subtype interactions for all pairwise between-subtype 
comparisons except for the FM subscale, where strong differences 
were much less apparent (Fig. 4b and Supplementary Data 2 and 3). 
Including sex as a covariate in our longitudinal models resulted in nearly 
identical results (Supplementary Data 2). These results provide strong 
independent replication of the subtype MSEL trajectory differences. 
Overall, these results indicate that autism adaptive functioning sub-
types isolated from early snapshots from the VABS are predictive of 
later trajectory differences across a range of developmental domains 
such as non-verbal cognitive ability, language and fine motor skills.

Comparing subtype versus normative models
Our clustering analysis provides evidence that autism is not one 
homogeneous population with respect to early or later-life adaptive 
functioning. We have also shown that early snapshot adaptive function-
ing subtypes are outcome-relevant and developmentally sensitive to 
variability in non-verbal cognitive, language and motor trajectories. 
However, is the early snapshot subtyping model better than other com-
peting models at explaining developmental trajectories? To answer this 
question we compared the early snapshot subtyping model to a norma-
tive model that uses typical-development defined age-standardized 
norm cutoffs for adaptive functioning on the VABS (VABS norm). The 
VABS norm model uses 1 and 2 standard deviation cutoffs below the 
mean to create three subtypes. These subtype labels are then used in 
longitudinal MSEL models of the UCSD ACE data (Supplementary Data 
2 and 3). Model comparison Akaike information criteria (AIC) statistics 
were computed for both the reval subtype and VABS norm models. 
We find that the VABS norm model produces lower AIC values than 
the reval subtype model and with ΔΑΙC values greater than 10. This 
indicates that traditionally defined ‘disability’ subtypes from VABS 
norms predict developmental trajectories as well or better than the 
data-driven reval autism subtype model on its own. We next created a 
‘hybrid’ model based on the combination of the reval autism subtype 
and VABS norm labels (Fig. 5a,b and Supplementary Data 2 and 3). This 
hybrid model produces the lowest AIC values, indicative of a much bet-
ter model than either reval subtyping or the VABS norm model alone 
(ΔAIC > 10; Fig. 5c). Thus, improved utility for predicting cognitive and 
motor developmental trajectories could be facilitated through the 
combination of both a data-driven autism-specific subtyping approach 
and information regarding where the child stands relative to typically 
developing adaptive functioning norms.

Finally, to aid future research applications, we developed an appli-
cation that will allow users to input VABS scores and receive subtype 
labels as output (https://landiit.shinyapps.io/vineland_statification_
proj/). The intent behind this tool is to allow the field to immediately 
begin using these subtype labels for a priori experimental design in 
future studies. Furthermore, at an individualized level, the application 
may be useful for giving expectations behind developmental progress 
of an individual, given their subtype. For example, using the beta coef-
ficients from the developmental trajectory models, we can express the 
expected rate of growth per month in terms of age-equivalent scores 
for each domain on the MSEL (Supplementary Data 4).

http://www.nature.com/NatMentHealth
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Discussion
In this study we aimed to identify developmental- and outcome-sen-
sitive stratifications of the early autism spectrum based on adaptive 

functioning profiles. Standardized clinical assessment of adaptive func-
tioning via the VABS offers a simple, easy-to-administer and rigorous 
way to obtain such early snapshots of stratified adaptive functioning 
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Fig. 2 | Unsupervised data-driven discovery of early snapshot autism adaptive 
functioning subtypes. This figure shows the results of stability-based relative 
clustering validation applied to the early snapshot NDA dataset. a, Normalized 
stability plot. Error bars in this plot represent the 95% confidence interval for 
normalized stability from repeated cross-validation. The optimal cluster solution 
k is the one that minimizes the normalized stability. It is clear that k = 3 is the 
optimal solution, minimizing the normalized cluster stability. In an independent 
validation set, this k = 3 solution generalizes with 96% accuracy. b, Plots of 
UMAP-reduced data input into the clustering for both the NDA Training (top) and 

Validation (bottom) sets. The individuals are colored by subtype over the density 
plots. c,d, Graphical description of the subtypes across each VABS domain, 
with scatter boxplots and heatmaps depicting the pairwise standardized effect 
size difference (Cohen’s d) between the subtypes; plots are shown for both the 
NDA Training set (c) and Validation (d) set. The boxplots show the interquartile 
range (IQR; first quartile, 25th percentile; third quartile, 75th percentile), and the 
whiskers indicate Q1 − (1.5 × IQR) or Q3 + (1.5 × IQR). The line within the boxplot 
represents the median. The sample sizes for all panels in this figure were n = 603 
for the NDA Training set and n = 495 for the NDA Validation set.
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profiles. We found the presence of robust and stable clusters that highly 
deviate from a single multivariate Gaussian null distribution. This result 
indicates that autism is not one homogeneous population with respect 
to adaptive functioning. In early development, autism can be described 
by three subtypes that split into high, medium and low adaptive func-
tioning strata. Similarly, at older ages (for example, mean age 13 years 
in the outcome cohort), autism can also be robustly clustered into 
three subtypes. One of these subtypes is an extreme outlier with very 
low VABS scores. The other two subtypes correspond to relatively high 
versus low subtypes. We also discovered that some of the early snapshot 
subtypes hold information sensitive to later outcomes. Both early high 
and low subtypes are highly likely to remain in those same subtypes 
at later ages. In contrast, the early medium subtype is more uncertain 
in terms of later outcome subtype membership. This result indicates 
that early snapshot stratification can result in labels that are outcome-
sensitive, especially if an individual falls into the early snapshot high or 
low subtypes. For individuals falling into the early snapshot medium 
subtype, it may be pertinent for future work to examine what might 
be the predictors that nudge these individuals into different outcome 
subtypes (for example, the influence of different kinds of intervention, 
comorbid attention deficit hyperactivity disorder, executive function-
ing, environmental or educational influences)17,20–22.

The discovered subtypes also hold predictive information about 
trajectories outside adaptive functioning, such as the non-verbal 

cognitive, language and motor domains measured by the MSEL. Evi-
dence of age*subtype interactions suggests that the subtypes show 
substantial differences in the steepness of their slopes over age (for 
example, rate of growth), with the most accelerated development pre-
sent in the high group, and the more incremental and slowest growth 
exhibited by the low group. This result suggests that our subtyping 
approach yields robust and reproducible subtype labels that are devel-
opmentally sensitive outside of adaptive functioning and which could 
be utilized to inform expectations about prognosis in these domains. 
Finally, while the subtype model explains substantial variance in devel-
opmental trajectories, the model could be further refined by simple 
knowledge of where an individual stands with respect to TD adaptive 
functioning norms. Combining the knowledge of both TD-defined 
norms and autism-specific norms for subtyping, we constructed a 
hybrid model, where labels are informed by where an individual is 
relative to both TD and autism norms. This hybrid model was proven 
to be the best of all models at predicting variance in non-verbal cogni-
tive, language and motor trajectories. Therefore, one key utility of our 
data-driven autism-specific subtyping approach is that it provides 
useful labels that, when combined with VABS norms about typical 
development, can prominently enhance our precision at estimating 
expected growth for autistic individuals in each subtype.

It is important to underscore that our clustering approach 
allows us to not only identify the optimal number of clusters, but also 
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Fig. 3 | Later life outcome stratification. a, Normalized stability plot, showing 
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describes how stable and generalizable that solution is to unseen new 
datasets. This three-cluster early snapshot model is 96% accurate, 
and the outcome subtype model is 99% accurate. Given this high level 
of generalization accuracy combined with the breadth of the dataset 
in which it was defined (for example, NDA data; n > 1,000), this result 
allows for high levels of confidence that these are stable and highly 
robust subtypes present in the autism population. This high level of 
confidence in generalization allows for immediate application of this 
subtyping model in new research. This immediate impact and ability 
to reuse our stratification model is novel with respect to most studies 
using unsupervised data-driven techniques. A large limitation of most 
studies using traditional clustering techniques is that those studies 
are descriptive of what occurs in the dataset in question, but give no 
indication about the generalizability of this solution in new unseen 
data, nor do they provide a reproducible easy-to-use stratification 
tool for the field to immediate apply in future research. Our approach 
immediately translates unsupervised data-driven discoveries into 
supervised knowledge that can be used in future studies to further 
progress the field.

One unique facet of our work is based on the idea of identifying 
developmental- and outcome-sensitive subtype information from 
early single snapshots of adaptive functioning in autistic individuals. 
The enhanced prognostic sensitivity of our subtyping approach has 
many potential high-value research applications that could accelerate 
future work. One example of this potential could be in a context like 
treatment research. For example, a specific behavioral early interven-
tion that shows a small on-average effect in all autistic toddlers may 
show a much more pronounced effect in a specific early snapshot 
adaptive functioning subtype. In another example, a clinical trial of 
a pharmacological treatment may show little to no effect when ana-
lyzed in a traditional type of case–control model. Such clinical trial 
data could be re-analyzed after pretreatment adaptive functioning 
stratification to examine whether the drug has a differential effect on 
a specific subset of individuals that show very different pretreatment 

adaptive functioning profiles. These are just a few of the many ways to 
deploy our reproducible stratification model in future research to help 
accelerate progress in the domain of personalized treatment research. 
Outside early behavioral and pharmacological intervention research, 
there may be other potential high-value research applications for our 
stratification approach that investigate how more supportive and 
personalized systems of care around an individual can better support 
optimal growth and outcomes for diagnosed individuals and their fami-
lies. It is theorized that the adaptive potential of autistic individuals can 
vary considerably with the degree of environmental support within an 
individual’s systems of care6. Therefore, it will be of key importance in 
future work to put these ideas to the test, and early snapshot adaptive 
functioning stratification is one way in which such hypotheses could 
be immediately testable. Finally, one further high-value impact of our 
work could be within the area of mental health and quality of life. Both 
are key areas that need further research, as many autistic individuals 
suffer from a myriad of other mental health issues and a poorer quality 
of life23–25. These issues also extend beyond the diagnosed individual 
and can affect the larger family unit (for example, caregivers)26,27. It will 
be of high importance for future work to better understand how mental 
health and quality of life in affected individuals and their families can 
be better facilitated by such stratification approaches. A key overall 
research direction here could be based on how systems of care around 
an individual could be better adapted based on knowledge about sub-
type stratification to enhance mental health and quality of life.

There are some important caveats and limitations to highlight 
about the current work. First, it should be noted that this early snapshot 
approach is distinct from the type of information gleaned from other 
work that tries to subtype based on differential trajectories on the VABS 
over the first two decades of life14,17–19. The latter attempts to utilize 
known trajectories to derive subtypes. Although such models are fit 
for optimally explaining within-individual and between-individual vari-
ance in trajectories, the opportunity for using it as an early prognostic 
tool is limited because full trajectory data on individuals are required 
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for the model to make label predictions. In contrast, our approach 
attempts to identify future predictive information via subtypes derived 
from single snapshots of VABS scores at early ages. Thus, the research 
applications for this niche are considerable and somewhat different 
from the other approaches, which are more fit to describing subtypes 
based on observed trajectories. Another caveat to underscore is that 
the current work is primarily relevant to the population from which the 
data are sampled—the autism population as represented in Western 
developed countries. Future work is needed to examine how well the 
current results and models generalize outside of this context. Finally, it 
is important to stress that our model was not developed for use outside 
research settings. It is not a tool that should be used in real-world clini-
cal applications or to make key real-world decisions. The primary value 
and intent behind developing such a model is to aid future research.

In conclusion, we have demonstrated that a single snapshot of 
early adaptive functioning from the VABS can be utilized to predict 
highly robust and reproducible data-driven subtype labels that are 
informative about differential outcomes in adaptive functioning as 
well as different developmental trajectories in areas like non-verbal 
cognitive ability, language and motor behavior. Because our clustering 
approach allows for immediate translation of unsupervised data-driven 
discoveries into supervised knowledge (for example, a classifier), this 
work stands out in being able to allow others in the field to directly 
utilize our subtyping model in future work. Our stratification applica-
tion (https://landiit.shinyapps.io/vineland_statification_proj/) allows 
individuals to insert their own VABS data and obtain subtype labels 

and developmental predictions about such subtypes as output. We 
hope that this work enables future research discoveries and is useful 
to help clinicians achieve initial expectations about prognosis based 
on limited early snapshots of adaptive functioning that are likely to be 
routine parts of initial clinical assessments.

Methods
All work reported here was approved by the Province of Trento Azienda 
Provinciale per i Servizi Sanitaria (APSS) ethical committee under 
protocol IIT EMN-755816-002-AUTISMS. Data collection for the UCSD 
ACE dataset was approved by the Institutional Review Board at the 
University of California, San Diego. Parents provided written informed 
consent according to the Declaration of Helsinki and were paid for 
their participation. All data analyzed in this work were anonymized.

NDA dataset
To first identify robust and reproducible early snapshot subtypes using 
unsupervised data-driven methods, we utilized large publicly available 
phenotypic data from NDA. Querying NDA in March 2020, we identi-
fied children with a diagnosis of autism at 6–72 months with at least 
one set of either a VABS II parent and caregiver form, VABS II survey 
form or VABS-315,16 (Fig. 1a). After data merging and cleaning, n = 1,098 
individuals from n = 48 different originating datasets remained for 
further downstream analysis. A subset of these individuals also had 
longitudinal VABS data (n = 410). For the cross-sectional early snap-
shot clustering analyses, only the earliest timepoint was used from 
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these individuals. However, in later follow-up analyses, we utilized 
the longitudinal subset for examining developmental trajectories. 
We also extracted another n = 2,561 individuals from the NDA dataset 
with VABS scores at older ages (6–61 years). An identical data-driven 
clustering approach was used for this older ‘outcome’ cohort. See the 
Supplementary Methods for more details about the NDA dataset and 
Supplementary Data 5 for a list of NDA IDs and collections from which 
these data were taken.

UCSD ACE dataset
A second independent dataset was also utilized, with which we applied 
the NDA early snapshot subtype prediction model to predict subtype 
labels based on early VABS scores. This second dataset was longitudinal 
and allowed for an independent test of longitudinal hypotheses about 
the subtype model’s sensitivity to detect differences in developmental 
trajectories. This longitudinal dataset was collected at the UCSD ACE 
and comprises n = 1,185 autistic children and n = 689 TD children aged 
9–72 months at their first VABS assessment (T1) (Supplementary Data 
6). UCSD ACE was sampled and ascertained through a combination of 
population-based autism risk screening at 12 months28 and community 
referrals. Longitudinal assessments took place approximately every 
six months from intake until outcome assessments at around four to 
five years of age. Clinical diagnosis of autism was made at UCSD ACE 
by expert clinicians at the outcome assessment and was aided by a full 
battery of tests including VABS, MSEL29 and the Autism Diagnostic 
Observation Schedule (ADOS-2)30. These diagnoses have been shown 
to be highly stable even from very early ages31. Intake VABS scores 
from UCSD ACE were utilized to predict subtype labels from the NDA 
prediction model and then subsequent longitudinal modeling was 
implemented on the full set of UCSD ACE VABS or MSEL scores to test 
for trajectory differences. Work utilizing this dataset was approved by 
the Institutional Review Board at the University of California, San Diego. 
Parents provided written informed consent according to the Declara-
tion of Helsinki and were paid for their participation. More details about 
the UCSD ACE dataset are provided in the Supplementary Methods.

Measures
VABS. The VABS is a widely used standardized and semi-structured 
parent interview for assessing adaptive functioning in typical and clini-
cal developmental populations throughout the lifespan. For children 
aged ≤72 months, the VABS assesses adaptive functioning in four major 
domains: communication, daily living skills, socialization and motor 
skills. For individuals beyond 72 months, only the communication, daily 
living skills and socialization domains are used. Standardized scores 
for each domain are computed to indicate where an individual scores 
relative to typically developing age-appropriate norms, whereby for 
each standardized score, the mean is 100 and the standard deviation is 
15. For model comparison purposes, we utilized these typically develop-
ing norms to construct VABS normative subtypes using cutoffs of 1 and 
2 standard deviations below the mean, applied to the Adaptive Behavior 
Composite score (ABC), computed using all four VABS domains (com-
munication, daily living skills, socialization and motor).

MSEL. The MSEL is a standardized developmental test that can be 
administered from birth to 68 months of age that assesses the develop-
ment of non-verbal cognitive, language and motor skills. Four of the 
five MSEL subscales were utilized in this work: VR, EL, RL and FM. In 
this work we examined growth over time in age-equivalent scores for 
each of these subscales. MSEL data were available for both the NDA and 
UCSD ACE datasets. For evaluating MSEL developmental trajectories, 
we utilized MSEL age-equivalent scores.

Stability-based relative clustering validation. Unsupervised 
data-driven clustering was achieved using our Python library (reval; 
https://github.com/IIT-LAND/reval_clustering) for implementing 

stability-based relative clustering validation32,33 (see Supplementary 
Methods for more details and Fig. 1). To reproduce this analysis please 
see our code, which is deposited at https://github.com/IIT-LAND/
vineland_subtyping. Our choice of clustering and classification algo-
rithms throughout the application of reval was k-means clustering 
and k-nearest-neighbors classification. For the NDA early snapshot 
dataset (6–72 months), we used a 55/45 training–validation split, while 
ensuring that age and sex were balanced across this split. Due to the 
much larger sample size of the older NDA outcome dataset, we used a 
67/33 training–validation split. After the data were split into training 
and validation sets, we implemented preprocessing steps such as batch 
correction for different VABS versions (see Supplementary Methods 
for more details), imputing missing values with a k-nearest neighbors 
imputation algorithm (sklearn.impute.KNNImputer), scaled data to a 
mean of 0 and standard deviation of 1 (sklearn.preprocessing.Stand-
ardScaler), and then applied UMAP34 dimensionality reduction (n_
neighbors = 30, min_dist = 0.0, n_components = 2, random_state = 42, 
metric = Euclidean). All preprocessing steps fitted on the training set 
were then applied to the validation set. After preprocessing, we apply 
a twofold internal cross-validation scheme to identify the optimal 
number of clusters (k-range, 2–10) that minimizes normalized cluster 
stability. This internal cross-validation scheme was repeated 100 times 
with different cross-validation splits to ensure robustness. Finally, a 
grid search procedure was utilized to select the optimal hyperparam-
eters (for example, k = 5 neighbors for the k-nearest-neighbor classifier) 
utilized throughout. The final optimal k identified from the training 
set was applied to the validation set for k-means clustering, then a k = 5 
k-nearest-neighbor classifier was fit to the training set and then applied 
to predict clustering labels on the validation set. The generalization 
accuracy on the validation set was then computed by comparing the 
classifier’s predicted labels to the actual clustering labels identified 
in the validation set.

Although stability-based relative clustering validation in reval tells 
us about the stability of clustering solutions, it does not test whether 
the actual solution is indicative of true clusters. Therefore, we fol-
lowed up on the reval analysis by using the SigClust library in R to test 
whether the observed clustering solution significantly differs from 
the null hypothesis that the data originate from a single multivariate 
Gaussian distribution35.

Longitudinal data analyses. To test for subtype differences in devel-
opmental trajectories, we utilized longitudinal data present in NDA and 
a second independent dataset, UCSD ACE. After reval identified the 
optimal clustering solution that generates high levels of generalization 
accuracy, we built a prediction model (that is, a k-nearest-neighbors 
classifier) that learns the subtype distinctions from NDA data, then 
applied this model to both NDA and UCSD ACE longitudinal datasets. 
For these prediction models we utilized the earliest VABS observa-
tion per each individual, after identical preprocessing steps as those 
described before implementation of reval (for example, imputation, 
scaling and UMAP dimensionality reduction). For testing developmen-
tal trajectory differences, we utilized linear mixed-effect models (that 
is, the lmer function in the lme4 R library). The dependent variable in 
these models was either VABS domain standardized scores or MSEL 
subscale age-equivalent scores. Fixed effects were specified as age, 
subtype and the age*subtype interaction, and the random effect of 
age was modeled within-subject with random intercepts and slopes. 
Because multiple comparisons were made, we use false discovery 
rate (FDR) correction at a level of q < 0.05. Follow-up tests for specific 
pairwise group comparisons were made to decompose and describe 
the age*subtype interactions, and similar FDR control for multiple 
comparisons was used.

Model comparisons. To evaluate the utility of the VABS early snap-
shot subtyping model against other types of models, we compared 
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how well a model using VABS typically developing norms using the 
ABC score (VABS norm; for example, 1 and 2 standard deviation cut-
offs) could predict trajectories. The ABC score was computed using 
all four subscales, motor included, for the early snapshot cohort (<72 
months), and using only the communication, daily living skills and 
socialization for the outcome cohort (>72 months). We also examined 
a hybrid model combining the reval subtype labels with the VABS 
norm model (that is, hybrid label = revalLabel_VABSnormLabel). 
Models were compared by evaluating how well they explain variance 
in longitudinal MSEL analyses, with the AIC being used as the model 
comparison statistic. Models with lower AIC scores are considered 
better and we also computed AIC difference scores (ΔΑΙC) as a quan-
titative indicator of just how much better the best model is than the 
comparison model. ΔΑΙC > 10 indicates that the comparison model 
has little to no support for being as good as the best model with  
the lowest AIC36.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this Article.

Data availability
All data utilized in this work can be found in the National Institute of 
Mental Health Data Archive (NDA; https://nda.nih.gov). NDA global 
unique identifiers (GUID) and collection IDs are provided in Supple-
mentary Data 5 to identify individuals used in all analyses on the NDA 
dataset. For the UCSD ACE data, the data are available on NDA through 
collection IDs 9, 2466, 2968, 2290 and 2115.

Code availability
Analysis code to reproduce the analyses and figures is available on 
GitHub (https://github.com/IIT-LAND/vineland_subtyping). The reval 
Python library can be found on GitHub (https://github.com/IIT-LAND/
reval_clustering) and the documentation at https://reval.readthedocs.
io. The Shiny app that allows users to input their own VABS data and 
get subtype predictions can be found at https://landiit.shinyapps.io/
vineland_statification_proj/.
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