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A major goal of precision medicine is to predict prognosis based on
individualized information at the earliest possible points in development.
Using early snapshots of adaptive functioning and unsupervised data-
driven discovery methods, we uncover highly stable early autism subtypes
thatyield information relevant to later prognosis. Data from the National
Institute of Mental Health Data Archive (NDA) (n =1,098) was used to
uncover three early subtypes (<72 months) that generalize with 96%
accuracy. Outcome datafrom NDA (n =2,561; mean age, 13 years) also
reproducibly clusters into three subtypes with 99% generalization accuracy.
Early snapshot subtypes predict developmental trajectories in non-verbal
cognitive, language and motor domains and are predictive of membership
indifferent adaptive functioning outcome subtypes. Robust and prognosis-

relevant subtyping of autism based on early snapshots of adaptive
functioning may aid future research work via prediction of these subtypes
with our reproducible stratification model.

Autism is a clinical consensus label based on early difficulties in the
domains of social-communicationand restricted repetitive behaviors'.
Although the label of autism helps maximize consensus and reliability
amongst clinical diagnostic judgments based on behavior, it may be
less useful for many otherimportant clinical and translational research
objectives, such as honing in on differential biology, outcomes and
treatment responses’’. With a view towards applying precision medi-
cine*’ to the field of autism, we should aim to move closer to labels
that have higher utility for these types of objectives. As a step in this
direction, a recent Lancet commission has proposed a call to action
for more precise labels, such as ‘profound autism’, to identify the most
profoundly affected individuals, who require extra services and sup-
port®. Thus, afirst-level distinctionin the autism population should be
made that separates out autisticindividuals characterized by ‘disability’
versus ‘difference’ in developmental outcomes.

Inthis Article we characterize autism subtypes within the domain
of adaptive functioning. There are several important reasons for why
subtyping based onadaptive functioning may beimportant. First,adap-
tive functioning is a pivotal domain with high ecological validity and

predictive power for explaininglater life outcomes (for example, later
independentliving, educational attainment and employment)”°,and
isalso associated with services and unmet needs". Variability in adap-
tive functioningin the autism populationis considerable, ranging from
very profoundly affected individuals to those within typically develop-
ing (TD) norms' ™. Thus, distinctions within adaptive functioning are
clearly needed to separate clinically meaningful and outcome-sensitive
heterogeneity in autism. Second, adaptive functioning can be quickly
measured throughout the lifespan with standardized clinical assess-
ment tools such as the Vineland Adaptive Behavior Scales (VABS)"*.
This tool offers the ability to carry out quick, repeated and afford-
able assessments of an individual throughout their lifespan and can
be deployed in multiple settings. Other advantages of the VABS are
age-normalized scores and the ability to interpret minimal clinically
significant change®. Third, changing adaptive functioning hasbecome
one of the key objectives for intervention research’. Thus, stratifica-
tion models that can provide useful subtype labels may be impor-
tant for facilitating advances in personalizing interventions. Fourth,
adaptive functioning can be disentangled from an individual’s level
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Fig.1|Schematic outlining the data analysis plan. a-c, The dataset used for
initial data-driven discovery and validation through stability-based clustering
is the NDA dataset (https://nda.nih.gov). NDA data are fed through the pipeline
shownina, whichillustrates the reval algorithm pipeline. Once a robust and

highly generalizable classifier is built from the NDA dataset, we apply that
snapshot prediction model to the UCSD ACE longitudinal dataset. b,c, The
analysis pipeline for applying the subtype prediction model (b) and then
modeling developmental trajectories (c).

of intellectual functioning®. Although there is arelationship between
adaptive functioning and large differencesinintellectual functioning
(for example, contrasting individuals with IQ < 70 versus 1Q > 70),
amongst those with 1Q > 70, the variability in adaptive functioning is
still considerable, ranging from highly affected individuals to individu-
als within the normative range for their age'. As individuals become
older, the potential discrepancy between 1Q and adaptive functioning
canwiden™", Thus, subtyping based on adaptive functioning may be
able to capture real-world, clinically meaningful variability between
individuals, even within the range of intact intellectual functioning.
Previous longitudinal work has attempted to identify subtypes
based on differential trajectories of the VABS over the first two decades
of life*'”"°, Although this work is immensely important for describ-
ing how different types of individual develop in terms of adaptive
functioning, it cannot be utilized for early stratification in impor-
tant clinical contexts such as intervention, because rich longitudinal
information is not known about participants in such studies. A gap is
present whereby thereis akey need to be able to stratify individualsin

developmental-and outcome-sensitive ways based on single snapshots
of information at early stages in development. If there was a tool that
allowed for highly robust and reproducible subtyping based on early
single snapshots of adaptive functioning, this would potentially fill
this gap and lead to further insights about how to predict treatment
response and outcome in such individuals. Given this potential, we
aimed to develop a stratification model that allows for data-driven
discovery of robust and reproducible VABS subtypes based onasingle
snapshot of early VABS scores. We then show how subtypes are useful
for predicting subsequent adaptive functioning outcome subtypes
and developmental trajectories in non-verbal cognitive, language and
motor domains.

Results

Identification of adaptive functioning subtypes
Inourfirstanalysis, we sought to test whether unsupervised data-driven
stratifications could be madein autismbased on early snapshots (<72
months) of adaptive functioning using the VABS. Our analysis approach
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applies stability-based relative clustering validation to identify data-
driven clustersthatarestable and reproducible inindependent datasets
(Fig.1). Wefound that athree-cluster solution is unequivocally the best
cluster solution that minimizes normalized cluster stability. This model
produces very high generalization accuracy (96%) inindependent data
(for example, the held-out National Institute of Mental Health Data
Archive (NDA) Validation set; Fig. 2a and Supplementary Data1). An
equal male bias is present in each of the three subtypes (x*(2) = 3.38,
P=0.19). Importantly, the three-subtype solution heavily deviates from
the null hypothesis that the data originate from a single multivariate
Gaussian distribution (P=9.99 x 107). Plots of the Uniform Manifold
Approximation and Projection (UMAP) reduced data show evidence of
three distinct peaks, one for each of the three subtypes (Fig. 2b). To bet-
ter describe this three-subtype solution, we next plotted VABS scores
for each subtype and in each VABS domain (Fig. 2c,d). We see a clear
distinction between the subtypesin terms of ability—high, mediumto
low—thatis preserved across each VABS domain. Although the subtype
distributions overlap to some extent, the size of differences between
subtypes is typically quite large (for example, Cohen’s d > 1) for each
pairwise subtype comparison (Fig. 2c,d), and these effect sizes are
robustly preserved inindependent training and validation sets.

We next applied the same stratification approach to a much
older NDA outcome-relevant cohort (n=2,561; 6-61 years; mean age
of 13 years). A three-subtype solution emerges from this dataset with
99% generalization accuracy and strong rejection of the null hypothesis
that data originate from a single multivariate Gaussian distribution
(P=9.99 x107%; Fig. 3a,b). One of the subtypes can be considered an
extreme outlier subtype, because the scores are at floor levels near
20 and have hardly any variability around this floor (Fig. 3¢,d). This
subtype is relatively small (n = 79) and comprises ~-3% of all individu-
alsinthis older cohort. The remaining two subtypes can be described
asrelatively high or low and are both relatively large and equal in size
(high,n=1,444;low,n=1,038).

Continuity of early snapshot subtypes at outcome

Although early development is quite variable, later-life outcomes tend
to be much more stable®'®, Studies examining predictors of later-life
adaptive functioning have shown that better adaptive functioning
earlier in life predicts better later-life outcomes™. Thus, the presence
of ahigh and low group at early ages may be prognostically sugges-
tive of good versus poor later-life outcome. However, the presence
of athird subtype between these two (the medium subtype) may sug-
gest that this subtypeis more uncertain regarding their later-life good
versus poor outcomes. To test these predictions, we examined the
correspondence of subtype labels in a subset of n =130 individuals
present in both the NDA early snapshot and older outcome datasets.
As predicted, individuals in the early high or low subtypes are highly
probable of remaining in that same high or low subtype at outcome
(high = 82%, 95% CI = 69-93%; low = 84%, 95% Cl = 71-94%; high and
low combined = 83%, 95% Cl = 75-91%). In contrast, the early snapshot
medium subtype ismuch more ambiguous with respect to later subtype
outcomes, with ~57% (95% Cl = 43-71%) moving to the high outcome
subtype, and the remaining 43% (95% CI = 28-56%) moving to the low
outcome subtype (Fig. 3e). Corroborating this finding as well as previ-
ouswork™, longitudinal VABS data show relatively flat or slightly declin-
ing standardized-score group-level trajectories throughout the time
period up to 72 months and with no differences intrajectories between
the subtypes (Supplementary Fig.1and Supplementary Data2 and 3).

Developmental trajectories in adaptive functioning subtypes

In our next set of analyses we examined whether autism early adap-
tive functioning subtypes are distinctions that are sensitive to differ-
ential trajectories in non-verbal cognitive, language and fine motor
domains, as measured by the Mullen Scales of Early Learning (MSEL)
through the first five and a half years of life. In longitudinal NDA data,

we find age*subtype interactions throughout MSEL visual reception
(VR), expressive language (EL), receptive language (RL) and fine motor
(FM) subscales. These differences in developmental trajectories are
most pronounced for the low subtype when compared with the highor
mediumsubtypes, whereas differences between the high and medium
subtypes are less strong (Fig. 4a and Supplementary Data 2 and 3).
Because clustering was applied to the first timepoint of the NDA data,
theseresults are notindependent of the clustering procedure and may
bebiased. Thus, inthe next analysis we tested for subtype differences
inthe MSEL developmental trajectories using a large and completely
independent dataset—the University of California, San Diego Autism
Center of Excellence (UCSD ACE) dataset (n =1,185). Again, we discover
age*subtype interactions across all MSEL subscales. These effects are
driven by age*subtype interactions for all pairwise between-subtype
comparisons except for the FM subscale, where strong differences
were much less apparent (Fig. 4b and Supplementary Data 2 and 3).
Including sex asa covariate in our longitudinal models resulted in nearly
identical results (Supplementary Data2). These results provide strong
independent replication of the subtype MSEL trajectory differences.
Overall, these results indicate that autism adaptive functioning sub-
types isolated from early snapshots from the VABS are predictive of
later trajectory differences across a range of developmental domains
such as non-verbal cognitive ability, language and fine motor skills.

Comparing subtype versus normative models

Our clustering analysis provides evidence that autism is not one
homogeneous population with respect to early or later-life adaptive
functioning. We have also shown that early snapshot adaptive function-
ing subtypes are outcome-relevant and developmentally sensitive to
variability in non-verbal cognitive, language and motor trajectories.
However, isthe early snapshot subtyping model better than other com-
peting models at explaining developmental trajectories? To answer this
question we compared the early snapshot subtyping model toanorma-
tive model that uses typical-development defined age-standardized
norm cutoffs for adaptive functioning on the VABS (VABS norm). The
VABS norm model uses 1and 2 standard deviation cutoffs below the
mean to create three subtypes. These subtype labels are then used in
longitudinal MSEL models of the UCSD ACE data (Supplementary Data
2 and 3). Model comparison Akaike information criteria (AIC) statistics
were computed for both the reval subtype and VABS norm models.
We find that the VABS norm model produces lower AIC values than
the reval subtype model and with AAIC values greater than 10. This
indicates that traditionally defined ‘disability’ subtypes from VABS
norms predict developmental trajectories as well or better than the
data-driven reval autism subtype model onits own. We next created a
‘hybrid’ model based on the combination of the reval autism subtype
and VABS norm labels (Fig. 5a,b and Supplementary Data2 and 3). This
hybrid model produces the lowest AIC values, indicative of amuch bet-
ter model than either reval subtyping or the VABS norm model alone
(AAIC > 10; Fig. 5¢). Thus, improved utility for predicting cognitive and
motor developmental trajectories could be facilitated through the
combination of both adata-driven autism-specific subtyping approach
andinformation regarding where the child stands relative to typically
developing adaptive functioning norms.

Finally, toaid future research applications, we developed an appli-
cation that will allow users to input VABS scores and receive subtype
labels as output (https://landiit.shinyapps.io/vineland_statification_
proj/). The intent behind this tool is to allow the field to immediately
begin using these subtype labels for a priori experimental design in
future studies. Furthermore, at anindividualized level, the application
may be useful for giving expectations behind developmental progress
ofanindividual, given their subtype. For example, using the beta coef-
ficients from the developmental trajectory models, we can express the
expected rate of growth per month in terms of age-equivalent scores
for each domain on the MSEL (Supplementary Data 4).

Nature Mental Health | Volume 1| May 2023 | 327-336

329


http://www.nature.com/NatMentHealth
https://landiit.shinyapps.io/vineland_statification_proj/
https://landiit.shinyapps.io/vineland_statification_proj/

Article

https://doi.org/10.1038/s44220-023-00056-6

Validation NDA Training
0.4 1 Communication Living skills Socialization Motor
> 125 125 125 125
3 | Accuracy e °®
g 03 96% <
- 100 § L 100 ~ 100 + 100 ~
N o o o 2
= 027 S 1<} S S
O [} (S} o
IS @ 7] 2] @
5 8 75 + 8 75 Te 8 75 g 75
Z 014 N P N L3 N N
Training -g o g B 5 —g E
o 2 504 ® 2 50 A + 2 50 A 2 50
© @ @ @
2 4 6 8 10 @ @ @ @
Number of clusters (k) 25 - 25 - 25 25
b NDA Training T T ; T T T
X0 X O X0
SR S SR
High . 1.36 O High 6] High . 166 O 267 175 O
Med | 1.5 O 1.86 Med Med [1.82 O 1.66 1.02 0 175
0 15 . 0 6] 1.82. 0 1.02 2.67
o~
S 3 5 g 5 g B
s = I = I = I
> d d d d
0 K 0 I [0} mam 4 [0} 4
d NDA Training
Communication Living skills Socialization Motor
125 125 125 125
.
® L Py
$ ’
' 100 - 100 100 +
UMAP 1 ) ) ) ©
9] 9] S S
. o o o o
NDA Validation 2 75 2 75 - 5 75
[} (5 (5} [}
N N N N
2 2 2 2
% @© @ @
2 50 - 'g 50 1 'g 'g 50 1
o) 8 ) o)
& 7] & &
25 1 25 1 25 1 25 1
T T T T T T
X0 X0 X0
o S SN S
=
S|
High .1.34 ] High 6] High 177 O 247 144 O
Med [1.24 O 1.34 Med Med [1.84 O 1.77 122 0 144
0 124 . ] 0 [1.84 . 0 122 247
o < o < ° <
(5} (o2} Q (®2} Q o
= T = T = T
d d d d
0 I 0 e 4 0 w4 0] 4

UMAP 1

Fig. 2| Unsupervised data-driven discovery of early snapshot autism adaptive
functioning subtypes. This figure shows the results of stability-based relative
clustering validation applied to the early snapshot NDA dataset. a, Normalized
stability plot. Error bars in this plot represent the 95% confidence interval for
normalized stability from repeated cross-validation. The optimal cluster solution
kis the one that minimizes the normalized stability. It is clear that k=3 is the
optimal solution, minimizing the normalized cluster stability. Inanindependent
validation set, this k = 3 solution generalizes with 96% accuracy. b, Plots of
UMAP-reduced datainputinto the clustering for both the NDA Training (top) and

Validation (bottom) sets. The individuals are colored by subtype over the density
plots. c,d, Graphical description of the subtypes across each VABS domain,

with scatter boxplots and heatmaps depicting the pairwise standardized effect
size difference (Cohen’s d) between the subtypes; plots are shown for both the
NDA Training set (c) and Validation (d) set. The boxplots show the interquartile
range (IQR; first quartile, 25th percentile; third quartile, 75th percentile), and the
whiskers indicate Q1 - (1.5 x IQR) or Q3 + (1.5 x IQR). The line within the boxplot
represents the median. The sample sizes for all panels in this figure were n = 603
for the NDA Training set and n = 495 for the NDA Validation set.

Discussion
In this study we aimed to identify developmental- and outcome-sen-
sitive stratifications of the early autism spectrum based on adaptive

functioning profiles. Standardized clinical assessment of adaptive func-
tioning via the VABS offers a simple, easy-to-administer and rigorous
way to obtain such early snapshots of stratified adaptive functioning
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Fig.3 | Later life outcome stratification. a, Normalized stability plot, showing
that the best clustering solutionis k = 3. This solution achieves 99% accuracy
when generalizing to the validation set. Error bars in this plot represent the 95%
confidence interval for normalized stability from repeated cross-validation.

b-d, UMAP scatter boxplots (c,d) and density plots (b) showing the high and low
subtypes. The boxplots indicate IQR (first quartile, 25th percentile; third quartile,
75th percentile), and the whiskers indicate Q1 - (1.5 x IQR) or Q3 + (1.5 X IQR).

The line within the boxplot represents the median. The plots for NDA Training (c)
and NDA Validation (d) describe the subtypes for each of the three VABS domains
(communication, living skills and socialization). e, Alluvial plot of the n =130
subset of individuals that were in both early snapshot (left) and later life outcome
(right) cohorts. The sample sizes for a-d were n =1,715 for the NDA Training set
and n = 846 for the NDA Validation set.

profiles. We found the presence of robust and stable clusters that highly
deviate from asingle multivariate Gaussian null distribution. This result
indicates that autismis not one homogeneous population with respect
toadaptive functioning. Inearly development, autism canbe described
by three subtypes that splitinto high, medium and low adaptive func-
tioning strata. Similarly, at older ages (for example, mean age 13 years
in the outcome cohort), autism can also be robustly clustered into
three subtypes. One of these subtypes is an extreme outlier with very
low VABS scores. The other two subtypes correspond to relatively high
versus low subtypes. We also discovered that some of the early snapshot
subtypes hold information sensitive to later outcomes. Both early high
and low subtypes are highly likely to remain in those same subtypes
atlater ages. In contrast, the early medium subtype is more uncertain
in terms of later outcome subtype membership. This result indicates
that early snapshot stratification canresultinlabels that are outcome-
sensitive, especially ifanindividual fallsinto the early snapshot high or
low subtypes. For individuals falling into the early snapshot medium
subtype, it may be pertinent for future work to examine what might
bethe predictors that nudge these individuals into different outcome
subtypes (forexample, the influence of different kinds of intervention,
comorbid attention deficit hyperactivity disorder, executive function-
ing, environmental or educational influences)"”*° 2,

The discovered subtypes also hold predictive information about
trajectories outside adaptive functioning, such as the non-verbal

cognitive, language and motor domains measured by the MSEL. Evi-
dence of age*subtype interactions suggests that the subtypes show
substantial differences in the steepness of their slopes over age (for
example, rate of growth), with the most accelerated development pre-
sentinthe high group, and the more incremental and slowest growth
exhibited by the low group. This result suggests that our subtyping
approachyields robustand reproducible subtypelabels that are devel-
opmentally sensitive outside of adaptive functioning and which could
be utilized to inform expectations about prognosis in these domains.
Finally, while the subtype model explains substantial variance in devel-
opmental trajectories, the model could be further refined by simple
knowledge of where an individual stands with respect to TD adaptive
functioning norms. Combining the knowledge of both TD-defined
norms and autism-specific norms for subtyping, we constructed a
hybrid model, where labels are informed by where an individual is
relative to both TD and autism norms. This hybrid model was proven
tobethebest of allmodels at predicting variance in non-verbal cogni-
tive, language and motor trajectories. Therefore, one key utility of our
data-driven autism-specific subtyping approach is that it provides
useful labels that, when combined with VABS norms about typical
development, can prominently enhance our precision at estimating
expected growth for autistic individuals in each subtype.

It is important to underscore that our clustering approach
allows us to not only identify the optimal number of clusters, but also
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lines, and subtype trajectories (light purple, high; maroon, medium; cream,
low; black, TD) are shown in solid lines with 95% confidence bands around them.
Sample sizes: n=701for a (autism - high, n=287; autism - medium, n =274;
autism - low, n =140); n=1,185 for autistic (autism - high, n = 702; autism -
medium, n=410; autism - low, n =73) and n = 689 for TD children for b.

describes how stable and generalizable that solutionisto unseen new
datasets. This three-cluster early snapshot model is 96% accurate,
and the outcome subtype modelis 99% accurate. Given this high level
of generalization accuracy combined with the breadth of the dataset
inwhich it was defined (for example, NDA data; n>1,000), this result
allows for high levels of confidence that these are stable and highly
robust subtypes present in the autism population. This high level of
confidence in generalization allows forimmediate application of this
subtyping model in new research. This immediate impact and ability
toreuse our stratification model is novel with respect to most studies
using unsupervised data-driven techniques. A large limitation of most
studies using traditional clustering techniques is that those studies
are descriptive of what occurs in the dataset in question, but give no
indication about the generalizability of this solution in new unseen
data, nor do they provide a reproducible easy-to-use stratification
tool for thefield toimmediate apply in future research. Our approach
immediately translates unsupervised data-driven discoveries into
supervised knowledge that can be used in future studies to further
progress the field.

One unique facet of our work is based on the idea of identifying
developmental- and outcome-sensitive subtype information from
early single snapshots of adaptive functioning in autistic individuals.
The enhanced prognostic sensitivity of our subtyping approach has
many potential high-value research applications that could accelerate
future work. One example of this potential could be in a context like
treatment research. For example, a specificbehavioral early interven-
tion that shows a small on-average effect in all autistic toddlers may
show a much more pronounced effect in a specific early snapshot
adaptive functioning subtype. In another example, a clinical trial of
a pharmacological treatment may show little to no effect when ana-
lyzed in a traditional type of case-control model. Such clinical trial
data could be re-analyzed after pretreatment adaptive functioning
stratification to examine whether the drug has a differential effect on
aspecific subset of individuals that show very different pretreatment

adaptive functioning profiles. These are just a few of the many ways to
deploy our reproducible stratification modelin futureresearch to help
accelerate progressinthe domain of personalized treatment research.
Outside early behavioraland pharmacological interventionresearch,
there may be other potential high-value research applications for our
stratification approach that investigate how more supportive and
personalized systems of care around anindividual can better support
optimal growth and outcomes for diagnosed individuals and their fami-
lies.Itistheorized that the adaptive potential of autisticindividuals can
vary considerably with the degree of environmental support withinan
individual’s systems of care®. Therefore, it willbe of key importancein
future work to put these ideas to the test, and early snapshot adaptive
functioning stratification is one way in which such hypotheses could
beimmediately testable. Finally, one further high-value impact of our
work could be withinthe area of mental health and quality of life. Both
are key areas that need further research, as many autistic individuals
suffer fromamyriad of other mental healthissues and a poorer quality
of life”, These issues also extend beyond the diagnosed individual
and can affect the larger family unit (for example, caregivers)*. It will
be of highimportance for future work to better understand how mental
health and quality of life in affected individuals and their families can
be better facilitated by such stratification approaches. A key overall
research direction here could be based on how systems of care around
anindividual could be better adapted based on knowledge about sub-
type stratification to enhance mental health and quality of life.

There are some important caveats and limitations to highlight
about the current work. First, it should be noted that this early snapshot
approachisdistinct from the type of information gleaned from other
work thattriesto subtype based on differential trajectories on the VABS
over the first two decades of life’*'”"'?, The latter attempts to utilize
known trajectories to derive subtypes. Although such models are fit
for optimally explaining within-individual and between-individual vari-
anceintrajectories, the opportunity for usingitas an early prognostic
toolis limited because full trajectory data onindividuals are required
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Fig.5|Model comparison between the autism-specific reval subtyping,
VABS normative model and a hybrid model. The hybrid model was built by
combining the adaptive functioning subtype labels obtained using reval with
those obtained by stratifying using the VABS norm model. a, Spaghetti plots
ofthe developmental trajectories for MSEL VR, EL, RL and FM subscales for the
five hybrid subtypes. Individual trajectories are shown in the background as
transparent lines, and subtype trajectories are shown as solid lines with 95%
confidence bands around them. b, Confusion matrix. The subtype colorsina

reval [l VABS norms [l Hybrid

areindicative of the subtypes shownin the cells of the confusion matrix (b),

and sample sizes for the plotsin aare indicated in the cells in b. This confusion
matrix indicates where individuals fall with respect to either the reval or VABS
norm subtyping models. ¢, AIC model comparison statistics for comparing the
reval (light gray), VABS norm (dark gray) and hybrid (black) models. AIC is shown
on theyaxis, and the models on the x axis. The model with the lowest AIC is
considered best.

for the model to make label predictions. In contrast, our approach
attempts toidentify future predictive information viasubtypes derived
fromsingle snapshots of VABS scores at early ages. Thus, the research
applications for this niche are considerable and somewhat different
from the other approaches, which are morefit to describing subtypes
based on observed trajectories. Another caveat to underscore is that
the current work is primarily relevant to the population from which the
data are sampled—the autism population as represented in Western
developed countries. Future work is needed to examine how well the
current results and models generalize outside of this context. Finally, it
isimportantto stress that our model was not developed for use outside
research settings. Itisnotatool that should be usedin real-world clini-
calapplications or to make key real-world decisions. The primary value
and intent behind developing such amodelis to aid future research.
In conclusion, we have demonstrated that a single snapshot of
early adaptive functioning from the VABS can be utilized to predict
highly robust and reproducible data-driven subtype labels that are
informative about differential outcomes in adaptive functioning as
well as different developmental trajectories in areas like non-verbal
cognitive ability, language and motor behavior. Because our clustering
approachallows forimmediate translation of unsupervised data-driven
discoveriesinto supervised knowledge (for example, a classifier), this
work stands out in being able to allow others in the field to directly
utilize our subtyping modelin future work. Our stratification applica-
tion (https://landiit.shinyapps.io/vineland_statification_proj/) allows
individuals to insert their own VABS data and obtain subtype labels

and developmental predictions about such subtypes as output. We
hope that this work enables future research discoveries and is useful
to help clinicians achieve initial expectations about prognosis based
onlimited early snapshots of adaptive functioning that are likely tobe
routine parts of initial clinical assessments.

Methods

Allwork reported here was approved by the Province of Trento Azienda
Provinciale per i Servizi Sanitaria (APSS) ethical committee under
protocol IIT EMN-755816-002-AUTISMS. Data collection for the UCSD
ACE dataset was approved by the Institutional Review Board at the
University of California, San Diego. Parents provided written informed
consent according to the Declaration of Helsinki and were paid for
their participation. All data analyzed in this work were anonymized.

NDA dataset

Tofirstidentify robust and reproducible early snapshot subtypes using
unsupervised data-driven methods, we utilized large publicly available
phenotypic data from NDA. Querying NDA in March 2020, we identi-
fied children with a diagnosis of autism at 6-72 months with at least
one set of either a VABS Il parent and caregiver form, VABS Il survey
form or VABS-3"'° (Fig.1a). After datamerging and cleaning, n =1,098
individuals from n = 48 different originating datasets remained for
further downstream analysis. A subset of these individuals also had
longitudinal VABS data (n = 410). For the cross-sectional early snap-
shot clustering analyses, only the earliest timepoint was used from
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these individuals. However, in later follow-up analyses, we utilized
the longitudinal subset for examining developmental trajectories.
We also extracted another n = 2,561 individuals from the NDA dataset
with VABS scores at older ages (6-61 years). An identical data-driven
clustering approach was used for this older ‘outcome’ cohort. See the
Supplementary Methods for more details about the NDA dataset and
Supplementary Data 5 foralist of NDA IDs and collections from which
these data were taken.

UCSD ACE dataset

Asecondindependent dataset was also utilized, with whichwe applied
the NDA early snapshot subtype prediction model to predict subtype
labels based onearly VABS scores. This second dataset was longitudinal
and allowed for anindependent test of longitudinal hypotheses about
the subtype model’s sensitivity to detect differencesin developmental
trajectories. This longitudinal dataset was collected at the UCSD ACE
and comprises n=1,185autistic childrenand n = 689 TD children aged
9-72months at their first VABS assessment (T1) (Supplementary Data
6). UCSD ACE was sampled and ascertained through a combination of
population-based autismrisk screening at 12 months? and community
referrals. Longitudinal assessments took place approximately every
six months from intake until outcome assessments at around four to
five years of age. Clinical diagnosis of autism was made at UCSD ACE
by expert clinicians at the outcome assessment and was aided by a full
battery of tests including VABS, MSEL* and the Autism Diagnostic
Observation Schedule (ADOS-2)*. These diagnoses have been shown
to be highly stable even from very early ages®. Intake VABS scores
from UCSD ACE were utilized to predict subtype labels from the NDA
prediction model and then subsequent longitudinal modeling was
implemented on the full set of UCSD ACE VABS or MSEL scores to test
fortrajectory differences. Work utilizing this dataset was approved by
the Institutional Review Board at the University of California, San Diego.
Parents provided written informed consent according to the Declara-
tion of Helsinki and were paid for their participation. More details about
the UCSD ACE dataset are provided in the Supplementary Methods.

Measures

VABS. The VABS is a widely used standardized and semi-structured
parentinterview for assessing adaptive functioningin typical and clini-
cal developmental populations throughout the lifespan. For children
aged<72months, the VABS assesses adaptive functioning in four major
domains: communication, daily living skills, socialization and motor
skills. Forindividuals beyond 72 months, only the communication, daily
living skills and socialization domains are used. Standardized scores
for eachdomain are computed to indicate where an individual scores
relative to typically developing age-appropriate norms, whereby for
eachstandardized score, the meanis 100 and the standard deviationis
15.For model comparison purposes, we utilized these typically develop-
ing norms to construct VABS normative subtypes using cutoffs of 1and
2 standard deviations below the mean, applied to the Adaptive Behavior
Composite score (ABC), computed using all four VABS domains (com-
munication, daily living skills, socialization and motor).

MSEL. The MSEL is a standardized developmental test that can be
administered from birth to 68 months of age that assesses the develop-
ment of non-verbal cognitive, language and motor skills. Four of the
five MSEL subscales were utilized in this work: VR, EL, RL and FM. In
this work we examined growth over time in age-equivalent scores for
eachofthese subscales. MSEL datawere available for both the NDA and
UCSD ACE datasets. For evaluating MSEL developmental trajectories,
we utilized MSEL age-equivalent scores.

Stability-based relative clustering validation. Unsupervised
data-driven clustering was achieved using our Python library (reval;
https://github.com/IIT-LAND/reval_clustering) for implementing

stability-based relative clustering validation®>* (see Supplementary
Methods for more details and Fig. 1). To reproduce this analysis please
see our code, which is deposited at https://github.com/IIT-LAND/
vineland_subtyping. Our choice of clustering and classification algo-
rithms throughout the application of reval was k-means clustering
and k-nearest-neighbors classification. For the NDA early snapshot
dataset (6-72 months), we used a 55/45 training-validation split, while
ensuring that age and sex were balanced across this split. Due to the
much larger sample size of the older NDA outcome dataset, we used a
67/33 training-validation split. After the data were split into training
and validationsets, weimplemented preprocessing steps such as batch
correction for different VABS versions (see Supplementary Methods
for more details), imputing missing values with a k-nearest neighbors
imputation algorithm (sklearn.impute.KNNImputer), scaled datatoa
mean of 0 and standard deviation of 1 (sklearn.preprocessing.Stand-
ardScaler), and then applied UMAP** dimensionality reduction (n_
neighbors =30, min_dist = 0.0, n_components = 2,random_state = 42,
metric = Euclidean). All preprocessing steps fitted on the training set
were then applied to the validation set. After preprocessing, we apply
a twofold internal cross-validation scheme to identify the optimal
number of clusters (k-range, 2-10) that minimizes normalized cluster
stability. Thisinternal cross-validation scheme was repeated 100 times
with different cross-validation splits to ensure robustness. Finally, a
grid search procedure was utilized to select the optimal hyperparam-
eters (forexample, k = Sneighbors for the k-nearest-neighbor classifier)
utilized throughout. The final optimal k identified from the training
set was applied to the validation set for k-means clustering, thenak=>5
k-nearest-neighbor classifier was fit to the training set and then applied
to predict clustering labels on the validation set. The generalization
accuracy on the validation set was then computed by comparing the
classifier’s predicted labels to the actual clustering labels identified
inthe validation set.

Although stability-based relative clustering validationin revaltells
us about the stability of clustering solutions, it does not test whether
the actual solution is indicative of true clusters. Therefore, we fol-
lowed up on the reval analysis by using the SigClust library in R to test
whether the observed clustering solution significantly differs from
the null hypothesis that the data originate from a single multivariate
Gaussian distribution®,

Longitudinal data analyses. To test for subtype differencesin devel-
opmental trajectories, we utilized longitudinal data presentin NDA and
asecond independent dataset, UCSD ACE. After reval identified the
optimal clustering solution that generates high levels of generalization
accuracy, we built a prediction model (that is, a k-nearest-neighbors
classifier) that learns the subtype distinctions from NDA data, then
applied this model to both NDA and UCSD ACE longitudinal datasets.
For these prediction models we utilized the earliest VABS observa-
tion per each individual, after identical preprocessing steps as those
described before implementation of reval (for example, imputation,
scalingand UMAP dimensionality reduction). For testing developmen-
taltrajectory differences, we utilized linear mixed-effect models (that
is, the Imer function in the Ime4 R library). The dependent variable in
these models was either VABS domain standardized scores or MSEL
subscale age-equivalent scores. Fixed effects were specified as age,
subtype and the age*subtype interaction, and the random effect of
age was modeled within-subject with random intercepts and slopes.
Because multiple comparisons were made, we use false discovery
rate (FDR) correction at alevel of ¢ < 0.05. Follow-up tests for specific
pairwise group comparisons were made to decompose and describe
the age*subtype interactions, and similar FDR control for multiple
comparisons was used.

Model comparisons. To evaluate the utility of the VABS early snap-
shot subtyping model against other types of models, we compared
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how well a model using VABS typically developing norms using the
ABC score (VABS norm; for example, 1and 2 standard deviation cut-
offs) could predict trajectories. The ABC score was computed using
allfour subscales, motorincluded, for the early snapshot cohort (<72
months), and using only the communication, daily living skills and
socialization for the outcome cohort (>72 months). We also examined
a hybrid model combining the reval subtype labels with the VABS
norm model (that is, hybrid label = revalLabel_VABSnormLabel).
Models were compared by evaluating how well they explain variance
inlongitudinal MSEL analyses, with the AIC being used as the model
comparison statistic. Models with lower AIC scores are considered
better and we also computed AIC difference scores (AAIC) as aquan-
titative indicator of just how much better the best model is than the
comparison model. AAIC >10 indicates that the comparison model
has little to no support for being as good as the best model with
the lowest AIC*.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this Article.

Data availability

All data utilized in this work can be found in the National Institute of
Mental Health Data Archive (NDA; https://nda.nih.gov). NDA global
unique identifiers (GUID) and collection IDs are provided in Supple-
mentary Data 5 to identify individuals used in all analyses on the NDA
dataset. For the UCSD ACE data, the dataare available on NDA through
collectionIDs9,2466,2968,2290 and 2115.

Code availability

Analysis code to reproduce the analyses and figures is available on
GitHub (https://github.com/IIT-LAND/vineland_subtyping). The reval
Pythonlibrary canbe found on GitHub (https://github.com/IIT-LAND/
reval_clustering) and the documentation at https://reval.readthedocs.
io. The Shiny app that allows users to input their own VABS data and
get subtype predictions can be found at https://landiit.shinyapps.io/
vineland_statification_proj/.
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Python library (version 1.0) can be found on GitHub (https://github.com/IIT-LAND/reval_clustering) and the documentation can be found
here: https://reval.readthedocs.io. Python version 3.8 or higher and R version 4 or higher is necessary to reproduce the analysis, as indicated
on the GitHub repo. Version numbers for R libraries such as SigClust are not specified by the developer and thus can be considered as v1.0.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
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- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All data utilized in this work can be found on the National Institute of Mental Health Data Archive (NDA; https://nda.nih.gov). NDA global unique identifiers (GUID)




and collection IDs can be found Supplementary Data 5 to identify individuals used in all analyses on the NDA dataset. For the UCSD ACE data, this data is available on
NDA through collection IDs 9, 2466, 2968, 2290, and 2115.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Sex has been used in the manuscript and has been included in data analyses.

Population characteristics To first identify robust and reproducible early snapshot subtypes using unsupervised data-driven methods, we utilized large
publicly available phenotypic data from the National Institute of Mental Health Data Archive (NDA). Querying NDA in March
2020, we identified children with a diagnosis of autism ages 6-72 months with at least one set of either Vineland Adaptive
Behavior Scales (VABS) Il parent and caregiver form, VABS-II survey form, or VABS-3. After data merging and cleaning,
n=1,098 individuals from n=48 different originating datasets remained for further downstream analysis. A subset of these
individuals also had longitudinal VABS data (n=410). For the cross-sectional early snapshot clustering analyses, only the
earliest time-point was used from these individuals. However, in later follow-up analyses, we utilized the longitudinal subset
for examining developmental trajectories. We also extracted another n=2,561 individuals from NDA with VABS scores at
older ages (6-61 years). An identical data-driven clustering approach was used for this older ‘outcome’ cohort.

A second independent dataset was also utilized, whereby we applied the NDA early snapshot subtype prediction model to
predict subtype labels based on early VABS scores. This second dataset was longitudinal and allowed for an independent test
of longitudinal hypotheses about the subtype model’s sensitivity to detect differences in developmental trajectories. This
longitudinal dataset was collected at the University of California, San Diego Autism Center of Excellence (UCSD ACE) and
comprises n=1,185 autistic children and n=689 typically-developing (TD) children, aged 9-72 months at their first Vineland
assessment (T1). UCSD ACE was sampled and ascertained through a combination of population-based autism risk screening
at 12 months and community referrals. Longitudinal assessments took place approximately every 6 months from intake until
outcome assessments around 4-5 years of age. Clinical diagnosis of autism was made at UCSD ACE by expert clinicians at the
outcome assessment and was aided by a full battery of tests including VABS, the Mullen Scales of Early Learning (MSEL), and
the Autism Diagnostic Observation Schedule (ADOS-2). These diagnoses have been shown to be highly stable even from very
early ages. Intake VABS scores from UCSD ACE were utilized to predict subtype labels from the NDA prediction model and
then subsequent longitudinal modeling was implemented on the full set of UCSD ACE VABS or MSEL scores to test for
trajectory differences. Work utilizing this dataset was approved by the Institutional Review Board at University of California,
San Diego. Parents provided written informed consent according to the Declaration of Helsinki and were paid for their
participation.

Recruitment UCSD ACE was sampled and ascertained through a combination of population-based autism risk screening at 12 months and
community referrals.

Ethics oversight All work reported here was approved by the Province of Trento Azienda Provinciale per i Servizi Sanitaria (APSS) ethical
committee under protocol IIT EMN-755816-002-AUTISMS. Data collection for the UCSD ACE dataset was approved by the
Institutional Review Board at University of California, San Diego. Parents provided written informed consent according to the
Declaration of Helsinki and were paid for their participation. All data analyzed in this work was anonymized.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences D Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was performed. All available data from NDA and UCSD ACE was used to maximize sample size as much as possible
and to give the widest possible spread across the entire autism population. This strategy was utilized to maximize statistical power as much as
possible and to make for the most generalizable results to the entire autism population.

Data exclusions  If more than one VABS subscale domain was missing, the subject was dropped from the analysis

Replication Stratification analyses were split into train and validation sets for replication. Longitudinal analyses were replicated in NDA and UCSD ACCE
datasets.

Randomization  Randomization into diagnostic groups (i.e. TD vs autism) is not possible for this study, because diagnosis cannot be randomized. However,
within the stratification analyses in autism, randomization was utilized to divide data into independent training and validation sets, and to
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subsequently split the training set into independent training and test sets for cross validation. For these randomizations, each originating NDA
dataset was randomly split while ensuring that other covariates such as age and sex were balanced across the splits.

Blinding Randomized allocation of data to training and validation sets as well as internal training and test sets was blind to final subtype labels.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies g |:| ChlIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms
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