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Gliomas are primary brain tumors that can cause neuropsychiatric

symptoms, including severe depressive symptoms (SDS; in14%) and an
absence of depressive symptoms (ADS; in 29%), determined by Center

for Epidemiologic Studies Depression (CES-D) scores. We examined the
association between both SDS and ADS and brain tumor location in 201
patients with diffuse glioma before surgery. Tumors and white matter
disconnectomes did not relate to CES-D using sparse canonical correlation
analysis. SDS were associated with tumors in the right corticospinal

tract, fornix, and inferior fronto-occipital fasciculus and the left uncinate
fasciculus, whereas ADS was associated with tumorsin the left uncinate
fasciculus and first segment of the superior longitudinal fasciculus and the
right temporal cingulum and thalamus using Bayesian regression analyses.
ADS occurs even more frequently in patients with diffuse glioma than does
SDS, whichis explained partly by tumor location. This research aids the

understanding of gliomas and mood dysfunctionin general.

Diffuse gliomas are the most common and most deadly primary malig-
nantbraintumors'’. They are characterized by infiltrative growth and
can cause awide range of neurological, cognitive, and neuropsychiatric
symptoms™*, Patients with diffuse glioma commonly undergo surgical
resection as a first treatment step®.

Afterany cancer diagnosis, patients often experience sadness and dis-
tressduringafewweekstomonths,and depressive symptoms usually peak
shortly after cancer diagnosis>®. While it is understandable that patients
recently diagnosed with life-threatening diseases may exhibit certain
depressive symptoms, severe depressive symptoms are burdensome and
negatively affect quality of life”. Up to 54% of preoperative patients with brain
tumorsreport depressive symptoms, whichismore frequent thaninother
cancertypesand may be explained by patient characteristics, psychometric
properties of the questionnaires used, or possibly the tumor location®’.

Assome depressive symptoms are congruent with recent bad news
of the incurable nature of the disease and information on treatment-
relatedrisks, anabsence of depressive symptoms seems discrepant. An
absence of depressive symptoms has not beenreported on before but
could possibly reflect amaladaptive response such as emotional blunt-
ing. Emotional blunting, the numbing of both positive and negative
feelings, has been described in brain tumor patients, as has apathy’* "
Emotional blunting is related to impaired functioning and reduced
quality of life”®. We hypothesize that the presence of intracranial lesions
that disturb brain functions could contribute to severe depressive
symptoms and an absence thereof™*".

For many brain diseases, including glioma, symptoms have been
mapped to lesion locations to find relations between symptoms
and brain structures™'®. This mapping is traditionally analyzed by
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Fig.1|Distribution of depressive symptom scores and corresponding
categories. Number of patients versus CES-D score.

voxel-based lesion symptom mapping, which suffers from poor cor-
rection of multiple testing and ignores spatial correlations between
voxels”. Therefore, spatial brain relations are preferably taken into
account as these are more likely to explain symptoms'®°. Mapping
symptoms to brain regions as awhole and brain networks of connected
regions canbe arich source of information that canbe applied to rou-
tine clinical imaging™ .

In stroke, depressive symptoms are related to the location of the
lesion, such as the prefrontal cortex and the thalamocortical and dorsal
frontal white matter tracts* . However, differences in pathophysiologi-
calmechanisms betweenstroke and diffuse gliomamayresultindistinct
lesionsymptom associations®. Few studies investigated the association
between brain tumor location and depressive symptoms; none investi-
gated the absence thereof. Previous studies found no associationbetween
depressive symptoms and lobar involvement but lacked more detailed
brain parcellations®**?, One study summarized 18 published case reports
of patients with depression and found 89% of the depression-related
tumors were functionally connected to the left striatum, the putamen,
and the pallidum, according to voxel-wise analysis™.

Inthis study, we hypothesize that tumorlocationisrelated toboth
severe depressive symptoms and anabsence of depressive symptomsin
preoperative patients with diffuse glioma. To gaininsightinto the neu-
roanatomy and etiology of these phenomena, we mapped depression
scoresto brainregions and networks with tumor infiltration and their
corresponding disconnected regions. We applied several methods: (1)
adata-driven cluster analysis without pre-defined regions, (2) alesion
load analysis including white matter and cortical and subcortical gray
matter parcels, (3) probability of involvement of white matter tracts,
and (4) modeled functional network impact; see Extended Data Figs.
land2foranoverview of methods.

Results

Patient population

Weidentified 203 patients with anewly diagnosed diffuse gliomawho
completed the Center for Epidemiologic Studies Depression scale
(CES-D) withinayear before surgery. Two patients were excluded from
the analysis due to poor registration of their magnetic resonance imag-
ing (MRI) to standard brain space, which resulted in 201 patients with
characteristics as listed in Extended Data Tables 1-3.

Depressive symptom distribution and categories

An absence of depressive symptoms (CES-D < 6) occurred in 29%
of patients and severe depressive symptoms (CES-D >23) in 14% of
patients (Fig. 1).

Clinical characteristics

Of'the patient characteristics, female sex (mean regression coefficient
(RCp) =1.10, 94% posterior highest density interval (HDI,,,) = 0.18-
2.03) was associated with severe depressive symptoms, and high
Verhage educational level (RCp = 0.95, HDI,,,, = 0.15-1.81) and high
36-Item Short Form (SF-36) physical functioning score (RCp = 0.09,
HDI,,, = 0.05-0.14) were associated with an absence of depressive
symptoms. None of the other patient or tumor characteristics was
significantly associated with either CES-D category.

Tumor and disconnectome distributions

The maps of the segmented tumor locations are shown in Fig. 2a, for
both the complete group and split by depressive symptom category.
We also created disconnectomes based on normative tractography,
which reflect white matter tracts that are likely affected by a tumor
lesion, as shown in Fig. 2b. When tested using sparse canonical cor-
relation analysis (Extended Data Fig. 1; cluster-based analyses), tumor
and disconnectome locations were not significantly associated
with CES-D.

Tumor and disconnectome load

We then tested tumor load and disconnectome load on pre-defined
brain regions using Bayesian categorical regression (see Extended
DataFig.2:Lesionload). Theload was calculated by dividing the lesion
volume within aregion by the total region volume.

Tumor load in the right thalamus was significantly associated with
an absence of depressive symptoms (RCp = 7.60, HDl,,,, = 1.19-14.43)
(Fig.3).SeeFig.5and Supplementary Fig. 2 for all associations. Tumor
load in the white matter tracts or cortical functional regions and dis-
connectome load on white matter tracts were not associated with
CES-D category.

White matter tractinvolvement

Next, we tested whether the probability of involvement, also known as
the probability of disconnection, related to depressive symptom cat-
egories (see Extended Data Fig. 2: Probability of involvement). Severe
depressive symptoms were associated with white matter tractinvolve-
ment of the right corticospinal tract (CST; RCp = 4.63, HDly,, =1.02—
8.43), the right fornix (RCp =11.31, HDIy,, = 6.62-15.50), the right
inferior fronto-occipital fasciculus (IFOF; RCp = 5.21, HDly,, = 0.24~
10.30), and the left uncinate fasciculus (RCp = 6.30, HDI,,,, = 2.08-10.12)
(Fig. 4a).

Interestingly, involvement of the left uncinate fasciculus was also
significantly associated with an absence of depressive symptoms
(RCp=3.65, HDIly,, =1.16-6.00) (Fig. 4b). In addition, involvement of
therighttemporal cingulum (RCp =5.88, HDI,,,, =1.96-9.61) and the left
superior longitudinal fasciculus (RCp =1.98, HDI,,,, = 0.33-3.81) were
significantly associated with an absence of depressive symptoms. See
Fig.5and Supplementary Fig. 2 for all correlations.

Modeled functional network impact

Last, we modeled the potentialimpact of the tumor on functional net-
works using large normative functional network data. We calculated
impact ongraph measures local efficiency and eigenvector centrality
to evaluate its relation to depressive symptom categories (Extended
DataFig.2: Functional networkimpact). We found no significant asso-
ciations.

Discussion

We explored how severe depressive symptoms and an absence
thereof related to tumor and disconnectome locations and mod-
eled functional network impact in patients with supratentorial
diffuse glioma. The locations of tumors, in addition to established
patient-related risk factors, were related to these extremes of depres-
sion scores.
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Our findings confirmed that severe depressive symptoms
occurred in 14% of patients with brain tumors and that female sex is a
risk factor®. In addition, we found structures of the limbic system to
berelated tosevere depressive symptoms (the right fornix and the left
uncinate fasciculus)® as well as regions involved in movement and in
language, goal-oriented behavior, and visuospatial attention (the right
CST and theright IFOF)®,

These results are in line with findings in major depressive disor-
der, where the limbic-thalamo-cortical circuit is pivotal*. Specific
depressive symptoms have been associated with specific regions and
circuits®, for example, the fornix in memory, disrupted cognitive
control, and self-referential thought®*****’. The uncinate fasciculus
is involved in integrating visceral and emotional information, and
dysfunction can result in cognitive and behavioral problems®. Fur-
thermore, brain-depression relations have also been investigated in
depression secondary to neurologic disorders. Post-stroke depression

is most widely examined, and studies have found anterior structures,
the reward circuit, and limbic structures to be involved***. Studies
into depression after brain diseases other than stroke have identi-
fied similar regions, including the uncinate fasciculus, IFOF, CST, and
frontolimbic circuits® *.

Inaddition to these limbic structures, the right IFOF was related
to severe depressive symptoms and has been implicated in non-
verbal semantic processing and visuospatial awareness****, Possibly,
lesions in this region result in more disability and consequently
depression**. Indeed, the IFOF has been related to post-stroke
depression and major depressive disorder, possibly as a result
of cognitive changes***°. A similar secondary mechanism could
drive involvement of the CST with voluntary movement. Perhaps
lesions in these areas result in more physical disability, resulting in
more depressive symptoms although we did consider functional
impairment as a covariate®’.
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Absence of depressive symptoms

Fig.3 | Tumor load significant associations with depressive symptom
categories. The right thalamus is associated with an absence of depressive
symptoms. Here visualized in two dimensions and three dimensions.

L, left; R, right.

We identified an absence of depressive symptoms in 29% of
patients, which we considered remarkably high. Higher educational
level related to an absence of depressive symptoms, corroborating
earlier research®%, Inaddition, higher scores on physical functioning
related to an absence of depressive symptoms. Taking educational
level, sex, and physical functioning into account, regions involved in
anabsence of depressive symptomsincluded the limbic regions right
temporal cingulum, right thalamus and left uncinate fasciculus, and
left SLF1.

An absence of depressive symptoms is likely to be multifactorial
in origin. In general, after a cancer diagnosis, a delayed realization of
iliness can occur, possibly contributing to an absence of depressive
symptoms in the first phase®. In addition, resilience and even thriv-
ing can develop after cancer diagnosis and can relate to an absence
of depressive symptoms. However, this generally occurs later in
the disease and would therefore not explain the high prevalence we
observed®. Inaddition, denial of cancer diagnosis could contribute to
an absence of depressive symptoms. In newly diagnosed lung cancer
patients, high levels of denial occurred in 3% of patients and indeed
related to fewer depressive symptoms®*, Indeed, brain tumor patients
have beendescribed to underestimate their problems compared with
their caregivers, which has been hypothesized to be due to reduced
insight or denial®. Another neuropsychiatric explanation may be
anosognosia: the absence of awareness of a disease or dysfunction.
Anosognosia occurs in around 10% of acute stroke patients and is
related to worse functional outcomes*. However, the literature remains
inconclusive on whether anosognosiarelates to more or fewer depres-
sive symptoms>~’, An absence of depressive symptoms could also
reflect dysfunction of the mood circuitry. Indeed, the fornix, whichin
our study was related to severe depressive symptoms, has previously
beenassociated with apathy®®-*2, Moreover, we found the left uncinate
fasciculustobeassociated withboth severe depressive symptoms and
anabsence of depressive symptoms, suggesting the potential foradual
response toits dysfunction.

Finally, an absence of depressive symptoms could indicate emo-
tional blunting, which is an absence of emotional response to an
emotional stimulus such as a cancer diagnosis, or apathy, defined as
diminished goal-directed behavior and decreased emotion or feel-
ings orinterest®***, Apathy does have characteristics in common with
depression, suchasno desire to pursue reward, butitisaunique entity
with decreased emotion rather than feelings of depression®*. Both
emotional blunting and apathy are related to worse functional out-
comes and reduced quality of life™*”. Emotional blunting and apathy
have been reported after brain lesions and are common in neurode-
generative diseases. Regions associated with an absence of depressive
symptomsinour cohort have previously been described in apathy and
emotional blunting: the thalamus is involved in decreased emotional
responses and cognitive processes®®, and lesions in this region are
related to post-stroke apathy and worse self-reported cognitive func-
tioning®°. Inneurodegenerative diseases, apathy has been associated

with white matter alterationsinlimbicstructures: the temporal cingu-
lum and the uncinate fasciculus®>”'”’?, which are involved in motiva-
tion®. Inschizophrenia, negative symptoms have also been associated
with alterations in the temporal cingulum””. This could be due to
memory formation and retrieval™ or due to absence of interest or
emotional reactivity®”. The superior longitudinal fasciculus has also
been associated with apathy in various populations®>”*7>76"7 the SLF
1specifically with attention,

Insummary, an absence of depressive symptoms could stem from
various mechanisms. Considering the high prevalence of an absence
of depressive symptoms in our glioma population, aneuropsychiatric
basis such as a dysfunction of the mood circuitry or emotional blunt-
ing seems plausible. We encourage future research to explore this
phenomenon and its etiologies.

Our findings confirm the importance of the limbic system both
in depressive symptoms and in an absence of depressive symptoms.
However, contrary to associations found in (post-stroke) depression
and apathy, we found no evidence of neocortical regions interfering
with the limbic system in glioma patients. Specifically, the dorsolat-
eral prefrontal cortex, as part of the frontoparietal network, seems
crucial in depression and apathy following stroke?***”, However, in
our study, tumors in this region were not associated with depression
scores. Ingeneral, depression could be the result of hypoactivity of the
cortex or hyperactivity of the limbic system®. Brain tumors possibly
increase the activity of the limbic systemrather thandecrease cortical
regulation of the limbic system as brain tumors have been shown to
increase neuronal activity®. This may explain why different brain lesion
etiologies can cause different lesion symptom results:**? in patients
with gliomas, the brain is functionally disturbed at distance from the
tumor®*®, Theinteraction between tumors and the surrounding brain
seems to be bidirectional: not only does increased neuronal activity
promote tumor growth®*’, the tumoralsoinduces both neuronal death
and neuronal hyperexcitability and can increase and decrease peri-
tumoral connectivity®* 2. In support of this, glioblastomas have been
demonstrated to modify neural circuits by overactivating brain areas
around language regions found in healthy individuals®’. We speculate
that neural circuits involved in mood regulation, such as depressive
symptoms, may also be remodeled by glioma by both hyperactivity
and hypoactivity. Further research is required in this emerging field
of cancer neuroscience.

Inthis Article, we adopted arigorous design with several methods
toinvestigate the associationbetween depressive symptoms and tumor
location. Not all methods identified a lesion-depression correlation.
First, the cluster-based analysis yielded no regions associated with
depressionscores, possibly because the tumors are too large to identify
smallregions: LESYMAP has been developedinthe context of stroke, in
whichthelesions are possibly smaller. Moreover, we used the continu-
ous CES-Dtorelate to clusters, and anonlinear relation between a brain
region associated with both extremes of depression scores may not
become apparent by assuming linearity. Furthermore, the statistical
power to detect an association is not equally distributed over brain
regions, varying by preferential locations of tumors, so that relevant
brainregions may remain undetected. Second, the disconnectome of
atumor may incorrectly conceptualize an entire loss of function from
disconnection. Similarly, the lesion load does not necessarily reflect
a complete loss of function of the tumor-infiltrated brain region. In
addition, especially in white matter tracts, aspecific location within the
tract may be moreimportant thanlesionload, forexample,inalocation
with higher axonal density®. The dysfunction of a white matter tract
is presumably better reflected by the probability of atumorinvolving
that tract, capturing switch-like functional intactness®. Third, modeled
functional networkimpact also did not relate to depressive symptoms.
Brain tumors presumably interfere more dynamically with the network
than our modeled one-time differences, whichis probably morefitting
withstroke”. However, abetter model of the effects of agrowing tumor
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Fig. 4| White matter tractinvolvement has significant associations with
depressive symptom categories. a, White matter tracts where involvement was
associated with severe depressive symptoms. From top to bottom: a3D overview
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b, White matter tracts where involvement was associated with an absence of
depressive symptoms. From top to bottom: a 3D overview of all associated
tracts, the right temporal cingulum (CT), the left first segment of the superior
longitudinal fasciculus (SLF 1), and the left UF. The color intensities represent the
RCp. L, left; R, right.

on the functional network does currently not exist to our knowledge.
Nevertheless, analternative approach using voxel-wise or peak cluster
analysis tolesion network mapping, as described in other work**7%%,
may illuminate new associations between the functional network and
depressive symptoms and could be considered in future work.

Limitations

Our study also highlights some challenges of tumor lesion symptom
mapping. First, tumors do not have an acute onset with complete loss
of function of normalbrain tissue, but develop gradually over time and
may resultin partial loss of function given their infiltrative nature. This
gradual growth often induces neuroplasticity, and therefore lesion
symptom mapping in brain tumors and stroke could result in differ-
ent findings**°°*?’, Nevertheless, most of our findings corroborate
the brain-depression literature. Second, tumor segmentation is sub-
jecttointer- and intra-rater variability, although this is usually not a
major source of variation®®. Third, tumor extent may be underesti-
mated as thereis diffuse involvement outside the focal lesion. Fourth,
the unknown combination of expansive and infiltrative growth of the
tumor makes registration to standard space inherently challeng-
ing”’. To minimize these errors, all segmentations and registrations
were visually verified in 3D Slicer. Fourth, the combined error from
previous arguments may also lead to spatial bias and thus potential
misinterpretation of tumor location in atlas space. In addition, the
parcels of brain atlases do not necessarily represent units of depres-
sive symptoms. Furthermore, we disregarded the anticorrelations as
the interpretation of a brain region safeguarding against a dysfunc-
tion on tumor infiltration remains elusive?. In addition, we used the
CES-D as asingle measure of depressive symptoms within a month of
amajor surgical procedure. The CES-D focuses primarily on symptom
frequency rather than intensity'*®, and this may be temporarily elevated
before surgery, in particular in patients with neurologic deficits. For

athorough diagnosis of mood (dys)function in the complex circum-
stances following agrave tumor diagnosis and facing a major surgical
procedure, diagnostic interviews by psychiatric professionals would
be required. Moreover, no consensus on a cut-off for an absence of
depressive symptoms exists. We undertook our best efforts, using
several methods, to establish a convincing cut-off, and our findings
align with clinical observations of apathy at presentation in patients
with newly diagnosed glioma'". Still, verifying this phenomenon by
comparing CES-D with other populations who just received a grave
diagnosis would be advisable. Last, our population may be subject to
selection bias. Patients with insufficient capacity to fill out the CES-D
questionnaire were unavoidably missing from this analysis, possibly
underestimating mood dysfunction.

Conclusions

Patients with supratentorial diffuse glioma experience both severe
depressive symptoms (14%) and an absence of depressive symptoms
(29%) before surgery. These possible mood dysfunctions are partly
explained by tumor location. Severe depressive symptoms are associ-
ated with tumors in the right corticospinal tract, fornix, and inferior
fronto-occipital fasciculus and the left uncinate fasciculus, whereas
absence of depressive symptoms is associated with tumors in the left
uncinate fasciculus and first segment of the superior longitudinal fas-
ciculus and the right temporal cingulum and thalamus. Awareness of
this phenomenon may be important for the identification of at-risk
patients and patient counseling.

Methods

Patients

The study population consisted of 203 patients with anewly diagnosed
supratentorial diffuse gliomaincluded in several observational stud-
ies at the Amsterdam UMC location of Vrije Universiteit Amsterdam
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between2009 and 2022. All participants gave theirinformed consent
forinclusion before study participation. Patients received no financial
compensation for study participation. The study was conducted in
accordance with the Declaration of Helsinki, the protocol was approved
by the Medical Ethical Committee of the Amsterdam UMC location of
Vrije Universiteit Amsterdam (2008.52;2009.189;2010.126; 2014.297),
and all patients signed informed consent. We included patients of a
combined sample that has partly been previously reported on'*. This
specific subpopulationand the MRIs have not been analyzed before. We
followed the STROBE (Strengthening the Reporting of Observational
Studiesin Epidemiology) guidelines.

Inclusion criteriawere patients who (1) were >18 years old, (2) had
an MRI before surgery, (3) completed the CES-D within a year before
surgery, and (4) had a histopathologic diagnosis of supratentorial
diffuse glioma WHO (World Health Organization) 2016 grade I1-1V
following surgery. The MRl included at least a 3D T1-weighted scan
without gadolinium (T1w) and a contrast-enhanced T1-weighted scan
after gadolinium administration (T1c). If available, T2-weighted (T2w)

and fluid attenuated inversion recovery (FLAIR)-weighted sequences
were also collected. Only patients without a previous resection were
included. Patients typically undergo several MRIs before surgery:
initially when a lesion indicative of a diffuse glioma is suspected and
again just before surgery to assist in procedural planning. Additional
MRIs may be performed to monitor the lesion’s progression. For the
purpose of this study, we selected the preoperative MRI closest to the
date of surgery for tumor segmentation.

We collected patient and tumor characteristics, including age,
sex, handedness, educational level (low, middle, or high as classified
according to the Verhage scale)'®, Karnofsky Performance Scale'™*,
SF-36 physical functioning subscale (higher scores represent better
physical functioning)'®, whether patient had a history of aneuropsychi-
atricdisease suchas depression, information on the use of antiepileptic
drugs or antidepressants, type of surgery (biopsy or resection), tumor
grade and tumor type according to the WHO 2016 classification’, and
various timeintervals: the timeinterval between first brain MRIwith a
lesion suspect for a diffuse glioma and CES-D measurement, the time
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interval between the CES-D measurement and the preoperative MRI
used for tumor segmentation, and the time interval between CES-D
measurement and surgery. We categorized antiepileptic use into three
groups: none, levetiracetam, and other antiepileptics, given the poten-
tial negative impact on mood from levetiracetam'*®. All patients had
surgery as first cancer treatment, so radiotherapy and chemotherapy
were notincluded as confoundersin the analysis.

Statistics and reproducibility

This study combined data from multiple observational studies done
at our institute. We combined these raw datasets and extracted
variables and MRIs of interest (see the preceding paragraph), which
had not been used for publication before. The MRIs were processed
as described in Tumor locations. The MRIs were anonymized to
ensure blinding during segmentation. No statistical method was used
to predetermine sample size.

Depressive symptoms

Depressive symptoms were assessed with the CES-D, whichisawidely
used patient-reported outcome measure for depressive symptoms'®°.
It has good validity and reliability in cancer patients and consists of
20 items about feelings and behaviors during the past week'””. Scores
for each item range from zero points (rarely or none of the time (less
than 1day)) to three points (all the time (5-7 days)), adding to a total
score of 0-60. Higher scores indicate more depressive symptoms. We
considered a score of >23 as severe depressive symptoms. An alter-
native cut-off of >21 yielded similar results in a sensitivity analysis.
An overview of the number of patients per category can be found in
Extended Data Tables1-3.

Absence of depressive symptoms

A cut-off for an absence of depressive symptoms is lacking, therefore
webased an arbitrary cut-off on several methods. First, as our popula-
tion faced challenging circumstances, we expected some level of symp-
toms measured through the CES-D, thatis, feeling fearful, restless sleep,
decreased appetite, concentration difficulties, and/or feeling sad,
similarto other newly diagnosed cancer patients. If patients scored the
maximum three points for these five items, they would have a CES-D of
atleast15. Conservatively, we decided half of these points (7.5, rounded
conservatively to seven) would be aremarkable absence of depressive
symptoms, especially considering the 15 other items on which patients
could score additional points. Second, the mean CES-D score is eight
to nine in the general population'®®. Third, we visually compared the
CES-D distribution of our population with another newly diagnosed
cancer population without intracranial metastases (Supplementary
Fig. 1), consisting of 100 women who received a breast cancer stage
O-Il diagnosis in the previous three months and were recruited for a
psychoeducational intervention aimed at improving post-diagnosis
distress'”. In these patients also receiving a tumor diagnosis, 19%
demonstrated a CES-D below 7, which is well below 29% and therefore
corroborated our arbitrary cut-off.

Tumor locations

To determine tumor location, tumors were segmented using an auto-
mated nnU-Net algorithm'° that can deal with missing pulse sequences
followed by verificationand manual editing (P.C.d W.H.,M.N.G.v.G.,V.B.)
under the supervision of an experienced neuroradiologist (F.B.) using
3Dslicerv.5.0.2 (refs.111,112). The segmentationsincluded non-enhanc-
ing tumor parts from T2/FLAIR sequences combined with contrast-
enhancing tumor parts and non-enhancing enclosed necrosis and
cysts from Tlw/Tlc sequences. Segmentations were transformed from
patient space (T1c) to Montreal Neurological Institute 152 standard
spaceandresampledto2 x 2 x 2 mm spatial resolution. Before transfor-
mation, skull stripping was performed using HD-BET brain extraction
tool followed by anonlinear registration with cost-function masking to

standard space using ANTsPY v.0.3.2 (refs. 113,114). Tumor distribution
maps instandard space were constructed by summing the tumor seg-
mentations over all patients (Extended Data Fig. 1, upper right panel).

Disconnectome locations

The disconnectome represents white matter tracts likely affected by a
(tumor) lesion. For each patient, a disconnectome was made using the
BCBtoolkit v.4.2.0 (ref. 115). The BCBtoolkit creates disconnectomes
from diffusion-weighted imaging data of 178 healthy subjects from the
7T Human Connectome Project?". In short, tumor segmentations in
standard brainspace were registered to each healthy participant’s space
using affine and diffeomorphic deformations™”"®, The registered tumor
segmentations were then used as seed for tractography in Trackvis for
each healthy participant'’, From the tractographies, abinary visitation
map was constructed from each healthy participant for each patient,
showing for each voxel whether it was intersected by a tract. Then the
map was registered back to standard space and an averaged discon-
nectome was constructed for each patient from the visitation maps of
all healthy participants. The resulting patient-specific disconnectome
thus represents interindividual variability of tract reconstructions
from healthy participants, with each voxel representing a probability
of involvement ranging from 0 to 100%. To obtain the patient-specific
binary disconnectome, we thresholded the disconnectome with a
probability of 50% or more'>. We then summed the binarized discon-
nectomes over all patients to create astructural disconnectome distri-
bution map (Extended Data Fig. 1, upper right panel).

Lesion load analysis

Thelesionload of tumors on specific brain structures was determined
for each patient by considering parcels from standard brain atlases. The
load was calculated as the tumor volume within a given parcel divided
by the parcel’s total volume. Three atlases were used: (1) the XTRACT
probabilistic white matter atlases to define the subcortical white matter
pathways usingatract probability of >0% to create binary tract masks,
resultingin41tractstructures”, (2) Yeo’s network atlas to define seven
cortical parcels representing conjoined functional networks in each
hemisphere, resulting in 14 cortical functional regions'?, and (3) the
Harvard-Oxford atlas, resulting in14 deep gray nuclei'® "%, Similarly,
disconnectome load on XTRACT white matter atlases was calculated.

Probability of involvement of white matter tracts

In addition, the probability of involvement—also known as the prob-
ability of disconnection—of awhite matter tract by tumor location was
determined by mapping the tumor lesions of each patient to XTRACT
white matter atlases'”. The probability was measured by determining
the maximum probability of the tract crossing a tumor lesion using
Tractotron software available in BCBtoolkit™>. We considered a tract
involved when the probability was larger than 0.5 (ref. 126).

Statistics
First, we determined the association between the CES-D category and
the patientand tumor characteristics by applying a Bayesian categori-
calmultiple regression model. Weincluded age, sex, handedness, edu-
cationlevel, antiepileptic drugs, SF-36 physical functioning subscale,
tumor grade, tumor volume in milliliters, and the time interval between
CES-D measurement and the first brain MRI with a suspected diffuse
glioma (Extended Data Fig. 1, upper left panel). For six patients, the
SF-36 questionnaire was missing. We used median interpolation of the
SF-36 to include these patients in the model. The model with patient
and tumor characteristics that were significantly associated with the
CES-D category was considered the core model and used as the base
for the following analysis.

The Bayesian regression model had vaguely informative priors
as we had no specific prior knowledge on effect size of variables. The
Markov chain Monte Carlo settings were at 2,000 draws and four
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chains. The means of the posterior distributions were considered as
estimates of the regression coefficients. Coefficients were considered
statistically significant if the HDI,,, excluded zero. This threshold
was originally chosen as a reminder that Bayesian credibility interval
cut-offsareanarbitrary value determined by consensus. Models were
generated and run using the PyMC package through the Bayesian
model-building interface (Bambi) v.0.9.3 in python v.3.8.0 (ref.127).

To determine the association between continuous CES-D scores
and thelocations of tumors and disconnectomes without assumptions
ondelineation of separate brain regions, we performed voxel-wise mul-
tivariate lesion symptom mapping using sparse canonical correlation
analysis (SCCAN) (Extended DataFig.1, lower panel). This analysis was
conducted using LESYMAP package v.0.0.0.9221in Rv.4.1.3 (ref. 128).
The SCCAN method optimizes voxel weights that maximize the mul-
tivariate correlation between voxel values and CES-D scores. Fourfold
within-sample cross-validation was used to evaluate the significance
of the map. Using this method avoids some pitfalls associated with
voxel-based methods as the significance of the entire map is tested at
once'”®, We excluded voxels with fewer than three lesions.

To examine whether tumor or disconnectome load was related
to CES-D category, we performed a Bayesian categorical regression
as described in the preceding. The CES-D category was used as the
dependent variable and tumor or disconnectome load per region for
each of the specified atlases as independent variables, in addition to
the core model (Extended Data Fig. 2, upper row).

Toinvestigate whether white matter tractinvolvement wasrelated
tothe CES-D category, we performed a categorical Bayesian regression
with the involvements per tract as independent variables in addition
to the core model (Extended Data Fig. 2, middle row).

Modeled functional network impact

We modeled potential tumorimpact on functional networks by virtu-
ally lesioning normative functional network dataaccording to patients’
tumor locations. We utilized eigenvector centrality (EC) and local effi-
ciency (LE) asgraph theoretical measures to determine the importance
of brainregions—regarded as nodesin the network'”. The EC measures
theimportance of anode by the number of its own and its neighboring
nodes’ connections;"° LE determines how connected the neighbors
of anodeare®™.

As a normative reference, we used processed™ connectivity
matrices of1,000 publicly available Human Connectome Project par-
ticipants. The matrices contain Pearson correlations that describe the
pairwise correlations or co-activations between brain regions from
resting-state functional MRIs. Brain regions consisted of 400 cortical
parcelsinYeo’s seven networks from the Schaefer surface atlasand 16
subcortical gray matter parcels from the Tian surface atlas™®>"**, We
averaged all matrices to create a normative connectivity matrix and
calculated graph measures LE and EC for each parcel (node) using the
correlations as weights.

Next, using Freesurfer v.7.3.2 and Connectome Workbenchv.1.5.0,
we brought the tumor segmentations from volume to fsLR 32k surface
space and overlaid these segmentations with the atlases to identify
tumor-infiltrated brain region nodes. To create a synthetically lesioned
matrix for each patient, we removed completely tumor-infiltrated par-
cels from the normative connectivity matrix and lowered the weights
of partially tumor-infiltrated parcels according to the percentage of
tumor load. We then calculated LE and EC for each remaining parcel
of each patient and subtracted these from the normative matrix. To
acquire the LE and EC difference of the seven networks due to the
tumor, we calculated the median over all parcels within a network for
each patient.

Finally, to determine the association between the CES-D cat-
egory and modeled functional network impact, we used the median
absolute graph measure differences in a Bayesian categorical regres-
sion. We performed a separate analysis for each measure, with the

modeled difference measures of the seven networks as independ-
ent variables in addition to the core model (Extended Data Fig. 2,
lower row).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

XTRACT white matter atlases are freely available via GitHub (https://
github.com/SPMIC-UoN/XTRACT _atlases). For WM tract atlases for
the human (HCP and UK Biobank) and Macaque brain and connectiv-
ity blueprint atlases for the human (HCP) and macaque brain, we used
HCP_tracts_1. Schaefer (and in turn Yeo) atlases are freely available
via GitHub (https://github.com/ThomasYeoLab/CBIG/blob/master/
stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Par-
cellations/Code/README.md). Harvard-Oxford atlases are freely
available via Neurovault (https://neurovault.org/collections/262/).
The Human Connectome Project processed connectivity matrices are
freely available via Zenodo (https://zenodo.org/records/6770120)".
The primary patient dataset, including clinical variables and MRl scans,
isnot publicly available due to privacy regulations.

Code availability

All analysis packages and software used for data analysis throughout
this manuscript are opensource and freely available, thus not custom-
made. R version 4.2.1 was used with the publicly available packages
readxl, tidyverse, Hmisc, tablel, and flextable. The LESYMAP pack-
age version 0.0.0.9221 is available via GitHub (https://github.com/
dorianps/LESYMAP). The Bayesian model-building interface (Bambi)
version 0.9.3 is available via GitHub (https://github.com/bambinos/
bambi). ANTsX/ANTsPy: advanced normalization toolsin Python ver-
sion 0.3.2isavailable via GitHub (https://github.com/ANTsX/ANTsPy).
HD-BET: MRI brain extraction tool is available via GitHub (https://
github.com/MIC-DKFZ/HD-BET). BCBtoolkit version 4.2.0 can be
downloaded from www.bcblab.com. 3D Slicer version 5.0.2 can be
downloaded from https://www.slicer.org/. Freesurfer version 7.3.2
can be downloaded from https://surfer.nmr.mgh.harvard.edu/. Con-
nectome Workbench canbe downloaded from https://www.humancon-
nectome.org/software/connectome-workbench.
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Extended Data Fig. 1| Overview of methods: data and cluster-based analyses.
Data, Patients’ raw CES-D scores were splitinto three categories: an absence of
(<6; ADS), intermediate (7-22) and severe (>23; SDS) depressive symptoms. We
tested which patient and tumor characteristics were significantly associated
with the CES-D category as core model using a Bayesian categorical multiple
regression. Structural MRIscans were utilized to create semi-automated
segmentations followed by a non-linear registration to MNI152 standard

space. With the segmentations we constructed a) tumor distribution maps

of all patients and b) patient-specific disconnectomes and disconnectome
distribution maps of all patients. Cluster-based analyses. Patients’ tumor
segmentations (T) and continuous CES-D scores were used as input for lesion to
symptom mapping with sparse canonical correlation analysis. This resulted in a
tumor symptom map with clusters of voxels corresponding to either severe or an
absence of depressive symptoms. Accordingly, disconnectomes and continuous
CES-D scores were used as input for a disconnectome symptom map.
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Extended Data Fig. 2| Overview of methods: parcel-based analyses. Parcel-
based analyses of lesion load. To calculate lesion load per patient per parcel,
overlapping tumor-parcel volumes (TnP) were calculated and divided by total
parcel volumes (P). Hence, to examine associations with the CES-D category,
these lesion loads, patient and tumor characteristics were analysed with Bayesian
categorical multiple regression. This resulted in posterior distributions of a
regression coefficient per parcel for both SDS and ADS with highest density
interval (HDI). This step was repeated for all parcels of all three atlases (Yeo’s
network atlas for cortical regions, Harvard-Oxford for subcortical grey nuclei,
XTRACT for white matter tracts). Additionally, we repeated the analysis for
disconnectome (D) load on XTRACT atlases. Probability ofinvolvement was
calculated by determining the maximum probability of the tract crossing a
tumor using BCBToolkit™. Tract involvement was defined as a probability of

involvement >0.5. Associations with CES-D category were analysed with Bayesian
categorical multiple regression. Functional networkimpact. We constructed a
normative connectivity matrix of local efficiency (LE) and eigenvector centrality
(EC) for Schaefer and Tian parcellations. We overlaid tumor segmentations with
these parcels to determine the tumor-infiltrated parcels and model patient-
specific connectivity matrices by excluding these completely tumor-infiltrated
parcels or lowering the weights of partially-infiltrated parcels accordingly.

We then calculated LE and EC for each brain region for every patient and
subtracted these from the normative values. The median of these differences
was calculated over parcels belonging to each specific network. The modelled
median differences for each network per graph measure were then analysed
with Bayesian categorical regression including significant patient and tumor
characteristics.
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Extended Data Table 1| Patient characteristics overall and per depressive symptom category

Depressive symptoms

Overall
(N=201) Absence of Intermediate Severe
(N=59) (N=113) (N=29)

Age
Median [IQR] 46.0 [23.0] 42.0 [25.0] 8010 47.0 [22.0]
Sex
Female 77 (38.3%) 18 (30.5%) 4 0% 18 (62.1%)
Handedness
Right 172 (85.6%) 48 (81.4%) 97 (85.8%) 27 (93.1%)
Left 19 (9.5%) 6 (10.2%) 11 (9.7%) 2 (6.9%)
Ambidexter 10 (5.0%) 5 (8.5%) 5 (4.4%) 0 (0%)
Level of education (Verhage)
Low (1-4) 44 (21.9%) 9 (15.3%) 25 (22.1%) 10 (34.5%)
Middle (5) 61 (30.3%) 12 (20.3%) 37 (32.7%) 12 (41.4%)
High (6-7) 96 (47.8%) 38 (64.4%) 51 (45.1%) 7 (24.1%)
KPS
<70 3(1.5%) 0 (0%) 2 (1.8%) 1(3.4%)
70-80 20 (10.0%) 3(5.1%) 13 (11.5%) 4 (13.8%)
90-100 147 (73.1%) 46 (78.0%) 80 (70.8%) 21 (72.4%)
Missing 31 (15.4%) 10 (16.9%) 18 (15.9%) 3(10.3%)
SF-36, Physical functioning
Median [IQR] 90.0 [20.0] 100 [10.0] 90.0 [20.0] 70.0 [25.0]
Missing 6 (3.0%) 2 (3.4%) 2(1.8%) 2 (6.9%)
History of neuropsychiatric disease
No 189 (94.0%) 58 (98.3%) 106 (93.8%) 25 (86.2%)
Depression 4 (2.0%) 0 (0%) 3(2.7%) 1(3.4%)
Other 8 (4.0%) 1(1.7%) 4 (3.5%) 3(10.3%)
Use of antidepressants
No 195 (97.0%) 58 (98.3%) 110 (97.3%) 27 (93.1%)
Yes 6 (3.0%) 1(1.7%) 3(2.7%) 2 (6.9%)

IQR Interquartile range; KPS Karnofsky Performance Scale; SF-36 Short Form-36
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Extended Data Table 2 | Tumour characteristics overall and per depressive symptom category

Depressive symptoms

Overall
(N=201) Absence of Intermediate Severe
(N=59) (N=113) (N=29)

Hemisphere
Left 115 (57.2%) 35 (59.3%) 62 (54.9%) 18 (62.1%)
Right 83 (41.3%) 23 (39.0%) 49 (43.4%) 11 (37.9%)
Both 3(1.5%) 1(1.7%) 2 (1.8%) 0 (0%)
Histology
Oligodendroglioma 66 (32.8%) 17 (28.8%) 37 (32.7%) 12 (41.4%)
Oligoastrocytoma* 8 (4.0%) 2 (3.4%) 5 (4.4%) 1(3.4%)
Astrocytoma 70 (34.8%) 28 (47.5%) 32 (28.3%) 10 (34.5%)
Glioblastoma 57 (28.4%) 12 (20.3%) 39 (34.5%) 6 (20.7%)
IDH status
Mutated 100 (49.8%) 34 (57.6%) 53 (46.9%) 13 (44.8%)
Wildtype 44 (21.9%) 10 (16.9%) 28 (24.8%) 6 (20.7%)
Unknown 57 (28.4%) 15 (25.4%) 32 (28.3%) 10 (34.5%)
1p19q status
1p loss 2 (1.0%) 0 (0%) 2 (1.8%) 0 (0%)
Codeleted 59 (29.4%) 17 (28.8%) 32 (28.3%) 10 (34.5%)
No deletion 55 (27.4%) 21 (35.6%) 24 (21.2%) 10 (34.5%)
Unknown 85 (42.3%) 21 (35.6%) 55 (48.7%) 9 (31.0%)
Grade
1 91 (45.3%) 33 (55.9%) 44 (38.9%) 14 (48.3%)
n 52 (25.9%) 14 (23.7%) 30 (26.5%) 8 (27.6%)
\% 58 (28.9%) 12 (20.3%) 39 (34.5%) 7 (24.1%)
Tumour volume (ml)
Median [IQR] 64.1[78.2] 54.7 [55.5] 67.3 [88.3] 48.1 [45.4]

*As defined by the WHO 2007 classification

IQR Interquartile range
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Extended Data Table 3 | Treatment and timing characteristics overall and per depressive symptom category

Depressive symptoms

Overall
(N=201) Absence of Intermediate Severe
(N=59) (N=113) (N=29)
Use of antiepileptics
None 45 (22.4%) 15 (25.4%) 27 (23.9%) 3 (10.3%)

Yes, including levetiracetam 108 (53.7%)

Yes, other than levetiracetam 48 (23.9%)

Surgery type
Resection 187 (93.0%)
Biopsy 14 (7.0%)

Time interval between CES-D and
preoperative MRI used for tumour

segmentation in weeks

Median [IQR] 0.43 [4.0]

Time interval between CES-D and surgery in
weeks
Median [IQR] 3.14 [7.57]

Time interval between first MRI and CES-D in

weeks

Median [IQR] 10.6 [17.3]

30 (50.8%)

14 (23.7%)

55 (93.2%)

4 (6.8%)

0.29 [6.14]

4.57 [8.79]

10.0 [21.4]

58 (51.3%) 20 (69.0%)

28 (24.8%) 6 (20.7%)

105 (92.9%) 27 (93.1%)

8 (7.1%) 2 (6.9%)
0.43 [3.43] 0.29 [4.14]
2.57 [6.57] 2.86 [6.14]
10.4 [13.6] 10.7 [17.4]

CES-D Center for Epidemiologic Studies Depression Scale; IQR Interquartile range
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed

IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

D The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

O 00X OOs

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

D For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

L[]

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Data was collected prior to our study; we did therefore not use any software for data collection.

Data analysis For merging of datasets, data cleaning and making tables and histograms, R version 4.2.1 was used with the publicly available packages
"readxl", "tidyverse", "Hmisc", "table1", and "flextable". Data was further analysed using the LESYMAP package version 0.0.0.9221 available
in R of which we used version 4.1.3 and PyMC package through the Bayesian model building interface (Bambi) version 0.9.3 available in
python of which we used version 3.8. Additionally, for image processing we used 3D slicer, version 5.0.2, ANTsPY version 0.3.2, HD-BET git
commit ea49413, BCBtoolkit version 4.2.0 and freesurfer version 7.3.2

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

XTRACT white matter atlases are freely available from: GitHub - SPMIC-UoN/XTRACT _atlases: WM tract atlases for the human (HCP and UK Biobank) and Macaque
brain and connectivity blueprint atlases for the human (HCP) and macaque brain., we used HCP_tracts_1. Schaefer (and in turn Yeo) atlases are freely available
from: CBIG/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal at master - ThomasYeolab/CBIG - GitHub. Harvard-Oxford atlases are freely available
from: Harvard-Oxford cortical and subcortical structural atlases (neurovault.org). The human connectome project processed connectivity matrices are freely
available from: Human Connectome Project resting-state fMRI Connectivity Matrices (Young Adult + Aging) (zenodo.org). The primary patient dataset including
clinical variables and MRI scans are not publicly available due to privacy regulations.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender We included both sexes in this study and sex was a significant factor in our analysis. Sex was collected from hospital systems
which was based on official government issued identification. Out of 201 patients, 77 (38%) had the female sex.
We do not report on gender.

Reporting on race, ethnicity, or | There was no social grouping. We do report on patients educational level (Verhage scale). Patients self-reported on their

other socially relevant education and were then further classified into either of three Verhage categories; low, middle or high.
groupings
Population characteristics As covariates we considered: age (median age 46 years), sex (38.3% female), handedness (85.6% right-handed), education

level (47.8% high education, 30.3% middle education), SF-36 physical functioning (median 90), history of epileptics (53.7%
yes, including levetiracetam and 23.9% vyes, other than levetiracetam), tumour grade (45.3% grade II, 25.9% grade II1),
tumour volume in ml and the time interval between CES-D measurment and first brain MRI with a suspected diffuse glioma
(median 10.6 weeks).

Recruitment Patients were recruited through outpatient visit when suspected for a diffuse glioma. Only patients with sufficient capacity to
provide informed consent and fill out the questionnaires were recruited which may introduce subject bias.

Ethics oversight The Medical Ethical Committee of Amsterdam UMC location Vrije Universiteit Amsterdam approved the study protocols.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We did not perform any sample size calculations. The sample size was reached through selecting patients that met the inclusion criteria from
different observational studies between 2009 and 2022 which we previously reported on.

Data exclusions  Two patients were excluded from the sample due to poor registration of their MRI images to standard brain space.
Replication We did not replicate measurements. We analyze an observational cohort which was previously analyzed for different research questions.
Randomization  Patients were not allocated to experimental groups, thus not randomized.

Blinding Patients were not allocated to experimental groups, thus no blinding was necessary.
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies [] chip-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
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Magnetic resonance imaging

Experimental design

Design type n/a
Design specifications n/a

Behavioral performance measures  n/a

Acquisition

Imaging type(s) Structural data from routine clinical imaging

Field strength 1.5T

Sequence & imaging parameters We included a non contrast enhances axial T1-weighted spin echo image with TR/TE 520-600/8-12 ms with 5mm slice
thickness, a gadolinium enhanced sagittal 3D T1-weighted gradient-echo image (MPRAGE, TR/TE/TI 2300-2700/5-4.5/95
ms) with 1-1.5mm slice thickness, an axial T2-weighted turbo spin echo image (TR/TE 5190-8670/93-101 ms) with 5mm
slice thickness, and sagittal 3D turbo fluid-attenuated inversion-recorvery (FLAIR) image (TR/TE/TE 6500/355/2200 ms)
with 1.3mm slice thickness.

Area of acquisition whole brain

Diffusion MRI [ ] used Not used

Preprocessing

Preprocessing software We used an in-house developed nn-Unet segmentation algorithm and manually verified these segmentations in 3D slicer
version 5.0.2. The segmentations included non-enhancing tumour parts from T2/FLAIR sequences combined with contrast-
enhancing tumour parts and non-enhancing enclosed necrosis and cysts from T1w/T1c sequences. We used HD-BET for skull
stripping and ANTsPY version 0.3.2 for image registration.

Normalization Images were normalized/smoothed before registration to standard space and brain extraction was performed using HD-BET
followed by a non-linear registration with cost-function masking to normalized space using ANTsPY. In ANTsPY we used the
symmetric normalizations: affine+deformable transformation, with cross correlation as optimization metric ( 'SyN' option,
with syn_metric set to 'CC' and affine shrink factors (8,4,2,1)).

Normalization template Images were registered to MNI152 standard space at 2x2x2 mm spatial resolution.
Noise and artifact removal Images were normalized/smoothed to remove artifacts by subtracting the lowest voxel value from the image.
Volume censoring We used cost-function masking meaning that the tumour segmentation volume was excluded during registration and

transformed according to the 'heatlhy' brain transformation matrix.

Statistical modeling & inference

Model type and settings Multivariate methods were used. Two methods were considered; sparse canonical correlation analysis using the LESYMAP
package and a Bayesian categorical multiple regression model run through Bambi with vaguely informative priors and four
chains with 2000 draws.

Effect(s) tested There was no task or stimulus as we used routine clinical MRI scans. We considered the Center for Epidemiologic Studies
Depression scale (CES-D) as outcome measure/dependent variable and related this to the location of the brain tumor. For




Bayesian regression, patients were split into three groups according to CES-D; an absence of depressive symptoms,
intermediate depressive symptoms and severe depressive symptoms.

Specify type of analysis: [ | whole brain || ROI-based Both
Anatomical location(s) Anatomical locations were obtained by using probabilistic atlases of different brain structures.

Statistic type for inference Sparse canonical correlation analysis is a clusterwise method. Voxels with identical lesion patterns are grouped together. At
least three people had to have a lesion in a given voxel to be included. We used 1000 permutations, 10 folds and 10 cross
validation repetitions. FDR corrected p-value was considered significant if p<0.05.

For the Bayesian model we calculated the overlap of tumor segmentation and parcel in different atlases and considered
these measures as independent variables. Infiltrated parcels were considered significant if the posterior 94% highest density
interval excluded zero.

(See Eklund et al. 2016)

Correction False Discovery Rate for lesymap

Models & analysis
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n/a | Involved in the study
|:| |Z Functional and/or effective connectivity

|:| Graph analysis

|:| |Z Multivariate modeling or predictive analysis

Functional and/or effective connectivity Processed connectivity matrices of 1000 human connectome project participants were used which included
Pearson correlations to describe pairwise correlations or co-activations between brain regions.

Graph analysis The CES-D scale was used as outcome measure/dependent value.
We averaged connectivity matrices to create a normative connectivity matrices and calculated graph
measures local efficiency (LE) and eigenvector centrality (EC) for each parcel (node) with the correlations as
weights.
For each patient we then removed completely infiltrated brain regions from the normative matrix and
lowered the weight . We calculated LE and EC for the remaining parcels and subtracted these from the
normative LE and EC values. To acquire a modeled functional network impact due to the tumour we
calculated the median LE and EC difference of specific networks.

Multivariate modeling and predictive analysis  See previous section for all models used. The LE and EC difference per functional network were used as
independent variables in Bayesian analysis.
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