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Siderophores as tools and treatments
Check for updates

Á. Tamás Gräff & Sarah M. Barry

In the search for iron, an essential element in many biochemical processes, microorganisms
biosynthesise dedicated chelators, known as siderophores, to sequester iron from their environment
and actively transport the siderophore complex into the cell. This process has been implicated in
bacterial pathogenesis and exploited through siderophore-antibiotic conjugates as a method for
selective antibiotic delivery. Here we review this Trojan-horse approach including design
considerations and potential in diagnostics and infection imaging.

Antimicrobial resistance (AMR) is a growingglobalhealth crisis.Thegrowth
in Gram-negative antibiotic-resistant infections and extremely multidrug
resistant (XMDR) infections is particularly problematic1. Tackling this
problem requires amultifaceted approach involving improvedmanagement
of existing antibiotics and development of new therapeutics2. However, we
still have significant gaps in our knowledge on fundamental microbial
physiology and how, for example, nutrient flux, secondary metabolism, etc.
intersect with pathogenesis. Of particular interest is the homoeostasis of
essential, but potentially toxic, micronutrients including metal ions.

Ferric ions (Fe3+) are vital to many biochemical processes (gas
transport, electron transport, etc.) as they are core components of
enzyme cofactors e.g. iron–sulfur clusters, haem. However, free iron
generates reactive hydroxyl radicals through the Fenton process, thus
the labile iron pool in the cell must be carefully managed3,4. Further-
more, iron uptake and storage are significant biochemical challenges for
many organisms because at neutral pH, free iron forms highly insoluble
ferric oxide hydrates, limiting bioavailable iron to roughly 10−18 M5,6. In
a mammalian host-pathogen environment, iron availability is parti-
cularly acute, as the circulatory system has a free ferric ion concentra-
tion around 10−24 M, which is below the threshold required for most
microorganisms to grow7.

However, the iron acquisition challenge in microorganisms is in
part overcome by their ability to biosynthesise complex, specialised
metabolites to sequester iron from their hosts8. Once biosynthesised,
these bespoke iron-chelating small molecules, known as siderophores,
are secreted into the host environment to sequester iron9. The ferric
complex is subsequently actively transported into the cell. The success
of siderophores relies both on their incredible affinity for iron and the
selective recognition and active transport of the resulting iron com-
plexes across the bacterial cell membrane9. Several siderophores have
been identified as potential virulence factors in pathogenicity (e.g.
salmochelin, pyochelin) and as siderophores are not produced in
mammals, proteins involved in their production have been seen as
antibiotic targets10. Thus, the study of siderophore biosynthesis, path-
way regulation and siderophore uptake have become significant
research topics.

Siderophores: biological role, biosynthesis and uptake
Microbial siderophores consist of several classes based on both their
chelating moieties and their biosynthetic origin. The most common
chelating moieties are catechols and phenolates, as exemplified by
enterobactin and salmochelin produced by Escherichia coli (E. coli) and
Salmonella sp respectively, and hydroxamic acids and carboxylates as
shown in alcaligin and ornibactin (Fig. 1). There are also many side-
rophores that display mixed modes of chelation such as yersiniabactin.
Siderophore iron affinity is often described using the logarithm of the
formation constant (logKf) which for representative ferric complexes
ranges between 25.3 and 49.09. However this may not be necessarily the
best way to compare the different chelators, due to the difference
between the pH sensitivity of the chelating groups, the different denticity
of the ligands and other steric factors11. pFeIII, analogous to pH, provides
a more general measurement, as it is based on the negative logarithm of
the non-chelated ferric hexahydrate ions in specific experimental con-
ditions (usually pH = 7.4, total [Fe] = 1 µm, total [L] = 10 µm). Side-
rophores have pFeIII measurements in the range of 20.0–35.59,12.

Siderophore biosynthetic pathways are typically encoded by biosyn-
thetic gene clusters and while some are expressed constitutively, most are
regulated by iron and expressed only in low iron concentrations6. Typically,
siderophore discovery and isolation is thus facilitated by growing strains in
iron-deficient minimal media. The biosynthetic origin of siderophores
varies, with enterobactin, salmochelin and mycobactin being non-
ribosomal peptides (NRPS), and many of the citrate-based siderophores
such as aerobactin, petrobactin and alcaligin resulting from so-called NRPS
independent synthetase (NIS) pathways13–15. In all cases, bespoke, non-
proteinogenic amino acids are biosynthesised in a pathway-specificmanner
to create the chelating moieties within these structures.

Following biosynthesis, siderophores are secreted into the environment.
On chelation to iron, the resulting ferric complex is recognised by a receptor
on the cell surface. These receptor/transporter systems are generally encoded
in the samegeneclusters as thebiosynthetic genes andareusually siderophore
specific. However, it is known that bacteria are capable of sharing or com-
peting for the siderophores of other bacterial strains, creating complex uptake
and exchange networks in microbial communities16.
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The siderophore uptake machinery differs between Gram-negative
and Gram-positive bacteria. Ferric-siderophore complex recognition and
transport is somewhat poorly understood and few examples of siderophore
receptor/transporters have been structurally characterised17–23.

In Gram-negative bacteria, there are two proposed models7,24–26.
Both utilise a TonB-dependent transporter (TBDT) for the recognition
and transport of the iron-bound siderophore into the periplasmic space.
The energy for this transport is provided by the proton motive force
transduced through the ExbBD-TonB complex. Once the siderophore
complex reaches the periplasmic space, the two models take different
paths. In, for example, enterobactin uptake inE. coli, the siderophore-iron
complex is transported into the cytoplasm through an ATP-binding
cassette (ABC) transporter (Fig. 2, Blue pathway)7. This process might be
aided in the periplasm by a carrier protein. The iron is released in
the cytoplasm by enzymatic digestion of the siderophore (Fig. 2)7. In the
alternative pathway (Fig. 2, Red pathway), iron is liberated from the
complex in the periplasmic space via reduction of FeIII to FeII, as side-
rophores have low affinity for FeII 25. From here the iron is transported
into the cytoplasm via an ABC transporter and potentially a carrier
protein25. The siderophore is then either broken down or recycled by the

organism. A typical example of this system is the pyoverdine uptake
system in Pseudomonas aeruginosa25.

The uptake system in Gram-positive organisms is not as well studied26.
The absence of an outermembrane, means there is no TBDT-TonB-ExbBD
system. Themost well-establishedmodel of uptake is the Iron ShuttleModel
(Fig. 2, Green pathway) by Raymond et al. later revised byWencewicz27,28. In
this case, there are free siderophore molecules in the extracellular space and
bound to the siderophore binding protein (SBP). Some SBPs have been
structurally characterised27,29,30. In the Raymond system, the extracellular
siderophore scavenges iron, which is then passed to the siderophore mole-
cule bound to the SBP27. The SBP then closes onto the ABC transporter and
lets the siderophore complex through the bacterialmembrane27.Wencewicz
revised this by replacing the extracellular siderophore with transferrin,
proposing that the SBP bound siderophore strips iron from transferrin28.

Sideromycins
Alongside siderophores, some bacteria have evolved an ingenious Trojan-
horse approach utilising their competitors need for iron against them by
biosynthesising siderophore-antibiotic conjugate natural products known
as sideromycins (Fig. 3A)9,31. Albomycin is the best-known sideromycin and

Fig. 1 | Siderophores and their chelation modes.
Top: examples of natural product bacterial side-
rophores alcaligin (Alcaligenes denitrificans, Borde-
tella sp); enterobactin (E. coli), pyochelin
(Pseudomonas aeruginosa), yersiniabactin (Yersinia
sp), ornibactin (Burkholderia sp). The different
colours correspond to different chelating moieties.
Bottom: A Side view of metal (FeIII) chelated enter-
obactin (PDB 6Q5E). B Bottom view of
enterobactin-FeIII complex. C Front view of metal
(FeIII) chelated yersiniabactin (CCDC 619878).
D Side view of yersiniabactin-FeIII complex (the
images were made using Chemdraw Professional
version 22.2.0.3300 and VESTA 3)155.
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Fig. 2 | Siderophore uptake systems in Gram-negative and Gram-positive bac-
teria. The protein structures on the left-hand side of the figure are representative
structures of a TonB-dependent transporter (PDB 1FEP)17, a C-terminal part of

TonB (PDB 1U07)18 and an ExdBD complex (transmembrane domain: PDB 6TYI20

and periplasmic domain: PDB 2PFU)19. Created in part in Biorender.

Fig. 3 | Sideromycins and examples of early siderophore conjugates. ANatural product sideromycins.B Early siderophore drug conjugates produced by industry.C Early
synthetic siderophores used to probe the limits and selectivity of bacterial uptake systems. Chemdraw Professional version 22.2.0.3300.
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naturally combines an iron-chelating moiety to hijack siderophore uptake
systems with an antibiotic warhead that is released by peptidase-mediated
cleavage of the metal chelator. This releases the seryl- tRNA synthetase
inhibitor as an antibiotic32. Albomycin has a quite broad activity against
both Gram-positive and Gram-negative bacteria33. In addition, salmycin,
isolated from Streptomyces violaceus by Vértesy et al.34, was shown to be
active against a smaller subset of bacterial strains compared to albomycin,
although itsmechanismof action is unknown35,36.Amore recentdiscovery is
the natural product conjugate of chlorodactylloferrin and pyridomycin
described by the Hartkoorn lab. The two compounds are separately bio-
synthesized, directed by a hybrid biosynthetic gene cluster. The final con-
jugation step is facilitated by the redox active ferric ion. The formal C–N
cross coupling is thought to occur through oxidation of the catechol group
to the quinone form, followed by attacked by the pyridine in aMichael-type
addition reaction37. This was confirmed by experimental data using other
oxidising agents, redox active and non-active metals37.

The fascinating ability of microorganisms to biosynthesise side-
rophores and sideromycins has inspired many researchers to develop
conjugates to hijack the siderophore uptake system for drug delivery. Fol-
lowing decades of research, a Trojan horse-like antibiotic, cefiderocol, was
approved for clinical use in 2019. This has given significant credence to the
Trojan horse concept and its potential. Here we review the current state of
the field, and we note that there is significant promise in the use of such
molecules not just as antibiotics but also both in diagnostics and as chemical
biology tools to understand fundamental aspects of microbial iron homo-
eostasis and its role in pathogenicity.

Trojan horse antibiotics
The strategy of synthetic Trojan horse antibiotics is multifaceted:
• conjugation of a siderophore to an antibiotic enabling greater uptake,

reducing the minimum inhibitory concentration (MIC) and thus the
effective concentration required for activity;

• improved selectivity, i.e. using the siderophore to target antibiotics to
specificpathogens thus avoiding thenegative effects of broad-spectrum
antibiotics on the patient’s microbiome38; and

• modifying attributes of existing molecules either by adding antibiotic
activity or bacterial selectivity.

Early work in the field focused on β-lactam antibiotics as the warhead
moiety due to the ease of conjugation and their high tolerance to peripheral
substitution. The conjugated siderophores were initially simple iron-
chelatingmoieties, e.g. catechols, natural product siderophores or analogues
thereof.

Ohi et al. were one of the pioneers in the field, they synthesised a
substantial library of catechol conjugated ureidopenicillins, ureidocepha-
losporins and ureidocephamycins (Fig. 3, 1)39–41. They were tested against
multiple bacterial strains, some of which displayed β-lactamase activity, and
several compounds in the library showed improved efficacy againstmultiple
Gram-positive (Staphylococcus aureus 209P JC-1 and JU-5) and Gram-
negative organisms (E. coli NIHJ JC-2, Klebsiella pneumoniae JU-90, etc.)
compared to the parent compound both in vitro and in vivo39.

Mochizuki et al. developed a modified cephalosporin, M14659, and
studied iron binding and uptake using isotopic labelling (Fig. 3B)42,43.
Antimicrobial activity tests ofM14659 againstE. coliwere also performed in
the presence of exogenous chelators, i.e. transferrin, lactoferrin and dipyr-
idyl to reduce bioavailable iron. Adding any of thesemolecules to themedia
increased the bactericidal activity of the conjugate at half MIC by 30-fold
after 2 h and 6000-fold after 4 h43. Using a 14C labelled derivative showed
that uptake is ATP-dependent and requires low, but measurable levels of
extracellular iron. This is supported by the exchange assay between 59Fe
filled transferrin and M14659, which showed no iron transfer between the
two molecules43.

Nakagawa et al. designed 6,7-dihydroxy-isoquinolium linked ceftazi-
dime conjugates BO-1341 and BO-1236 resulting in similarly improved
efficacy44. The modifications did not impact the β-lactamase stability

compared to the parent antibiotic (Fig. 3B). Studies of E. coli mutants, in
which different uptake systems, i.e. tonB, (encoding siderophore uptake
protein) envZ, (encoding porin forming kinase) ompF, ompC (encoding
generic porin forming proteins) were knocked out, showed that the uptake
of cephalosporin conjugates BO-1341, BO-1236 occurs through side-
rophore pathways and not via porins known to be responsible for cepha-
losporin uptake. This result indicates that the new uptake mechanism
appears to be responsible for greater efficacy of the conjugate45.

These reports demonstrated an important proof-of-concept, although
they noted that better mechanism of action studies were required to shed
light on the factors that resulted in improved activity. Did improved uptake
result from the siderophore conjugation, or did the catechol group provide
improved solubility? Maybe the conjugates utilised a mechanism of action
distinct from the parent antibiotic? This work also demonstrates the
potential of siderophore conjugates as probes to understand uptake
mechanisms.

To further untangle the contributions of different conjugates and
investigate bacterial uptake46–51, Miller et al. created several Trojan horse
derivatives including hydroxamate and catechol β-lactam conjugates 2
and 3 (Fig. 3).MICsweremeasured against several wild-type andmutant
bacterial strains46–49, showing that both hydroxamate and catechol based
siderophore conjugates were effective at inhibiting early bacterial
growth, but mutants lacking the respective uptake proteins FhuA (for
uptake of hydroxamate siderophores) and CirA (for uptake of catechol
siderophores) became dominant51. Cross-resistant bacteria were
observed, but they were relatively rare and non-viable in iron-deficient
media50. In later work, Ghosh et al. used mixed hydroxamate and cate-
chol moieties to generate conjugate 4 with activity against some Sta-
phylococcus species, as well as Klebsiella and Escherichia when mixed
with the suicide β-lactamase inhibitor, sulbactam (Fig. 3)52. It main-
tained activity against strains containing multiple fepA (enterobactin
transporter) and cirA mutations.

There has also been significant work towards developing side-
rophore conjugates to increase the efficacy of existing antibiotics against
P. aeruginosa, as it is a leading cause of serious lung infection in
immunocompromised patients including those suffering from cystic
fibrosis53. The production of siderophores, pyochelin and pyoverdines
has been implicated in virulence of P. aeruginosa, leading to study of
their production and uptake54–58. Intriguingly, three groups of natural
pyoverdine analogues are made by different P. aeruginosa strains59. In
general Pseudomonas sp produce pyoverdines of one group and thus can
utilise siderophores of the same group even if produced by other strains.
Meyer et al. labelled the outer membrane receptors responsible for the
uptake of pyoverdine with fluorescent antibodies and showed that these
are the most abundant iron-regulated outer membrane proteins in P.
aeruginosa60. Budzikiewicz et al. prepared β-lactam conjugates of two
pyoverdines, 5, 6 from two different serotypes of P. aeruginosa grown in
iron-deficient media (Fig. 4)61. The uptake of the conjugates was mea-
sured against the same and other serotypes, determining the MIC and
growth profiles. The results fit into the delayed growth trend reported by
the Miller lab. P. aeruginosa is inherently ampicillin resistant, but the
ampicillin–siderophore conjugates showed an MIC around 0.04 and
0.67 μg/ml. However, after a day, a different serotype of P. aeruginosa
started growing in the media, which was resistant to the applied side-
rophore ampicillin conjugate61.

These studies showed that the recognition of a siderophore is mostly
dependant on the chelating functional group, however, it did not address
more subtle issues, such as the steric tolerance of the transporter, or if
attaching a siderophore changes the ability of the antibiotic to bind to its
target. There are significant limitations to our understanding of siderophore
uptake systems at the molecular level. Greater insight is needed to enable
rational design of effective antibiotic-siderophore conjugates. However, as
illustrated above, siderophore conjugates can be used as chemical biology
tools to probe siderophore uptake systems to inform structure-activity
relationships.
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Rational design of siderophore conjugates
During the early work by Miller, Budzikiewicz and several pharmaceutical
research labs as described above, it became obvious that multiple factors
need to be considered in conjugate design. Since then, there has been
extensive research into siderophore uptake transporters, although, this has
been complicated due to the challenges associated with characterising
membrane-bound proteins and multicomponent systems. Thus, studies
have included understanding siderophore recognition patterns, uptake
tolerance to siderophore modifications, ability of the transporter to
accommodate larger molecules, charge limits, etc. In addition, how side-
rophores are recognised by the immune system must be considered. For
example, catecholate siderophores such as enterobactin, or catecholate-like
siderophores such as carboxymycobactin are recognised by the immune
protein, siderocalin that intercepts and binds bacterial siderophores thus
helping to control infection. However, hydroxamate siderophores are not
recognised by siderocalin62–64. In the next section, we examine the con-
siderations in the design of siderophore conjugates.

Choice of siderophore and transport system. The first step is the
identification of the uptake pathways of different siderophore classes
which can be coupled with understanding of their selectivity. Here we
focus on Gram-negative systems due to their importance to AMR. Initial
insight into sideophore uptake was gained through siderophore 55Fe
labelling and knock-out studies of outermembrane proteins of producing
strains65–67. However, this just confirms that the metal has been taken up
by the bacterium and not whether the siderophore itself has been
internalised27. The multicomponent nature of these systems, with com-
ponents localised in outer and inner membranes in Gram-negative
bacteria, has presented significant challenges, however, several structural
studies have revealed important insight into substrate–protein interac-
tions. As mentioned above, siderophore biosynthetic genes are usually
clustered with dedicated membrane-bound uptake transporters, several
of which have been structurally characterised including the enterobactin
transporter FepA, pyoverdine transporter FpvA and ferrichrome trans-
porter FhuA (Fig. 5).

FepA is responsible for ferric enterobactin transport into E. coli cells68.
FpvA fulfils the same role in P. aeruginosa, transporting ferric pyoverdine69.
Ferric siderophore transport proteins share a similar tertiary structure, a
membrane spanning beta barrel, a turn-rich internal plug and finally an
unstructured connecting region in the periplasm24. Early fluorescent and
spin labelling studies established a two-step process of ligand binding and
then internalisation70,71. Thiswas supportedby the crystal structures of FepA
(PDB1FEP)and the co-crystallisationof ferric-enterobactin andPfeA (PDB
6Q5E) (Fig. 5B), a FepA homologue in Pseudomonas17,72. Moynie et al.
identified twobinding sites for ferric enterobactin inPfeA72. The structure of
these sites appears to be highly complementary to the 120° gaps between the
catechol groups, with extensive hydrogen bonding and cation–pi interac-
tions with the rings72. The most important interactions appear to be R480
forming an electrostatic/cation–π interaction andQ428 on the other side of
the catechol ring, and the backbone of theG324 andG325 residues wedging

themselves into the remaining space72. The catechol rings form hydrogen
bonds to the backbonenitrogens of R480,G325 andQ482 and side chains of
S479 and Q48272. The trilactone ring is supported by a hydrogen bond
between two of the ester groups and Q21972. Intriguingly, co-crystallisation
studies also showed FepA binding to azotochelin as well as protochelin,
indicating the promiscuity of the transporter72. The two smaller side-
rophores occupied the same binding sites, maintaining similar binding
interactions72.

The binding of pyoverdine to the transporter FpvAhas been elucidated
in crystallographic studies by Greenwald et al. (Fig. 5A)73. Importantly, they
recognised that only one of themolecules in the two-part FpvA asymmetric
unit can bind pyoverdine due to a steric clash between the secondmolecule
and the neighbouring asymmetric unit (PDB 2W6T). Key interactions
include V229 and Y231 in contact with the chromophore and the nearby
hydroxamate. Intriguingly, R204 moves more than 8 angstroms from its
position in substrate-free form to place its sidechain into binding distance
with the iron and the catechol unit, illustrating the flexibility and dynamic
nature of these sites.

FhuA is the receptor responsible for the uptake of ferrichrome-
bound iron in most bacteria and one of the first to be structurally
characterised74,75. The overall structure of the receptor resembles FepA
and FpvA with the two easily identifiable domains (beta barrel mem-
brane spanning region and internal plug) (Fig. 5C, D). The binding
domain of ferrichrome is lined with aromatic residues, forming a
pocket, R81 H-bonds with two hydroxamate carbonyls. The third
hydroxamate carbonyl is in hydrogen bonding distance with Y244,
while one of the residues (Y116) can bond with the OH group of the
hydroxamate. The macrocycle of ferrichrome is bound by G99 and
Y315, however, it is still accessible to the solvent, while the iron-bound
side is buried in the transporter. This seems to be an important factor,
because the R81 residue shows large movement between the ligand free
and the bound state. The move seems to propagate an asymmetric
unfolding of the helical structure on one side of the plug domain,
forming a tunnel for the transport of ferrichrome into the periplasm. In
the closed state, this tunnel is blocked by W22 which moves ~17 Å
between the closed and open states.

FhuA bound to the sideromycin, albomycin, has also been char-
acterised giving an excellent opportunity to compare the structure of a
siderophore conjugate to the native siderophore bound structure, allowing
for a greater understanding of how the larger conjugates are accommodated
(Fig. 5)76. Generally speaking, the residues binding the hydroxamate groups
(R81, Y116, Y244) remain in place. The major differences between the
structures are in the hydrogenbondingof the backboneof themoleculewith
theprotein.Y315 loses its bindingpartnerwhileG99onlyprovidesweakvan
der Waals contact. There are multiple new hydrogen bonds, depending on
the conformation of the albomycin molecule. In the more compact state of
albomycin,Q516 formshydrogenbondswith the amidemoiety at the endof
the albomycin payload.

The interactions described above indicate that the iron-binding moi-
eties of siderophores appear to be the most important points of interaction

Fig. 4 | Siderophore conjugates to target Pseudo-
monas aeruginosa. Pyoverdine–ampicillin con-
jugates semisynthesised by Kinzel et al.61. Iron-
chelating groups shown in red. Inset: ampicillin
(blue) and alkyl linker (black). Chemdraw Profes-
sional version 22.2.0.3300.
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Fig. 5 | Ligand binding modes to siderophore outer-membrane transporters.
A X-ray crystal structure of FpvA bound to pyoverdine (PDB 2W6T) (Chain A
omitted for clarity). B X-ray crystal structure of PfeA (PDB 6Q5E) bound to
enterobactin C X-ray crystal structure of FhuA bound to ferrichrome (PDB 1BY5)
D X-ray crystal structure of FhuA bound to δ2-albomycin (PDB 1QKC). The
structures show both two albomycin conformers in yellow and cyan. Yellow Zoom:
binding pocket of FpvAwith pyoverdine in yellow, ferric ion represented by a sphere.

The orange amino acid residues correspond to hydrogen bonding interactions
between the siderophore and the uptake protein, while the purple residues provide
mostly alternative bonding interactions. Blue zoom: enterobactin binding pocket
with interactions shown using the same colouring scheme. Pink zoom: Ferrichrome
binding pocket with interactions shown. Orange zoom: albomycin binding pocket
with interactions shown, the image picture omits the cyan conformer for clarity.
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with the receptor and may explain the promiscuity of some receptors. It is
reasonable to suggest that the electrostatic interactions surrounding the
ferric ion are more important for the recognition of the molecule. This of
course would represent a benefit to the organism. The ability to utilise not
just its own siderophores but those produced by competing pathogenic or
commensal bacterial species enables strain survival16,77,78.

Functionalisation/modification tolerance. Insight into siderophore–
protein interactions in relation to recognition and uptake should enable
rational design of conjugates. Thus, the structural studies of uptake
receptors are complemented by feeding experiments in bacteria using
libraries of siderophore conjugates, illustrating the tolerance of uptake
systems to modifications of the siderophore and the payload.

Nolan et al. synthesised a variety of substituted enterobactinderivatives
with various groups attached to PEG linkers (Fig. 6)79. Using growth
recovery experiments, they concluded, unsurprisingly perhaps, that in both
E. coli and P. aeruginosa, there is a limit to the size ofmolecule the receptors
can accommodate. Knowing the steric limits of these systems is vital
information for further design. The E. coli receptor (FepA) appears to be
selective for smaller cargo, while PfeA (P. aeruginosa) can accommodate
larger molecules79. Further research to compare strains of the same organ-
ism used β-lactam antibiotics (ampicillin, amoxicillin) as payloads and
measured the activity of the conjugate against unconjugated antibiotics80. It
was found that even between strains of the same organism there were some
differences in growth inhibition, but the differences were not significant
when compared to the parent antibiotic.

Comparing their effect on different bacterial species, they found
that the conjugate’s activity is highly dependent on the uptake
mechanism and the parent antibiotic. Against the β-lactamase pro-
ducing K. pneumoniae ATCC 13883, the conjugates only showed
activity when supplemented with the β-lactamase inhibitor sulbactam.
P. aeruginosa PA01 was completely insensitive, together with Bacillus
cereus and S. aureus. Earlier research from the same group showed
uptake in P. aeruginosa, which supports the argument that the strain is
inherently insensitive to the payload79. Other groups had similar
findings in terms of payload size. Zscherp et al. made multiple fluor-
escent conjugates and their uptake in E. coli and P. aeruginosa were
similar to the molecules tested by the Nolan group81. Comparing the
payloads reported, it seems a balance of size and flexibility are sig-
nificant factors in uptake, however, it is not easy to define hard spatial
or structural rules regarding the activity of new and untested
conjugates.

Chirality. One would wonder, does the stereochemistry of the side-
rophore matter? This is of course relevant to natural siderophores, most
of which are produced as single stereoisomers, and it would thus be
reasonable to assume that transporters are stereoselective. The answer
however ismore complex. Enterobactin and its cognate receptor inE. coli,
FepA, cannot differentiate between L- and D-enterobactin79,80. However,
the internal esterase (Fes), responsible for liberating the iron from
enterobactin, solely recognises the L variant (Fig. 7A)82. Thus D-enter-
obactin becomes a useful Trojan horse starting point, because using
synthetic D-enterobactin enables access to the cytosol while denying the
bacterial cell access to the chelated iron80,83,84. The picture is very different
for other siderophores. Next to pyoverdine, pyochelin is one of the native
siderophores of P. aeruginosa, while enantio-pyochelin is produced by
Pseudomonas fluorescens (Fig. 7B)85. While the two uptake systems, FptA
(pyochelin) and FetA (enantio-pyochelin), share a high structural
homology, they have very low sequence identity (25.1%)86. Indeed, they
create entirely different binding pockets, thus making the siderophore
pair incompatible with each other86.

Linkers and attachment points. Initial work on conjugate synthesis
utilised bioconjugation anchors on the siderophores (carboxylates,
amines) to attach payloads directly or via alkyl chain linkers46,50,52,61. This
works relatively well for β-lactam antibiotics due to their tolerance to
peripheral modifications but proved limiting of other payloads, as side-
rophores have limited natural conjugation sites, even when taking some
unorthodox bioconjugation strategies into consideration. For example,
Kinzel and Budzikiewicz utilised a beta-diketone and arginine sidechain
condensation to generate a pyrimidine-linked pyoverdine D and
β-lactam antibiotic. The resulting conjugate facilitated iron uptake but
was unfortunately ineffective as an antibiotic (Fig. 7C)87.

Frequently when siderophores are conjugated to glycopeptides88,
macrolides89, orfluoroquinolones90–94 using a covalent alkyl chain linker, the
antibiotic activity of the conjugate is reduced or eliminated compared to the
parent antibiotic. This led to investigation into the importance of linker
length and the use of biologically labile linkers (e.g. those cleaved via
endogenous esterases or other enzymes). Out of the alternative antibiotics,
nor- and ciprofloxacin are themost regularly utilised as payloads due to the
ease of conjugation through the secondary amine.

For example, Herard et al. synthesised a small library of conjugates
using pyoverdine isolated from P. aeruginosa ATCC 15692 (Fig. 8A)95.
Bioassays of 8a, 8b, 9a, 9b found that the hydrolytically labile linkers result
in somewhatmore active conjugates (MIC 1 vs 8 μg/mL). Indeed, the labile-

Fig. 6 | Combinatorial siderophore-antibiotic
conjugate library.Work by Nolan et al. The shapes
correspond to the connection point along which the
different building blocks can be assembled. Chelator
—red; payload—blue. Chemdraw Professional ver-
sion 22.2.0.3300.
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linked pyoverdine-benzonaphthyridone adduct showed better results than
the parent antibiotic (MIC 1 vs 16 μg/mL). Thismakes sense, as pyoverdine
uptake stops at the periplasm25 and any quinolone conjugate with a stable
linker would thus be inactive as it would not reach the cytoplasm. In growth
curve experiments the results were similar, with the exception that the labile
norfloxacin adduct showed slightly better activity than the parent antibiotic
and not the benzonaphthyridone conjugates. However, this was reversed
when the adduct was pre-saturated with iron. The fact that conjugates with
labile linkers were not substantially more active than the parent compound,
also indicated that either the cleavage occurred outside the cell, or that the
active uptake and internal cleavage of pyoverdine-conjugate was slower

when compared to porin-mediated uptake of the parent antibiotic. Similar
results were obtained with pyochelin (Fig. 8B)91,96. Molecular docking and
inhibitor studies indicated that the pyochelin derivative does interact with
the outer membrane protein96. However, the lower antibacterial activity
compared to the parent antibiotic is again thought to be due to hydrolysis of
the linker in the media. This reasoning was supported by an extensive
hydrolysis study on (acyloxy)alkyl ester linkers by Zheng and Nolan to
establish linker half-life (Fig. 8C)97. They generated valuable insight on how
the usual CLSI guidelines on end-point antimicrobial activity assays are not
suitable forhydrolytically labile linkers97. Thedevelopmentof these linkers is
of particular interest because fluoroquinolones have been shown to be

Fig. 8 | Siderophore linker and conjugation stra-
tegies. A Pyoverdine conjugated to norfloxacin (8a,
9a) and to benzonaphthyridone (8b, 9b) using a
hydrolytically stable or labile linker. Inset—products
of the linker cleavage reaction. B Pyochelin con-
jugates using the same quinolones as the pyoverdine
experiments by Herrard et al., probing linker flex-
ibility and conjugation points. C Library of linkers
used by Zheng andNolan. Q represents a quinolone.
Chemdraw Professional version 22.2.0.3300.

Fig. 7 | Siderophore stereochemistry. A Schematic
representation of the stereoselectivity of Fes esterase.
B The structure and chiral centres of pyochelin on
the left and enantio-pyochelin on the right.
C Arginine and beta-diketone condensation form-
ing a pyrimidine linker. Chemdraw Professional
version 22.2.0.3300.
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inactivated when modified at the secondary amine98. Based on molecular
modelling, even adding 1 or 2 atom linkers inhibits theDNAgyrase binding
activity of fluoroquinolones98.

Other labile linkers such as the “trimethyl-lock” based lactoniza-
tion have been used in multiple esterase and phosphatase activated
prodrug strategies99–101. Ji and Miller applied this method to desfer-
rioxamine B–ciprofloxacin conjugates, however, the MIC values
showed at least a 32-fold increase compared to the parent drug, which
implies either minimal conjugate uptake or poor esterase activity
(Fig. 9A)102. The phosphatase labile linker 15 showed no activity. Fur-
ther study of reductase activated linker 16, gave similar results103. Like
the (acyloxy)alkyl linkers, the poor activity of these conjugates may be
due to extracellular cleavage. The use of thiol-maleimide linkers by
Miller et al. resulted in markedly betterMICs than the parent antibiotic,
indicating siderophore-mediated uptake104. However, the in vivo use of
these linkers might be hindered by the retro-Michael reaction reported
extensively in connection with antibody–drug conjugates105,106. Neu-
mann and Nolan evaluated disulfide bond linkages in an
enterobactin–ciprofloxacin conjugate107. They rationalised that fol-
lowing reduction of the linker by glutathione, the remaining half-linker
would collapse into a five membered oxothiolanone, releasing the
antibiotic warhead (Fig. 9B). This was successful in vitro, but unfor-
tunately bacterial uptake studies showed lower activity than the parent
antibiotic.

Finally, probably the most mechanistically intricate example is a
cephalosporin (cephaloglycin) linker (Fig. 9C)108. The β-lactam core con-
nected on one side to an oxazolidinone, a ribosomal inhibitor active against
Gram-positives, and on the other side to a dicatechol siderophore mimic.
The intriguingmethod of release relies on hydrolysis of the core by bacterial
β-lactamases, e.g. serine β-lactamase (ADC-1). Theoretically, metallo-
β-lactamases would produce the same effect. The conjugates had good
activity againstAcinetobacter baumannii,E. coli andP. aeruginosa, either by
the activation and release of the oxazolidinone, or by the inherent anti-
bacterial activity of the cephalosporin108.

Payloads. In much of the work on siderophore conjugates, as described
above, the most well-established payloads are existing antibiotics.
Quinolones and β-lactam antibiotics are readily available and mostly
non-toxic to humans, thus making them an obvious payload choice.
However, the ability of siderophores to shuttle molecules through the
bacterial membrane is an exciting opportunity to investigate

compounds with either no preexisting antibacterial activity due to
uptake issues, or molecules that display low selectivity for bacterial over
mammalian cells.

The first repurposed warhead reported was artemisinin byMiller et al.
(Fig. 10)109. The antimalarial drug artemisinin (IC50 < 0.0036 μg/ml) is a
sesquiterpene natural product with an unusual transannular 1,2,4-trioxane
group109. Themechanismof actionof themolecule is basedon thehomolytic
cleavage of the trioxane by ferrous ions forming highly active radicals110.
Artemisinin is inactive against bacteria because it cannot cross the cell
membrane, however, when linked to a mycobactin T analogue 21, it shows
remarkable activity and selectivity towards Mycobacterium tuberculosis109.
The conjugate’s MIC against multiple MDR and XDR strains is below
1.25 μg/ml, and against fast-growingMycobacteria and Gram-negative and
-positive species it is > 12.5 μg/mL109.

Anticancer medications are also a good source of potential warheads
due to their ability to damage DNA or inhibit DNA synthesis, although
cytotoxicity and selectivity are potential issues. Zhao et al. generated con-
jugate 22 from methotrexate and a trihydroxamate siderophore derived
from albomycin (Figs. 3, 10)111. Methotrexate is a dihydrofolate reductase
inhibitor but has poor penetration of bacterial membranes. Themost active
conjugate had an MIC against Gram-positive Streptococcus pneumoniae of
1.72 nM and Gram-negative Y. enterocolitica of 6.8 nM. No activity was
observed against Staphylococcus epidermidis, Salmonella enterica serovar
Typhimurium andA. baumannii. It is important to note, that off-target drug
toxicity is of great concern when repurposing anticancer drugs. The
methotrexate conjugates showed a large decrease of toxicity (around 2000-
fold) against human liver cell line L02, which coupled to the increased
antibacterial activity makes it a promising approach.

The Nolan lab also described repurposing the DNA crosslinking,
antitumour drug, cisplatin, as a Trojan horse payload linked to enterobactin
23 (Fig. 10)83. The mechanism of action of the drug did not cause complete
killing of bacterial cells on agar, although remaining cells were not viable.
The conjugate resulted in ~50% decrease in the number of viable cells at
60 μM.Knocking out the outer membrane transporter (fepA) and the inner
membrane protein complex (fepCDG) independently, significantly inhib-
ited conjugate uptake. However, changing the stereochemistry of the
enterobactin moiety in the conjugate from the L enantiomer to the D

increased its activity against E. coli. This was explained as resulting from the
inability of the Fes esterase to act on the D enantiomer. In a follow-up study,
oxaliplatinwasused as theplatinum-basedpayloadbut that proved tobe less
effective112. Investigating theDNAdamage caused by the conjugates using a

Fig. 9 | Siderophore conjugation strategies exploiting bacterial biochemistry.
A Trimethyl locks synthesised by Miller et al. Q represents a quinolone.
B Glutathione initiated disulfide cleavage and oxothiolanone cyclisation. Q

represents a quinolone.CReaction scheme of the β-lactamase initiated ring opening
cascade culminating in the release of the oxazolidinone (inset). Chemdraw Profes-
sional version 22.2.0.3300.
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lacZ reporter coupled to the SOS response of the bacterium showed lower
and later activity with the oxaliplatin drugs, compared to cisplatin112.

While most payloads utilised are usually small molecules, this is not
necessarily a limitation on the uptake systems. The Schalk and Brönstrup
labs coupled synthetic siderophore mimics to synthetic TonB-box peptide
fragments113. The underlying idea is that after uptake, the peptide fragments
disturb the interaction between the outer membrane receptors and the
TonB-ExbBD complex. The MECAM conjugates proved to be inactive,
while the DOTAM conjugates showed moderate results with some com-
pounds MICs between 0.1 and 4 µM against gentamicin (1 µM). The
authors suggest the MICs achieved are an underestimation of the com-
pounds’ activity, as the iron restricted conditions would leave most con-
jugates in the apo form. Overtime conjugate efficiency decreased due to
resistance or peptidase action on the peptides. Regardless, this indicates
recent groundbreakingwork in targeting the siderophoreuptake/processing
proteins inside bacteria.

Similarly exciting work by Pals et al. explored the use of antisense
oligomers (ASO) conjugated to catecholate siderophore mimics to dis-
turb the translation of mRNA into proteins114. They chose acpP (acyl
carrying protein) as their target, due to its crucial role in fatty acid
biosynthesis and showed reasonable growth inhibition of E. coli in iron
rich and poor media. Of the ASOs used, phosphorodiamidate mor-
pholino oligomers showed slightly better results (MIC 0.8 µM) com-
pared to peptide nucleic acids (1.6 µM). Resistance appears to occur via a
single-pointmutation in the ybiX gene, a putative iron-uptake factor and
on the same operon as fiu, a catechol uptake receptor114. Further data
provided for A. baumannii and human toxicity studies are very pro-
mising for in vivo experiments.

Siderophores as tools for imaging
The selectivity of bacteria for certain siderophores could be a useful attribute
in medical diagnostics. For example, using the biosynthetic/transport

proteins as biological markers of pathogenic strains or using labelled side-
rophores to identify the species or phenotype of a certain unknownbacterial
sample. This is of particular importance due to the lack of point of care
diagnostics for distinguishing bacterial and viral infection as well as dis-
tinguishing Gram-negative and Gram-positive bacteria. More accurate
profiling would reduce the use of broad-spectrum antibiotics and enable
better antibiotic stewardship.

Fluorescently labelled siderophores. Fluorescent payloads are not as
broadly used as antibiotics to probe siderophore uptake because it is
difficult to differentiate between total internalisation and membrane
association. Weizman et al. used an anthracene labelled ferrichrome
analogue 24a to probe iron uptake in Pseudomonas species (Fig. 10B)115.
In a later study, radioactive 55Fe was used to determine cellular iron
uptake and the spectrum of fluorescent molecules was extended to rho-
damine, fluorescein and nitrobenzoxadiazole derivatives 24c–e
(Fig. 10B)116.While fluorescent labelling has not been extensively used for
siderophore conjugate characterisation, alternative uses for fluorescent
conjugates have emerged. Hannauer et al. synthesised a biomimetic
analogue of desferrichrome linked to a naphtalimide fluorescent reporter
called RL-1194, 24b (Fig. 10B)117. They showed that after iron chelation,
the compound goes through fluorescent quenching, which is reversible
on loss of iron. They used this to follow the recycling of the siderophore
and the uptake of iron into P. aeruginosa, supporting the argument that
some siderophores are recycled and not broken down after entering the
cell (Fig. 2)117.

Enterobactin, chemoenzymatically modified with an azide, thiol or
bromide containing glucose residue, providing a handle for bioconjugation,
was leveraged in the chemical synthesis of rhodamine and dansyl labelled
monoglycosylated enterobactin conjugates118. TheWanggroup showed that
the resulting conjugates were reasonably selective as they labelled multiple
strains of E. coli, P. aeruginosa and Vibrio cholerae, but not Bacillus subtilis

Fig. 10 | Repurposed and fluorescent siderophore
conjugate payloads. A Repurposed payloads.
Enterobactin–cisplatin conjugate 23. Mycobactin T
analogue conjugated to artemisinin 21. The most
promising methotrexate conjugate 22 synthesised
by Zhao et al. (siderophores—red; linkers—black;
payload—blue). BMultiple fluorescent probes used
to label a biomimetic desferrichrome analogue.
Chemdraw Professional version 22.2.0.3300.
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or S. aureus, as these Gram-positive bacteria are not known to use enter-
obactin. The same group also labelled the citric acid based, E. coli side-
rophore, aerobactin using a fluorescent DIBO derivative119. This promising
conjugation strategy, while only viable on the siderophore-Fe complex,
resulted in successful labelling of E. coli, K. pneumonia and S. enterica, but
not V. cholerae, S. epidermidis or B. subtilis. However, S. aureus and P.
aeruginosa proved problematic due to auto-fluorescence, highlighting an
important consideration for fluorescence detection in whole cells.

Wang et al. also demonstrated the potential for this approach as a
diagnostic tool for antibacterial-resistant infection. A dual system of fluor-
escent probes enabled differentiation of Gram-negative bacteria,
vancomycin-sensitive and resistant Staphylococcus species120. A
vancomycin-based probe with Cy5.5 fluorescent head and staphyloferrin A
—fluorescein conjugate proved to be a good combination for detecting
vancomycin-resistant S. aureus in the presence of other bacterial genera120.

Radiolabelled siderophores for PET imaging. Siderophores can che-
late other metals, albeit with lower affinity than iron, and this trait has
been exploited for radioactivity based in vivo imaging. Much of the early
work focused on 67Ga and 111In121–124. The use of these metal–ligand
combinations was limited, however, both radioisotopes with different
chelators became important for SPECT imaging125. Zirconium was uti-
lised in the early 1990s, however, the targeting moieties used are usually
antibodies with a desferrioxamine chelator126,127. The other isotopes, 14C,
55Fe and 59Fe, discussed in previous sections as probes for siderophore
uptake, are not appropriate formedical diagnostics, due to their long half-
life128.

Siderophore characterisation has often relied on their ability to
chelate diamagnetic gallium (Ga3+) a property which facilitates NMR
characterisation of ametal bound complex129–131. Gallium is particularly
well suited for the replacement of the iron ion in siderophores due to its
similar ionic radius, charge and relative lack of toxicity. In radio-
imaging, gallium-67 is being phased out due to its long half-life (78 h)132.
However, gallium-68 has a half-life of just 68 min making it ideal for
diagnostic imaging. The widespread adoption of the affordable and
easy-to-use 68Ge/68Ga generators has provided a boost to the study of
siderophores as gallium chelators and imaging agents (Fig. 11). Due to
the short half-life of 68Ga, the synthesis of labelled chelators needs to be
quick. Thus, chelation must be rapid, kinetically and thermo-
dynamically favourable and high yielding enabling facile purification.
For most of these procedures there is ~1 h between eluting radioactivity
from the generator and using the hot imaging agent (Fig. 12). Three 68Ga
compounds for diagnostics: 68Ga-DOTATATE, 68Ga-DOTATOC,
68Ga-PSMA-11, have been approved (FDA and EMA) in the last 10

years. While the ligands are not siderophores, their recent development
indicates a growing field.

In 2010, a proof-of-concept study from Petrik et al. used side-
rophores triacetylfusarinine C (TAFC) and ferricrocin (FC) to chelate
gallium-68 and image Aspergillus infections in lungs, including the
important respiratory fungal pathogen Aspergillus fumigatus133. Both
siderophores showed relatively good labelling characteristics, but
TAFC, from A. fumigatus, proved to be slightly superior in vitro with
virtually no unspecific uptake and slower exchange when incubated
with excess cold Ga-siderophore complex. In uninfected BALB/c mice
models, TAFC showed desirable characteristics such as rapid renal
excretion and low levels in blood133. Ferricrocin C complexes were
problematic with high blood and organ radioactivity levels, indicating
the breakdown of the siderophore. Based on these results, TAFC was
selected for imaging infected rat models with good results, indicating
the siderophore-68Ga complex is selective, with rapid uptake in
infected lung tissues and secondary uptake in the kidneys and the
bladder133.

Fig. 11 | Timeline of chelator 68Ga radiolabelling. Gallium-68 (III) chloride eluate
is mixed with the ligand under optimised conditions depending on the chelator
chemistry. After analysis by reversed phase HPLC (RP-HPLC) or LCMS, the radio-

pharmaceutical must be used within short timeframe due to the short half-life of
68Ga. (SPE solid phase extraction). Created with Biorender.

Fig. 12 | Trojan horse antibiotics towards the clinic. All are synthetic
chelator–antibiotic conjugates. GT-1 and BAL30072 contain dihydroxypyridinone
as the synthetic iron chelator (red), cefiderocol uses a chlorinated salicylic acid
moiety (red). Chemdraw Professional version 22.2.0.3300.
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In follow-up studies, they demonstrated the selectivity of TAFC-68Ga
uptake in different microorganisms and investigated the possibility of
labelling other hydroxamate siderophores (coprogen, ferrichrome, fer-
rioxamine B, ferrioxamine E, fusarinine C) with 68Ga134,135.

Desferrioxamine (DFO), produced by many Streptomyces strains,
has also been identified as a promising chelator to selectively image
bacteria over mammalian cells136. In vivo studies with P. aeruginosa
and S. aureus infectedmice showed good uptake in infected tissue, with
no off-target labelling except kidneys and bladder. Recently Bendova
et al. used ornibactin, a siderophore from Burkholderia spp., to
establish selective 68Ga based PET imaging of Burkholderia cepacia
complex infected mice137. B. cepacia complex is a dangerous infection
in immunocompromised patients, especially those with cystic
fibrosis138. Preliminary data showed good radiolabelling purity (>95%)
and stability in serum137. In vitro studies showed exceptional uptake in
the parent bacterial strain and moderate-to-poor uptake in S. aureus
and P. aeruginosa. Other tested strains (E. coli, Streptococcus spp.,
Candida albicans, K. pneumoniae) showed virtually no uptake. Bio-
distribution studies established that the compound is excreted through
the kidneys and showed good targeting in infected mice model.

Asmentioned above, 67Ga can also be used as a radiotracer. 67Ga citrate
was shown to accumulate in tumours during clinical trials in the 1960s139.
This work established the medical diagnostic technique called the gallium
scan.While theuse of gallium-67 scanhasnow largely been replacedbyPET
imaging, the isotope can still be useful as a longer half-life surrogate for
gallium-68.TheBoros grouphasdone extensivework in radiolabellingDFO
and linear desferrichrome using 67Ga140 showing that ciprofloxacin con-
jugates of these siderophores can be radiolabelled under routine gallium
radiolabelling conditions and that the linear desferrichrome conjugate is a
potent in vivo imaging and therapeutic agent141. Uniquely, they showed the
curative effect of the desferrichrome–ciprofloxacin conjugate during in vivo
mouse experiments141. The Boros, Duhme-Klair and Routledge groups
explored a salmochelin-S4 fragment derivative in a similar 67Ga labelling
experiment94.

Transforming the clinic
Trojan horse antibiotics have been of significant interest to industry, but
while several leads entered clinical trials and showed promisingMICs, they
have faced issues. These trials have primarily focused on conjugating a
synthetic iron chelator with an already approved and a clinically used
antibiotic. Dihydroxypyridinone and chlorinated catechol moieties are
often the chosen synthetic iron chelators and siderophore mimics used to
avoid metabolism by catechol O-methyltransferases and cytochrome
P450142,143. BAL30072 (Basilea Pharmaceutica), a dihydroxypyridone con-
jugate of β-lactam, tigemonam, showed activity against about 70% of
carbapenem-resistant Enterobacteriaceae, while also being a poor substrate
for many β-lactamases, except for extended spectrum β-lactamase
variants144. In clinical trials, however, it resulted in hepatoxicity due to
inhibition of glycolysis (Fig. 12)145. LCB10-0200/GT-1 is also a
dihydroxypyridinone–cephalosporin conjugate developed by LegoChem
Bioscience andGeomTherapeutics146 which showedpromising in vitro data
against P. aeruginosa (MIC 0.5mg/L vs 32mg/L for ciprofloxacin), how-
ever, it also did not pass phase 1 clinical trials147. GSK3342830 (GSK and
Shionogi) enteredclinical trials in 2017butunfortunately resulted in adverse
effects and so was not continued (Fig. 12)148.

However, Shionogi’s cefiderocol, (previously S-649266) proved to be
more efficacious in clinical trials than the best available therapy without
significant adverse effects149. It was FDA approved in 2019 (EMA in 2020)
making cefiderocol the first approved iron chelator–antibiotic conjugate
and indeed a new class of approved antibiotics150,151.

The interest in these compounds as radio-diagnostic tools has been
more subdued. This is due to the still relative high efficacy of existing
antibiotics compared to antineoplastics, and generally the low requirement
for high-resolution spatial information in diagnosing bacterial infections.
However, with the rise in complex infections (e.g. XDR) the clinical need for

rapid and relatively low-cost imaging diagnostics is likely to increase. Thus,
there are two active clinical trials involving 68Ga-desferrioxamine adducts
for PET imaging bacterial infections, under the EudraCT Number: 2020-
002868-31 and NCT05285072.

Conclusions
AsAMRdevelops as amajor health threat, bottlenecks in newantimicrobial
development continues to exacerbate the problem. The recent addition of
cefiderocol to the clinical arsenal of antibiotics is an important step and it
validates the approach of utilising bacterial nutrient uptake systems as a
method of selective drug delivery.

This work has been enabled by decades of research on understanding
siderophore production and uptake in microorganisms inspiring the
development of siderophore conjugates. However, to further develop this
class of antibiotics, we require a greater fundamental understanding of the
regulation of siderophore biosynthesis. In addition, elucidation of structures
and mechanisms of the multicomponent uptake systems is needed
employing, e.g. cryo-EM and computational modelling, respectively. Side-
rophore transporters are highly dynamic and thus we need a full picture of
the molecular mechanisms of transport through the outer and inner
membranes, in the case ofGram-negatives, to enablemore rational designof
conjugates and develop “design rules”.

In addition, we have a poor understanding of how siderophores are
produced and utilised in mixed microbial populations such as the
microbiome. Thus, population and coculture studies are required to
understand how siderophores facilitate interactions between both
infectious and commensal bacteria, as well as their role in host-
pathogen interactions. This will likely require both wider study and
improved modelling of nutrient and metabolite flux in microbial
communities. It is probable that machine learning will play a role in
understanding these complex chemical networks.

Greater understanding at the protein and cell levels will enable the
identification of further therapeutic targets and the development of
more selective antimicrobials. The identification of siderophores pro-
duced solely by pathogens could be important to enable sensitive
diagnostic tools and pathogen identification in the presence of com-
mensal bacteria.

The need for further therapeutic development is clear, thus the intro-
duction of government initiatives for antibiotic development across the
world iswelcome. For example, in theUK theNationalHealth Service’s new
antibiotic subscription scheme funds antibiotic research and production.
Similarmeasures are planned in theUSA through thePASTEURAct, and in
the EU through the One Health AMR Candidate Partnership and should
accelerate development in the field.

However significant challenges lie ahead. While the development
and approval of cefiderocol is an important step forward, unfortu-
nately, resistance to the drug was reported soon after entry to the
market152,153. Resistance is proposed to occur via heteroresistance,
whereby the majority of bacterial cells in the isolate are susceptible to
the applied antimicrobial, but a small subpopulation of cells is resis-
tant. This phenomenon often goes undetected during standard sus-
ceptibility testing154. This form of resistance, arising from the inherent
heterogeneity of bacterial cultures, is unstable and poorly understood.
Thus, there is a need to develop protocols to more readily detect it.
Indeed, it illustrates the significant gaps in our understanding of
bacterial virulence and resistance and the need for fundamental
investigations into bacterial physiology alongside antimicrobial
development.
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