npj | antimicrobials & resistance

Article

https://doi.org/10.1038/s44259-025-00150-y

Mitigating antimicrobial resistance by
innovative solutions in Al (MARISA): a
modified James Lind Alliance analysis

M| Check for updates

William J. Waldock', Hannah Thould', Leonid Chindelevitch?, Nicholas J. Croucher?, César de la Fuente®,

James J. Collins**$, Hutan Ashrafian' °< & Ara Darzi'

Antimicrobial resistance (AMR) is a critical global health threat and artificial intelligence (Al) presents
new opportunities for our response. However, research priorities at the Al-AMR intersection remain
undefined. This study aimed to identify and prioritise key areas for future investigation. Using a
modified James Lind Alliance approach, we conducted semi-structured interviews with eight experts
in Aland AMR between February and June 2024. Analysis of 338 coded responses revealed 44 distinct
themes. Major barriers included fragmented data access, integration challenges and economic
disincentives. The top ten priorities identified were: Combination Therapy, Novel Therapeutics, Data
Acquisition, AMR Public Health Policy, Prioritisation, Economic Resource Allocation, Diagnostics,
Modelling Microbial Evolution, AMR Prediction and Surveillance. A notable limitation was the
underrepresentation of data from high-burden regions, limiting the generalisability of findings. To
address these gaps, we propose the novel BARDI framework: Brokered Data-sharing, Al-driven
Modelling, Rapid Diagnostics, Drug Discovery and Integrated Economic Prevention.

Antimicrobial resistance (AMR) poses a grave and escalating threat to global
health, with the potential to undermine the foundations of modern medi-
cine, including chemotherapy, surgery and infection management'. Since
1990, AMR has been responsible for approximately one million deaths
annually’, and projections from the Global Research on Antimicrobial
Resistance (GRAM) Project’ estimate up to 1.91 million direct deaths per
year by 2050. Overall, up to 39 million fatalities could be attributable to
AMR by mid-century. The World Health Organization (WHO) has iden-
tified AMR as one of the top ten global public health threats®, warning that,
without effective intervention, the economic toll could reach a staggering
$100 trillion by 2050°.

Rising antibiotic consumption, expected to increase by over 30%
globally by 2030°, exacerbates the crisis. The World Bank projects that AMR
could cost the global economy between $1 and $3 4 trillion annually by 2030
and reduce global GDP by up to 3.8% annually by 2050’, pushing an esti-
mated 28 million people into extreme poverty. The consequences are
already being felt in the form of longer hospital stays, costlier treatments and
increased mortality. In response to these alarming trends, global organisa-
tions have initiated urgent action. In 2019, AMR was formally recognised by
the WHO as a threat to achieving Sustainable Development Goals®, and in

2023, a comprehensive global research agenda on AMR in human health
was launched, outlining forty research priorities across prevention, diag-
nosis, treatment, care, policy and education’. Most recently, in September
2024, the United Nations General Assembly committed to reducing AMR-
related deaths by 10% by 2030°, an ambitious target, especially given the
considerable uncertainty in current estimates.

Amid these efforts, there is growing recognition that advanced tech-
nologies, particularly artificial intelligence (AI), could play a critical role in
addressing AMR. From enhancing diagnostic accuracy and antimicrobial
stewardship to optimising surveillance and accelerating drug discovery, Al
offers promising tools in the global fight against resistance. Al is being
rapidly applied across a broad spectrum of healthcare, from Al-augmented
clinical research to algorithms for image analysis or disease prediction’.
However, despite this surge in popularity, there has been no expert con-
sensus or priority-setting exercise about the best applications of Al to AMR,
nor a comprehensive examination of the barriers that currently prevent its
implementation. This means there is the potential for an imbalanced focus
of research, which may miss crucial areas for innovation and result in the
perpetuation or creation of inequalities in healthcare. Work has been started
on this through a Google DeepMind and Fleming Initiative publication
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‘Harnessing Artificial Intelligence to Tackle Antimicrobial Resistance™’, in
which the authors delineate six strategic pillars for leveraging Al to combat
AMR: Priority Setting, Collaboration, Data, Evaluation, Capacity and
Equity.
The absence of any formal priority-setting framework means current
Al research into AMR is fragmented and risks missing crucial areas for
potential research. Through this study, we generated a list of the top ten
areas for potential research, identified barriers to research in applying Al to
AMR and developed a framework for ongoing research. The primary aim of
this study was to determine the areas where AI should be used in AMR
research. To achieve this, the following objectives were established:
1. Determine the areas where Al could be used in AMR research.
2. Gain expert opinion on a list of priorities for Al in tackling AMR.
3. Determine the barriers that need to be overcome to apply Al to the
problem of AMR.
4. Develop a framework for Al to be applied to reduce the pro-
blem of AMR.

Results
A total of eight expert interviews were conducted, resulting in 338 coded
responses and the identification of 44 unique themes. The most frequently
referenced themes (Fig. 1) included:
1. Therapeutics—Combination Therapy
. Therapeutics—Novel Drug Development
. Data—Data Acquisition
. AMR Public Health Policy
. Research Prioritisation
. Economic Resource Allocation
. Diagnostics—Point-of-Care (POC)
. Modelling Microbial Evolution
. Microbial Knowledge and Prediction
. AMR Surveillance
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Table 1 presents illustrative quotes for selected subthemes. Most
insights emphasised how AI can support AMR efforts across several
domains: data challenges were the most prominent barriers, particularly

regarding access, interoperability and data-sharing across institutions and
borders; economic constraints were cited as limiting both innovation and
implementation of Al-driven solutions; experts emphasised therapeutics,
surveillance and point-of-care (POC) diagnostics as the most promising
areas for Al deployment. Some participants reflected on lessons from the
COVID-19 pandemic, particularly how Al-enabled tools accelerated diag-
nostics and monitoring, highlighting opportunities to replicate such suc-
cesses in AMR. Thematic clusters revealed that experts often framed
challenges in interconnected areas (e.g. economic modelling and microbial
prediction), rather than isolating single issues. Precision medicine was fre-
quently discussed in the context of high-risk populations (e.g. immuno-
compromised patients) and emerging interventions like phage therapy.
Specific concerns were raised regarding lower- and middle-income coun-
tries (LMICs), where the lack of robust data and diagnostics may limit the
global applicability of machine-learning models. Experts warned that data
underrepresentation risks reinforcing inequities and undermining AIs
value in high-burden settings. Further research was also recommended at
the microbial level, especially concerning the genome-phenome relation-
ship under antimicrobial stress, to improve predictive modelling and
diagnostics.

Application of the BARDI framework

The BARDI framework (Brokered data-sharing, Al-driven modelling,
Rapid diagnostics, Drug discovery and Integrated economic prevention)
was developed inductively through grounded thematic analysis of expert
interviews. It offers a holistic, systems-level response to the complex chal-
lenges of applying AI to AMR. Rather than building on a pre-existing theory,
the framework emerged directly from the data, with categories iteratively
refined and overlapping themes merged (e.g. surveillance and data, or public
communication and education).

Brokered data-sharing

Experts consistently highlighted the need for secure, structured and scalable
mechanisms to share datasets across sectors while protecting proprietary
interests. A recurring concern was the fragmentation of data and the
reluctance of pharmaceutical firms to share valuable screening information:

Fig. 1 | Thematic theme frequencies. See Supple-
mentary Material.
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Table 1 | lllustrative quotes

Subtheme lllustrative quote

Data gaps (1) The prediction and generation tasks we’ve outlined are data hungry... where are there mechanisms to gather quality training data?
Dataset coordination/data-sharing (1) We need training datasets that merge chemical structure with biological and clinical outcomes, Al can’t learn robustly without that.
Data integration issues (4) Public datasets are heterogeneous —ML models struggle because data from different labs aren’t standardised.

Conveying uncertainty (3) ML models often give confident answers without conveying uncertainty... we need systems that know when they don’t know.
Possible solutions (5) There are companies trying federated Al approaches... letting pharma share data without revealing proprietary info.
High-throughput screening (4) With computers, we can now discover hundreds of thousands of antibiotic candidates in hours.

Combination therapies (1) Al for predicting synergistic chemical combinations is ideal —but we lack the training data to do it reliably.

Drug repurposing (1) If we train Al models across pharmacological properties, we can reuse what we’ve already done in other therapeutic areas.
Host factors (7) Al could help predict which antibiotics will work across diverse human genotypes — but we need much better host-response data.
Vaccines (3) Using smart statistical models to design vaccines is part of how Al could help us target high-risk resistant bugs.

‘We need training datasets that merge chemical structure with biological
and clinical outcomes. .. often the chemical space explored doesn’t overlap,
so models can’tlearn anything robust’. (Expert 1); ‘There are companies that
do federated data sharing, acting as brokers between pharma groups. But in
AMR, the incentives still aren’t there’. (Expert 5). This underscores the
critical role of brokered data-sharing as a foundational infrastructure for
effective AI deployment.

Al-driven modelling

Experts identified AI's strengths in enhancing predictive modelling, from
PK/PD predictions to global resistance forecasting and combination therapy
design. However, the effectiveness of these models was repeatedly linked to
data quality and integration: ‘ML models often give confident answers
without conveying uncertainty... methods that admit when they don’t
know are essential when removing phenotypic testing’. (Expert 3); “The
application of Al for combination solutions is perfect. The issue is a lack of
training data to predict synergistic interactions reliably’. (Expert 1); ‘We
could train models across therapeutic areas; Al can reuse what we’ve already
learned about PK/PD, solubility, etc., from oncology and other drug classes’.
(Expert 1). Al is thus positioned not as a plug-and-play solution but as a
modelling engine that depends on cross-domain integration and robust
uncertainty estimation.

Rapid diagnostics

Rapid diagnostics were seen as a high-impact domain for AL particularly
in translating genomic data into actionable clinical decisions and
enabling POC deployment in low-resource settings: ‘If you could
sequence the pathogen genome and run it through CARD to predict
susceptibility profiles... that’s the future of diagnostics’. (Expert 7); “The
inference from genome data can be fast, but we need to move away from
culturing to sequencing directly from messy samples which is where Al
can help’. (Expert 3); ‘POC assays that not only identify the bug but say
what you can treat with, those are urgently needed in LMICs’. (Expert 8).
These insights reinforce the role of Al in accelerating diagnostic infer-
ence, improving treatment precision, and supporting real-time surveil-
lance integration.

Drug discovery

Participants described a shift in antibiotic R&D, with Al facilitating high-
throughput screening, small molecule prediction and vaccine design.
However, translating in silico predictions into viable candidates remained a
bottleneck: ‘Computers can now identify hundreds of thousands of pre-
clinical candidates in hours, AT has compressed the early discovery timeline’.
(Expert 4); ‘Al could help design molecules with antimicrobial activity and
good pharmacological properties to basically do most of preclinical dis-
covery computationally’. (Expert 1); ‘AT’s challenge is the human interface,
you don’t just need to kill bacteria; drugs must be safe in humans at high
concentrations’. (Expert 7). Here, Al contributes by expanding the

exploratory search space, enabling smarter triage of leads and optimising
early-phase candidate pipelines.

Integrated economic prevention

Finally, participants emphasised that AT and technological advances alone
cannot resolve AMR without economic and behavioural infrastructure.
Experts linked Al to resource targeting, risk stratification and evidence
generation for stewardship policies: ‘If you're an investor and someone
pitches an antibiotic, you run. We need to treat AMR like a public good and
use Al to show the payoff. (Expert 1); ‘Precision medicine through Al can
identify high-risk individuals, who should get prophylactic therapeutics for
example’. (Expert 6); ‘Public awareness is still missing. AMR doesn’t have the
narrative strength of cancer or ALS, we need storytelling, and AI can support
that’. (Expert 1). Al here enables economic prioritisation and public com-
munication through improved modelling, population stratification and
engagement strategies.

Discussion

These results have set out the direction of expert opinion for AMR policy,
particularly in how to optimise research and development efforts. Never-
theless, there remain obstacles to explore in implementing this expert vision.

Brokered data-sharing was proposed by the expert interviews to unify
the divided efforts against AMR. A data broker is a regulator and diplomat; a
referee of how data is collected and used, but also an unbiased arbitrator
between commercially competitive organisations. This precedent is estab-
lished in other industrial contexts by the UK Information Commissioner’s
Office'" and European Data Protection Regulation'’. Data was the most
consistently raised issue throughout the interviews. The interviewees were
aware that any machine-learning algorithm often requires large amounts of
data, with concerns centred around access to datasets that already exist,
particularly pharmacological data rather than microbial data. Possible
solutions include a federated pharmacological dataset that does not com-
promise participating commercial research programmes, such as through a
data broker. This would require standardisation of data collection or at least
a data cleaning methodology. Moreover, Wan et al. demonstrated that Al
models can be trained with less data than previously thought; APEX was
trained on standardised experimental data collected for about 1000 com-
pounds tested against an array of target bacteria, yielding a matrix of about
15,000 data points".

Al-driven modelling is essential for the development of novel ther-
apeutic options. Creating novel therapeutics was seen as a very high priority
by interviewees, though most mentioned the importance of pursuing
multiple avenues, as there is significant uncertainty as to where the future
lies. Safety must be a central theme and concern. Alongside specifically
targeting drugs, modelling pharmacokinetics and pharmacodynamics could
also be approached using AI methods. Peptides, immunologics and small
molecules were all seen as reasonable targets'"°. The paucity of anti-fungal
therapy was highlighted as a pressing issue. Phage was viewed favourably in
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terms of a second-line therapy or personalised medicine, but concerns were
raised about their longevity as a therapeutic option and the potential for
unintended consequences (e.g. acting as a vector for AMR spread).

Rapid diagnostics emerged as a key pillar in the fight against AMR.
Interviewees emphasised the need for more accessible, affordable and rapid
diagnostic tools that could be implemented at various levels of healthcare,
including in low-resource settings. Advances in Al and molecular diag-
nostics can help enable real-time pathogen detection, reducing delays in
treatment and limiting unnecessary antimicrobial use. Improved diag-
nostics would enhance antimicrobial stewardship, enable more precise
epidemiological tracking and improve patient outcomes by ensuring the
right treatment is administered early. Acquisition of this data needs to be
standardised to optimise international efforts, which was also a subject of
intense scrutiny during the AMR Data Symposium at The London School of
Hygiene and Tropical Medicine in October 2024". Data is currently stored
in silos corresponding to traditional disciplines, and therefore, the datasets
are incomplete, whilst there remain integration issues due to heterogeneity
of data collection methods from different labs or disciplines. This is cor-
roborated by a review of antimicrobial learning systems (ALSs), which noted
the obstacles of incomplete data capture, dwindling pipelines of new anti-
microbials, one-size-fits-all antimicrobial treatment formularies, resource
pressures and poorly implemented diagnostic innovations'’. Moreover,
gaps in the currently available data require further research (e.g. pharma-
cological studies in humans), and data is being missed due to poor testing
capability, resulting in skewed datasets. The specific priority for applying
genomic data in the fight against AMR was also highlighted by the Well-
come conference on AMR in March 2024". Comprehensive datasets are
needed to fully realise the opportunities Al presents in combating AMR”.

Drug discovery is essential to deliver regional biosecurity. Vaccines
were highly rated by interviewees, but they acknowledged the difficulty of
creating anti-bacterial rather than anti-viral vaccines. Nevertheless, it is
appealing to target organisms that drive high antimicrobial use. Therapeutic
approaches were an area most interviewees felt was a priority, though it
tended to be highlighted by those who were currently working in this field,
and they admitted their bias due to their specialisation. The concept of
automating preclinical drug discovery was seen as very appealing. High-
throughput screening was detailed as a way that AI could be used to speed up
screening of vaccine candidates and to highlight new potential mechanisms
for drug targets. Combination therapies were described as a way that Al was
well-suited to the large-scale screening required for finding combination
therapies. However, the challenges raised by interviewees, which mostly
centred around pharmacokinetic and pharmacodynamic concerns, should
be noted. However, although a drug may work synergistically with another
in theory, the concentrations required for antimicrobial drugs, rather than
other non-antimicrobials, are often greater by an order of magnitude, which
presents safety concerns. Al was postulated to model the factors that affect
drug penetration, the effect of the immune system and the effect of the gut
microbiome.

Integrated Economic Prevention refers to the strategic investment in
preventative public health measures that mitigate financial and societal costs
associated with AMR before they escalate into more severe economic and
healthcare burdens. It underscores the importance of cost-effective inter-
ventions, such as improved stewardship, surveillance and public awareness
campaigns, that not only reduce long-term expenditures for healthcare
systems but also enhance societal engagement by demonstrating tangible
financial savings. Economic prevention is an essential component of
framing the public narrative. The cost of AMR and the savings to be made
for the public purse through pre-emptive action are needed for improving
societal engagement. Despite the ongoing research and predicted profes-
sional concern, AMR does not have the public profile of other diseases, such
as cancer.

This BARDI framework for directing AMR policy is corroborated by
leading reviews in this space. To that end, Rabaan et al.*' discuss how Al can
address AMR by optimising antibiotic prescriptions, predicting resistance
patterns and enhancing diagnostics; they emphasise the potential of

machine learning to improve clinical decisions and reduce the misuse of
antibiotics. Moreover, Howard et al."* propose a framework for imple-
menting Al-driven ALSs, and highlight AT’s role in optimising antimicrobial
use, addressing the complexity of AMR data and promoting adaptive,
sustainable interventions within healthcare systems; the development of
ALSs is especially important for modelling in surveillance efforts and
understanding the drivers of AMR”. Meanwhile, Ali et al.”’ outline AT’s
potential in antimicrobial stewardship, emphasising its application in pre-
dicting bacterial resistance, optimising treatment pathways and identifying
emerging threats through large-scale data analysis. Furthermore, Rabaan
et al.”, in alignment with the BARDI framework, focus on AI’s application
in clinical settings, particularly in improving antibiotic stewardship.
Moreover, Ali et al.”* further support these views by detailing AI’s role in
data-driven antimicrobial stewardship, reinforcing the importance of large-
scale data integration and machine learning for proactive AMR manage-
ment. Moreover, inappropriate antibiotic prescribing leads to increased
AMR, patient morbidity and mortality. Clinical decision support systems
that integrate AI with widely used clinical screaming systems can aid clin-
icians by providing accurate, evidence-based recommendations. This would
enable more objective prescription of antibiotics in compliance with
guidelines as per diagnosis. To this end, Howard et al."® expand on this by
proposing a systemic framework for integrating AI within healthcare,
stressing the importance of continuous learning systems. The obstacles to
progress in Al use for AMR include incomplete or biased data, especially
from primary care, which hinders accurate Al predictions. Sparse data and
fragmented health systems complicate Al’s effectiveness'®”’; the BARDI
framework provides a basis for international cooperation against AMR.

Moreover, this BARDI framework aligns with Chindelevitch et al
who describe AMR advancements in surveillance, prevention, diagnosis and
treatment; this research group has developed the first WHO-endorsed
catalogue of mutations in the Mycobacterium tuberculosis complex asso-
ciated with drug resistance and also developed INGOT-DR, an interpretable
machine-learning approach to predicting drug resistance in bacterial
genomic datasets™. The molecular mechanisms of AMR have been reviewed
to deliver an overview of intervention and modelling opportunities, parti-
cularly using genomic sequencing and functional genomic approaches,
including CRISPR*. Machine-learning applications to whole-genome
studies” present opportunities for both AMR surveillance as well as
downstream drug discovery. Whilst applying Al to small molecules may
generate recommendations which are not chemically synthesizable”, future
models may be able to incorporate pharmacology and toxicity to deliver
promising molecules such as Guavanin-2, which expressed the novel and
non-coded mechanism of hyperpolarization of the bacterial membrane”.
Meanwhile, with a growing demand for microbial resistance data collection,
the irregular standards and practices of reporting globally compromise
confidence in the field’s advancement™. Modelling AMR transmission may
enable personalised antimicrobial stewardship interventions, particularly in
carbapenem-resistant Klebsiella pneumoniae’. This necessitates a whole-
system approach’ with collaborations such as the Surveillance Partnership
to Improve Data for Action on Antimicrobial Resistance [SPIDAAR],
funded by Pfizer and the Wellcome Trust™, for national plans for upscaling
surveillance and prevention programmes in collaborations with private
sector resources, particularly for deriving mechanistic insights on drug
activity from population-scale experimental data™.

This BARDI framework is an urgent strategy to fight AMR; in a study
of 41.6 million US hospital admissions (over 20% of national hospitalisa-
tions annually) between 2012 to 2017, the incidence of extended-spectrum
beta-lactamase increased by 53.3% (from 37.55 to 57.12 cases per 10,000
hospitalisations), demonstrating that most hospitalisations were now
showing characteristics of AMR'. If this trajectory does not stop, even the
wealthiest nations will be overwhelmed.

There are atleast four ongoing considerations to the implementation of
this BARDI framework. Data privacy and security are important when
dealing with sensitive patient information. Global standardisation and
interoperability of A systems are necessary to ensure that AI-driven AMR
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detection can be effectively integrated for biosecurity across different
healthcare environments”. Now that 460 academic, commercial and public
data consumers in the UK National Health Service have been mapped, and
the challenges of multistage data flow chains have been shown to include
noncompliance with best practice, there remain concerns about delivering
the full potential of UK health data®, including the establishment of a data
broker.

Subtle differences in the definitions of a particular clinical event can
have a dramatic impact on prediction performance. Cohen et al.”, when
applying tree-based, deep learning and survival analysis to the MIMI-III
intensive care admissions database, demonstrated a 0-6% variation in area
under the receiver operator characteristic (AUROC) depending on the onset
of time in different definitions of sepsis. This is an essential observation to
consider when using Al in the forecast of AMR because of the potential for
resistance to be expressed in different patterns across different bacteria, as
each resistant strain manifests harm to the host. A more precise definition
beyond ‘when microbes no longer respond to antimicrobial medicines™ is
needed to minimise the variation in AUROC of AMR predictive diagnostics;
there must not be a repeat of the error of the Sepsis-III definition in not
defining the clinical event onset time’*’. Moreover, it is important to dif-
ferentiate suspicion of infection and organ dysfunction when interpreting
the clinical scenario'; verifiable methods with a precise definition of AMR
are needed to direct a valid clinical response. Li et al.*” may have begun to
address this problem by cataloguing some of the exact alleles associated with
specific resistance patterns, but this would need to be improved to real-time
analysis to allow for meaningful improvements to clinical decision-making.

Both ‘One Health” and ‘Global Health’ are interdisciplinary concepts
based on the interdependence of human and animal health, and integrating
biological, environmental and socioeconomic factors, but they address
AMR at different levels. Hospitals, patients and infections are all sometimes
described as ‘resistant’”’, but technically only the bacteria become resistant to
an antibiotic®®. However, when interrogating genomic and EHR data to
develop a forecast, one is inclined to define AMR by a broader criterion of
observed phenomena as the infection takes effect in the host patient and
hospital. Gene capture strategies* and real-time PCR procedures® may
improve the detection of antibiotic-resistant bacteria, regardless of their
environment. This matters for a ‘Global Health’ perspective since novel
resistance arises in one place and then disseminates worldwide*.

Modern vaccine platforms such as mRNA, protein subunit and vector-
based technologies offer new opportunities for developing targeted vaccines
against resistant pathogens, alleviating the AMR pressure on healthcare
systems worldwide”. Vaccines offer a complementary approach to anti-
microbials by decreasing antibiotic demand; vaccines against Streptococcus
pneumoniae and Haemophilus influenzae type b have reduced rates of
pneumonia and meningitis*’. This reduces demand for broad-spectrum
antibiotics, slowing resistance from antibiotic regimens selecting for resis-
tant strains*’. Moreover, vaccination against viral pathogens can help reduce
the incidence of secondary bacterial infections and reduce symptomatic
presentations, which may be confused with bacterial pathology™. In
populations with high influenza vaccination coverage, there is a consequent
reduction in antibiotic prescriptions, particularly during flu seasons’".
mRNA vaccines, vector-based vaccines and protein subunit vaccines have
expanded the potential for targeting AMR directly”. mRNA vaccines use
messenger RNA to induce cells to produce specific antigens, thereby trig-
gering an immune response to AMR pathogens™. This technology allows for
the rapid development and testing of vaccines against AMR bacteria with
rapid turnover, such as Pseudomonas aeruginosa and Mycobacterium
tuberculosis™. Protein subunit vaccines enable targeted responses against
resistant bacterial strains, such as MRSA™. Conjugate vaccines, which
combine a protein with a polysaccharide to enhance immunogenicity, can
prevent infections that commonly exhibit antibiotic resistance; the pneu-
mococcal conjugate vaccine has not only reduced pneumococcal disease
prevalence but also curbed the spread of drug-resistant S. pneumoniae
strains®’. However, caution is required as some drug-resistant strains have
evaded vaccination” and general resistance has been reported to bounce

back to pre-vaccine levels”. Vector-based vaccines can be engineered to
target specific resistant pathogens, especially those with complex life cycles™.
Escherichia coli, Klebsiella pneumoniae and Acinetobacter baumannii are
emerging targets for pharmaceutical research® since these infections are
difficult to treat due to multidrug resistance.

Moreover, these developments complement combination machine-
learning methodologies, which leverage data-driven models in synthetic
gene circuit engineering®; the introduction of RhoFold+%, an RNA lan-
guage model-based deep learning method that accurately predicts 3D
structures of single-chain RNAs from sequences, enables the fully auto-
mated end-to-end pipeline for RNA 3D structure prediction. Vaccines
could significantly impact AMR by preventing infections that are notor-
iously hard to manage with available antibiotics. Whilst we wait for vaccines
to be developed, resistant microorganisms will need to be scrutinised for
druggable vulnerabilities, such as through collateral sensitivity induction by
manipulating bacterial physiology”. These intermediate efforts can be
supported by antimicrobial resistant gene databases® ", particularly which
offer spatiotemporal and abundancy data™.

The full James Lind Alliance (JLA) protocol process was modified; each
Priority-Setting Partnership (PSP) would normally consist of patients,
carers and their representatives, and clinicians, and is led by a Steering
Group. The Steering Group oversees the activities of the PSP and has
responsibility for the activity and the outcomes of the PSP. Since the role of
the PSP is to identify questions that have not been answered by research to
date, this study followed a modified path with the experts giving answers
within a thematic framework. While the study excluded direct public
involvement in its priority setting, it acknowledges that public awareness
and engagement are critical in combating AMR. Instead of broad public
surveys and workshops, the study used targeted expert interviews to identify
research priorities in applying Al to AMR. Despite this abridged process, the
extensive subsequent thematic analysis maintained the principles set out by
the National Institute for Health and Care Research, which coordinates the
infrastructure of the JLA to oversee the processes for PSPs, based at the
NIHR Coordinating Centre, University of Southampton.

The BARDI framework advances previous antimicrobial-resistance
proposals by transforming disconnected objectives into a unified, action-
oriented ecosystem. Whereas previous action plans simply urged stronger
surveillance, more research, better diagnostics, expanded R&D and the
development of an economic case for investment, BARDI weaves these goals
into five interlocking pillars that actively drive progress. First, instead of
leaving data systems in siloed national or sectoral hands, BARDI establishes
a neutral data broker. This broker enforces common standards, mediates
access and protects proprietary interests, ensuring that human health,
veterinary, agricultural and environmental datasets flow together under fair
governance. Second, BARDI elevates Al from an aspirational research tool
to the central engine of the response: Al-driven modelling continuously
ingests brokered data to forecast resistance trends, optimise pharmacoki-
netic/pharmacodynamic regimens and even propose novel therapeutic
compounds. Third, rapid diagnostics are promoted from a side objective to a
full pillar. Decentralised, POC tests feed real-time results into the data
broker, triggering Al-informed stewardship interventions and improving
surveillance with minimal delay. Fourth, the drug-discovery pillar couples
Al-identified bacterial targets with a prioritisation schema linked directly to
public health impact, ensuring that investment goes toward the most critical
vaccines and antimicrobial compounds rather than dispersing funding
across undifferentiated R&D. Finally, integrated economic prevention
converts the longstanding call to ‘develop the economic case’ into a dynamic
funding mechanism. Real-time data on resistance burden and projected
economic losses guide the allocation of resources to stewardship pro-
grammes, awareness campaigns, incentive prizes and cross-sector colla-
borations. In this way, economics is not merely a justification for action but
an operational tool that continually sustains and adapts the entire BARDI
ecosystem.

The top ten expert research themes for the application of Al to AMR
provide valuable clarity on allocating resources to inform research
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developments in biosecurity and pandemic preparation. We propose a
BARDI framework for directing AMR policy (Brokered data-sharing, Al-
driven modelling, Rapid diagnostics, Drug discovery and Integrated eco-
nomic prevention). Data was the most consistently raised issue throughout
the interviews and needs to be neutrally coordinated to avoid obstacles,
including automation bias, fear of job displacement and scepticism about
AT’s decision-making abilities. Developing Al for AMR faces complex
challenges, particularly in ensuring that AI tools comply with medical device
regulations and data protection laws across different countries. The BARDI
framework is a coherent strategy to fight AMR with AT to help realise the
aspiration of the GRAM Project to save up to 92 million lives by 2050°.

Methods

This study employed a modified JLA approach between February and June
2024 to identify research priorities at the intersection of AI and AMR.
Unlike traditional JLA PSPs, which involve patients, carers and clinicians,
this study included only domain experts. This was due to the technical
nature of Al applications to AMR diagnostics and interventions, which
require specialist knowledge. Nevertheless, the importance of public
engagement in AMR remains acknowledged, and complementary work is
being conducted at the Institute of Global Health Innovation (IGHI) to
address this gap. The COREQ™ (Consolidated Criteria for Reporting
Qualitative Research) 32-Item ChecKlist is set out in the Supplementary
Material.

Study design and participant recruitment

Participants were purposively selected based on their recognised exper-
tise in either AI or AMR. Recruitment was conducted via a professional
academic email. Invitations included a synopsis of the study and
instructions for participation. A short slide deck outlining possible Al
applications to AMR was sent in advance to structure the interview
conversation; this material is available in the Supplementary Material.
Eligible participants included professionals with demonstrated experi-
ence in research or policy related to AMR and/or Al Informed consent
was obtained from all participants. All necessary approvals were granted
by the Imperial College Research Ethics Committee (ICREC), with
authorisation from the Head of Department. A total of 23 domain
experts were invited to participate in this study. Of these, eight agreed to
take part, yielding a response rate of 35%. Participants were purposively
selected based on their recognised expertise in AMR, Al, microbiology,
clinical practice and health systems research. All participants held senior
academic or clinical positions and were actively engaged in research at
the intersection of Al and infectious diseases.

Participants represented a range of disciplinary backgrounds, includ-
ing AI and machine learning, bioinformatics, microbial genomics and
evolution, molecular microbiology, translational medicine, pharmacology
and global health. Thematic areas of expertise included Al for precision
antimicrobial prescribing, the development and implementation of diag-
nostic and surveillance technologies, understanding the molecular
mechanisms of resistance (e.g. efflux pumps, resistance gene regulation) and
health systems approaches to antimicrobial stewardship. Although the
majority of participants were based at institutions in high-income countries
(notably the United Kingdom, the United States of America and Canada),
several had significant experience working in or collaborating with research
teams in LMICs, including leadership roles in global initiatives with WHO-
affiliated programmes. This ensured that global equity considerations and
contextual diversity were reflected in the priority-setting process.

A summary of participant characteristics and research areas is pro-
vided in Supplementary Table S1.

Data collection

All interviews were conducted online, averaged 45-60 min, and were fol-
lowed by asynchronous email input. We acknowledge that while thematic
saturation was largely achieved, the relatively small sample (1 = 8) repre-
sents a limitation. Interviews were semi-structured and conducted either

online or by phone, depending on participant preference. Conversations
were guided by predefined themes, including:

* Evidence gaps and uncertainties in AMR

¢ Antibiotic and drug design

* Novel/non-classical drug solutions (e.g. biologics, phage therapy)
» Combination therapies

* Biomarker and point-of-care (POC) test design
* Drug repurposing

¢ Precision and population-level prediction

* Behavioural modification

* AMR surveillance and epidemic prediction

* Economic resource allocation

* Health policy development

* Big data analytics and real-world evidence

» Communication of AMR challenges

Interviews were audio-recorded with permission and transcribed
verbatim. Follow-up email exchanges were used to clarify and expand on
responses, with these data included in the thematic analysis. Participants
were asked a series of open-ended questions to elicit expert insight on the
opportunities and limitations of Al in addressing AMR. Illustrative ques-
tions, as shown in the Supplementary Slide Deck and ‘Topic Guide for
MARISA’, included: ‘What is your understanding of Al and its applications
to AMRY, ‘Are there areas within AMR where AI would be particularly
amenable or, conversely, unhelpful?” and ‘What barriers currently hinder
the application of AT to AMR?’. Experts were also asked to reflect on a pre-
identified list of thematic areas, such as prevention, diagnosis, treatment,
surveillance and stewardship, and were prompted to indicate priorities,
gaps, or overlooked domains (‘Do any stand out?, ‘Are there areas we
should prioritise?, ‘Any areas that are not on this list?’). In addition, par-
ticipants were invited to suggest enablers for progress, with prompts focused
on policy goals, data infrastructure and education.

Responses were thematically coded using an inductive approach. Each
transcript was first open-coded line-by-line, and emerging codes were then
grouped into higher-level categories representing key domains of interest.
For example, responses regarding AD's usefulness in predicting anti-
microbial susceptibility were coded under ‘diagnostic applications’, while
suggestions to improve training and digital literacy were grouped under
‘capacity building and education’. Barriers such as data fragmentation,
algorithmic bias, or regulatory uncertainty were captured under ‘infra-
structure and governance’ and ‘ethical and legal challenges’. Codes were
iteratively refined and clustered into broader categories to inform the final
prioritisation framework.

Data analysis

An inductive thematic analysis approach was employed to analyse the
qualitative data, facilitated by NVivo software. This method was chosen to
allow themes to emerge from the data without imposing pre-existing
categories, ensuring that the analysis remained grounded in participant
perspectives. Two researchers (W.W. and H.T.) independently coded all
interview transcripts using an open coding approach. After initial coding of
the first few transcripts, the researchers held consensus meetings to compare
and discuss their interpretations of emerging codes. These discussions
informed the iterative refinement of a shared coding framework, which was
then applied to the full dataset. To ensure reliability, selected transcripts
were double-coded, and discrepancies in code application were system-
atically discussed and resolved during regular reviewer meetings. This
process helped to clarify code boundaries and improve consistency in the-
matic categorisation.

Justification for expert-only focus

This study focused exclusively on experts due to the complex and technical
nature of AT’s application to AMR, a field in which public input, while
valuable, may not sufficiently inform priority-setting at the technical level.
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That said, broader public engagement remains a parallel focus of the IGHT’s
ongoing AMR work. Unlike the usual JLA PSPs, which involve patients,
carers and clinicians, this study only included experts in AMR and AL This
decision was made because the application of AI to AMR diagnostics is a
technical issue requiring specialist knowledge rather than direct public
involvement. While the study excluded direct public involvement in its
priority setting, it acknowledges that public awareness and engagement are
critical in combating AMR. Instead of broad public surveys and workshops,
the study used targeted expert interviews to identify research priorities in
applying Al to AMR. Public involvement is so important that separate work
from the IGHI is working specifically on how to engage the public on AMR
issues; the goal is to improve awareness of AMR as a global health threat,
influence behavioural changes in antibiotic use and ensure that funding and
policies align with both expert recommendations and public concerns.

The inclusion criteria were professionals with expert knowledge of
AMR and/or Al as identified by the study team, who gave explicit consent to
participate. The Principal Investigator obtained approval from the Head of
Department and a favourable opinion from ICREC.

Data availability
Data are provided within the manuscript or Supplementary Informa-
tion files.
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Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.
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