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The adoption of individual behavioural patterns is largely determined by stimuli arriving from peers via
social interactions or from external sources. Based on these influences, individuals are commonly
assumed to follow simple or complex adoption rules, inducing social contagion processes. In reality,
multiple adoption rules may coexist even within the same social contagion process, introducing
additional complexity to the spreading phenomena. Our goal is to understand whether coexisting
adoption mechanisms can be distinguished from a microscopic view at the egocentric network level
without requiring global information about the underlying network, or the unfolding spreading process.
We formulate this question as a classification problem, and study it through a likelihood approach and
with random forest classifiers in various synthetic and data-driven experiments. This study offers a
novel perspective on the observations of propagation processes at the egocentric level and a better
understanding of landmark contagion mechanisms from a local view.

We influence our peers through our conduct and interactions, thereby
impacting their decisions to follow behavioural patterns similar to ours.
Such patterns, mediated by social influence, may propagate as a
spreading process and lead to macroscopic phenomena of mass adop-
tion of products, ideas, beliefs, or information cascades'™. The relevance
of social spreading phenomena has been previously identified®” and
arguably explained by simple decision mechanisms on well-mixed
populations®"'. Meanwhile, the importance of social networks has also
been recognised'*™", as they effectively encode the underlying structure
along which social influence travels. Their structure could critically
influence the global outcome of social spreading phenomena unfolding
on top of them™". This finding is especially true for temporal networks'®,
which capture both the structure and the time of interactions between
connected peers, whose time-varying links represent possible events of
direct social influence'"*.

Models of social contagion commonly describe the spreading
dynamics as a binary state process'’, in which individuals are identified as
nodes of a social network that can be in different states; susceptible nodes
(also called ignorants) may adopt a given behaviour and become “infec-
ted”—borrowing the term from the literature of infectious disease modelling
—or in other words spreaders, or adopters (Note that in this manuscript, we
would use these terms interchangeably.) through a cognitive process driven
by a variety of contagion mechanisms. One family of mechanisms"*’,
commonly termed simple contagion in the social science literature ™,
resembles biological epidemic processes; each interaction between a

susceptible node and an infectious one may independently result in an
infection event with a predetermined probability, leading to gradually
evolving global adoption curves™.

There is, however, plenty of empirical evidence suggesting that the
simple contagion is not sufficient to explain the observed spreading
phenomena in certain contexts', leading to the concept of an alter-
native mechanism, called complex contagion’***”. In this case, expo-
sures are not independent, but peer pressure can impact in a non-linear
way the individual infection probability, for example by accumulating
influence towards an individual adoption threshold"""***. Depending
on the model parameters, the complex contagion mechanism may lead
to a cascading phenomenon®, where mass infection emerges over a
short period of time. This was first shown on networks by Watts'’, while
several follow-up studies explored a rich family of similar phenomena
in multi-layer’*™, weighted”*** or temporal networks'**’, demonstrat-
ing their relevance in real-world settings**’. In this manuscript, we will
use the threshold model”” as a paradigmatic mechanism of complex
contagion.

Simple and complex contagion capture network-based adoptions,
however, social influence may not always spread on an observable network
(e.g., advertisements, news or policy recommendations, etc.). We take such
external influences into account by also considering a third mechanism,
called spontaneous adoption™*"*. Although spontaneous adoption is
agnostic to the underlying network structure, infection patterns via the other
two mechanisms depend non-trivially on several networks and dynamical
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characters of an ego and its peers®. It has been shown that while simple
contagion spreads easier on dense and degree-heterogeneous structures,
with high-degree nodes early infected", these properties mitigate complex
contagion as the threshold of high-degree nodes can be hardly reached™".
Moreover, while weak ties connecting densely connected communities act
as facilitating bridges for simple contagion', they slow down complex
contagion cascades™***", as they likely deliver non-reinforced social influ-
ence to susceptible individuals. In addition, the timing and the order of
infection stimuli, their concurrency, and the bursty dynamics of
interactions®*** between individuals and their peers influence the adoption
dynamics and the macroscopic dynamical outcome of the spreading process
as a whole.

Acting alone, all social contagion mechanisms may lead to differenti-
able infection dynamics at the global scale. In this direction, while distin-
guishing mechanisms solely from the overall infection dynamics remains a
challenge™, recent methods combining spreading dynamics and network
information®, or considering the timing of peer stimuli*, or the differences
of the spreading dynamics by contagion type in mesoscale structures™ led to
promising results. However, these studies commonly make two assump-
tions limiting their applicability in real-world scenarios. First, they expect
full knowledge about both the underlying network structure and the
spreading dynamics. Indeed, this is a strong assumption in common real-
world scenarios, where information about infection events is typically
incomplete or limited to local knowledge, possibly obtained only about an
adopting ego and its peers. Second, these studies assume that all individuals
follow the same single adoption mechanism; either simple or complex
contagion. In contrast, it has been argued that the mechanism driving one’s
decision to adopt a behaviour during an unfolding social contagion may
depend on the intrinsic susceptibility of an individual to the actual beha-
vioural form and the properties of the propagation process itself . Thus,
each single adoption event may be driven by different mechanisms that
jointly depend on personal factors™* (heterogeneous susceptibility and
predisposition), the properties of the item being adopted (Gladwell’s
stickiness™), and the particular context (environment, time of adoption,
other external factors).

In this study, we distinguish between simple, complex and spontaneous
contagion mechanisms by addressing both the issue of limited data avail-
ability and the challenge that a single social contagion process may involve
multiple adoption mechanisms™’. We frame this question as a classification
problem and explore solutions based on likelihood and random forest
approaches. These methods are developed and tested on extensive synthetic
simulations, encompassing different spreading scenarios and underlying
social structures, ranging from fully controlled experiments to empirical
spreading cases observed on Twitter (currently called X). Our ultimate goal
is to uncover the fundamental limits of the distinguishability of these
mechanisms and to propose solutions that can be readily used in real-world
scenarios aimed at understanding social contagion phenomena.

Results

Different mechanisms of social contagion

We study adoption processes on networks, where individuals are repre-
sented as a set of nodes V, and their interactions as a set of links E. The
number of nodes connecting to a node i (i.e., the number of neighbours) is
called the degree of i, denoted by k;. The most common way to model
propagation dynamics on a networked population is to assign a state to
every node, which characterises its status with respect to the propagation'’; a
node is either susceptible (S), meaning that it has not yet been reached by the
contagion process, or infected (I), if it has already been reached, and thus it
can infect others.

We consider three infection mechanisms that can change the state of a
node from susceptible to infected (cf. Fig. 1a).

As for the simple contagion (Sm) mechanism, we build on the
Susceptible-Infected (SI) model, introduced first in epidemiology** and later
to characterise the adoption of social behaviours”*. In this model, a sus-
ceptible node can become independently infected with a fixed probability
during each interaction with an infectious neighbour. Here, we assume that
at every time step a susceptible node i could acquire an infection from each
infectious node in its neighbourhood with its node-dependent probability
Bi €10, 1] (that could thus be considered alike a heterogeneous suscept-
ibility). After a gradual contamination of the network, the macroscopic
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Fig. 1 | Overview of experimental setups. a Illustration of the three contagion
mechanisms that are subject to inference: simple contagion parameterised by the
adoption probability 8; through a single stimuli; complex contagion parameterised by
the threshold ¢; of necessary fraction of adopter neighbours to induce the adoption
event; and spontaneous adoption that occurs with probability r. b The parameter
space (B, ¢) and the speed dependence of the simple and complex contagion

processes are shown as a schematic representation for illustration purposes. ¢ The
different experimental setups that include the considered contagion mechanisms,
the complexity of the underlying network, and model update rules. d Schematic
pipeline for the application of the log-likelihood (LLH) and random forest machine
learning (ML) classification approaches to the different experiments.
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steady state of an SI contagion process is reached when all nodes become
infected. The Complex contagion (Cx) mechanism breaks the linearity of the
contagion by introducing social reinforcement effects, often found in
behavioural patterns: it is the combined influence arriving from the neigh-
bours of an ego node, which triggers the adoption. Here, we consider this
mechanism by employing a conventional deterministic threshold model
introduced by Watts'®, where each susceptible node i becomes infected as
soon as its fraction of infectious neighbours exceeds a preassigned intrinsic
threshold ¢; € [0, 1]. This threshold model is known to exhibit rapid cas-
cading behaviour if the necessary conditions on the average degree and the
infection threshold are met".

Parameters f3; and ¢; are crucial in shaping the propagation dynamics.
High values of f3; lead to faster adoption via Sm, while low values of ¢;
accelerate the adoption rate via Cx, as individual thresholds become easier to
reach (see Fig. 1b and also Supplementary Material 1).

Finally, we implement a third adoption mechanism called spontaneous
adoption (St), which models external effects; every susceptible node
becomes infected with probability r during any time steps of the process,
independently of the state of its neighbours.

The backbone of the paper is a series of four experiments (Fig. 1c),
where we tackle the problem of distinguishing simulated Sm, Cx and St
processes based on the infection times of an ego node and its neighbours.
The experiments cover a wide range of scenarios, from the simplest
configuration on disjoint star networks with f3; and ¢; known to the
estimator (Experiment 1), to the most involved setup, simulated with co-
existing, asynchronous update mechanisms with unknown parameters
(Experiment 4). In each experiment, we distinguish the adoption pro-
cesses using a maximum likelihood approach and a random forest
classifier whenever the method is applicable (Fig. 1d). The likelihood
approach features theoretical guarantees and the possibility to include
prior knowledge about the underlying processes™. However, likelihood-
based approaches may not be robust if they cannot capture precisely the
data from the assumed generative process”. In contrast, random forest
classifiers tend to be more robust even if the dataset does not fit perfectly
to the model, while falling short on the interpretability of the results.
Finally, after highlighting the strengths and weaknesses of the two
classification approaches, we apply the random forest classifier to real
ego-level datasets collected from the Twitter (now called X) micro-
blogging and social networking platform.

Process classification with known parameters

We start approaching the proposed classification task in the most ele-
mentary case, that is when the parameters {f;},_y- {¢;},.y and r governing
the spreading processes are known to the classifier. Even though such
information is not available in practical real-world scenarios, this setup
represents an ideal starting point to understand the performance of the
classifiers in a simple and controlled synthetic context.

Contagion on egocentric networks

Experiment 1. As we aim at classifying contagion mechanisms relying solely
on the information available at the level of an ego node and its neighbours,
the simplest setting to consider is the case of contagion processes that spread
on disjoint star structures that are not part of a larger network structure. To
isolate the mechanism of the ego node only, we assume that all the neigh-
bours undergo a spontaneous adoption (St mechanism), while the ego can
adopt via simple or complex mechanisms, which are randomly assigned at
the beginning of each simulation, as well as the f8; and ¢; parameters con-
trolling the contagion of each ego node.

After simulating the contagion process for T timesteps, we feed the
classification algorithm with the trajectory {o,(f)}’_, that takes values 0 (S)
or 1 (I) and tracks the status of each ego node i at each timestep ¢. In order to
assess whether the trajectory of an ego has been generated by the Sm or Cx
mechanism, we formulate the classification problem under a likelihood
framework. Since both contagion processes are Markovian (i.e. the state of
the system at a given time only depends on the previous timestep), we can

write, for each node i, the likelihood for an observed process to be generated
by each mechanism X’ € {Sm, Cx} with parameters {§;, ¢} as the product of
the probabilities:

T
LX) = [[Ploi(t + Dloy (1), X, (B ¢, 6]
t=0

where 0 ,,(#) denotes the trajectories of the ego node and of its neighbours.
An observed adoption could then be attributed to the mechanism having the
highest likelihood (more details are given in “Likelihood calculations” of the
“Methods” section).

Assuming that the star networks have degrees k drawn from a
binomial distribution, we display in the heatmap of Fig. 2a the obtained
accuracies (proportion of well-classified nodes) as a function of the
respective pair of parameters (f3, ¢) that generated the simulations. We
obtain relatively high accuracy values—with a mean of 0.9—over the
whole parameter space, with the exception of the portion of the space
where Sm and Cx both evolve fast, which corresponds to the parameter
extreme when 8 — 1 and ¢ — 0. In this case, Sm and Cx are very difficult
to distinguish; in both cases, the ego node becomes infected, most likely
one timestep after its first neighbour adopts. This parameter range also
corresponds to the least distinguishable scenario at the level of the global
epidemic curves, as they both evolve rapidly even in populations with
homogeneous adoption mechanisms (Supplementary Material Fig. S1).
In this range, the lowest classification accuracy is around 0.55, which is
still slightly above the expected accuracy of a random classifier 0.5.
Notably, the two processes are highly distinguishable in the opposite
case, when $=0.1 and ¢ = 0.9. In this other extreme, ¢ is so high that Cx
adoptions are possible only once most of the neighbours of the adopting
ego have been spontaneously infected. At the same time, Sm adoptions
are still possible via repeated stimuli from a few neighbours, making the
two processes easier to distinguish.

A major advantage of this stylised setup on disjoint degree-k star
networks is that the likelihood classification accuracy can be approximated
analytically as

Lke)
—p, b,
ACC(ka /37 ¢7 f') ~1 - % < Hl hni‘pnhpnbn) b(kgb.l’ (2)
n=

with p, = 1—(1—r)* "and b, = 1 —(1—PB)" (see the “Methods” section for the
details of the calculation). Comparing the theoretically estimated accuracies
from Eq. (2) (visualised in Fig. 2d) with the simulation outcomes (Fig. 2a),
we observe a very close match, with a maximum difference of 0.01.

Overall, Experiment 1 features a high classification accuracy and pre-
cise analytical results, while making strong assumptions on the network
structure and the adoption mechanisms. Since the likelihood approach
matches the underlying model exactly, it is an optimal estimator, and we
omit the application of the random forest approach in this setup. However,
since this setting also neglects some of the most important features of
realistic social contagions and social structures, it can only be considered as
the simplest solvable reference model to be compared with more complex
scenarios.

Contagion on random networks

Experiment 2. To generate a more realistic setting, we consider contagion
mechanisms that spread over larger network structures. Most of the results
in this section were obtained on the giant component of Erdos-Rényi
random networks®' with 1000 nodes and an average degree of 4, but we also
present results on random networks with degree heterogeneity, triadic
closure and community structure with the same parameters. Similarly to
Experiment 1, we randomly predetermine the contagion mechanism
(simple or complex) for each node. This time, however, we allow each node
to spontaneously adopt during the contagion process, regardless of their
predetermined mechanism. This way, the contagion does not vanish even
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Fig. 2 | Comparison of the classification accuracies across the different methods
and experiments. Classification accuracy values of the likelihood method (green
rectangle (d) when it is obtained theoretically and yellow rectangle (a-c) when it is
obtained by simulation) and of the random forest method (red rectangle (e-g)). Results
in the same column are obtained on the same Experiment produced by synthetic
models, with model complexity increasing from left to right. In panel (g), the notation
gPemmeer represents the nth quintile of the parameter distribution. Panels h-1 show the

confusion matrices associated to the highlighted pairs (f, ¢) from Experiments 2-4. In
general, classification accuracy decreases with increasing model complexity, but the
accuracy remains well above the random baseline (0.5 for Experiment 1 and 0.33 for
Experiments 2-4). Within one experiment-method pair, accuracy increases with ¢ and
decreases with f3, which agrees with our intuition that the Sm and the Cx are most
difficult to distinguish when both contagions propagate fast in the network.
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Fig. 3 | Feature importance for Experiments 2 and 4. Frequency of observation of
the features used to train the random forest classifier among the top-3 most
important ones across the full parameter space for Experiment 2 (blue) and
Experiment 4 (orange). Frequencies are computed as the number of appearances
normalised by the number of possible occurrences. The resulting most important
features are the time since the first and the last infected neighbour.

on large networks with extreme Sm and Cx contagion parameters but
continues spreading following linear dynamics. The modification also
implies that, since nodes can be adopted via simple, complex or spontaneous
mechanisms, our classification algorithms need to distinguish between the
three hypotheses (see the “Methods” section).

In line with the approach of Experiment 1, we compute the likelihood
that each adopter follows a specific contagion mechanism (see Eq. (1)) based
on the trajectories of the ego nodes and their neighbours. Since the
assumption on the independent adoption of the neighbours of ego does not
hold anymore, the likelihood framework becomes an approximation (see
the subsection “Likelihood calculations” of the “Methods” section for the
detailed derivation). Nevertheless, accuracy values for the whole parameter
space summarised in Fig. 2b confirm that this approach can still perform
well achieving a mean accuracy of 0.87—well above the expected accuracy of
a random classifier (0.33).

Since the likelihood framework provides an approximate solution
for Experiment 2, it calls for alternative approaches. After an extensive

classification model selection (cf. Supplementary Material 2), we selec-
ted a random forest approach as the consistently best-performing clas-
sifier. In order to strike a balance between performance and
interpretability, we train random forest classifiers on the same synthetic
dataset as above. After testing several structural and dynamical features
of the ego and its neighbours, we identify eight relevant features for the
classification that appear with distinct distributions for different infec-
tion mechanisms (cf. Supplementary Material 3). These are (i) the
degree, (ii) the proportion of infected neighbours, (iii) the number of
infected neighbours, (iv) the sum of received stimuli, (v) the average
number of received stimuli by neighbour, (vi) the standard deviation of
per neighbour stimuli, (vii) the time since the first infected neighbour
and (viii) the time since the last infected neighbour.

We train a random forest model using these input features for each
adopted node that appeared during a simulated contagion with Sm and Cx
with parameters  and ¢. The random forest approach provides very similar
results (see Fig. 2e) to the likelihood-based calculations (Fig. 2b), only with a
slightly worse average accuracy of 0.82. According to the confusion matrices
shown in Fig. 2h and j, while the two methods perform similarly in classi-
fying simple contagion cases, the random forest misclassifies complex and
spontaneous instances at a higher rate. Notably, given the interpretability of
the trained random forest classifiers via feature importance, we can further
restrict our original eight features to only three and retain similar accuracies
as before (see Supplementary Material 3). Interestingly, some feature subsets
are consistently optimal across the full parameter space. This is reported in
Fig. 3, where we present the number of times a feature appears within the
subset of the top-3 optimal features, normalised by the number of possible
instances (parameter pairs 3, ¢ in the phase space). Overall, the two most
recurring features are the times since the first and the last infected neigh-
bours. These can also be easily interpreted within the modelling framework:
the time since the first infected neighbour cannot be too high for Sm, as that
would mean too many repeated stimuli without an infection event, while for
the threshold-based Cx the time since the last infected neighbour has to be
necessarily one.
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Process classification with unknown parameters

Up to this point, all the investigated tasks assumed precise knowledge of the
parameters f3;, ¢; and r governing the different processes. However, in rea-
listic scenarios, these need to be also inferred together with the contagion
mechanisms, thus motivating the following experimental setup.

Experiment 3. In this setting, we classify the contagion instances from
Experiment 2 assuming unknown contagion parameters, which means
distinguishing mechanisms without knowledge of the parameters that
governed them. In the likelihood approach, we use the same equations to
compute the likelihood that the contagion instance i is simple, complex
or spontaneous as before, except we also estimate the values of 8, ¢; and
r. We set the value of fSi as the inverse of the number of received stimuli
by node i, and the value of ¢, as the proportion of infected neighbours at
the time of the infection of node i. The value of 7 is calculated as the
fraction of time spent by a node in the S state with at least one infected
neighbour (see the “Methods” section for more details).

Figure 2c shows that we still classify the adoption mechanisms with
high accuracy, especially considering the increased difficulty of the classi-
fication problem compared to the earlier settings. The mean accuracy was
found to be 0.69, well above the reference value of a random classifier (0.33).
We observe the worse performance for low values of ¢, due to the high rate
of confusion between complex and simple contagion cases (Fig. 2i). Those
nodes are generally infected just after the appearance of an infectious
neighbour, making it difficult for the model to distinguish between the two
peer-driven mechanisms Sm and Cx. The accuracy is the highest for large
values of ¢ and low values of 3. As before, we gain the most information
about the processes when both of them are progressing slowly.

We also test the random forest approach in this experiment by using
the same features used in Experiment 2, but training instead one unique
model over the whole phase space—as the parameters are not known
anymore. Interestingly, this solution provides slightly more accurate results
(see Fig. 2f) than the likelihood method (see Fig. 2¢), especially for low values
of B. Reading the confusion matrices (in Fig. 2k and i, resp.), this
improvement mostly comes from the better classification of complex con-
tagion instances, that were commonly classified as simple by the likelihood
approach. Nevertheless, the overall accuracy of the random forest classifier is
lower for Experiment 3 as compared to Experiment 2, which is expected, as
the estimators receive less information.

Note that we conducted Experiments 2 and 3 on various types of
random networks including Erdés-Rényi” (presented above), Barabési
~Albert®, Watts-Strogatz* and stochastic block model” networks (see
Supplementary Material 4) with very similar results. This suggests that the
global network structure has limited impact on the local differentiation of
contagion processes in each performed experiment.

Case study: adoption mechanisms on Twitter

After demonstrating the validity of our methods in controlled synthetic
settings, we now turn our focus toward real contagion processes to showcase
the applicability of the devised approach to empirical scenarios. To this end,
we rely on an ego-level dataset of adoptions from Twitter” (now called X), a
micro-blogging and social networking platform where users can follow each
other, and share short messages, or tweets. The dataset contains all tweets
posted by 8527 selected users (egos who are interested in French politics)
and the people they follow (whom we call followees, or the members of the
ego network) between May 1, 2018 to May 31, 2019 (for more details about
the data collection see ref. 67). This mounts up to a total of 1,844,978
timelines, i.e., the timely ordered personal stream of tweets posted by all
these users. This dataset allows us to identify the time of adoption of a given
hashtag by an ego together with the time of all incoming stimuli from its
neighbours that previously posted the same hashtag. These tweets cover
multiple topics, which may correspond to the spreading of various co-
occurring social contagion processes. Since we are interested in analysing
each contagion process separately, we filter messages that contain a given set
of hashtags within the same topic. We choose to focus on the hashtag

Table 1 | Number of instances of contagion mechanisms
inferred by the likelihood and random forest methods on the
#GiletsJaunes Twitter dataset

Sm Cx St
Random forest 970 349 4955
Likelihood 4440 1447 387

#GiletsJaunes and its variants (We target every user who has posted one of
those hashtags: #GiletsJaunes, #giletsjaunes, #Giletsjaunes, #GiletJaune,
#Giletjaune, #giletjaune, #giletsjaune, #Giletsjaune, #GJ.), characterising a
political uprising in France that induced a significant social contagion
unfolding on Twitter. We first identify egos who adopted a related hashtag,
and observe the posts of their followees over the preceding week, limiting in
this way the effect of influence to the recent past only. As per the synthetic
cases, we can define the degree of an ego as the number of its followees who
have posted at least one tweet during the week preceding the adoption. In
addition, user activity on Twitter is not linear in time—as in our previous
simulations—but it is driven by circadian fluctuations, bursty patterns, and
individual preferences. We thus move from real-time to event-time simu-
lations. In this setting, a time step for an ego (leading to potential adoption
cases) is counted as the number of tweets by the followees, regardless of
weather they contain the hashtag of interest; every time an alter posts
content containing the selected hashtag, the ego will receive a stimulus.

Empirical traces of social contagion set a particularly difficult problem
for classification because neither the parameters of the different contagion
mechanisms are known, nor any ground truth is available for validation of
the classification results. In the following, we propose pathways that
yet allow us to learn about the distinguishability of contagion mechanisms in
the Twitter dataset.

As a starting point, we applied our classifiers designed for Experiment
3, where we have no information about the adoption parameters. Table 1
shows that the two methods give rather unbalanced results, with the random
forest detecting a large number of spontaneous adoptions and the likelihood
approach being biased towards simple contagion. This discrepancy in the
results suggests that one or both of the models might not be capturing the
interaction patterns within the Twitter data sufficiently well. Indeed, both
methods are made for the characteristics of synthetic data, assuming that a
complex contagion adoption always occurs a time step after the infection of
a neighbour (time since the last infected neighbour = 1). However, in real
data, a delay could occur between the infection of a node and its actual
observation, making the classification of the complex instances inaccurate
and misclassifying it as simple or spontaneous contagion. This observation
suggests that we need to relax our assumptions, especially on complex
contagion, and introduce the possibility of delays in the adoption times into
our models.

When it comes to empirical adoption data collected via social media,
one of the largest biases is induced by the waiting time t,;”*, that is the time
gap between the moment someone becomes convinced by an idea (upon
exposure) and the moment we can actually observe it through an active
adoption event (posting). We report the waiting time distribution for the
Twitter dataset in Fig. 4a, where one time step corresponds to the time span
between two consecutive tweets. This ¢,, = t,—t. lag between the exposure t,
and the adoption ¢, time can depend on individual user characteristics. It
biases our observations as during this t,, time further exposures can appear
that, in principle, could not even be necessary for the subsequent adoption
("incubation”). Nevertheless, the only observation we can make is about the
sequence of influencing tweets, as we can not know the exact tweet that
triggered the adoption. The effects of such biases have been studied earlier in
other scenarios of online adoption®®. In light of these observations, it is
clear from the likelihood computations and from the feature, importance
ranks shown in Fig. 3 that both the approaches used so far are ill-suited in
this case since they heavily rely on precise adoption times—assuming no
waiting time. To steer our classification algorithms away from making
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Fig. 4 | Parameter distributions and dependencies of Experiment 4 inferred from
the #GiletsJaunes Twitter dataset. The waiting time distributions observed in the
a #GiletsJaunes dataset and b in Experiment 4. ¢ Correlation between the activities
and degrees of nodes in the synthetic propagation inferred from the distribution of
the number of tweets posted during the week before adoption as a function of the

number of active followees in the Twitter dataset. d Correlation between the inferred
simple contagion parameter [A? = 1/(numberstimuli ) and node degrees observed for

egos in the #GiletsJaunes dataset. e Distribution of the inferred simple contagion
parameter Z? The inset depicts the same distribution stratified by degree.

f Distribution of the ¢ complex contagion parameter inferred as the proportion of
infected neighbours at the time of adoption of an ego in the #GiletsJaunes dataset (¢).
Since the P(,B) and P() are broad, we apply a filter to retain 80% of their smallest
values.

estimates based on this hard assumption, we now introduce a synthetic
contagion process evolving on an activity-driven temporal network model
parameterised from data and where waiting times can be measured. The
goal of this following model is to obtain a representation as close to reality as
possible, enabling the training of a random forest algorithm to classify real
contagion cases.

Activity-driven networks with asynchronous dynamics

Experiment 4. We employ a connected and undirected sample of the
follower Twitter network as the underlying structure for the contagion
process (for more details about the network creation see subsection
“Experiment” in the section “Methods”, s). We assume that nodes can
be in three distinct states: susceptible (not yet infected), aware (they are
already infected, but that has not been observed yet through an active
post), and detected (they are infected and this has been observed).
Every node i is assigned with an activity a; € [0,1] sampled from a
truncated normal distribution with values constrained between 0 and
1, and an average activity that characterises nodes coming from the
same degree group as node i (Fig. 4c). They are also attributed to a
contagion process, either simple or complex, which determines their
adoption mechanism. Further, nodes are endowed with parameters f3;
or g?)i, respectively, sampled from the empirical distributions P(3) and
P(¢) shown in Fig. 4d, f. Since these distributions are broad, we filtered
them and kept only samples from their lowest 80% (more details about
sampling and filtering in the “Methods” section and Supplementary
Material 5).

Atevery step, anode is selected with a probability proportional to its
activity, modelling its action of posting. If the selected node is suscep-
tible, we assume its post induces no influence on its neighbours. Once a
node is infected via one of the considered mechanisms, it enters the
aware state and no further stimuli are necessary for adoption —yet to be
observed. The next time the node is selected for an interaction, it
becomes detected. If a node is aware or detected, its posts are considered
as influencing events to its neighbours. The resulting waiting time,
measured for each infected node as the time between the aware and
detected state, follows a broad distribution (Fig. 4b), similar to the
empirical observations. More details about the model definition and
evaluation are explained in “Methods” section.

The complexity of Experiment 4 makes the application of the like-
lihood method unfeasible, so we continue our investigation only through the
random forest approach, using the same feature set as in the previous
experiments, and assuming unknown contagion parameters. As before, we
pre-assign an adoption mechanism to each node in the modelled activity-
driven network and compute the classification accuracy. Results, shown in
Fig. 2g, demonstrate that despite the increased complexity of this data-
driven experiment, the random forest can achieve good classification
accuracy all across the parameter space, with an average accuracy of 0.71. In
this experiment, the spontaneous adoptions are the hardest to classify since
they appear with a very low rate (see the confusion matrix Fig. 2 panel 1 and
the Supplementary Material, Table S2). It is worth noticing that the
importance of the features is different from the one previously shown for
Experiment 2 (Fig. 3). While the feature time since the last infected
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for Sm, orange for Cx and blue for Sp). The certainty of classification, displayed with
black circles, is defined as the proportion of trees in the random forest that have
classified an instance into the assigned contagion type, averaged over the set of
instances classified in that contagion type. Most of the infection cases are classified as
simple if their [3 are in the 8th decile or below and their proportion of infected
neighbours is >df, and as complex otherwise.

neighbours diminishes in importance due to the presence of a waiting time,
the proportion of the infected neighbours, and particularly the degree of the
central ego gain significance (Fig. 3).

Classification of Twitter hashtags

Experiment 5. To conclude our case study on the Twitter dataset, we apply
the trained models from Experiment 4 to the adoption cases of #Gilets-
Jaunes and related hashtags. The inset of Fig. 5 shows that most adoption
cases are classified as simple as opposed to complex. This suggests that more
people adopt #GiletsJaunes through repeated influence from their contacts
than through combined influence mechanisms. The less detected class is one
of the spontaneous adoptions, suggesting the limited influence of external
sources with respect to peer-induced contagion within the platform.

Since no ground truth exists for this dataset, instead of visualising
the accuracy values on the (3, ¢) phase space, we show in Fig. 5 the full
distribution of inferred adoption mechanisms stratified by their
inferred contagion parameters ﬁ and ¢ (aggregated in deciles). We can
see that ego nodes with high 8 and low ¢ values are more likely to be
classified as Cx, whereas egos with low 8 and high ¢ tend to be classified
as Sm. However, Fig. 5 also suggests that the two inferred parameters, ﬁ
and ¢, cannot capture the complexity of the classification problem on
their own. Indeed, both Sm and Cx adoptions appear throughout the
parameter space, highlighting the added value of the random forest
classifiers trained in our modelling framework. Finally, we observe that
the certainty of the classification algorithm improves with lower ﬁ and

higher ¢ values, which can be explained by the increased number of
stimuli and, therefore, a richer database in this parameter range.

Discussion

Our goal in this work was to infer social contagion mechanisms leading to
the adoption of products, ideas, information, or behaviours. We restricted
the focus to three complementary contagion mechanisms potentially
determining the behaviour of an ego node, whether adopting spontaneously
(exogenous influence) or due to transmission on a social network (endo-
genous influence) via simple or complex contagion mechanisms. The
general problem of distinguishing social contagion mechanisms in net-
worked populations has recently been addressed by analysing macroscopic
spreading curves at the population level™*, typically assuming that only
one single mechanism is exclusively present during the contagion process.
In this work, we overcome these assumptions by (i) considering only
microscopic information at the level of the adopter and their peers and (ii)
allowing different contagion mechanisms to be simultaneously present—
with different parameters—during the same spreading phenomenon.
Under these assumptions, we tackled the inference question as a classifi-
cation problem under a likelihood and a random forest approach over a
sequence of experiments with increasing levels of complexity. We showed,
in controlled synthetic settings, that the limited information available from
the ego and its peers is generally enough to distinguish the specific adoption
dynamics with varying levels of accuracy depending on the contagion
parameters. The lines between the mechanisms become more blurred in
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cases when one infectious neighbour is enough to induce the adoption of an
ego. This can happen for strongly infectious items spreading via simple
contagion (akin to high individual susceptibility) or low individual
thresholds in adoptions triggered by complex contagion, both cases leading
to an immediate local transmission and rapid global spreading. Interest-
ingly, in the simplest experiments performed via simulations on synthetic
static networks, we found little impact of the network structure on the
accuracy of the classification task. Recent results have shown that simple
contagion leads to similar infection patterns across different network
models, while the patterns associated with complex contagion mechanisms
areless robust"**”". This could explain the fact in Experiments 2 and 3 we do
not observe major differences in the distinguishability of the mechanisms
over different network structures, from Erdds—Rényi graphs to those gen-
erated via Barabasi-Albert, Watts—Strogatz, and stochastic block model
approaches. Increasing the level of realism, we demonstrated that simplistic
models fail to capture the full complexity proper of real-world transmis-
sions, such as waiting times, or the non-static structure of empirical social
networks. The challenges arising in these scenarios confirm the inherent
difficulty that comes with these tasks when several internal and external
factors are at play at both the dynamical and structural levels, as also
highlighted in other recent studies that tackled the inference problem in
different contexts”'. Nevertheless, even in these realistic settings, when
mechanistic approaches seem to be out of reach, a random forest classifier
trained on a carefully parametrised synthetic model can give interpretable
results.

Despite the comprehensive approach to the inference problem in this
paper, our results presented here have certain limitations. First, for sim-
plicity reasons, we only consider static network structures, while in reality
social influence is mediated via temporal interactions. Further, we assumed
that the effects of external influence (like advertisements and news) do not
vary in time, that is clearly an approximation. During our likelihood for-
mulation, we assume each contagion instance to be independent from each
other, which is only an approximation, that is accounted for in the random
forest approach. Finally, since no real dataset is available with ground truth
information regarding the adoption mechanisms of a social contagion, it
prevents us from validating our findings in our final experimental setting.
Such datasets are challenging to collect and require careful experimental
design. However, we envision that our learned labels could be validated even
without extensive data collection, if they were treated as hidden variables
used to predict adoption times. More explicitly, under the assumption that
certain spreading processes or certain individuals predominantly follow
simple or complex contagion, our inferred labels on past datasets could
predict future labels, which could improve native estimates of future
adoption times. Given the great number of difficulties and unknowns, we
leave this task for future research.

Beyond accounting for these limitations, possible extensions of the
present method could include the analysis of the spreading of different
items on the same population; or to classify different infection
mechanisms®*’* even beyond pairwise exposures”~, as considered in a
recent work®. Another potential direction for future research is to
explore the competition between simple and complex contagions, where
the adoption mechanism of a node is not predetermined but depends on
the circumstances™. One could also integrate homophily and conceive a
model in which nodes of the same group are more likely to adopt
through the same contagion process or nodes within the same
mechanism have a higher probability of forming connections between
themselves’. Such scenarios would create correlated inferences,
potentially affecting the accuracy of the classification.

We believe that our results open the door to the investigation of
microscopic social contagion mechanisms at the local network level. In one
way, our study aims to contribute to the understanding how seemingly
similar macroscopic processes can be differentiated at the microscopic level.
In another way, we hope to lay down a path to study social contagion
processes at the level of individuals, which is more feasible from a real data
perspective and can lead us to a more fine-grained understanding of how

local decision mechanisms lead to system-level global phenomena in social
contagion processes.

Methods

Experiments

To study the distinguishability of the Sm, Cx and Sp contagion processes we
defined three experimental settings with increasing complexity:

Experiment 1 —Classification on egocentric networks. In Experiment
1 we assume no underlying network structure to disseminate the
spreading process but we operated only with isolated ego networks. We
assume knowledge only about egos and their neighbours, that together
defined a star structure around the central ego. The degrees of the ego (i.e.
number of its neighbours) are drawn from a binomial distribution of
parameters (N, p)=(1000, 0.004) (which yields a mean of (k)=4),
excluding the value 0. This was necessary to obtain the same para-
metrization as the Erdos-Rényi networks that we used in Experiment 2.
We assign to each ego-node a predetermined adoption class, simple or
complex, with the corresponding parameter, respectively, 8 or ¢. Further,
we defined the same adoption probability r,,;, for any neighbour of an ego,
mimicking their adoption dynamics as a Bernoulli process. Assuming
each node in the ego-network to be susceptible at the outset, neighbours
became infected following their Bernoulli dynamics, while egos changed
state only when their condition to infect had been satisfied. We simulate
this contagion dynamics on 100, 000 ego-networks, having 10,000 rea-
lisations for each parameter values  and ¢ taking values from {0.1, 0.3,
0.5, 0.7, 0.9} and with parameter r,, = 0.05. In this setting, the classifier
was informed by the f3;, ¢; and r parameter values for each instance i.

Experiment 2—Classification of random networks with known
parameters. Experiment 2 is conducted on an Erdés-Rényi model
network®, with 1000 nodes and average degree 4. For comparison pur-
poses, in Supplementary Material 4, we also demonstrate our results
using Watts-Strogatz** and Barabasi-Albert” model networks, sto-
chastic block model networks®, and a real Twitter mention network’”’
defined by linked customers if they mutually mentioned each other
during the observation period. For computational purposes, we filter the
Twitter mention network to keep only its largest connected component,
i.e. the largest interconnected subset of nodes within a network (370,544
nodes and 1,013,096 links) and we assume it to be undirected by ignoring
the directions of its links. As in Experiment 1, we assign all nodes
beforehand with a contagion process (Sm or Cx) and a parameter (f3 or ¢)
accordingly from the set {0.1, 0.3, 0.5, 0.7, 0.9} in order to have all pairs
(process, parameter) equally distributed in the data set. Having all nodes
as susceptible at the outset, the propagation initialised by infecting one
random node. The spreading process among the rest of the nodes is
gradually spreading either by their assigned process of contagion or
through the spontaneous adoption with a rate of . We stop the contagion
process when all of the nodes become infected, except for the Twitter
mention network, where the process is terminated when 90% of the nodes
become infected. For each synthetic network model, the propagation is
run on 20 independent network realisations, with r=0.005. For each
node i, the parameters f3;, ¢; and r are assumed to be known by the
classifiers.

Experiment 3—Classification of random networks with unknown
parameters. Experiment 3 is aiming to solve the classification of the
same contagion instances than Experiment 2 but without prior knowl-
edge about the parameters of 3, ¢; and .

Experiment 4—Classification of real networks with known para-
meters. Experiment 4 is inspired by the activity-driven network model™
and has been created to represent the propagation of a hashtag on the
Twitter platform. Here we use the largest connected component of an un-
directed mutual follower network from Twitter”” and concentrate on the

npj Complexity | (2025)2:8


www.nature.com/npjcomplex

https://doi.org/10.1038/s44260-025-00034-2

Article

propagation of the hashtags related to the political movement called
#GiletsJaunes. For computational purposes, we iteratively filter this
network to reduce its size. At the outset, the filtered network only con-
tains one randomly selected node from the initial network. Subsequently,
a neighbour of the initial node is selected with a probability inversely
proportional to the node’s degree. Once a neighbour is selected it is
incorporated into the filtered network along with its edge. Subsequently,
we reproduce this process, each time selecting a neighbour from the
newly integrated node and its edge, until we achieve a network size of
100,000 nodes.

Parameter sampling. First of all, in this setting each node is assigned with an
activity, mimicking its level of participation on the Twitter platform. As the
distribution of the number of tweets posted by each user during a week
depends on its degree and because those distributions along a certain degree
range are not part of the typical known distributions, we sample the assigned
activity of each node with a normal distribution centred on the average
number of tweets posted by each user corresponding to its degree.

Before inferring distributions of [3 and ¢, we assign to each infected
node an adoption process using the following heuristic. Events in which
a susceptible node becomes infected without having any infectious
neighbours at the time of transition are classified as spontaneous
adoptions. Additionally, instances where the last event before the ego
becomes infected is a new infected neighbour are classified as complex
contagion. This classification is motivated by the fact that the newly
infected neighbour increases the proportion of infected neighbours,
potentially allowing the threshold ¢ to be overpassed. All other instances
are classified as simple contagion. This pre-classification step reduces
errors in inferring 3 (resp., ¢) from complex (resp., simple) contagion
instances, resulting in more accurate distributions.

The parameters are sampled for each node depending on the pre-
assigned mechanism. For simple contagion, parameter values for f are
defined as the inverse of the number of times a hashtag appeared in the
timeline of an observed ego’s neighbours, one week before the ego’s adop-
tion. Note that we consider cases of infected egos who have at least one
infected neighbour at the time of adoption. Since the 3 parameter shows a
correlation with the node degree (see Fig. 4d), we account for this depen-
dency when sampling ﬁ values for egos. We group nodes by their degrees
and assume that each P(f3) . distribution for a degree class can be approxi-
mated by alog-normal distribution with an average characterising the actual
degree class (see Fig. 4e and its inset). Thus for each node i with degree k to
obtain a Bi we simply sample the corresponding log-normal distribution.

At the same time, the parameter ¢, for the complex contagion
mechanism is measured as the fraction of infected neighbours of an ego that
adopted a hashtag. The distribution of P(¢) (in Fig. 4f) is measured from
adoption cases where the last infected neighbour of the ego before its
adoption was a newly infected neighbour. We assign a parameter ¢, toa
node i by sampling this distribution P(¢) shown in Fig. 4f. Finally, to avoid
the sampling of extreme values, since the distributions PQ?) and P(</>)
appeared as broad distributions, we filter them by keeping 80% of their
lowest values for parameter sampling. For a robustness analysis on the effect
of filtered fraction of inferred parameters see Supplementary Material.

Contagion model with waiting time. Beyond the realistic data-driven
parametrisation of the network and adoption mechanisms, our main goal
with this experiment is to simulate spreading scenarios to study the effects of
waiting times between node adoption and its observation on the inference of
spreading mechanisms. For this reason, we assume that every node of the
network can be in one of the three following states: susceptible (not infec-
ted), aware (infected, but the infection cannot be observed) and detected (the
infection can be observed). After infecting a uniformly randomly selected
seed node to launch the spreading process, we iteratively execute the fol-
lowing protocol at each time step: first a node is selected randomly with a
probability proportional to its activity, indicating that this node posts a
tweet. If the node is susceptible, it can become adopted with probability 7,

mimicking the possibility of posting the hashtags spontaneously. Otherwise
the susceptible node can get infected through its assigned adoption
mechanism. If a node is active but susceptible, its post will not count towards
the influence of its neighbour. However, if the node is aware, at the time of its
next post it becomes detected. Once aware or detected, we assume that at
each future activity of a node, it will post the spreading hashtag. If a post of a
node includes the hashtag, it counts as a stimulus to all of its neighbours,
which can become aware if they are susceptible and their condition of
infection is reached. In our simulations, we modelled the contagion pro-
cesses in the network until they reached 90% of the nodes and used the
observed adoption instances for the training of a random forest classifier
that was not aware of the contagion parameters.

Experiment 5—Classification of hashtag adoption with unknown
ground truth. Since we cannot obtain the contagion mechanisms as
ground truth labels for real data, we use the trained model in Experiment
4 for the classification of the empirical adoption instances. With this
model, which has been traingd on data-driven model data closest to
reality, we explore the whole (B, ¢) parameter space, as shown in Fig. 5.
We then use this algorithm to analyse various social contagion processes
by focusing on tweets with specific sets of hashtags corresponding to
distinct topics. We use a dataset collected by’ from Twitter, now known
as X, a social media platform where users can follow each other and share
brief posts, or tweets. This dataset spans from May 1, 2018, to May 31,
2019, and includes all tweets from 8527 selected users interested in the
European election of 2019 (denoted as egos) and the accounts they
follow (denoted as followees). In total, this comprises 1,844,978 time-
lines, representing the chronological history of tweets from these users.
These tweets cover a range of topics, referenced with keywords called
hashtags.

Among all the possible hashtags, we choose to focus on #GiletsJaunes
and its variations (#GiletsJaunes, #giletsjaunes, #Giletsjaunes, #GiletJaune,
#Giletjaune, #giletjaune, #giletsjaune, #Giletsjaune, #GJ), which are linked to
a political movement in France that causes social contagion on Twitter. Our
first step is to identify users who have adopted one of these hashtags and
then examine the tweets from their followees. We consider that individuals
remember influences only from their recent past, thus we study tweets of the
ego and its followees on the last week before the adoption. We define a user’s
degree by the number of followees who posted at least one tweet in the
preceding week and we use event time instead of real time for our analysis.
Event time counts the number of tweets by followees, regardless of whether
they contain the hashtag. We define a stimulus as a tweet posted by followee
containing the hashtag.

Likelihood calculations

The classification with the likelihood approach follows the same protocol for
each experiment: we first compute the likelihood that a given observed
adoption case has been caused by each mechanism, being simple, complex
or spontaneous, and then we classify the adoption event into the category
which maximises the likelihood.

Experiment 1. We determine the likelihood that a node i has been
infected either through simple or complex contagion using Eq. (1), which
expresses the likelihood of the entire process as a product of the like-
lihoods of each time step (Markov property). We call g(t) the state of a
node i at time t, being 0 (S) or 1 (I). To compute the likelihood of
observing the ego’s state 0;(t + 1) conditioned on its state and the states of
the neighbours 0;,,(f) in the previous timestep, we distinguish
three cases:
* ego stays susceptible, formally o;(t + 1) = 0(f) = 0, which we abbreviate
as0—0
* ego becomes infected, formally oi(t+1)=1, oy(t)=0, which we
abbreviate as 0 — 1
* ego stays infected, formally o(t + 1) =
asl—1.

o,(t) = 1, which we abbreviate
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In the case of a simple contagion, the independence of infection
probabilities on each edge makes it possible to combine the three cases into a
single equation as

I1a—pr® 0—>0
jenb
Lot + Doy (0, Sm = 1- [JA=p7Y 01
jenb
1 1—>1

where nb is the set of the neighbours of the ego.
In case of a complex contagion, the same likelihood function takes the
binary values

Tl((71'.7117(t)) 0—>0
Lot + Do, (1), Cx,¢) = ¢ 1 = 1(0; (1) 0—1
1 1—>1

depending on whether the condition

l(ai,nb(t)) =0 (Z gj(t)Az] - ¢ ZAIJ> ’
J

J

on whether the proportion of infected nodes is satisfied or not. In this case, A
denotes the adjacency matrix of the network, with elements A, and ©
denotes the Heaviside step function, which is equal to 1 if the input if
positive, 0 otherwise.

Accuracy estimation for Experiment 1. In Experiment 1, the accuracies
of the maximum-likelihood classification algorithm can be computed
analytically across the phase space. Let us define X to be the contagion
label that the algorithm assigns, and X to be the true contagion label.
Assuming a uniform prior on the contagion labels, the accuracy of the
algorithm can be expressed as

P(X =Cx|X =Cx)+ P(X = Sm| X = Sm)
5 .

Since for a node infected by the complex contagion, we always have
L(o(t + 1)|o; (1), Cx, $) = 1, the maximum-likelihood approach always
classifies complex nodes correctly. Consequently, PX=CxX=Cx)=1
always holds.

For the second term, to compute

PX =Sm|X =Sm)=1—P(X = Cx|X = Sm),

we need to estimate the probability that a node i with degree k becomes
infected by the simple contagion immediately after [k¢] of its neighbours
get spontaneously infected, and therefore it incorrectly becomes classified as
complex. Conditioning on the event that the ego has # infected neighbours
at time ¢, we define the following two random variables:
* N, denotes the number of time steps until a new neighbour gets
infected
* E, denotes the number of time steps until the ego gets infected,
assuming that no new neighbour gets infected.

Since at
each time step, the probability of a new neighbour spontaneously becoming
infected is p, = 1—(1—r)*", the random variable N,, follows a geometric
distribution with success probability p,,. Similarly, since the probability that
any of the n neighbours infect the ego node in each time, step is
b,=1—(1—p)", the random variable E,, follows a geometric distribution

with success probability b,. Our goal is to compute the probability of the
event that the ego becomes infected immediately after [k¢] of its neighbours
get infected, ie. that N, <E, holds for n < [k¢], but Ep4) = 1. For each
n < [k¢], the corresponding event probability can be computed based on
the well-known formula of two competing geometric random variables. For
n = [k¢], the event probability is simply b,. Finally, due to the Markov
property of the contagion process, assuming that no two neighbours get
infected at the same time, we arrive at the final result by computing the
product of the event probabilities for each n:

Lkg)
% P, —P hn
P(X = Cx| X = Sm) ~ <| [ %)bk .
n=1 bn+pn _pnbn hid

Our result is an approximation because we did not account for the low-
probability event that two neighbours might be infected at the same time.

Despite this limitation, the outcomes closely align with the accuracy values
observed in the simulations (see Fig. 2, panel d).

Experiment 2— Classification with known parameters. The calcula-
tions of the likelihoods of Experiment 2 are similar to Experiment 1, but
instead of two, they now involve three processes: simple, complex and
spontaneous adoptions. For clarity, we divide those three processes into
four scenarios:

1. The ego, initially assigned with the simple contagion, eventually
becomes infected by the simple contagion:

L@t + DI04 (1), Sm ) = 3)
1-nIla-pn 0—0
jenb
-1 (1 ~Ta- ﬁ)”f(”) 01 @
Jslnb 1—>1

2. The ego, initially assigned with the simple contagion, eventually
becomes infected by the spontaneous contagion:

L(ay(t + 1)]o; (), Sm — St p) = )
a-nlla- P00

r H]Z — B 01 (©6)
o 1 1—>1

3. The ego, initially assigned with the complex contagion, eventually
becomes infected by the complex contagion:

Lot + Dlo; (1), Cx,p) = 7)
(1 =7r)(1 = Lo;(1)) 0—>0
1(0; (1) 0—1 ®
1 1>1

4. The ego, initially assigned with the complex contagion, eventually
becomes infected by the spontaneous contagion:

npj Complexity | (2025)2:8

L(o,(t + Do, (1), Cx — St, ) = 9)
(1 =r)(1 = 1(o; (1)) 0—>0
r(l — ]l(ai‘”b(t))) 0—>1. (10)
1 1—>1
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Experiment 3—Classification with unknown parameters. In this case,
we assume that parameter values are not known for the classifier and we
employ the same formulas as in Eqs. (3)-(10) used for classifying con-
tagion instances from Experiment 2 with known parameters. However,
here the parameters 3 and ¢ and r are no longer the true values but are
instead inferred from the modelled spreading process: f3 as the inverse of
the number of stimuli, ¢ as the proportion of infected neighbours and # as
the fraction of time spent by a node in the S state with at least one infected
neighbour, averaged on every node in that case.

Random forest classification

Experiment 2—Classification with known parameters. We train 25
random forest algorithms, one for each pair of (8, ¢) by sampling 18,000
instances from Experiment 2, with 6000 contagion cases from each
category. Then we test the models on a set containing 6000 instances
(2000 instances from each category). The results are averaged over 10
realisations. Each random forest algorithm has 100 trees without any
limit on the maximum depth. The use of the Gini function or the entropy
function is determined by grid search.

Experiment 3—Classification with unknown parameters. We train a
unique random forest model on a sample of Experiment 2, which con-
tains 18,000 instances in total (6000 instances in each category),
regardless of the parameters. The results are averaged over 10 realisations.
Each random forest algorithm has 100 trees without any limit on the
maximum depth. The use of the Gini function or the entropy function is
determined by grid search.

Data availability

The filtered network structure and distributions of the inferred parameters
are shared at an open data repository at https://github.com/ElsaA05/
DistinguishSimpleComplex/tree/main/data. and at https://zenodo.org/
records/14518761.

Code availability

We made available the code of the different experiments at an open source
code repository at https://github.com/ElsaA05/DistinguishSimpleComplex/
tree/main/analysisand at https://zenodo.org/records/14518761.

Received: 20 September 2024; Accepted: 31 January 2025;
Published online: 04 March 2025

References

1. Castellano, C., Fortunato, S. & Loreto, V. Statistical physics of social
dynamics. Rev. Mod. Phys. 81, 591 (2009).

2. Barrat, A., Barthelemy, M. & Vespignani, A. Dynamical Processes on
Complex Networks (Cambridge university Press, 2008).

3. Jose, S. Covid vaccine and generation z—a study of factors
influencing adoption. Young Consum. 23, 16-32 (2022).

4. Christakis, N. A. & Fowler, J. H. The collective dynamics of smoking in
a large social network. N. Engl. J. Med. 358, 2249-2258 (2008).

5. Centola, D. & Lord, T.The Truth About Behavioral Change (MIT Sloan
Management Review, 2018).

6. Bass, F. M. A new product growth for model consumer durables.
Manag. Sci. 15, 215-227 (1969).

7. Rogers, E. M., Singhal, A. & Quinlan, M. M. Diffusion of innovations. In
An Integrated Approach to Communication Theory and Research
432-448 (Routledge, 2014).

8. Maki, D. P. & Thompson, M. Mathematical Models and Applications
(Prentice Hall, Englewood Cliffs, NJ, 1973).

9. Daley,D. J.&Kendall, D. G. Stochastic rumours. IMA J. Appl. Math. 1,
42-55 (1965).

10. Granovetter, M. S. The strength of weak ties. Am. J. Sociol. 78,
1360-1380 (1973).

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Schelling, T. C. Dynamic models of segregation. J. Math. Sociol. 1,
143-186 (1971).

Chen, W., Castillo, C. & Lakshmanan, L. V. Information and Influence
Propagation in Social Networks (Springer Nature, 2022).

Centola, D. The spread of behavior in an online social network
experiment. Science 329, 1194-1197 (2010).

Moreno, Y., Nekovee, M. & Pacheco, A. F. Dynamics of rumor
spreading in complex networks. Phys. Rev. E 69, 066130 (2004).
Watts, D. J. A simple model of global cascades on random networks.
Proc. Natl Acad. Sci. USA 99, 5766-5771 (2002).

Holme, P. & Saram&ki, J. Temporal networks. Phys. Rep. 519, 97-125
(2012).

Masuda, N. & Holme, P. Introduction to Temporal Network
Epidemiology (Springer, 2017).

Unicomb, S., Ifiiguez, G., Gleeson, J. P. & Karsai, M. Dynamics of
cascades on burstiness-controlled temporal networks. Nat.
Commun. 12, 133 (2021).

Gleeson, J. P. Binary-state dynamics on complex networks: pair
approximation and beyond. Phys. Rev. X 3, 021004 (2013).

Gleeson, J. P., O’Sullivan, K. P., Bafos, R. A. & Moreno, Y. Effects of
network structure, competition and memory time on social spreading
phenomena. Phys. Rev. X 6,021019 (2016).

Crane, R. & Sornette, D. Robust dynamic classes revealed by
measuring the response function of a social system. Proc. Natl Acad.
Sci. USA 105, 15649-15653 (2008).

Sreenivasan, S., Chan, K. S., Swami, A., Korniss, G. & Szymanski, B.
K. Information cascades in feed-based networks of users with limited
attention. IEEE Trans. Netw. Sci. Eng. 4, 120-128 (2016).

Gleeson, J. P., Ward, J. A., O’sullivan, K. P. & Lee, W. T. Competition-
induced criticality in a model of meme popularity. Phys. Rev. Lett. 112,
048701 (2014).

Centola, D. & Macy, M. Complex contagions and the weakness of long
ties. Am. J. Sociol. 113, 702-734 (2007).

Pastor-Satorras, R., Castellano, C., Van Mieghem, P. & Vespignani, A.
Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925
(2015).

Guilbeault, D., Becker, J. & Centola, D. Complex contagions: adecade
in review. In: Lehmann, S. & Ahn, Y. Y. (eds) Complex Spreading
Phenomena in Social Systems: Influence and Contagion in Real-world
Social Networks 3-25 (Springer Nature, 2018).

Galesic, M. et al. Beyond collective intelligence: collective adaptation.
J. R. Soc. interface 20, 20220736 (2023).

Granovetter, M. Threshold models of collective behavior. Am. J.
Sociol. 83, 1420-1443 (1978).

Gleeson, J. P. Cascades on correlated and modular random
networks. Phys. Rev. E 046117 (2008).

de Arruda, G. F., Rodrigues, F. A. & Moreno, Y. Fundamentals of
spreading processes in single and multilayer complex networks.
Phys. Rep. 756, 1-59 (2018).

Min, B. & San Miguel, M. Threshold cascade dynamics in coevolving
networks. Entropy 25, 929 (2023).

Karsai, M., lfiguez, G., Kikas, R., Kaski, K. & Kertész, J. Local
cascades induced global contagion: how heterogeneous thresholds,
exogenous effects, and unconcerned behaviour govern online
adoption spreading. Sci. Rep. 6, 27178 (2016).

Unicomb, S., Ifiguez, G. & Karsai, M. Threshold driven contagion on
weighted networks. Sci. Rep. 8, 3094 (2018).

Li, X., Wang, P., Xu, X.-J. & Xiao, G. Universal behavior of the linear
threshold model on weighted networks. J. Parallel Distrib. Comput.
123, 223-229 (2019).

Karimi, F. & Holme, P. Threshold model of cascades in empirical
temporal networks. Physica A 392, 3476-3483 (2013).

Hodas, N. O. & Lerman, K. The simple rules of social contagion. Sci.
Rep. 4, 4343 (2014).

npj Complexity | (2025)2:8

11


https://github.com/ElsaA05/DistinguishSimpleComplex/tree/main/data
https://github.com/ElsaA05/DistinguishSimpleComplex/tree/main/data
https://zenodo.org/records/14518761
https://zenodo.org/records/14518761
https://github.com/ElsaA05/DistinguishSimpleComplex/tree/main/analysis
https://github.com/ElsaA05/DistinguishSimpleComplex/tree/main/analysis
https://zenodo.org/records/14518761
www.nature.com/npjcomplex

https://doi.org/10.1038/s44260-025-00034-2

Article

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.
49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Vasconcelos, V. V., Levin, S. A. & Pinheiro, F. L. Consensus and
polarization in competing complex contagion processes. J. R. Soc.
Interface 16, 20190196 (2019).

Mensted, B., Sapiezynski, P., Ferrara, E. & Lehmann, S. Evidence of
complex contagion of information in social media: an experiment
using Twitter bots. PLoS ONE 12, e0184148 (2017).

Karsai, M., Iniguez, G., Kaski, K. & Kertész, J. Complex contagion
process in spreading of online innovation. J. R. Soc. Interface 11,
20140694 (2014).

Borge-Holthoefer, J. et al. Structural and dynamical patterns on online
social networks: the spanish May 15th movement as a case study.
PLoS ONE 6, e23883 (2011).

Hill, A. L., Rand, D. G., Nowak, M. A. & Christakis, N. A. Infectious
disease modeling of social contagion in networks. PLoS Comput.
Biol. 6, 1000968 (2010).

Toole, J. L., Cha, M. & Gonzalez, M. C. Modeling the adoption of
innovations in the presence of geographic and media influences.
PLoS ONE 7, 29528 (2012).

Ugander, J., Backstrom, L., Marlow, C. & Kleinberg, J. Structural diversity
in social contagion. Proc. Nat/ Acad. Sci. USA 109, 5962-5966 (2012).
Yang, H., Tang, M. & Gross, T. Large epidemic thresholds emerge in
heterogeneous networks of heterogeneous nodes. Sci. Rep. 5, 13122
(2015).

Cencetti, G., Contreras, D. A., Mancastroppa, M. & Barrat, A.
Distinguishing simple and complex contagion processes on
networks. Phys. Rev. Lett. 130, 247401 (2023).

Weng, L., Menczer, F. & Ahn, Y.-Y. Predicting successful memes
using network and community structure. In: Adar, E., Resnick, P.,
Choudhury De, M., Hogan, B. & Alice, Oh. (eds) Proceedings of the
International AAAI Conference on Web and Social Media Vol. 8,
535-544 (AAAI, 2014).

Nematzadeh, A., Ferrara, E., Flammini, A. & Ahn, Y.-Y. Optimal
network modularity for information diffusion. Phys. Rev. Lett. 113,
088701 (2014).

Karsai, M. et al. Bursty Human Dynamics (Springer, 2018).

Masuda, N., Miller, J. C. & Holme, P. Concurrency measures in the era
of temporal network epidemiology: a review. J. R. Soc. Interface 18,
20210019 (2021).

Hébert-Dufresne, L., Scarpino, S. V. & Young, J.-G. Macroscopic
patterns of interacting contagions are indistinguishable from social
reinforcement. Nat. Phys. 16, 426-431 (2020).

Weng, L., Menczer, F. & Ahn, Y.-Y. Virality prediction and community
structure in social networks. Sci. Rep. 3, 1-6 (2013).

Gladwell, M.The Tipping Point: How Little Things Can Make a Big
Difference (Little, Brown, 2006).

Aral, S. & Nicolaides, C. Exercise contagion in a global social network.
Nat. Commun. 8, 14753 (2017).

Aiyappa, R., Flammini, A. & Ahn, Y.-Y. Emergence of simple and
complex contagion dynamics from weighted belief networks. Sci.
Adv. 10, eadh4439 (2024).

State, B. & Adamic, L. The diffusion of support in an online social
movement: Evidence from the adoption of equal-sign profile pictures.
In: Cosley, D., Forte, A., Ciolfi, L. & McDonald D. (eds) Proc. 18th ACM
Conference on Computer Supported Cooperative Work & Social
Computing 1741-1750 (Association for Computing Machinery, 2015).
Karampourniotis, P. D., Sreenivasan, S., Szymanski, B. K. & Korniss,
G. The impact of heterogeneous thresholds on social contagion with
multiple initiators. PLoS ONE 10, e0143020 (2015).

Min, B. & San Miguel, M. Competing contagion processes:
Complex contagion triggered by simple contagion. Sci. Rep. 8,
10422 (2018).

Stattner, E. & Vidot, N. Social network analysis in epidemiology:
current trends and perspectives. In: Abraham, A. (ed) 2011 Fifth
International Conference on Research Challenges in Information
Science 1-11 (IEEE, 2011).

59. Price, L. F., Drovandi, C. C., Lee, A. & Nott, D. J. Bayesian synthetic
likelihood. J. Comput. Graph. Stat. 27, 1-11 (2018).

60. Hansen, M. H. & Yu, B. Model selection and the principle of minimum
description length. J. Am. Stat. Assoc. 96, 746-774 (2001).

61. Rényi, A. et al. On the evolution of random graphs. Publ. Math. Inst.
Hung. Acad. Sci. 5, 17-60 (1960).

62. Albert, R. & Barabasi, A.-L. Statistical mechanics of complex
networks. Rev. Mod. Phys. 74, 47 (2002).

63. Barabasi, A.-L. & Albert, R. Emergence of scaling in random networks.
Science 286, 509-512 (1999).

64. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-
world’networks. Nature 393, 440-442 (1998).

65. Lee, C. & Wilkinson, D. J. A review of stochastic block models and
extensions for graph clustering. Appl. Netw. Sci. 4, 1-50 (2019).

66. de Oliveira, J. F., Marques-Neto, H. T. & Karsai, M. Measuring the
effects of repeated and diversified influence mechanism for
information adoption on Twitter. Soc. Netw. Anal. Min. 12, 16 (2022).

67. de Oliveira, J. F., Marques-Neto, H. T. & Karsai, M. Information
adoption via repeated or diversified social influence on Twitter. In:
Atzmuller, M., Coscia, M. & Missaoui, R. (eds) 2020 IEEE/ACM
International Conference on Advances in Social Networks Analysis
and Mining (ASONAM) 237-241 (Institute of Electrical and Electronics
Engineers Inc., 2020).

68. Wang, W., Stanley, H. E. & Braunstein, L. A. Effects of time-delays in
the dynamics of social contagions. N. J. Phys. 20, 013034 (2018).

69. Contreras, D. A., Cencetti, G. & Barrat, A. Infection patterns in simple
and complex contagion processes on networks. PLoS Comput. Biol.
20, €1012206 (2024).

70. Valente, T. W. & Vega Yon, G. G. Diffusion/contagion processes on
social networks. Health Educ. Behav. 47, 235-248 (2020).

71. St-Onge, G., Hébert-Dufresne, L. & Allard, A. Nonlinear bias toward
complex contagion in uncertain transmission settings. Proc. Nat/
Acad. Sci. USA 121, 2312202121 (2024).

72. Ruan, Z., Iniguez, G., Karsai, M. & Kertész, J. Kinetics of social
contagion. Phys. Rev. Lett. 115, 218702 (2015).

73. lacopini, I, Petri, G., Barrat, A. & Latora, V. Simplicial models of social
contagion. Nat. Commun. 10, 2485 (2019).

74. St-Onge, G. et al. Influential groups for seeding and sustaining nonlinear
contagion in heterogeneous hypergraphs. Commun. Phys. 5, 25 (2022).

75. Ferraz de Arruda, G., Petri, G., Rodriguez, P. M. & Moreno, Y.
Multistability, intermittency, and hybrid transitions in social contagion
models on hypergraphs. Nat. Commun. 14, 1375 (2023).

76. Diaz-Diaz, F., San Miguel, M. & Meloni, S. Echo chambers and
information transmission biases in homophilic and heterophilic
networks. Sci. Rep. 12, 9350 (2022).

77. Unicomb, S., Ifiguez, G., Kertész, J. & Karsai, M. Reentrant phase
transitions in threshold driven contagion on multiplex networks. Phys.
Rev. E 100, 040301 (2019).

78. Perra, N., Gongalves, B., Pastor-Satorras, R. & Vespignani, A. Activity
driven modeling of time varying networks. Sci. Rep. 2, 469 (2012).

Acknowledgements

The authors are thankful to T. Peixoto for the constructive discussions and to
S. Centellegher for releasing visualisation tools used in this paper. G.O. was
supported by the Swiss National Science Foundation, under grant number
P500PT-211129. I.I. acknowledges support from the James S. McDonnell
Foundation's 21st Century Science Initiative. M.K. acknowledges funding
from the National Laboratory for Health Security (RRF-2.3.1-21-2022-
00006), the ANR project DATAREDUX (ANR-19-CE46-0008); the SoBigData
-++ H2020-871042; and the MOMA WWTF project.

Author contributions

All authors contributed to the development of the research design. E.A.
performed the numerical simulations and data analysis. E.A., G.O., and I.I.
developed the statistical analysis. All authors wrote the first draft of the

npj Complexity| (2025)2:8

12


www.nature.com/npjcomplex

https://doi.org/10.1038/s44260-025-00034-2

Article

manuscript, interpreted the results, and edited and approved the
manuscript.

Funding
Open access funding provided by HUN-REN Alfréd Rényi Institute of
Mathematics.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s44260-025-00034-2.

Correspondence and requests for materials should be addressed to
Marton Karsai.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

npj Complexity | (2025)2:8

13


https://doi.org/10.1038/s44260-025-00034-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/npjcomplex

	Distinguishing mechanisms of social contagion from local network view
	Results
	Different mechanisms of social contagion
	Process classification with known parameters
	Contagion on egocentric networks
	Experiment 1

	Contagion on random networks
	Experiment 2


	Process classification with unknown parameters
	Experiment 3

	Case study: adoption mechanisms on Twitter
	Activity-driven networks with asynchronous dynamics
	Experiment 4

	Classification of Twitter hashtags
	Experiment 5



	Discussion
	Methods
	Experiments
	Experiment 1—Classification on egocentric networks
	Experiment 2—Classification of random networks with known parameters
	Experiment 3—Classification of random networks with unknown parameters
	Experiment 4—Classification of real networks with known parameters
	Parameter sampling
	Contagion model with waiting time

	Experiment 5—Classification of hashtag adoption with unknown ground truth

	Likelihood calculations
	Experiment 1
	Accuracy estimation for Experiment 1
	Experiment 2—Classification with known parameters
	Experiment 3—Classification with unknown parameters

	Random forest classification
	Experiment 2—Classification with known parameters
	Experiment 3—Classification with unknown parameters


	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




