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Copy or collaborate? How networks
impact collective problem solving
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Collaboration enables groups to solve problems beyond the reach of their individual members in
contexts ranging from research and development to high-energy physics. While communication
networks play a pivotal role in group success, there is a longstanding debate on the optimal network
topology for solving complex problems. Prior research reaches contradictory conclusions—some
studies suggest networks that slow information transmission help maintain diversity, leading groups
to explore more of the problem space and find better solutions in the long run, while others argue that
networks that maximize communication efficiency allow groups to exploit known solutions, boosting
overall performance. Many existing models assume that individuals use their network connections
only to copy better-performing group members, but we show that such groups often perform worse
than if individuals worked independently. Instead, our model introduces a crucial distinction: in
addition to copying, individuals can actively collaborate, leveraging diverse perspectives to uncover

solutions that would otherwise remain inaccessible. Our findings reveal that the optimal network
structure depends on the balance between copying and collaboration. When copying dominates,
inefficient, exploration-focused networks lead to better outcomes. However, when individuals
primarily collaborate, highly connected, efficient networks win out. We also show how groups can reap
the benefits of both strategies by employing a collaborate first-copy later heuristic in highly connected
networks. The results offer new insights into how organizations should be structured to maximize

problem-solving performance across different contexts.

In 1905, Einstein was stuck, flummoxed by contradictions in Newtonian
mechanics and Maxwell’s equations of electromagnetism. He famously
turned to his friend and fellow patent office employee, Michele Besso.
During a long night of discussion, Besso reminded Einstein of a central idea
promoted by the Austrian physicist Ernst Mach: all measurements are
relative. The next morning, Einstein returned to his friend saying, “Thank
you, I've completely solved the problem.” Shortly thereafter, he published
the first paper on his theory of special relativity, arguably one of the most
significant scientific papers in history, with Besso as the sole
acknowledgement'.

In 1953, while racing to develop a model of DNA’s structure, the
molecular biologist James Watson visited King’s College London. There, he
saw Rosalind Franklin’s now famous Photograph 51. With her expertise in
chemistry and X-ray crystallography, Franklin created the image using a
special system she developed that involved bubbling hydrogen through salt
solutions, allowing her to capture a much clearer image of the high humidity
“B-form” of the nucleic acid than ever seen before”. In Watson’s words, “The

instant I saw the picture my mouth fell open and my pulse began to race™.
The unique perspective gained from Franklin’s image allowed Watson and
Crick to complete the model that ultimately led to a Nobel Prize in 1962.

In 2009, Fields medalist Timothy Gowers challenged his blog’s readers
to find a combinatorial proof of the density Hales-Jewitt Theorem-a pro-
blem he himself had been unable to solve®. After six weeks and nearly 1000
comments from individuals with experience ranging from a fellow Fields
medalist to high school mathematics teachers, Gowers declared the team of
online collaborators had collectively found the proof, which was published
under the pseudonym D.H.J. Polymath *°.

These three examples are among countless instances in which, by
combining diverse perspectives and expertise, groups were able to solve
complex problems collectively that none of their individual members could
overcome alone’”’. Research on the emergence of such collective intelligence
points to the connections among collaborators—that is, the group network
structure-as a key ingredient in problem-solving solving success”'’. And yet,
the literature abounds with contradictory conclusions on which networks
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work best. On the one hand, a number of experimental studies find that
highly connected networks with short average path lengths efficiently dif-
fuse information, promote coordination, and allow groups to rapidly con-
verge on and exploit discovered solutions' ™. On the other hand, a
collection of theoretical models suggests that less efficient networks should
help organizations maintain diversity and explore a greater range of possible
solutions """,

We argue that one reason for discrepancies between theory and
empirics regarding optimal networks develops because most models of
networked problem solving focus on a limited type of communication and
learning among network neighbors: copying'*'*"”. Even in more sophisti-
cated social learning models, individuals ultimately mimic the solutions
found by more successful group members'. A perhaps unintended con-
sequence of the copying assumption in previous research is that a group
never outperforms the same team members working as individuals. In other
words, there is no “synergy” and no possibility of a collective breakthrough
like those that led to the theory of special relativity or the discovery of the
structure of DNA. In this paper, we relax the copying assumption by
endowing agents with diverse problem-solving perspectives, which they
share through a second form of communication we term collaboration. As
in real-world problem-solving groups, when agents in our model collabo-
rate, they have the potential to jointly outperform all of the individuals in the
group. We then study how the nature of information sharing interacts with
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Fig. 1 | An example of the rugged solution landscape. The two horizontal
dimensions specify characteristics of each potential problem solution. The vertical
axis indicates each solution’s payoff.

network structure and problem complexity to shape the exploration/
exploitation tradeoff and determine organizational performance.

Qur article makes three main contributions. First, we demonstrate how
group performance depends on the extent to which group members use
their network connections for copying versus collaboration and find a tra-
deoff between average and best group member performance. Second, we
resolve the apparent conflict in the literature on the relationship between
networks and problem solving by demonstrating that when agents are
restricted to copying, inefficient networks that slow communication are
most effective, but when agents use their networks primarily for colla-
boration, more efficient networks are best. Finally, we show how an orga-
nization can further optimize performance by changing its primary
communication mode over time.

Following previous studies, we model problem solving by simu-
lating agents searching for the global maximum on a rugged
landscape'*'*""". As shown in Fig. 1, solutions are represented as points
on a surface embedded in three-dimensional space, with their height
representing their payoff. (In the Supplementary Information (SI) we
show that our results also hold when we replace this two-dimensional
surface with a multidimensional NK-landscape™.) Each agent occupies a
point on the landscape corresponding to that agent’s current solution.
Agents are only aware of the payoffs of solutions in the local neigh-
borhood of their current solution and attempt to find the highest peak, or
global optimum, by “hill climbing,” that is, repeatedly moving to the
highest payoff solution that they can “see”'. As an agent improves upon
its current solution, new possibilities come into view. The presence of
many local optima complicates the search for the globally optimal
solution because hill-climbing agents may become stuck at the top of
these local peaks with no further improvements in sight.

To extend our model beyond this standard setup, we draw from the
“wisdom of crowds” literature’, which argues that groups working
together combine diverse perspectives, allowing them to often out-
perform their individual members *'”**', We operationalize perspec-
tive diversity by assuming that the set of solutions visible from a given
point on the solution landscape differs from agent to agent. We divide
the two horizontal dimensions of the problem-solving environment
into a grid, where each cell represents a possible problem solution. As
described above, individuals are aware of the payoffs of cells immedi-
ately adjacent to their current solution, but on top of this standard
framework, each cell and each agent is randomly matched with one of s
possible “skills”. In addition to the adjacent cells, agents know the
payoffs of, and can move to, cells that match their skill up to a distance r
from their current position. The left panel of Fig. 2 illustrates the fra-
mework with colors representing skills and r = 2+/2. The green skill
agent in the center can see all of the cells outlined in bold, which
includes the orange cell they currently occupy, the eight immediately
adjacent cells, and three additional cells one step further away that
match their green skill type.

Fig. 2 | A local neighborhood in the problem space A.
grid. Colors corresponds to the skill type of

each cell. A An agent represented by the green circle
in the center can see the payoffs of any of the cells
surrounded by bold lines. This includes the central
orange cell they currently occupy, the eight imme-
diately adjacent cells, and three additional cells that
match the agent’s green skill type and are within
distance r = 2+4/2. B If the agent collaborates with
their network neighbors, represented by the blue
and purple circles, then they also can see the payoffs
of the blue and purple cells with dashed borders.
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Fig. 3 | The best solution found by any member in the group over time for varying levels of collaboration frequency. Averages from one thousand simulation runs with
group size n = 16, s = 100 skill types, and skill radius r = 6. Simulations terminate after a single time step in which no agent moves.

The applied interpretation of skills depends on context. In the case of
academic collaborations, skills might correspond to disciplines, while in the
medical arena, skills could represent subfields such as cardiology, oncology,
or endocrinology. Skills could also correspond to individual knowledge
gained through idiosyncratic past experiences. While any agent can
potentially reach any solution, it is easier for an individual to “make the leap”
to a solution that matches their type. For example, given equivalent infor-
mation on a patient, a cardiologist might more easily pick up on signs of a
heart problem than a gastroenterologist.

Agents are connected by an unweighted, undirected social network. In
addition to individual local knowledge of the problem space, agents gain
information through their network connections. When an individual
communicates with a network neighbor, they can either copy or collaborate,
and we vary the frequency of these two options, letting p represent the rate of
collaboration. Specifically, when it is an agent’s turn to update, with prob-
ability p they collaborate with their neighbors and with probability 1 — p
they copy.

As in previous models, when an agent copies, the individual moves to
the position of their best performing network neighbor if the payoff of the
cell occupied by that neighbor exceeds the payoft of any currently visible
solutions in the agent’s local neighborhood'***. If none of an agent’s
neighbors’ solutions exceed the payoffs in the agent’s visible neighborhood,
they follow the hill-climbing algorithm and adopt the solution with the
highest payoff in their visible neighborhood. When collaborating, the agent
learns the payoffs of cells within r units of their own position that match the
skills of their neighbors. Just as Einstein turned to Besso for a new per-
spective, when agents in the model collaborate, it is as though they ask their
neighbors, “Given your skills, if you were in my position, what steps forward
do you see?” The collaborator essentially responds, “Have you thought of
this?” The knowledge gained by collaborating is illustrated in the right panel
of Fig. 2 by the cells with dashed borders. On their own, the green skill agent
can only see the cells within the dark border shown on the left side of the
figure. But when they collaborate, they learn the values of the blue and pink
cells with dashed borders on the right side of the figure through their
interaction with their blue and pink skill neighbors. Once the agent learns
the values of these additional solutions, they move to the cell with the highest
payoffs out of all of the cells they know.

We also vary the structure of the collaboration network. Since network
efficiency, as measured by the average path length between any two network
nodes, has been identified as a primary predictor of group performance'’, we
focus on two extremes: a fully connected network, in which every individual
is directly linked to everyone else in the group; and a linear network, in
which agents are arranged in a line and are only connected to their
immediate neighbors. These two networks have the shortest and longest
possible average path lengths, respectively, among all connected graphs. In
addition to these extremes, we consider eight network structures examined
in previous studies of team networks'"® in the SL

Results

Diverse skills and the wisdom of crowds

Before investigating variations in network structure, we examine the impact
of collaboration on collective problem solving. Figure 3 shows the max-
imum payofts achieved over time when agents only or mostly copy (p =0
and p = 0. 1, respectively) or only or mostly collaborate (p =1and p=0.9,
respectively), along with a baseline case where agents work as individuals,
sharing no information with other group members. The left panel illustrates
the findings in a simple problem landscape with a single global optimum
and no other local optima, while the right panel shows the results in a
complex landscape with many local optima, like the one depicted in Fig. 1.
Agents communicate through a fully connected network in all cases. In the
simple landscape, there is little difference in performance between the dif-
ferent communication profiles, although all of the strategies outperform a
group working as individuals.

Results from the complex landscape shown on the right reveal a
different dynamic. The increased complexity of the problem space
reduces group performance across all conditions relative to the simple
landscape, but now agents that collaborate frequently find much higher
payoff solutions than those who primarily copy. Comparing with
agents that search individually reveals two reasons for the advantage of
collaboration over copying. First, copying is actually detrimental to
group performance relative to individual search. Because copying
reduces the set of solutions explored by the group relative to inde-
pendent searching, it lowers the chance of a group member locating the
global maximum. In terms of the best solution identified by any
member of the group, teams from some previous models of collective
problem solving would have been better off working as individuals than
sharing information '*'*. Part of the reason collaboration outperforms
copying is simply because more frequent collaboration implies less
copying. However, collaboration also offers additional benefits beyond
the reduction of copying, as shown by the increase in performance of
the all collaboration (p = 1) and mostly collaborate (p = . 9) strategies
relative to the group working as individuals. By combining their diverse
skills, agents who collaborate are less likely to get stuck on local optima,
and thus they find higher payoff solutions overall.

These results beg the question, why should group members ever copy?
Fig. 4, which shows the average group performance over time for the same
five communication profiles as the previous figure, provides one answer.
While copying lowers the best payoff solution found by the group, it raises
the group’s average member performance in both simple and complex
problem landscapes. Collaboration allows a group to explore a larger area of
the problem landscape, raising the payoff of the best performing agent, but
when other group members do not have an opportunity to copy one
another, the rest of the group is unable to exploit the success of the best
performing member. Whether average group performance or best member
performance matters more depends on context. A team of engineers
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Fig. 4 | The average group performance over time for varying levels of collaboration frequency. Averages from one thousand simulation runs with group size n = 16, s =
100 skill types, and skill radius r = 6. Simulations terminate after a single time step in which no agent moves.
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Fig. 5 | The maximum (left) and average (right) group payoffs in fully connected
and linear networks as a function of the probability of collaboration, p. Error bars
are the standard errors of the mean across one thousand simulation runs.
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Parameters: group size n = 16, s = 100 skill types, and skill radius r = 6. Simulations
terminate after a single time step in which no agent moves.

working to solve an R&D design challenge may only need one member to
find a breakthrough solution, but for a group of bees gathering food for the
hive, it matters little for one bee to find the mother lode if the other workers
come home empty. Notably, only a small proportion of copying is needed to
close the gap in average performance between the all collaboration strategy
and the primarily copying strategies in the long run. If agents copy at all,
eventually the entire group will converge on the best member’s solution,
although it may take longer.

Interaction of network structure and communication type

As shown in the previous section, the introduction of diverse skills and
collaboration allows groups to collectively outperform their individual
members. Prior research identifies network structure as another key
determinant of group problem-solving performance'*"">'*** 1In this
section, we examine how communication type and network structure
interact by varying the frequency with which agents collaborate with or copy
their network neighbors, as well as the network that connects them.

As discussed above, several papers reach opposing conclusions
regarding the optimal network structure for group performance. For
example, using an agent-based computational model, Lazer and Friedman
conclude that “the more efficient the network at disseminating information,
...the lower the long-run performance of the system” '. In contrast, in an
experimental setting, Mason and Watts find that “efficient networks per-
form unambiguously better than inefficient networks””. Barkoczi and
Galesic show that differences in how individual agents determine which of
their neighbors to copy provide one possible explanation for this
contradiction'®. As we demonstrate below, communication content can also
resolve this inconsistency.

Figure 5 shows the best member (left) and average (right) payoffs when
agents are connected by either a linear network (green) or a fully connected
network (purple) as a function of the collaboration frequency, p. When the
probability of collaboration is zero the results are consistent with Lazer and
Friedman’s model, and the inefficient linear network outperforms the
maximally efficient fully connected network™.

At the other extreme, when p = 1, agents always collaborate and the
opposite result obtains: the fully connected network outperforms the linear
network in terms of both best member and average payoffs, replicating the
finding from Mason and Watts". Between the two extremes, the perfor-
mance curves for the two networks cross: the linear network performs best
when agents primarily copy, while the fully connected network dominates
when agents collaborate more frequently.

Figure 5 provides another illustration of the tradeoff between the best
member and average performance that comes with increased collaboration.
On the left, greater collaboration boosts the best member performance in
both the linear and fully connected networks, but as the right panel depicts,
too much collaboration reduces the payoft of the average group member by
preventing good solutions from diffusing throughout the network.

The results in Fig. 5 suggest that too much collaboration increases
inequality: while some team members surge ahead, the average member is
left behind. This intuition is confirmed in Fig. 6, which plots the payoff of the
worst performing team member in the left panel and the Gini coefficient in
the right panel for the same simulations depicted in Fig. 5. While the per-
formance of the best team member improves with increased collaboration
(Fig. 5), the performance of the worst team member drops, and overall
inequality climbs. Thus, in situations where fairness or equality are
important considerations, higher levels of copying may be preferable.
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Fig. 7 | The relationship between average group performance and network

density when agents only collaborate (left) or only copy (right). The density of the
network is the number of edges in the network divided by the number of edges there
would be in a fully connected network with the same set of nodes. Network density

was increased by starting with a linear network and adding edges at random. Error
bars are the standard errors of the mean across one thousand simulation runs.
Parameters: group size n = 16, s = 100 skill types, and skill radius r = 6. Simulations
terminate after a single time step in which no agent moves.

To this point, we have only examined two extreme networks: the
linear network and the fully connected network (a number of other
network structures are examined in the SI). Figure 7 expands on these
results by depicting the average group performance as edges are added
to the interaction network at random, increasing the density of net-
work connections from the minimally connected linear network
(density = 0.125) to a fully connected network (density = 1). When
agents only copy, as shown in the left panel, increasing density
decreases performance. On the other hand, as depicted in the right
panel, when agents always collaborate, greater connectivity leads to
higher payoffs. There is no “one size fits all” prescription on how
organizations should best structure their problem-solving networks.
Rather, the costs and benefits of increased communication depend on
the information communicated.

Collaborate first, then copy

The results above demonstrate advantages to both collaboration and
copying. Collaboration amplifies exploration and increases the expected
payoff of the best found solution while copying boosts exploitation, raising
the payoff of the average group member. Typically, exploration and
exploitation are seen in opposition to one another, as above, where the best
strategy for the team’s maximum payoff was the worst for the group average.
But, in this section, we explore a third heuristic, where members first col-
laborate and then later copy, which allows groups to capture the benefits of
both strategies.

Figure 8 shows the maximum and average payoffs when groups first
collaborate for k rounds and then copy for 10 — k rounds as a function of k.
When k = 0, agents always copy, and so the results mirror the p = 0 results on
the left side of Fig. 5. If the group collaborates for at least one round, the fully
connected network outperforms the linear network with respect to both best
member and average payoffs. Because in the fully connected network it only
takes one round of copying for all of the group members to match the
performance of the best member, best member and average performance are
the same. In these cases, the group enjoys the exploration benefits of col-
laborating in a fully connected network without paying the cost of pre-
mature conformity due to early copying. By copying later, the group also
reaps the exploitation benefits that come from bringing the performance of
the average group member up to the level of the best member. Now, having a
fully connected network is actually beneficial for copying, because the group
has already exhausted its ability to explore the space and the efficient net-
work allows the whole group to quickly adapt the best found solution.

In the linear network, it takes longer for good solutions to diffuse
throughout the network, so if the group collaborates for too long, there are
insufficient rounds remaining for the best solutions to reach all of the group
members. This accounts for the drop off in average performance in the
linear network seen in the right panel. Finally, on the far right side of the
right panel where k = 10, so the groups only collaborate, there is a sudden
decrease in average performance because poor performing group members
have no opportunity to learn the solutions found by better performing
teammates.
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Discussion

We developed a model of networked problem solving in which, in
addition to copying better-performing teammates, group members can
also collaborate by sharing diverse skills with their network neighbors,
resulting in groups that collectively outperform their individual
members. We then explored how group performance depends on the
content of group member communications, the network that structures
group communication, and the interaction of the two. While copying
tends to boost a group’s average payoff, it reduces the expected per-
formance of the best solution found by the group. Collaboration
increases the chance that someone in the group finds an outstanding
solution, but too much collaboration comes at the cost of a decrease in
the payoff of the average group member.

The model resolves contradictory results in the literature regarding
network efficiency and group performance. Specifically, we found that more
connected networks that allow for greater information sharing perform
better when agents collaborate, but less connected networks that slow
convergence work best when group members primarily copy. We also
demonstrated how groups can maximize average as well as best member
performance by collaborating initially and then copying later.

Our results suggest a number of directions for future research, both
theoretical and empirical. For example, future models could relax the
assumption that skills are randomly distributed across agents and
solutions. This design decision creates a neutral baseline in our model,
but implies that all skills are equally useful in expectation and that there
is no correlation between pairs of problem-solving types. In practice,
some specialties are more similar to one another than others. For
example, a solution that is well-known to a mathematician may be more
likely to also occur to a physicist than to an art historian. Some skills are
also likely better suited for certain problems than others. One possible
approach would be to model problem solvers as “toolboxes” comprised
of multiple skills rather than having each problem solver correspond to
a single skill type®. Overlap in skill sets could then capture correlations
in problem-solving approaches. While we avoid the toolbox framework
and distribute skills randomly to simplify the model and interpretation
of results, future research could endow agents with multiple skills to
explore how variation in group diversity impacts our findings. If agents
tend to tackle problems that best match their own skill type, the benefits
of collaborating with other types might be reduced.

Another model extension might be to add varying costs to copying
and collaboration. Costs could be incorporated explicitly, and indivi-
dual agents could then attempt to maximize the payoffs of their solu-
tions minus costs. Alternatively, costs could be endogenized as a time
penalty to communication. For example, an agent might have to give up
a time step in order to communicate, or their perspective radius might
be temporarily decreased. (The authors would like to thank an anon-
ymous reviewer for this suggestion). Depending on parameters, these

tradeoffs might suggest different contexts in which collaboration or
copying strategies are more effective. We briefly explore one oper-
ationalization of this idea in the SI by limiting the number of contacts an
individual can collaborate with in a given time step. This change to the
model reduces the payoffs of high levels of collaboration and highly
connected networks but does not change the main finding shown in
Fig. 5 that groups do best in less connected networks when they pri-
marily copy and better in more connected networks when they mostly
collaborate.

In addition to extending the model, future work could combine
modeling with behavioral experiments to test both the model assumptions
and conclusions. While a number of experiments probe the relationship
between networks and problem solving''~'**~*', our research points to the
nature of information communicated through network connections as a
potential key but understudied variable in determining which networks
perform best. The fact that groups often solve problems that are out of reach
for their individual contributors suggests that members do more than just
copy their peers, but a significant empirical question raised by our results is,
in practice, when do problem solvers copy and when do they collaborate?
Similarly, while a number of theoretical models point to limiting or slowing
communication as a beneficial strategy'*"'*'*, most previous empirical stu-
dies find that more efficient communication leads to better solutions'' ™,
suggesting that, at least in the context of these experiments, group members
tend to do more than just copy one another’s solutions. It would be infor-
mative to see if an experiment in which participants are explicitly limited to
copying alone can produce outcomes in which slower communication
prevails. The decision to copy or collaborate is most likely driven by
incentives, so the design of reward systems to encourage dense collaboration
networks that defer copying is another important next step with potential
implications for science funding agencies, universities, and research and
development.

Our research adds to the growing consensus that diversity benefits
groups'*'*'”*!. But when it comes to how to best structure an organization to
encourage diversity, various conceptualizations of diversity operate differ-
ently. For example, Gomez and Lazer show that teams do best when indi-
viduals with similar knowledge are clustered closely together within
networks, while members with different skills are dispersed more broadly'”.
Shore, Bernstein, and Lazer find that highly clustered networks promote
diversity of facts that contribute to solving a problem but inhibit diversity in
terms of theories that combine those puzzle pieces to suggest a solution’".
Similarly, our results suggest that when agents collaborate, efficient net-
works help diffuse diverse perspectives, but when agents copy, greater
network efficiency depresses solution diversity. By combining efficient
networks with a collaborate first/copy later strategy, organizations can
harness the exploration benefits of quickly diffusing diverse perspectives
with the exploitation benefits of rapid coalescence around group leaders
once progress has slowed.
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Methods

Problem space

We generated our complex problem solution landscapes using the same
procedure and parameters detailed in the article by Mason and Watts". In
brief, these landscapes are created by starting with a “signal” generated by a
unimodal bivariate Gaussian distribution with a randomly chosen mean in
the 100 x 100 problem solution grid and variance three. This signal dis-
tribution is then summed together with a sequence of pseudorandom Perlin
noise distributions™. For robustness, we also ran simulations on a version of
the NK fitness landscape as implemented by Barkoczi and Galesic'®. Those
results are described in the SI.

Simulation procedure

Before each simulation run, we generate a new problem landscape and
randomly assign each solution cell to one of s skill types. Each of n group
members is also randomly assigned one of the s skill types and a random
position on the 100 x 100 solution space. The simulation then proceeds
through a sequence of discrete time steps. At each step, agents are chosen
to update their position in a randomly selected order. When it is an
agent’s turn to update, with probability p they collaborate with their
neighbors and with probability 1 — p they copy. Agents that are selected
to collaborate consider the payoffs of all of the cells adjacent to their
current cell, cells within distance r of their current cell that match their
type, and cells within distance r of their current cell that match the type(s)
of any of their network neighbors. Agents that are selected to copy
consider the payoffs of all of the cells adjacent to their current cell, cells
within distance r of their current cell that match their type, and the cells
that their network neighbors currently occupy. The agent then chooses
the highest payoff solution from among these considered cells and moves
to that point. If none of the payoffs of the considered cells exceeds the
payoff of the agent’s current position, the agent stays where they are.
Once all agents have updated, the simulation proceeds to the next time
step. “The simulation terminates after the first time step in which no
agent moves”. Results reported in the main text use group size n = 16,s =
100 skill types, and skill radius = 6 (where the distance between cells is
computed using Euclidean distance measured between the centers of the
cells). Alternate parameters and specifications are reported in the SI.

Data availability

All data presented in this study are reproducible through execution of the
model source code available at this GitHub repository: https://github.com/
gulsahakcakir/Group-Problem-Solving/tree/manuscript.
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