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The historical distribution and future
expansion of paddy rice fields in Asian
highlands
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Urbanization and population growth are shrinking lowland rice areas, compelling exploration of Asia’s
under‑studied highlands for future food security. Using earth observation data from 2000 to 2020 and
machine learning method, we analyzed the distribution of paddy (irrigated) rice fields and their driving
factors in Asian highlands (>1000ma.s.l.). Highlands currently host 1.489 ± 0.176 millionha of rice,
concentrated in the Tianshan–Tarim Basin, Hetao Plain along the Yellow River, and Yunnan–Guizhou
Plateau. Altitude is the dominant constraint; additional precipitation is associated with reduced rice
extent in the highlands, whereas population density and economic growth are associated with
expansion. Our scenario modelling projects ~60% expansion and northward shift of high‑altitude
paddies by 2035, yielding more nutrient‑rich, low‑contaminant grain and aiding saline–alkali
reclamation. These findings highlight substantial, climate‑resilient capacity in Asian uplands to bolster
sustainable rice supply and regional food security. This integrated assessment fills a critical
knowledge gap regarding high‑elevation agroecosystems.

Rice (Oryza sativa L.) is an important crop type and a staple food for over
half of the people worldwide, with Asian countries making up ~90% of its
global production and trade, highlighting its importance for global food
security1. Due to population growth and economic expansion in many
Asian countries, the demand for rice is projected to increase by approxi-
mately 70%over the next 30years, whichmay challenge supply even though
rice yields have more than doubled since the pre-Green Revolution era
(1940s–1960s)2. At the same time, concerns over the food safety and public
health associated with rice cultivation are growing in Asian countries.
Recent studies have shown that rapid urbanization and industrialization
have led to a rapid landuse change andpaddyfield losses inAsia3. It has been
estimated that China will lose 1.2 million hectares of paddy fields in the
decade from 2023 to 20324. Additionally, rice cultivation in many Asian
lowlands is affected by soil and water contamination, especially from heavy
metals and microplastics3,5,6. Climate warming increases the release of toxic
substances, such as inorganic arsenic, into soils, leading to its accumulation
in rice grains, which reduces productivity and quality and poses risks to
human health through the food chain7. While more efficient cultivation
methods can help compensate for paddy field losses8, the significant
financial investments required pose challenges in many Asian countries
with large populations still living in poverty9. As arable lowlands in Asia

become increasingly occupied by human activities and suffer from
contamination9, we expect paddy rice fields to expand into Asian highland
regions.

Asia covers one-third of the global land area, with about half consisting
of highlands. These Asian highlands (hills, mountains, and high plateaus)
span vast regions of the Hindu Kush Himalaya and the Tibetan Plateau,
stretching fromPakistan toChina9,10. Primarily influenced by a cold and dry
continental climate, they receive moisture mainly from the Asian summer
monsoon and winter western disturbances11,12. Compared to lowland
regions, the climate conditions in the Asian highlands are generally less
suitable for paddy rice fields. Nevertheless, abundant solar radiation and
cryospheric water resources make rice cultivation viable in many Asian
highland areas13. Besides, adopting sustainable cropping systems and cul-
tivating drought- and cold-tolerant rice varieties adapted to highland con-
ditions can partially reduce reliance on warm and wet climates14,15.
Moreover,Asianhighlands, particularly theTibetanPlateau andHimalayas,
are warming at two to three times the global average rate11,12. This rapid
warming is expected to increase glacier meltwater and regional rainfall,
creatingmore favorable conditions for irrigated rice cultivation8,16,17. Studies
have demonstrated that paddy rice can be cultivated in Asian highland
regions at altitudes exceeding 3000m above sea level (ma.s.l.), including
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areas such as Tkhitu, north of the Yangtze Gorge, and Yulong Shan13,15,18.
Rice grown in these highlands—typically japonica varieties—is more
nutritious and commands higher economic value than lowland rice13,15,18.
Therefore, highland rice cultivation presents a promising approach to
enhance food security and safety while also stimulating regional economic
development.

Until now, the scale, distribution, and future potential of highland rice
cultivation have remained largely unknown, and the factors influencing
paddy field expansion and strategies for sustainable development remain
unexplored. To address these gaps, our study aims to answer the following
three questions: (1) How extensive are the historical paddy rice fields in
Asian highlands, and how might they evolve up to 2035? (2) What are the
key factors influencing the expansion of paddy fields in Asian highland
regions, andwhat are the underlyingmechanisms? (3)What is the potential
for future paddy ricefields inAsian highlands, andwhat strategies should be
adopted for sustainable agricultural development? We examine the
advantages and opportunities of highland rice cultivation, along with the
challenges and potential drawbacks of large-scale implementation. To
estimate where and how paddy rice fields have changed in Asian highlands
from 2000 to 2020, we used the APRA500 dataset19, which maps annual

paddy fields in Asian countries using MODIS satellite images at a 500-m
resolution (see Methods: ‘Research areas’). Next, to identify the key factors
influencing changes in rice planting areas across Asian highlands, we
developed Random Forest models taking thirteen socioeconomic and cli-
matic factors as drivers to simulate the gridded distribution of paddy rice
fields (see Methods: ‘Random Forest model development’). We then pre-
dicted future paddy rice areas in Asian highlands up to 2035, revealing
potential expansion trends based on the developed models. We also
examine the advantages and opportunities of Asian highland rice cultiva-
tion, along with the challenges and potential drawbacks of large-scale
implementation. This study offers important insights into the potential for
paddy rice fields in Asian highlands, providing guidance for sustainable
agricultural development.

Results
Distribution and dynamics of paddy fields in Asian highlands
In this study, wemapped paddy ricefields in theAsian highlands at a spatial
resolutionof 500m× 500musing theAPRA500dataset, identifying regions
with at least one year of paddy rice fields between 2000 and 2020 (Fig. 1).
Our results reveal a scarce distribution of paddy rice fields on the Tibetan

Fig. 1 | Spatial distribution and changes in paddy rice areas in the Asian high-
lands from 2000 to 2020, based on the APRA500 dataset. The central panel
identifies locations where paddy rice was cultivated at least once during this period.

The top panels highlight changes in rice cultivation across three sub-regions
(Regions A, B, and C). The bottom panel summarizes the overall changes in rice-
growing areas across the highlands.
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Plateau itself, but a relatively higher concentration in the surrounding
highland regions. We assessed three rice-producing sub-regions with con-
centrated paddy rice fields: Tian Shan and Kunlun Mountains (sub-region
A, in the northwestern range), Qilian-Yinshan-Taihang Mountains (sub-
region B, northeastern range), and Hengduan Mountain (sub-region C,
southeastern range). Together these sub-regions account for ~93% of
highland paddy area (2000s averages: A 21%, B19%, C53%; 2010s: A28%,
B30%, C36%). Over the study period, the annual paddy rice fields in sub-
region A varied from a minimum of 245 kilo hectares (kha) in 2000 to a
maximumof525kha in2011. Similarly, sub-regionsBandCshowedannual
variations ranging from 217 kha in 2002 to 513 kha in 2011 and from 323
kha in 2019 to 1,116 kha in 2003, respectively. In sub-region A, the pro-
portionof rice cultivated at altitudes of 1000–1500mabove sea level (ma.s.l.)
varied annually from 58% to 76% of the total cultivated area between 2000
and 2020. Cultivation at 1500–2000ma.s.l. accounted for 4% to 10%, and
above 2000ma.s.l. accounted for 16% to 35%. In sub-region B, the pro-
portion of cultivation at 1000–1500ma.s.l. was even higher, ranging from
92% to 98%, while 1500–2000ma.s.l. accounted for 2% to 7%, and above
2000ma.s.l. was less than 1%. Sub-region C showed a more balanced dis-
tribution, with 34% to 46% of cultivation at 1000–1500ma.s.l., 26% to 33%
at 1500–2000ma.s.l., and 24% to 36% above 2000ma.s.l.

Figure 1 outlines the three sub-regions in our study area, while Sup-
plementary Fig. 1 provides enlarged views highlighting the distribution of
highland paddy rice fields and the major cities within the regions. Sub-
region A, concentrated along the southern edge of the TianshanMountains
and the Tarim Basin, features major cultivation areas around Kashi, Aksu,
and Hotan. Sub-region B includes dense rice cultivation in the Hetao Plain
and the floodplains of the Yellow River, such as Bayannur, Yinchuan, and
Shizuishan, as well as the Hexi Corridor north of the Qilian Mountains. In
sub-region C, fields are primarily located in the southeastern Yunnan-
Guizhou Plateau, with major rice-growing areas around Kunming, Qujing,
and Bijie. From 2000 to 2020, the extent of highland paddy rice increased in
Sub-regions A and B but decreased significantly in Sub-region C. Specifi-
cally, the area in Sub-region A grew from 342 kha in the first decade of the
21st century to 386 kha in the second decade, and Sub-region B increased
from 300 kha to 415 kha over the same periods. However, these increases
were not sufficient to offset the substantial reduction in Sub-regionC,where
the paddy area declined from 845 kha to 499 kha. Consequently, the overall
highland paddy rice area across the Asian highlands decreased from an
average of 1599 kha in the 2000s to 1392 kha in the following decade. The
decrease in Sub-region C may be influenced by factors such as regional
climate change, land-use policies, urbanization, and socio-economic pres-
sures like higher population density, leading to competition for land. These
factors will be further explored in the Discussion section.

Identification of key factors affecting Asian highland paddy area
To evaluate the dynamics of paddy rice fields in the Asian highlands and
identify key influencing factors, we developed 50 Random Forest (RF)
models using MatLab’s ‘TreeBagger’ function. Each model incorporated
randomly selected combinations of variables, including eight climate vari-
ables (temperatures in Kelvin and precipitation in millimeters across four
seasons), three geo-environmental variables (mean altitude in ma.s.l., alti-
tude range in ma.s.l., glacier cover rate in percentage), two socio-economic
variables (population density in people per square kilometer and Gross
Domestic Product (GDP) inpurchasingpowerparity), and a binary variable
indicating whether cultivation occurred in the previous year (planting his-
tory, {0,1}). The binary ‘planting history’ feature captures persistence of
irrigated paddy systems.We utilized annual data from 3474 grid cells (each
0.5° × 0.5°) spanning from 2000 to 2020, totaling 72,954 groups of data.
Rather than splitting the data into separate training and validation sets, we
employed bootstrap sampling with replacement to build the models. The
calibrated RFmodels demonstrated strong explanatory power, achievingR2

values between 0.88 and 0.89 and an average Root Mean Square Error of
Prediction (RMSEP) of 8.9 kha, indicating satisfactory model performance
(Supplementary Fig. 2). Furthermore, all simulations yielded Residual

Prediction Deviation (RPD) values exceeding 2.90 (Supplementary Fig. 3),
confirming the robustness of our approach, since RPD values above 2.0
indicates excellent model performance19. Details of the model development
are provided in the Methods section.

We identified key factors influencing changes in Asian highland rice
cultivation. We analyzed the importance of 13 environmental and socio-
economic variables across 50 Random Forest models based on the per-
mutation analysis (see methods for details). Figure 2a presents the median
importance scores for these features, with interquartile ranges shown as
error bars. Figure 2b–mdisplays the distributions of feature values and their
associated Accumulated Local Effects (ALE), highlighting the median ALE
and uncertainty intervals indicated by the interquartile ranges. Among the
13 environmental and socio-economic features, altitude emerged as the
most significant predictor with a median feature importance score of 2.70
and an interquartile range from 2.54 to 2.91. GDP followed closely with a
median score of 2.17 and an interquartile range from 2.01 to 2.34. Other
features, ranked by decreasing median feature importance scores (with
interquartile ranges in brackets), were altitude range (1.81 [1.73–1.89]),
population density (1.52 [1.44–1.63]), summer temperature (1.31
[1.24–1.42]), winter precipitation (1.26 [1.15–1.36]), spring precipitation
(1.15 [1.02–1.21]), spring temperature (0.96 [0.88–1.00]), autumn pre-
cipitation (0.94 [0.81–1.03]), summer precipitation (0.85 [0.79–1.00]),
winter temperature (0.77 [0.71–0.83]), autumn temperature (0.70
[0.64–0.80]), and glacier coverage (0.70 [0.62–0.80]). Based on the results of
RF models, four out of the 13 environmental and socio-economic features
have been identified as negatively impacting paddy rice fields in Asian
highlands. The mean altitude negatively affects cultivation (ALE: –6.6 to
–0.9), with this impact intensifying as the altitude increases from 1000 to
2000m above sea level, and then stabilizing at higher altitudes
(2000–6000m). The altitude range also poses a negative effect (ALE: –15.4
to –3.6), with its impact growing between 355 and 2485 meters before
stabilizing. Winter precipitation has a negative effect (ALE: –2.2 to –0.5),
and this negative impact decreases as precipitation levels rise. Similarly,
spring precipitation (ALE: –1.3 to 0) and summer precipitation (ALE: –2.2
to 0) shownegative effects,which alsodiminishwith increasedprecipitation.
In contrast, autumn precipitation generally exhibits a positive effect (ALE:
–1.7 to 0.6), which shifts from a negative effect to a positive one as pre-
cipitation levels above 525mm. Furthermore, glacier coverage (%) also
shows a positive influence (ALE: 0.04 to 0.05), which remains generally
consistent across its value range. Positive effects are also seen with winter
temperature (ALE: 0 to 3.9), spring temperature (ALE: 0 to 3.9), summer
temperature (ALE: 0 to 1.7), autumn temperature (ALE: 0 to 1.5). Popu-
lation density (ALE: 0 to 38.5) and GDP (ALE: 1.8 to 24.2) both exhibit
positive effects, but their distributions are skewed, with decreasing prob-
abilities at higher values. As population density increases from 60 to 300, its
positive impact intensifies; however, beyond this range, the positive effect
diminishes. Similarly, while GDP initially has a strong positive influence,
this effect rapidlyweakens asGDP continues to rise. Notably, althoughALE
provides valuable insights into the effects of individual features, the impact
indicated by ALE values should be interpreted within the context of each
specific feature. Therefore, these values may not be directly comparable
across different features.

Model prediction of future paddy rice fields in Asian highlands
Using 50 calibrated Random Forest models, we predicted the rice planting
area in theAsian highlands from2021 to 2035, covering the same 3,474 grid
cells used in model training. Figure 3 presents our simulation results. Panel
(a) shows the projected distribution of rice planting areas in 2035 based on
themedianof the simulations. Panel (b) compares theplanting areas in 2035
with those in 2020 at each grid point. Panel (c) illustrates the annual changes
in highland rice planting areas from 2020 to 2035, with different shades of
green representing three altitude ranges. Observations from 2000 to 2020
are depicted as gray outlines, while predictions for 2021–2035 are indicated
by yellowoutlines. The uncertaintyof these predictions is represented by the
interquartile range (IQR) of the simulations. Our projections indicate that
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the spatial distribution of paddy rice fields in 2035 will be similar to that
observed from2000 to2020, althoughwith some regional differences. Paddy
fields are expected to remain sparse on the Tibetan Plateau but will be
relatively concentrated in surrounding regions such as the Tarim Basin, the
Yellow River Loop, and the Yunnan-Guizhou Plateau. By 2035, most areas
in the Asian highlands are projected to experience an increase in rice cul-
tivation compared to 2020, except for some grid points in the southern
foothills of the TianshanMountains and the southern part of theHengduan
Mountains regions, where a decrease is projected. Significant increases are
anticipated, particularly in the western Tarim Basin, the middle and lower
reaches of the Yellow River, the northern part of the Yunnan-Guizhou
Plateau, and the southern foothills of the Himalayas—including the upper
reaches of theGanges Basin in India andNepal, and the upper reaches of the
Brahmaputra Basin in India and Bangladesh. Overall, the area of paddy rice
fields in the Asian highlands is projected to show an increasing trend from
2021 onward. The total cultivation area is expected to increase from
1359 ± 130 kha in 2021–2025 to 1891 ± 65 kha in 2031–2035.At altitudes of
1000 to 1500ma.s.l., the area is projected to expand from 924 ± 88 to
1260 ± 57 kha. At altitudes of 1500 to 2000ma.s.l., it is expected to grow
from 178 ± 18 to 257 ± 27 kha, and above 2000ma.s.l., it is projected to
increase from 351 ± 18 to 377 ± 15 kha.

Discussion
Understanding the distribution of paddy rice fields in the Asian highlands,
along with their cultivation status and economic importance, is crucial for
future food security and economic development. Our findings reveal a
scarce distribution of paddy rice fields on the Tibetan Plateau itself, but a
relatively higher concentration in the surrounding highland regions.

Notably, extensive rice-growing areas are located in the Tianshan-Tarim
Basin, the Hetao Plain along the Yellow River, and the Yunnan-Guizhou
Plateau (Fig. 1). In these regions, farmers primarily cultivate specific rice
varieties, often rotating themwithother crops likewheat and soybeans16,20–24.
These rice products, appreciated for their high nutritional value, excellent
taste, and strong market acceptance, enhance local food security and peo-
ple’s dietary diversity while providing significant economic benefits to the
communities16,20–24. For example, Jumla Marsi rice (Oryza sativa var. japo-
nica), as a rice variety grown in Nepal’s Himalayan region, is particularly
rich in protein, flavonoids, antioxidants, and essential minerals such as
calcium, phosphorus, and iron20,21. Its high fiber and low carbohydrate
content make it beneficial for individuals with obesity or diabetes, while its
traditional biological cultivation without synthesized chemicals further
enhances its market appeal20,21. Similarly, rice farming in Xinjiang’s high-
lands in China, where high-quality varieties such as Japan’s Akita Komachi
have widely been introduced, has achieved economic returns exceeding
those of other grains and is comparable to cash crops like cotton22. More-
over, cultivating paddy rice is the most effective method for improving the
saline and alkaline soils found inhighland regions such asXinjiang,Ningxia,
and Inner Mongolia’s Hetao Plain22–24. The irrigation practices involved in
paddy rice farming enhance soil quality, enabling a transition to other crops
within two to threeyears and leading to greater long-termeconomicbenefits
for these areas22–24.

However, many Asian highland regions continue to experience low
rice yields due to underdeveloped irrigation systems and limited mechan-
ization. For instance, the average rice yield is only 1.7 t/ha in Jumla, Nepal20,
and1.96 t/ha inHuinong,Ningxia25. Incontrast,Xinjiang, a regionalso faces
typical highland climatic challenges such as aridity and significant

Fig. 2 | Assessment of factors influencing rice cultivation areas in the Asian
highlands using the Random Forest method. a Displays the importance of 13
features, measured by ‘OOBPermutedPredictorDeltaError’ in MATLAB, with error
bars representing standard deviations across 50 different model simulations.

b–n Show the frequency distributions of each predictor and theirAccumulated Local
Effects (ALE) values. Solid lines represent medians from 50 model iterations, while
shaded areas indicate the interquartile range (IQR) from themedian value. Different
colors distinguish the features.

https://doi.org/10.1038/s44264-025-00107-8 Article

npj Sustainable Agriculture |            (2025) 3:65 4

www.nature.com/npjsustainagric


temperaturefluctuations, achievesmuchhigher rice yields ranging from6 to
15 t/ha22,23. This high productivity in Xinjiang is mainly a result of scienti-
fically selected varieties, advanced mechanized planting methods, and
automated farming systems22,23. Replicating Xinjiang’s achievements in
other highland regions would require increased investment in irrigation
infrastructure,mechanization, and crop breeding, where agroecological and
socio‑economic conditions warrant. These investments are enabling con-
ditions rather than guarantees of sustainability; sustainable paddy produc-
tion depends on context‑specific water governance, environmental
safeguards, and locally adapted agronomy that deliver gains in productivity,
livelihoods, and regional food security.

Understanding the key factors influencing rice cultivation in the Asian
highlands is essential for guiding future agricultural development. Our
analysis revealed that altitude is the most significant factor among 13
variables in our models (Fig. 2), indicating that higher altitudes negatively
affect the extent of paddy ricefields in these regions. Thisfinding alignswith
previous research indicating that the abundance of vegetation and crops
tends to decrease as altitudes increases in Asian highlands16,26,27. Interest-
ingly, the negative impact of altitude decreases rapidly between 1500 and
2000ma.s.l., stabilizing after 2000ma.s.l. One possible explanation is that at
higher altitudes, increased solar radiation intensity may partially offset the
adverse effects of cooler temperatures and lower precipitation13,16. Micro-
climatic conditions, such as sheltered valleys and south-facing slopes, may
also create favorable environments for rice growth despite the high
altitude21. Additionally, cultivating cold-tolerant rice varieties and adopting
specialized agronomic practices can also mitigate the negative impacts of
altitude increasing15. Collectively, these factors enable the potential culti-
vation of rice at higher altitudes under specific conditions, challenging the
traditional notion that higher altitude regions, such as those above 2000 m

a.s.l., are generally less suitable for paddy rice farming.While local slope is a
key site‑scale constraint in very rugged mountains (e.g., the Hengduan), at
our 0.5° resolution, slope is effectively proxied by elevation range and by the
legacy‑of‑cultivation variable that encodes existing terraces and irrigation.
Future higher‑resolution (≤30m) suitability analyses could incorporate
slope distributionmetrics (e.g., area<5°) once consistentwall‑to‑wallDEMs
are available. In addition, our 0.5° design cannot resolve within‑catchment
proximity to melt‑fed canals or water‑rights/reservoir operations; glacier
cover thus serves as an aggregate proxy for meltwater reliability. High‑re-
solution (≤30m) suitability analyses should explicitly incorporate distance
to glacier‑fed channels alongside slope and terrace extent.

In addition to ‘Altitude’, rice cultivation in Asian highlands is affected
at a lowerdegreeby socioeconomic factors, including ‘GDP’ and ‘population
density’. Both the ‘GDP’ and ‘populationdensity’positively affect paddy rice
fields, but their effects are nonlinear. Specifically, the positive impact of
‘population density’ increases up to a certain level and then decreases, while
the initially strong positive influence of ‘GDP’ exponentially decreases as the
GDP levels rise. This pattern likely suggests that rice cultivation in many
Asianhighland regions remains labor-intensive and lacks substantial capital
investment, consistent with recent surveys28,29. To enhance future pro-
ductivity and reduce reliance on manual labor, efforts should focus on
promoting intensive agricultural practices and increasing mechanization.
Moreover, as ‘GDP’ continues to rise, the diminishing positive effect on rice
cultivation may indicate a shift toward non-agricultural sectors or higher-
value crops, potentially affecting local food security. In this context, pol-
icymakers should recognize these trends and implement strategies to sup-
port sustainable rice cultivation in these regions.

Seasonal temperature, seasonal precipitation, and glacier coverage are
also important factors in paddy rice fields in Asian highland regions.

Fig. 3 | Predictions of rice cultivation in the highland Asian regions for the near
future. a Shows the spatial distribution of rice cultivation areas in Asian highlands;
b depicts the projected change in rice cultivation areas between 2020 and 2035;

c represents the total highland paddy rice areas, c shows the total area of highland
paddy rice, combining earth observation data from 2000 to 2020 with model pre-
dictions for 2021–2035.
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Temperatures in all seasons positively affect rice growth, likely because the
generally low temperatures in Asian highlands limit cultivation. Summer
temperatures are particularly important as they align with the rice growing
season30,31. In contrast, precipitation in winter, spring, and summer nega-
tively impacts paddy ricefields,withwinter and springprecipitationshaving
a greater effect—possibly due to deeper frozen soil layers and damaged soil
structure unfavorable for crop growth. Summer precipitation can increase
cloud cover, therefore reducing sunlight and temperatures, which are more
essential for paddy rice development in Asian highlands13,21. However, as
precipitation further increases, these adverse effects lessen, likely suggesting
that sufficient water resources and improved soil moisture gradually offset
their drawbacks. Conversely, Autumn precipitation promotes paddy rice
fields, possibly because it supports critical grain-filling and maturation
stages and mitigates rapid temperature declines30,31. Glacier coverage also
supports paddy rice fields in Asian highlands, likely by supplying a stable
source of meltwater for irrigation during late spring and summer18,32,33.
These findings highlight the necessity of adapting agricultural practices to
evolving climatic conditions. Building on these understandings, we should
prioritize expanding Asian highland rice cultivation in warmer, less rainy
areas that are close to abundant glacial water sources, such as the southern
slopes of the Himalayas. This strategy will help address climate change
impacts, ensuring a more stable water supply, and enhance the resilience to
variable climatic conditions.

The Asian highlands hold significant potential for future rice cultiva-
tion but are often missing from the forward-looking strategies of global
organizations like the Food and Agriculture Organization of the United
Nations (FAO)4,34,35. Our study reveals that highland rice paddy fields are
projected to increase continuously since 2021, potentially expanding by
approximately 60% to reach 1.926 kha by 2035. This growth could represent
between 2.1%and5.5%of the global riceproduction area,which totals 523.9
kha according to FAO’s 2024 survey. Our simulation also indicates that
regions such as the western Tarim Basin and the southern slopes of the
Himalayas show significant potential for rice cultivation expansion, while
areas in the southern Yunnan-Guizhou Plateau are projected to decrease
(Fig. 3). This predicted growth, mainly driven by the warming trend in the
highlands and the melting of glaciers that have increased water availability,
could play a crucial role in enhancing food security and reducing poverty,
particularly among the many impoverished communities residing
there9,17,18,32. The expansion of highland paddy rice fields also offers
opportunities to rehabilitate the large areas of saline-alkali soils prevalent in
these regions22–24. Additionally, this shift reflects broader agricultural trends
in Asia, where climate change and population pressures are driving agri-
culture towards regions of higher altitudes and more northern
latitudes9,17,36–38. By expanding rice cultivation in Asian highlands, it is
possible to increase the resilience of food systems to climate change and
provide sustainable solutions to meet future food demands.

Nevertheless, any expansion suggested by our models reflects bio-
physical feasibility rather than a recommendation for land conversion, and
the predicted expansion in the future may face significant challenges from
climate change, including increased risks of extreme weather events, geo-
logical hazards3,39,40, and greater threats from pests and diseases36,41. Fur-
thermore, the expansion, especially if it encroaches on natural ecosystems,
may generate adverse environmental impacts. Evidence from Southeast
Asia shows that highland cropland expansion has been accompanied by
forest loss and fragmentation37, reinforcing the concern that expanding
agriculture in Asian highlands may disrupt local ecosystems and increase
habitat fragmentation, leading to significant biodiversity loss9,42. More irri-
gation demands could strain water and energy resources43, alter environ-
mental flows, and the expansion of paddy fields may elevate regional
greenhouse gas emissions, particularly methane and nitrous oxide44,45.
Accordingly, we adopt a precautionary framing and recommend a strict
“avoid–minimize–restore–offset” mitigation hierarchy that prioritizes
avoiding conversion of natural ecosystems before any intensification or
expansion proceeds. To effectively address these challenges, some

precautionarymeasures should be taken tomitigate the negative impacts of
climate change and cultivation expansion.

First, adopt explicit land‑use safeguards to avoid conversion of
natural ecosystems: prioritize siting on already converted or degraded
lands (e.g., saline–alkali soils or fallows) near existing irrigation, and
exclude primary forests, natural grasslands, wetlands, and other cri-
tical habitats; use landscape‑scale planning that overlays predicted
suitability with protected‑area and habitat‑intactness layers to
minimize fragmentation and edge effects9,37,42. Second, implementing
sustainable climate-resilient infrastructure, including efficient irriga-
tion systems (e.g., alternate wetting and drying, canal lining, and
basin‑scale water accounting to maintain environmental flows), and
nature-based solutions for mountain catchments to help preserve
water resources, reduce energy consumption, and reduce impacts on
local ecosystems43,46,47. Third, developing and promoting rice varieties
that are resilient to high-altitude conditions, pests, and diseases, to
increase crop yields and reduce the need for chemical fertilizers and
pesticides15. Fourth, adopting environmentally friendly farming
practices, such as minimizing the use of harmful agrochemicals and
practicing crop rotation, can protect local ecosystems and maintain
soil health48. Additionally, integrating biodiversity conservation into
agricultural planning by preserving natural habitats and promoting
agroforestry, for example, by maintaining riparian buffers and
wildlife corridors, setting no‑net‑loss (or net‑gain) biodiversity tar-
gets, and establishing independent ecological monitoring, can help
reduce habitat fragmentation and preserve biodiversity42. Further-
more, government support through policies and incentives will be
crucial to encourage sustainable practices and enforce environmental
protection regulations48, including mandatory environmental and
social impact assessments, safeguards tied to water licenses, and
incentives for low‑emission rice practices that jointly reduce CH4 and
N2O

45,46. Finally, our projections indicate potential suitability but do
not incorporate legal protections or biodiversity‑priority layers; thus
they should be used to identify “where not to expand” as much as
“where expansion might be considered” under strict safeguards9,37,42.

In summary, our research demonstrates the significant yet often
overlooked potential of theAsian highlands for paddy rice fields, presenting
substantial opportunities to enhance food security and stimulate regional
economic development. Despite these promising findings, our simulation
has limitations. Due to data constraints, we did not include the impact of
government policies and specific farming practices such as China’s land
compensationpolicies that can influenceplanting choices48,49.Moreover, the
modelling framework does not explicitly represent competing land‑use
demands or trade/price‑mediated demand; demand pressures are captured
only indirectly via population andGDP, so the projections do not constitute
a land‑system equilibrium. Regarding climate forcing, we rely on the
PARIS‑2 C ensemble (HadGEM3‑GC31‑MM, 50 members), which sam-
ples internal variability around an ~2 °C stabilization pathway rather than
contrasting radiative‑forcing scenarios (e.g., RCP2.6/4.5/8.5); this choice
narrows scenario uncertainty and centers results on mid‑range conditions.
Glacier cover is kept constant in the projections for 2021–2035 as a sim-
plifying assumption, whichmay overstate irrigation reliability in glacier‑fed
basins and should be considered when interpreting regional potentials. In
addition, to further improve the accuracy of our 2035 predictions, future
studies should incorporate more robust modeling and validation strategies.
For example, applying rigorous cross-validation, exploring alternative
machine learning models, or introducing additional predictive variables
could refine the model’s performance and enhance the reliability of our
projections. We call for increased research attention to fully realize this
region’s agricultural potential andaddress the associated environmental and
socio-economic challenges. By acknowledging both the advantages and
challenges, policymakers and stakeholders can develop targeted strategies
that capitalize on the farming potential while promoting sustainable and
resilient agricultural practices.

https://doi.org/10.1038/s44264-025-00107-8 Article

npj Sustainable Agriculture |            (2025) 3:65 6

www.nature.com/npjsustainagric


Methods
Study area
We focused our research on the region between 16° N and 50°N latitude
and 60° E and 122° E longitude. We divided it into 0.5° × 0.5° grid cells,
with each grid cell measuring approximately 55 km by 55 km
(~2440 km²). Using the ETOPO2022 dataset at a resolution of 60 arc-
seconds50, we calculated the average altitudes for each grid cell. We
defined grid cells with an average altitude above 1000ma.s.l. as the Asian
highlands, which constitute our study area (Supplementary Fig. 4). This
selection resulted in 72,954 grid cells spanning 8.5 × 106 km2. Within this
area, approximately 35% of the grid cells are at altitudes between 1000
and 1500ma.s.l., ~15% between 1500 and 2000ma.s.l., and ~50% above
2000ma.s.l. Various Asian Mountain systems and nearby basins are
included in our research area, such as Hindu Kush-Himalayas, Tibetan
Plateau, Tianshan Mountains, Altai Mountains, Tarim Basin, and Yellow
River Basin. The climate in our study area is typically cold and dry, but
shows a warmer and wetter trend during the 21st century. According to
GHCN CAMS (analyzed global land surface temperatures from 1948 to
near present with a spatial resolution of 0.5° × 0.5°)51, the average tem-
peratures in our study areas during the first decade of the 21st century
were 277.42 K in spring (March–May), 278.76 K in summer
(June–August), 276.73 K in autumn (September–November), and
264.05 K in winter (December–February). In the second decade of the
21st century, these average temperatures increased to 277.66 K, 288.06 K,
276.95 K, and 264.05 K, respectively. Notably, the summer mean reached
288.06 K, implying an ≈10 K rise relative to the previous decade, whereas
winter, spring, and autumn changed only marginally over the same
period. This seasonally concentrated increase highlights a dispropor-
tionate intensification of summer conditions. According to GPCC
(analyzed global land surface monthly precipitation from 1891 to near
present with a spatial resolution of 0.5° × 0.5°)52, the average precipitation
in our study areas during the first decade of the 21st century were
81.87mm in spring (March–May), 210.45mm in summer
(June–August), 78.68mm in autumn (September–November), and
32.83mm in winter (December-February). In the second decade of the
21st century, these average precipitations increased to 89.08 mm,
223.57 mm, 87.65mm, and 33.80mm, respectively. Our research area
has a relatively low population density and an underdeveloped economy.
Based on a global population mapping projection with 7.5 arc-minute
spatial resolution and decadal intervals53, the population of our research
area in 2000 was 278.16 million. By 2035, it is projected to grow to 299.98
million under Shared Socioeconomic Pathways (SSPs, Scenario 1)
(SSP1), 321.53 million under SSP2, 341.88 million under SSP3, 312.35
million under SSP4, and 297.84 million under SSP5. Supplementary Fig.
5 presents a photograph depicting rice paddy fields in the Asian
highlands.

Measurement of paddy rice extent
To measure the paddy rice extent in our study area (16°N–50°N,
60°E–122°E), we used the APRA500 dataset19, covering a latitude range
from 11.57°S to 54.23°N and a longitude range from 60.11°E to 152.40°E.
Derived from MODIS imagery, APRA500 integrates land‑use classifica-
tions, 500m‑resolution topography, and rice‑growing phenological features
to identify paddy rice pixels acrossmajorAsian countries from2000 to2020.
It is worth noting that APRA500 identifies paddy rice using rice phenolo-
gical signatures and is not designed to map upland (rain‑fed) rice. We
aggregate only APRA500 paddy pixels to compute the paddy share per 0.5°
cell; therefore, our modeled outcome represents irrigated paddy extent, not
total rice area. The area for each pixel is 0.25 km² at the equator, decreasing
to approximately ~0.20 km² at 30°N, and ~0.15 km² at 45°N. To calculate
the actual area of each pixel, we apply Albers equal-area projection to the
pixel data, using latitude limits of 12°S and 55°N, and a central longitude of
90°E.We also counted the proportion of the rice planting pixels within each
0.5° × 0.5°grid of the study area, which will be used as the target variable for
training the Random Forest model in our study.

Potential factor selection and random forestmodel development
To arrive at a parsimonious yet comprehensive predictor set, we applied
three explicit filters: (i) proven agronomic relevance—variables had to be
repeatedly cited in peer‑reviewed work as determinants of high‑elevation
rice performance; (ii) data quality and coverage—gridded layers needed
wall‑to‑wall availability for 2000–2020 at 500m resolution with <5%
missing cells in our domain; and (iii) low collinearity—for any pair with |
Spearman ρ| > 0.70 we retained only the member showing higher permu-
tation importance (>1%) in a pilot Random‑Forest run.

It is important to note that in the topographic domain, we computed
candidatemetrics, includingmean slope and terrain ruggedness, in addition
to mean elevation and elevation range. At the 0.5° grid used for model
training, slope metrics were strongly collinear with elevation range (|
Spearman ρ| > 0.70 in pilot RF runs); following our pre‑specified low‑col-
linearity rule, we retained elevation range as the single regional‑scale relief
indicator to avoid redundancy and preserve interpretability. In terms of
cryosphere representation and river proximity, we included glacier cover
rate per grid as a proxy for the reliability of meltwater runoff at high ele-
vation. Because our analysis is conducted at 0.5° (~55 km), a direct ‘distance
to glacier‑fed river’ metric is expected to be strongly collinear with glacier
coverage and relief and to overlap with the planting‑history variable that
encodes existing irrigation infrastructure; such redundancy is excluded by
our prespecified low‑collinearity rule.

Drawing on the latest insights from agro-climatology, high-mountain
hydrology, and development economics, we assembled a thirteen-variable
suite that captures the climate, geo-environmental, and socio-economic
foundations of paddy-rice cultivation in the Asian highlands. Specifically,
seasonal temperature and precipitation—eight climate indicators—govern
rice phenology and evapotranspiration53; moreover, these climatic factors
regulate the duration of field inundation, and in high‑elevation terraces,
even slight shifts can determinewhether paddies remain adequately flooded
during critical growth stages54. Mean altitude, altitudinal range, and glacier-
cover rate, in turn, reflect thermal regimes, topographic complexity, and the
reliability ofmelt-water runoff, which above roughly 2000m is often the sole
perennial irrigation source55. Population density and GDP per capita cap-
ture labor availability,marketdemand, and thefinancial capacity to invest in
terraces, pumps, and improved seed; regions with higher values on either
metric typically adopt water-saving, yield-enhancing technologies sooner,
expanding rice area and productivity56. A binary legacy variable flags
whether a pixel was under paddy cultivation in the previous year, recog-
nizing the strong path dependence created once irrigation channels, bunds,
and farmer know-how are in place. Leveraging these factors, we trained an
ensemble of 50 Random-Forest models whose repeated resampling reduces
estimation variance and yields robust importance rankings, providing a
rigorous, quantitative basis for understanding—and ultimatelymanaging—
the climatic, environmental, and socio-economic controls on high-altitude
rice systems.

The study area was first partitioned into 0.5° × 0.5° grid cells, and only
those with a mean above 1000ma.s.l. were retained, yielding 3474 analysis
units. Coupling these cells with annual data for 2000–2020 produced 72,954
grid‑year samples for model training. An annual dataset of paddy rice area
from 2000 to 2020, sourced from the APRA500 dataset19 as described in the
‘Measurement of Paddy Rice Extent’ section, was interpolated to the grid
cells andused as the target variable formodel training. Seasonal temperature
data for model training, spanning from 2000 to 2020, was sourced from
NCEI’s GHCN CAMS at monthly intervals with a 0.5° × 0.5° resolution51.
Seasonal precipitation data for model training were obtained from the
GPCC Monitoring Product (Version 2022), available at monthly intervals
with a 0.5° × 0.5° resolution from 2000 to 202052.We first interpolated these
climate data to the target grids, then averaged them into seasonal scales:
spring (March to May), summer (June to August), autumn (September to
November), and winter (December to February). These climate datasets
were used as input features for model training. The altitude dataset was
obtained from the 2022 ETOPO Ice Surface Elevation dataset at 60 arc-
seconds50, which was then interpolated into the target grids and assumed to
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remain constant from 2000 to 2020.We also calculated the altitude range in
each target grid cell by subtracting the minimum from the maximum alti-
tude within the cell. This altitude range was assumed to remain constant
from 2000 to 2020. The glacier cover rate was derived from the GAMDAM
glacier inventory, which includes 134,770 glaciers with a total area of
100,693 ± 15,103 km2, based on 453 Landsat images from 1990 to 201057.
The glacier cover rate at target grid cells was calculated and kept constant
over the 2000 to 2020.Thepopulationdata formodel trainingwere obtained
fromGlobalOne-EighthDegree PopulationBaseYear andProjectionGrids
Based on the SSPs (Revision 01)53. This global dataset had a resolution of 7.5
arcminutes, included base data for 2000, and projections with decadal
resolution from 2010 to 2100 under five SSPs. We formed an ensemble
mean of the five CMIP6 SSP scenarios at decadal resolution for 2021–2100
and linearly interpolated these values to annual scale for each target grid cell
for model training. GDP data for model training was derived from a global
GDP dataset, which includes historical data from 2000 to 2020 with a
resolution of 30 arc-seconds at annual intervals, and projection data from
2030 to 2100 at decadal intervals under five SSPs58. We interpolated these
historical GDP data annually and further interpolated them to target grid
cells for model training.

In this study, we used MATLAB’s ‘TreeBagger’ function to construct
the Random Forest regression model. The fraction of observations ran-
domly selected with replacement for each bootstrap replica, known as
‘InBagFraction’, was set to its default value of 1. We used the R2 score to
evaluate theperformance of theRFmodel. To further evaluate thepredictive
performance of our model, we calculated the Residual Prediction Deviation
(RPD). If thedata greater than2.0, thismay indicate a goodpredictivemodel
suitable for quantitative predictions. Feature importance was quantified by
evaluating the regression prediction error on out-of-bag (OOB) estimates
using MATLAB’s ‘OOBPermutedPredictorDeltaError’ function. Hyper-
parameter setting involved varying ‘Ntree’ at 30, 50, 80, and 100, ‘Min-
LeafSize’ at 1, 2, 3, and 4, and ‘NumPredictorsToSample’ at 6, 8, 10, and 12.
The optimal model configuration, which achieved the highest R2 score, was
found to be Ntree = 100, MinLeafSize = 2, and NumPredictor-
sToSample = 8. To ensure robustness and reliability, we built 50 Random
Forestmodels using the samehyperparameter schemebut different random
seeds. To represent feature importance in RFmodels, we use a method that
measures the change in out-of-bag prediction error when each feature is
randomly shuffled, as implemented in MATLAB’s rf function. The Accu-
mulated Local Effects (ALE) for each feature were calculated using
MATLAB’s calculate_ALE function.Thismethodquantifies the importance
of each feature by averaging the impact of feature value changes on the
model’s output across a specified number of intervals, which in this case is
set to 10.

Predicting paddy rice extent with Random Forest Models
Topredict the extent of paddy rice from2021 to 2035,we applied the trained
Random Forest models to the predictive features of climate data (seasonal
temperature and precipitation) and socioeconomic data (population and
GDP). The predictive features of the climate data were sourced from the
large-ensemble 21st-century monthly hydro-climatological forcing dataset
for the PARIS 2C (P2C) scenario59. TheP2C scenario extends from theParis
Agreement’s NDCs and aligns with its long-term goals for aiming to limit
and stabilize human-induced global climate warming to 2 °C by the end of
this century. This ensemble dataset comprises 900 climate simulations,
which were derived from 50 scenarios using 18 climate models from the
CoupledModel IntercomparisonProject Phase 6 (CMIP6). Each simulation
includesmonthlydataset fornine keymeteorological variables, from2021 to
2100, with a spatial resolution of 0.5° × 0.5°. Here, we utilized 50 climate
simulation results generated by the HadGEM3-GC31-MMmodel from the
ensemble dataset. We first extracted the monthly near-surface temperature
and precipitation variables from these simulations and aggregated them to a
seasonal scale from 2021 to 2035, following the same methods as described
in the trainingdatapreparation section.These seasonaldatasetswereused as

inputs for 50 Random Forest models, each receiving different data to gen-
erate a range of forecasts.

For the three input forecasted geo-environmental features—mean
altitude, altitude range, and glacier cover rate—same data as the training
dataset was used, given the expected stability of these features over the
relatively short prediction period of 2021 to 2035. For population and
GDP, both the forecasted and training data were sourced from the same
dataset, while the forecasted dataset includes five SSP scenarios at a
decadal resolution from 2020 to 210053,58. We randomly selected data
from one SSP scenario, then extrapolated it to an annual scale from 2021
to 2035 for the target grid cells. We used this data to train 50 Random
Forest models, each model receiving predictive features from a single SSP
scenario that was randomly assigned to it. A detailed description of the
target feature and input features used for both model training and pre-
diction can be found in Supplementary Table 1. Supplementary Fig. 6 is a
flowchart illustrating the spatial-temporal distribution of the datasets
used in the RF model. The results are presented as the median values
from results of 50 RF models, with uncertainty indicated by the inter-
quartile range (25th and 75th percentiles).

Data availability
The datasets analyzed during this study are available from the corre-
sponding author on reasonable request.

Code availability
The source code is currently employed to conduct an in-depth analysis of
comprehensive data and will be provided upon request from the corre-
sponding author.

Received: 11 June 2025; Accepted: 6 November 2025;

References
1. Muthayya, S. et al. An overview of global rice production, supply,

trade, and consumption. Ann. NY Acad. Sci. 1324, 7–14 (2014).
2. Global Rice Science Partnership. Rice Agri-Food System CRP, RICE

(International Rice Research Institute, 2023).
3. Chan, F. K. S. et al. Food security in climatic extremes: challenges and

opportunities for China. Cell. Rep. Sustain. 1, 2 (2024).
4. OECD-FAO. OECD-FAO Agricultural Outlook 2023-2032. OECD

https://doi.org/10.1787/08801ab7-en (2023).
5. Wei, R. et al. Heavy metal concentrations in rice that meet safety

standards can still pose a risk to human health. Commun. Earth
Environ. 4, 84 (2023).

6. Dong, Y. et al. Microplastic particles increase arsenic toxicity to rice
seedlings. Environ. Pollut. 259, 113892 (2020).

7. Muehe, E.M. et al. Rice production threatened by coupled stresses of
climate and soil arsenic. Nat. Commun. 10, 4985 (2019).

8. Yuan, S. et al. Sustainable intensification for a larger global rice bowl.
Nat. Commun. 12, 7163 (2021).

9. Yang, C. et al. Human expansion into Asian highlands in the 21st
Century and its effects. Nat. Commu. 13, 4955 (2022).

10. Xu, J. & Grumbine, R. E. Building ecosystem resilience for climate
change adaptation in the Asian highlands.Wires Clim Change 5,
709–718 (2014).

11. Bohner, J. General climatic controls and topoclimatic variations in
Central and High Asia. Boreas 35, 279–295 (2006).

12. Lalande,M. et al. Climate change in the HighMountain Asia in CMIP6.
Earth Syst. Dyn. 12, 1061–1098 (2021).

13. Uhlig, H.Geoecological controls on high-altitude rice cultivation in the
Himalayas andmountain regions of southeast Asia.Arct. Antarct. Alp.
Res. 10, 519–529 (1978).

14. Sun, X. et al. Natural variation of DROT1confers drought adaptation in
upland rice. Nat. Commun. 13, 4265 (2022).

https://doi.org/10.1038/s44264-025-00107-8 Article

npj Sustainable Agriculture |            (2025) 3:65 8

https://doi.org/10.1787/08801ab7-en
https://doi.org/10.1787/08801ab7-en
www.nature.com/npjsustainagric


15. Ahmadi, N. Upland rice for the highlands: new varieties and
sustainable cropping systems to face food security. Promising
prospects for the global challenges of rice production the world will
face in the coming years. J. Soil Sci. Plant Nutr. 166, 61–67 (2004).

16. Maina, F. Z. et al. Warming, increase in precipitation, and irrigation
enhance greening in High Mountain Asia. Commun. Earth Environ. 3,
43 (2022).

17. Biemans, H. et al. Importance of snow and glacier meltwater for
agriculture on the Indo-Gangetic Plain. Nat. Sustain. 2, 594–601
(2019).

18. Li, J. & Yuan, J. Research progress in effects of different altitude on
rice yield andquality inChina.Greener J. Agric. Sci.2, 340–344 (2012).

19. Han, J. et al. Annual paddy rice planting area and cropping intensity
datasets and their dynamics in the Asian monsoon region from 2000
to 2020. Agric. Syst. 200, 103437 (2022).

20. Gautam, R. et al. Importance of world high altitude Jumli Marshi rice
with cultivation practices. Heliyon 8, e08885 (2022).

21. Paudel, M. N. Rice (Oryza sativa L) cultivation in the highest elevation
of the world. Agron. J. Nepal 2, 31–41 (2011).

22. Buhailiqem, A. et al. Effects of irrigation and nitrogen fertilizer
application ongrowth, yield andquality of different rice varieties in arid
areas of Xinjiang. Plant Genet. Res. 20, 309–318 (2022).

23. Wang, L. et al. Simulation study of the climate change impact on the
rice and its adaptability in Ningxia province (in Chinese). Adv. Earth
Sci. 28, 1248 (2013).

24. Cui, D. et al. Genetic structure and isolation by altitude in rice
landraces of Yunnan, China revealed by nucleotide andmicrosatellite
marker polymorphisms. PLoS ONE 12, e0175731 (2017).

25. Chen, S. & Zhu, J. Shizuishan City’s Huinong District rice production
status and development suggestions (in Chinese).Mod. Agric. Sci.
Technol. 4, 47–47 (2018).

26. Gao, M. et al. Divergent changes in the elevational gradient of
vegetation activities over the last 30 years. Nat. Commun. 10, 2970
(2019).

27. Ghosh, B. N. et al. Elevation, slope aspect and integrated nutrient
management effects on cropproductivity and soil quality in theNorth-
West Himalayas, India. J. Mt. Sci. 11, 1208–1217 (2014).

28. Prabhakar, S. V. R. K. A succinct review and analysis of drivers and
impacts of agricultural land transformations in Asia. Land Use Policy
102, 105238 (2021).

29. Briones, R. & Felipe, J. Agriculture and structural transformation in
developing Asia: review and outlook. ADB Econ. Work. Pap. Ser. 363
(2013).

30. Sánchez, B. et al. Temperatures and the growth and development of
maize and rice: a review. Glob. Change Biol. 20, 408–417 (2014).

31. Chung, N. T. et al. Impacts of seasonal climate variability on rice
production in the central highlands of Vietnam.Agric. Sci. Procedia 5,
83–88 (2015).

32. Pritchard, H. D. Asia’s glaciers are a regionally important buffer
against drought. Nature 545, 169–174 (2017).

33. Triplett, A. & Condon, L. E. Climate warming-driven changes in the
cryosphere and their impact on groundwater-surface water
interactions in the Heihe River Basin.Hydrol. Earth Syst. Sci. Discuss.
2022, 1–32 (2022).

34. FAO, IFAD, UNICEF, W. F. P. & WHO. The State of Food Security and
Nutrition in the World 2024. FAO https://openknowledge.fao.org
(2024).

35. FAO, IFAD, UNICEF, W. F. P. & WHO. The State of Food Security and
Nutrition in the World 2023. FAO https://openknowledge.fao.org
(2023).

36. Chen, W. et al. Untangling the increasing elevation of cropland in
China from 1980 to 2020. Geogr. Sustain. 4, 281–293 (2023).

37. Zeng, Z. et al. Highland cropland expansion and forest loss in
Southeast Asia in the twenty-first century. Nat. Geosci. 11, 556–562
(2018).

38. Liang, S. et al. Climate-mediated dynamics of the northern limit of
paddy rice in China. Environ. Res. Lett. 16, 064008 (2021).

39. Piao, S. et al. The impacts of climate change on water resources and
agriculture in China. Nature 467, 43–51 (2010).

40. Li, D. et al. High Mountain Asia hydropower systems threatened by
climate-driven landscape instability.Nat. Geosci. 15, 520–530 (2022).

41. Nakato, G. V. et al. Influence of altitude as a proxy for temperature on
key Musa pests and diseases in watershed areas of Burundi and
Rwanda. Heliyon 9, e13854 (2023).

42. Farhadinia, M. S. et al. Current trends suggest most Asian countries
are unlikely to meet future biodiversity targets on protected areas.
Commun. Biol. 5, 1221 (2022).

43. Mehta, P. et al. Half of twenty-first century global irrigation expansion
has been in water-stressed regions. Nat. Water. 2, 254–261 (2024).

44. Zhang, G. et al. Fingerprint of rice paddies in spatial–temporal
dynamics of atmospheric methane concentration in monsoon Asia.
Nat. Commu. 11, 554 (2020).

45. Qian, H. et al. Greenhouse gas emissions and mitigation in rice
agriculture. Nat. Rev. Earth Environ. 4, 716–732 (2023).

46. Yang, Y. et al. Sustainable irrigation and climate feedbacks. Nat.
Food. 4, 654–663 (2023).

47. Holden, P. B. et al. Nature-based solutions in mountain catchments
reduce impact of anthropogenic climate change on drought
streamflow. Commun. Earth Environ. 4, 51 (2022).

48. Cui, Z. et al. Pursuing sustainable productivity with millions of
smallholder farmers. Nature 555, 363–366 (2018).

49. Chen, H. et al. Urbanization in China drives farmland uphill under the
constraint of the requisition–compensation balance. Sci. Total
Environ. 831, 154895 (2022).

50. NOAA National Centers for Environmental Information. ETOPO 2022
15 arc-second global relief model. NOAA Natl. Centers Environ.
Inform. https://doi.org/10.25921/fd45-gt74 (2022).

51. Fan, Y. & van den Dool, H. A global monthly land surface air
temperature analysis for 1948-present. J.Geophys. Res.113, D01103
(2008).

52. Schneider, U. et al. GPCCmonitoring product: near real-timemonthly
land-surface precipitation from rain-gauges based on SYNOP and
CLIMAT data. https://doi.org/10.5676/DWD_GPCC/MP_M_V2022_
100 (2022).

53. Jones, B. & O’Neill, B. C. Global one-eighth degree population base
year and projection grids based on the shared socioeconomic
pathways, Revision 01. https://doi.org/10.7927/m30p-j498 (2020).

54. Rupngam, T. & Messiga, A. J. Unraveling the interactions between
flooding dynamics and agricultural productivity in a changing climate.
Sustainability 16, 6141 (2024).

55. Zhou, Z. et al. Modeling the effects of elevation and precipitation on
Rice (Oryza sativa L.) production considering multiple planting
methods and cultivars in Central China. Sci. Total Environ. 813,
152679 (2022).

56. Kularathne, S. et al. Impact of economic indicators on rice production:
a machine learning approach in Sri Lanka. PLoS ONE 19, e0303883
(2024).

57. Sakai, A. Brief communication: updated GAMDAM glacier inventory
over the high mountain asia. Cryosphere 13, 2043–2049 (2019).

58. Wang, T. & Sun, F. Global gridded GDP data set consistent with the
shared socioeconomic pathways. Sci. Data 9, 221 (2022).

59. Gao, X. et al. A large ensemble global dataset for climate impact
assessments. Sci. Data 10, 801 (2023).

Acknowledgements
This work was supported by the Key Special Project of “Intergovernmental
International Scientific and Technological Innovation Cooperation” in the
National Key Research and Development Program (2025YFE0111302), the
Ningbo Natural Science Foundation (2024J013), and the Natural Science
Foundation of Xiamen, China (3502Z202573087, 3502Z202572040).

https://doi.org/10.1038/s44264-025-00107-8 Article

npj Sustainable Agriculture |            (2025) 3:65 9

https://openknowledge.fao.org
https://openknowledge.fao.org
https://openknowledge.fao.org
https://openknowledge.fao.org
https://doi.org/10.25921/fd45-gt74
https://doi.org/10.25921/fd45-gt74
https://doi.org/10.5676/DWD_GPCC/MP_M_V2022_100
https://doi.org/10.5676/DWD_GPCC/MP_M_V2022_100
https://doi.org/10.5676/DWD_GPCC/MP_M_V2022_100
https://doi.org/10.7927/m30p-j498
https://doi.org/10.7927/m30p-j498
www.nature.com/npjsustainagric


Author contributions
J.S.: Conceptualization, data curation, formal analysis, visualization, writing
—original draft. C.W.: Conceptualization, supervision, project
administration, writing—review, and editing. L.M.N.: Writing—review and
editing. Z.L.: Writing—review and editing. G.L.: Supervision, project
administration, writing—review and editing.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s44264-025-00107-8.

Correspondence and requests for materials should be addressed to
Chunhui Wang.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s44264-025-00107-8 Article

npj Sustainable Agriculture |            (2025) 3:65 10

https://doi.org/10.1038/s44264-025-00107-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/npjsustainagric

	The historical distribution and future expansion of paddy rice fields in Asian highlands
	Results
	Distribution and dynamics of paddy fields in Asian highlands
	Identification of key factors affecting Asian highland paddy area
	Model prediction of future paddy rice fields in Asian highlands

	Discussion
	Methods
	Study area
	Measurement of paddy rice extent
	Potential factor selection and random forest model development
	Predicting paddy rice extent with Random Forest Models

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




