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Impacts of temporal-spatial compound
extreme heat and drought on oil crops
in China
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Dietary diversification increased edible vegetable oil (EVO) demand. Climate change intensifies
temporal-spatial compound extreme heat and drought (terms to above extremes co-occurring
spatially and temporally), risking nationwide oil crops production and EVO supply, but were rarely
quantified. We developed a panel model using heat degree days (HDD), Standardized Precipitation
Evapotranspiration Index (SPEI), irrigation conditions, and year (representing agricultural technology)
as yield predictors. Year-types were categorized by extreme climate-induced production losses:
normal, temporal-spatial extreme heat (HDD change), temporal-spatial drought (SPEI change), and
temporal-spatial compound extreme heat and drought (HDD and SPEI change). Historical, extreme
heat anddrought causeda6.6% (4.0%), 5.6% (3.6%), and3.5% (2.1%) yield loss for soybean, peanut,
and rapeseedwithout (with) irrigation, respectively. Future temporal-spatial compoundextreme years:
crop yields would decrease over 14.0% (12.8%), EVO self-sufficiency rate would decrease to
15.5–16.5% (19.0–21.9%) without (with) area expanding, indicating alarming oil crop yield reduction
under extreme climate.

The agricultural food systems are facing severe challenges, which are feeding
the rapidly increasing population and the changing structure of food
consumption1. Edible vegetable oils (EVO)aremajor energy resources in the
human diet, and they play a critical role in agricultural food systems2. China
is the largest consumer of EVO and the second highest producer and
importer in the world3,4. In 2020, China’s self-sufficiency rate of EVO was
only 31.5%5. The top three oil crops are soybean, peanut and rapeseed,
which collectively account for over 70% of national total EVO production4.
Therefore, it is imperative to increase production of these three oil crops for
improving the country’s self-sufficiency rate of EVO. Increases in green-
house gas concentrations since pre industrial times have led to climate
change, characterized primarily by increasing temperature. From 2011 to
2020, the global surface average temperature increased by an average of
1.09 °C (ranging from 0.95 to 1.20 °C) as compared to the period of
1850–1990; this warming trend is expected to continue in the future6. It is a
well-known fact that climate change affects crop yields; about a third of the
global crop yield variability was attributed to the changing climate7,8. Under
the background of climate change, extreme climate events, especially
extreme heat and drought, have become more frequent and intense, which
negatively affects the crop yields. Understanding how extreme heat and
drought changes impacts main oil crops yield is essential to national EVO
industry.

Each additional 0.5 °C of global warming could cause discernible
increases in the intensity and frequency of extreme heat (very likely) and
agricultural drought (highly confident)6,9. Drought and extreme heat are
major abiotic stresses that severely limit global crop growth and
productivity10–12. Extreme heat would decrease crop yields because they cause
direct thermal stress to crop plants and also induce indirect drought stress by
raisingatmospheric aridity10. For rainfed soybean, eachday>30 °Cdiminishes
the crop yields by up to 6%11. Drought is an extreme climate event char-
acterized by a long-termprecipitation deficit, whichwould lead to a soil water
deficit. The impacts of drought on crops include: (i) the soil moisture content
is lower than the water requirement for crop, then crop growth is limited,
resulting in reduced crop yield or loss of harvest; and (ii) under drought
conditions, crop plants would reduce water transpiration and photosynthesis
rate, affecting organic matter synthesis, and ultimately affecting crop yield12.
From 1980 to 2015, drought reduced global crop’ yields by over 21%13. The
yield decreasing caused by extreme heat and drought occurring temporally
was more than extreme heat or drought alone would14,15. Meanwhile, his-
torical global warming has already increased the probability of extreme heat
and drought co-occurring spatially and temporally16. And this could poten-
tially accumulate hazardous impacts on crop production and pose amplifying
threats to crop yields. Global drought probability was predicted to increase by
40% by the middle of the 21 century14,17. Existing studies predominantly
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employ statisticalmethods to investigate theprobabilityof compoundhot-dry
events and their impacts on yield, or utilize long-term single-site experiments
to elucidate the underlying mechanisms affecting crop yield15,18,19. In China,
extreme heat and drought co-occurring spatially and temporally were pro-
jected to be at least 1.6 timesmore frequent during the crop growing season in
2036–205020. And the cropland net primary productivity losses in China are
primarily influenced by compound extreme heat and drought events21. For
soybean, the negative impacts of compound extremeheat and droughtwere 4
and 3 times larger than the impacts of extreme heat or drought alone22.
However, rarely researches have focused on above extreme impacts on oil
crops production and self-sufficiency rate of EVO.

The direct impacts of extreme climate on crops manifests through
changes in both yield and total production23. Furthermore, quantifying the
impacts of one or more extreme climate on total production requires
simultaneous consideration of the co-occurring of these extreme events on
spatially (the sameplanting region) and temporally (during the samegrowth
season). Such as, the co-occurring of extreme heat on spatially and tem-
porally for soybeanwas refer to the spatially concurrent extreme heat events
in soybean planting regions during a specific year, this would directly
decrease national production. For oil crops, if a specific year subjected all
three major oil crops to co-occurring of extreme heat on spatially and
temporally, it would directly impact national oil crop production and EVO
supply. Previous studieshavemostly focusedon the changing characteristics
of extreme heat and drought co-occurring spatially and temporally during
crop growth periods10,24–26. But rarely studies have quantified the impacts of
above extreme climate events on oil crops yield and production. Besides
yield, the co-occurring of extreme heat and drought spatially in crop
planting regionwould influence total production and self-sufficiency rate of
EVOnationwide. So, in this study, we term the extreme heat or drought co-
occurring in both crop growth periods and different planting regions as
temporal-spatial compound extreme heat or drought, and then quantified
the above temporal-spatial compound extreme climate on oil crops yield,
national production and EVO’s self-sufficiency rate.

In this study, we calculated the heat degree days (HDD) and Stan-
dardized Precipitation Evapotranspiration Index (SPEI) during oil crop
growth seasons to reflect the impacts of extreme heat and drought,
respectively. And constructed a panel model with HDD, SPEI, irrigation
conditions, and year (agricultural technology impacts) as predictors of yield.
On the basis of quantifying the impacts ofHDD changes, SPEI changes, and
both HDD and SPEI changes on oil crops yield, further incorporate the
planting area to clarify the impact on production. Taking a 10% decrease in
production as the threshold27, four types of years are classified: normal
(production decrease < 10%), temporal-spatial extreme heat (production
decrease lead only by HDD changes > 10%), temporal-spatial drought
(production decrease lead only by SPEI changes > 10%), and temporal-
spatial compound extreme heat and drought (production decrease lead by
both HDD and SPEI > 10%). The objectives of this study were: (a) to
quantify the impacts of changes in temporal-spatial compound extreme
heat and drought on oil crops yields; and (b) to project the changes in oil
crops yields andhence the change in thenation’s self-sufficiency rate ofEVO
in China under future climate scenarios.

Results
Historical oil crops and EVO productions
Soybean production was concentrated on the northern and themiddle part
of China; peanut production was concentrated on the western part of
Northeast China, the southern part of North China Plain, and the southern
part of SouthChina; and rapeseed productionwasmainly in themiddle and
lower reaches of theYangtzeRiver (Fig. 1 and Supplementary Fig. 10). From
1981 to 2020, the planting areas of peanut and rapeseed increased at the rate
of 0.8 and 0.6 Mha per decade respectively. The yields of peanut and
rapeseed increased at the rates of 3.9 and 2.8 Mt per decade, respectively.
From 2009 to 2015, the planting area and yield for soybeans substantially
decreased. In 2016, the Chinese government issued several policies to
support thenational soybeanproduction,which led to a rapid increase in the
soybean’s planting area andhence increase the production (Fig. 1d, e)28. Due
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Fig. 1 | Historical oil crops and EVO planting area, production and self0-
sufficiency rate changes. Top: Geographical distribution of the city-level a soybean,
b peanut, and c rapeseed production in China. Bottom: Time series of d the planting

area and e production for the three study oil crops (i.e., soybean, peanut, and
rapeseed) from 1981 to 2020. f Time series of the national oil production, oil
demand, and self-sufficiency rate of EVO from 2000 to 2020.
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to the increases in the three oil crops' yields, the national EVO production
increased. However, the national self-sufficiency rate of EVOdropped from
65.8% in 2000 to 26.7% in 2020 because the demand for EVO increased
faster than the production did (Fig. 1f).

Impacts of extreme heat and drought on oil crops yields
In this study, we used the onlyHDDchanges, only SPEI changes, andHDD
and SPEI combined (HDD and SPEI) change to represent the impacts of
extremeheat, drought, and compoundof extremeheat anddroughton three
oil crops yield. From 1981 to 2014, the area-weighted HDD increased, and
the area-weighted SPEI decreased (Supplementary Figs. 1–3).

For soybean without irrigation, extreme heat and drought decreased
the yield by 3.1% (0.6–9.7%) and 4.1% (5.5–12.2%), respectively. The
compound of extreme heat and drought decreased the yield by up to 17.6%
(Fig. 3 and Table 1).With irrigation, extreme heat and drought changed the

soybean yield by −2.4% (−8.7 to 1.2%) and −2.4% (−10.2 to 6.2%),
respectively, and compound of above extreme decreased the yield by up to
17.3% (Fig. 2a–c and Table 1). The most pronounced negative impacts of
compound extreme heat and drought on soybean yield occurred in the
southern North China Plain and western Northeast China (Figs. 2 and 3).

For peanuts without irrigation, extreme heat decreased the yield by
1.2% while drought decreased by 4.7% (Fig. 3d–f). With irrigation, extreme
heat anddrought decreasedyield by 0.8%and3.0%, respectively; compound
of extreme heat and drought decreased by up to 14.2% (Fig. 2d–f). In
particular, peanut yield was more negatively affected by drought in the
western part of North China Plain and the southwestern part of Southwest
China (Figs. 2 and 3).

For rapeseed without irrigation, compound of extreme heat and
drought decreased the yield by up to 11.1% (Fig. 3g–i), and extremeheat and
drought decreased by 1.9% and 2.2%, respectively.With irrigation, extreme
heat and drought decreased yield by 1.3% and 1.1%, respectively; and
compoundof extremeheat anddroughtdecreasedby about 2.1%(Fig. 2g–i).
In particular, Rapeseed exhibited the greatest susceptibility to compound
heat-drought events in the southern North China Plain and eastern
Southwest China (Figs. 2, 3, and Supplementary Fig. 2).

If thepercentage of effective irrigation areawas kept at the level in 2014,
HDD-induced oil crop yield reduction would be worse during the period of
2021–2060 than 1981–2014. Under SSP1-2.6, extreme heat would decrease
the area-weighted yields for soybean, peanut, and rapeseed by 6.1%, 5.6%,
and 7.2%, respectively (Supplementary Fig. 4b, e, h). Under SSP5-8.5, yields
would decrease by 6.3% to 7.6% (Supplementary Fig. 5b, e, h). In particular,
theNorthChinaPlain and southern Southwest China are projected to suffer

Table 1 | Impacts of historical HDD, SPEI and HDD and SPEI
changes on soybean, peanut and rapeseed yield with and
without irrigation

Crops With irrigation Without irrigation

HDD SPEI HDD
and SPEI

HDD SPEI HDD
and SPEI

Soybean −2.4% −2.4% −4.0% −3.1% −4.1% −6.6%

Peanut −0.8% −3.0% −3.6% −1.2% −4.7% −5.6%

Rapeseed −1.3% −1.1% −2.1% −1.9% −2.2% −3.5%
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Fig. 2 | Impacts of historical HDD and SPEI changes on soybean, peanut and
rapeseed yield with irrigation.Note: the numbers in the brackets indicate the lower
and upper 95% quantiles of the data, and the value below the brackets is the area-

weighted value. Top: a–c were spatial distribution of the impacts of HDD and SPEI,
HDD and SPEI on soybean yield, respectively. Middle: d–f were the above impacts
on peanut yield. Bottom: g–i were the above impacts on rapeseed yield.
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more severe yield losses of oil crops from extreme heat than other regions.
(Supplementary Figs. 4, 5 and Table S1).

By contrast, drought would cause less yield reduction than extreme
heat would. Under SSP1-2.6 (SSP5-8.5), drought would reduce the area-
weighted oil crops yields by 1.8 to 4.9% (2.2–5.5%) during 2021–2060
(Supplementary Figs. 4, 5 and Table S1). In particular, oil crop yields in the
westernNortheast China, the southern andwesternNorthChina Plain, and
southern Southwest China would suffer greater negative impacts from
extreme heat than those in other regions (Supplementary Fig. 4 and 5).
Under SSPs 1-2.6 and 5-8.5, compound of extreme heat and drought would
reduce the oil crops yields by more than 9.0% and 9.8%, respectively
(Supplementary Figs. 4a, d, g and 5a, d, g). The majority of the study cities
showed a more than 10% yield reduction for the three oil crops, with an
exception in the eastern part of Northeast China and the entire East China
(Supplementary Figs. 4 and 5).

Impacts of temporal-spatial compound extreme heat and
drought on oil crops production
Combinedwith the oil crops planting area after adjustment (Supplementary
Fig. 10, section “Future crops yield, planting area and EVO production
projection” in “Method”), we further calculate the changes of crop pro-
duction changes under extreme climate change. During the historical per-
iod, soybean, peanut, and rapeseed production were, on average, 11.6, 12.5,
and 12.9Mt. If the planting area was kept at the level in 2014, oil crop
production would go down for the upcoming period of 2021–2060. Pro-
jected production would decrease to 10.8 and 10.6 Mt for soybean under
SSP1-2.6 and SSP5-8.5, respectively; to 11.7 and 11.6Mt for peanut; and to
12.0Mt for rapeseed under both SSPs (Supplementary Fig. 8a–c). During

the growing season under SSP1-2.6 (SSP5-8.5), the frequencies of com-
pound heat-drought, extreme heat, and drought were 47.5, 32.5 and 10.0%
(57.5, 37.5 and 15.0%) for soybean, 45.0, 7.5 and 17.5% (70.0, 11.0 and
15.0%) for peanut, respectively. During the growing season for rapeseed, the
frequencies of compound extreme heat and drought (only drought) would
be 37.5 and 42.5% (22.5 and 27.5%) under SSP1-2.6 and SSP5-8.5, respec-
tively (Supplementary Fig. 6). If the planting area for oil crops were kept at
the level in 2014 for the period of 2021–2060, the compound extreme heat
and drought would reduce oil crops production. Compared to historical,
production would decrease by 14.9% and 17.0% for soybean, 14.0% and
14.1% for peanut, and 15.0% and 14.1% for rapeseed under SSP1-2.6 and
SSP5-8.5, respectively (Supplementary Fig. 8d–f).

During the period of 2021–2060, compared to the non-expansion
situation (when planting area stays the same as in 2014), reasonably
expanding the planting area for oil crops would improve the soybean,
peanut, and rapeseed production by about 7.0, 0.9, and 6.1Mt, respectively.
Under the expansion scenario, productionwould reach 17.9 and 17.5Mt for
soybean, 12.6 and 12.4Mt for peanut, and 18.1 and 18.0Mt for rapeseed
under SSP1-2.6 and SSP5-8.5, respectively. However, if the expansion plan
was retrospectively applied to the historical period of 1981–2014, soybean,
peanut, and rapeseedproduction couldhave reached19.3, 13.5, and19.4Mt,
respectively (Fig. 4a–c). During the growing seasons for soybean and pea-
nut, the projected frequencies of compound extreme heat-drought, extreme
heat, and drought under SSP1-2.6 (SSP5-8.5) are 37.4%, 22.5%, and 7.5%
(45.0%, 32.5%, and 7.5%) and 42.5%, 5.0%, and 7.5% (60.0%, 15.0%, and
10.0%), respectively. During the growing season for rapeseed, the fre-
quencies of compound extreme heat and drought (drought) would be 35.0
and 40.0% (17.5 and 25.0%) under SSP1-2.6 and SSP5-8.5, respectively
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Fig. 3 | Impacts of historical HDD and SPEI changes on soybean, peanut and
rapeseed yield without irrigation.Note: the numbers in the brackets are the upper
and lower 95% quantiles of the yield changes in all counties, the number below is the
area-weighted yield change (%). Top: a–c were spatial distribution of the impacts of

HDD & SPEI, HDD and SPEI on soybean yield, respectively. Middle: d–f were the
above impacts on peanut yield. Bottom: g–i were the above impacts on rape-
seed yield.
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Fig. 4 | Oil crops productions changes in annual and in different types of
temporal-spatial compound extreme years of the planting area expansion
situation for the historical and future.Top: Scatter plots of soybean (a), peanut (b),
and rapeseed (c) production in the planting area expansion situation for the his-
torical period of 1981–2014 and the future period of 2021–2060 under SSP1-2.6 and
SSP5-8.5 in the study region. Bottom: Box-and-whisker plots of the percentage

changes in production for soybean (d), peanut (e), and rapeseed (f) in the four types
of study years (i.e., N normal, EH extreme heat, D drought, and CEHD compound
extreme heat and drought, same definitions also apply in the remaining figures) for
the historical period of 1981–2014 and the future period under SSP1-2.6 and SSP5-
8.5 in the study region.
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(Supplementary Figs. 6 and 7). Hypothetically, if the expansion of planting
area for oil crops from2021 to 2060were applied to the historical period, the
projected compound extreme heat and drought would reduce the oil crop
production. Compared to the hypothetical historical production, the pro-
jected decrease under SSP1-2.6 and SSP5-8.5 is 15.1% and 17.6% for soy-
bean; 12.8% and 13.4% for peanut, and 14.7% and 14.6% for rapeseed
(Fig. 4d–f).

Impacts of temporal-spatial compound extreme heat and
drought on EVO production
From 1981 to 2014, the national EVO production averaged 6.8Mt. If the
planning area for oil cropswere kept as the level in 2014 for the future period
of 2021–2060, thenationalEVOproductionwouldbe reduced to 6.4Mt and
6.3 Mt under SSP1-2.6 and SSP5-8.5 respectively (Supplementary Fig. 9a).
For the three oil crops, the composite frequencies of compound extreme
heat and drought, extreme heat, and drought would be 50.0%, 20.0%, and
0% (50.0%, 22.5%, and 12.5%) under SSP1-2.6 (SSP5-8.5), respectively
(Supplementary Fig. 9c). From 1981 to 2014, the national self-sufficiency
rate of EVO averaged 26.7% (Fig. 1). In the non-expansion situation, the
national self-sufficiency rate of EVO for the period of 2021–2060 would
average 17.2% (ranging from 16.7 to 17.8%) in normal years and 15.9%
(ranging from 15.5 to 16.5%) in years with compound extreme heat and
drought.

Hypothetically, if the expansion of planting area for oil crops for the
period of 2021–2060 were applied to the period of 1981–2014, the national
EVO production could have been 9.0Mt (which is 2.2Mt higher than the
actual value). In the expansion situation, the national EVO production for
the period of 2021–2060 would be 8.4Mt and 8.3Mt under SSP1-2.6 and
SSP5-8.5 respectively (Fig. 5a). With the 10% threshold of reduction in
national production of EVO (Fig. 5c), the composite frequencies of com-
poundextremeheat anddrought, extremeheat, anddrought for the three oil
crops would be 40.0, 20.0, and 7.5% (42.5, 25.0, and 0%) under SSP1-2.6
(SSP5-8.5), respectively. For the period of 2021–2060, the national self-
sufficiency rate of EVO in the expansion situation would be decreased
compared to the average from 1981 to 2014. In normal years, the national
self-sufficiency rate of EVO would average 22.9% (ranging from 22.1 to
23.9%) under the two SSPs. In years with the compound extreme heat and
drought, the national self-sufficiency rate of EVO would average 21.2%
(ranging from 20.5 to 21.9%) under SSP1-2.6 and 20.9% (ranging from 19.0
to 21.9%) under SSP5-8.5.

Discussion
In this study, we built a panel regression model based on the collected
climate, oil crops, and irrigation data. Then we used the model to quantify
the impacts of changes in extreme heat and drought indices on oil crop
yields as well as to project the oil crop yields for the future in China. The
model integrates multidimensional data across temporal and spatial
dimensions, enabling simultaneous analysis of temporal dynamics and
individual heterogeneity29. Specifically, the model can directly estimate
individual fixed effects to account for unobserved heterogeneity across
entities30. Large panel data of this study perform well in assessing how crop
yield responds to HDD, SPEI, and their interactions under irrigated
conditions11. Comparedwith process-basedmodels, both approaches could
quantify yield-climate relationships, elucidate crop responses to manage-
mentpractices and climatic factors, andutilize these relationships todevelop
predictive models for future crop yields31. However, the panel model
employed in this study eliminates the need for field-level production and
management data duringmodel calibration and evaluation29,30.Moreover, it
is particularly suitable for broader spatiotemporal scales, facilitating the
assessment of regional climate change impacts on crop yields31.

Historical analysis showed that changes in HDD and SPEI decreased
oil crop yields by 4.5% to 7.1%, andHDDhad amore negative impact on oil
crop yields than SPEI did (Supplementary Fig. 4). In most soybean- and
peanut-growing locations, HDD was below 20 °C day, while in most
rapeseed-growing locations, HDD was below 5 °C day. The less severe the

extreme heat was, the smaller negative impact it had on oil crop yields32.
Compared with soybeans, peanut has a relatively lower water footprint per
unit product and therefore lower sensitivity to changes in SPEI33,34. How-
ever, the overall negative impact of SPEI was greater on the yield of peanut
(5.8%) than soybean (3.2%). This is because peanut is mostly grown in the
North China Plain, and soybean is mostly grown in Northeast China, and
crop water stress is generally worse in the former than in the latter35–37. By
contrast, cropwater stress for rapeseedwasmostly low, with an exception in
the southwestern part of Southwest China35. Among the three oil crops, the
negative impact of SPEI was the smallest on rapeseed.

With proper irrigation, the negative impacts of HDD (SPEI) on the
yields of soybean, peanut, and rapeseed could have beenmitigated by 42.3%,
46.2%, and 28.6% (53.1%, 44.8%, and 41.7%), respectively (Figs. 2 and 3).
And these results are consistent with the findings previously reported in
other related studies10,38. Irrigation helps to increase the soil moisture and
enhances evaporative cooling. And also helps crop plants to growmore leaf
area and biomass than rainfed condition does, which leads to higher crop
transpiration39. When crop water stress is induced by drought, irrigation is
the most effective measure to combat the negative impact of drought on
crop yields10. However, once the ratio of effective irrigation area reached a
certain point, themarginal crop yield gain with increasing irrigation started
to drop. In otherwords, the negative impact of drought on crop yields could
not fully offset by irrigation40. Under the future climate scenarios, HDD
showed a statistically significant increase, and the negative impact of HDD
on oil crop yields would worsen by 4.6% given irrigation was kept at the
current level41,42. In the North China Plain and Northeast China, where
soybean and peanut production is concentrated, drought would become
evenmore frequent in the future, and thenegative impact of SPEIonoil crop
yields would aggravate by over 1.7%43–45.

In this study, we assessed the impacts of extreme heat, drought, and
compound events on oil crop yields at a city-scale, whereas extreme climate
events usually occur at a regional scale. It was reported that regional
warming may not necessarily lead to drought, but when it does, it would
cause rapidly developing and long-lasting (e.g., a year) drought46, which
would result in substantial crop yield loss47. Therefore, it is critical to
understand how extreme climate events affect the self-sufficiency rate of
EVO from both spatial and temporal perspectives16. In the analyses, we
categorized the study years into four types: normal, temporal-spatial
extreme heat, temporal-spatial drought, and temporal-spatial compound
extreme heat and drought. Climate extreme events are not parallel to the
impacts they pose on crop yields48, and simply using climatic indices to
define the years is not enough for an agricultural impact report17,20,49. Hence,
we used the 10% threshold of oil crop yield reduction rate to identify the
extreme heat and drought years27,50. Under the future climate scenario, the
increasing temperature will make extreme heat more intense and frequent,
and the more fluctuating annual precipitation will make drought more
frequent20,44. As a result, oil crop yields were projected to decrease by up to
27% in the future inChina, and the national self-sufficiency rate of EVOwas
expected to drop from about 30% (the historical level) to 15.5–16.5% under
the relatively worse scenario. By appropriately expanding the growing area
for oil crops, the national self-sufficiency rate of EVO would be expected to
be slightly improved to 19.0–23.9%, even in temporal-spatial compound
extreme heat and drought years. In order to offset more of the negative
impact of compound extreme heat and drought, other measures should be
taken as well. Such measures include but are not limited to: optimizing
sowing window51,52, tailoring management practices based on local
situations53–56, advancing breeding technology, enhancing soil quality, and
improving irrigation efficiency (i.e., amount, timing, and method).

Inevitably, our study has some limitations. First, soybean, peanut, and
rapeseed are all C3 crops, but we did not consider the potential mitigation
from enhanced atmospheric CO2 concentration to extreme heat and
drought10,57. Second, extreme heat and drought were identified by defining
thresholds for temperature and SPEI during the crop growing season,
without differentiating the impacts of different intensity levels of these
extremes. Third, besides crop yield, climate change also leads to changes in
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oil extraction rate, and the percentage of pressing amount demonstrates
inter-annual variability. However, due to data limitations, this study did not
account for these changes. But further discussion about climate-smart
agriculture for oil crops would be highly recommended in future studies.
Last, besides increasing the domestic oil crops yields, importing (or inter-
national trading) could be another way to solve the low self-sufficiency rate
problem, which was not included in the analyses. Hence, we would suggest
future scholars to incorporate an economicmodel that factors inpopulation,
price, etc., to provide a more thorough multidisciplinary report.

Methods
Research area and data
In this study, we focused on themain growing areas for the three oil crops of
soybean, peanut, and rapeseed in China. Over 85% of the national oil crops
planting area is concentrated in 339, 285, and 210 cities for soybean, peanut,
and rapeseed, respectively. Because spring rapeseed planting area accounts
for less than 10% of the total rapeseed planting area, we only addressed
winter rapeseed in the analyses58.

Climate data of historical (1981–2014) and future (2021–2060,
SSP1-2.6 and SSP5-8.5) were retrieved from the Intersectoral Impact
Model Intercomparison Project (ISI-MIP, https://data.isimip.org/
search/). Including daily near-surface maximum and minimum air
temperatures, precipitation, solar radiation, wind speed, and relative
humidity from the output of GFDL-ESM4with a revolution of 0.5°. The
data had much improved climate mean patterns and variability com-
pared with previous models. Both historical and future climate data
were interpolated into the study cities with the inverse distance
weighting option in ArcGIS9.

The city-level annual crop data from 1981 to 2018 were collected
from Socio-economic Development Statistical Database (https://data.
cnki.net/v3/), including oil crop yield (kg/ha), oil crop planting area
(ha), total crop planting area (ha), and effective irrigation area (ha). For
the soybean-growing cities, we also collected the yield (kg/ha) and
planting area (ha) for maize; and for the rapeseed-growing cities, we
also collected the planting area (ha) for winter wheat. The average
sowing and harvesting dates for the study crops were acquired from the
SAGE datasets (http://www.sage.wisc.edu). The EVO production and
demand from 2000 to 2020 were referred to the U.S. Department of
Agriculture website and previous related studies5,59.

Extreme climatic indices calculation
We chose heat degree days (HDD, °C day) to assess the extreme heat60, and
the upper threshold of maximum air temperature was set to 33, 35, and
29.5 °C for soybean, peanut and rapeseed, respectively61–63. In order to
capture the year-by-year moisture characteristics during crop growing
season, we selected the Standardized Precipitation Evapotranspiration
Index (SPEI) in this study because it can evaluate the duration and intensity
of drought at a regional scale28,64 and for different time scales (e.g., one, three,
six, and twelve months)43. In this study, the time scale of SPEI is the actual
crop growing season (months from sowing to maturity). Based on the
precipitation and temperature data, we used the R program to compute
SPEI during the actual growingmonths for the oil crops65. The SPEI follows
a standardized normal distribution (with mean = 0 and standard devia-
tion = 1), where SPEI below −0.5 corresponds to approximately the 30th
cumulative percentile, which indicates that the moisture condition during
the given growing months was drier than 70% of the study period66. Fol-
lowing previous studies, drought was identified when the SPEI of actual
growing months was below −0.5 (SPEI ≤−0.5)28,64,65.

Irrigation alleviates crop water stress and hence enhances evaporative
cooling, which could partially mitigate the negative effects of drought and
extreme heat on crop yields and represent a critical component of agri-
cultural disaster prevention and mitigation capacity39. Therefore, we fac-
tored in the annual percentage of effective irrigation area (Irri, %) for the
study cities, which is the percentage of effective irrigation area (ha) to total
planting area (ha).

Panel model construction and historical impacts analysis
Panel regression analysis is known for being suitable for climate change
impact studies67. Therefore, we usedafixedeffects panel regressionmodel to
quantify the impacts of HDD, SPEI, and Irri on oil crops yields (Eq. 1).

Log Yi;t

� � ¼ /0 þ/1 ×HDDi;t þ/2 ×HDDi;t × Irrii;t þ/3 × SPEIi;t
þ/4 × SPEIi;t × Irrii;t þ/5 ×HDDi;t × SPEIi;t þ/6 ×HDDi;t × SPEIi;t × Irrii;t
þ/7 × t þ/7 × t

2 þ Cityi þ εi;t

ð1Þ
Where i represents the i-th city; t represents the t-th year;Yi,t is the crop yield
at city i in year t; α0 is the common intercept for all study cities; α1,…, α7 are
the crop yield sensitivity parameters to HDD, SPEI, HDD & SPEI and the
interaction between those above with Irri, respectively; (t, t2) is a set of city-
specific quadratic trends in crop yield due to improved agricultural
management practices and advanced technology; Cityi corresponds to the
fixedeffects at a city level (i.e., an independent intercept for eachcity); and ɛi,t
is the residual error. For the non-irrigation situation, Irri is 0, and t
represents year 1981–1985.

In order to quantify the impacts of HDD or SPEI changes on oil crops
yield, we set a baseline of 1981–1985 to compute the yield change corre-
sponding to changes in HDD and SPEI from 1981 to 2014 (Eq. 2). Such as
whenwewant toquantify the impacts ofHDDchangesonoil crops yield,we
inputted HDD from 1981 to 2014 while SPEI, Irri and t remain at the
baseline level from 1981 to 1985 into the constructed panel regression
model. Then we could get the yield only with historical HDD changes. By
multiplying the crop yield with planting area, we derived the impacts of
HDD and SPEI on oil crop production and hence EVO production.

Yieldchangei %ð Þ ¼ Yieldi � Yieldbase
Yieldbase

× 100% ð2Þ

WhereYieldbase is the average yield during the baseline periodof 1981–1985,
kg/ha; i represents the study climatic index,HDD, SPEIandHDDandSPEI;
and Yieldi is the corresponding yield for changing factor i, kg/ha. For
example,YieldHDD is the yieldwith changingHDDfrom1981 to 2014,while
SPEI, Irri and t remain at the baseline level from 1981 to 1985.

Future crops yield, planting area and EVO production projection

(i) Crops yieldprojection.Under the two future climate scenarios of SSP1-
2.6 andSSP5-8.5,weusedEq. (1) toproject oil cropyields for theperiod
of 2021–2060 by assuming Irri and t remain at the level in 2014. Then
we selected the historical period (1981–2014) as the baseline to
quantify the impacts of future extreme heat, drought, and compound
events on oil crop yields using Eq. (2).

(ii) Crops planting area projection. As to the future planting area for oil
crops, we hypothesized two situations: (a) remain the same as in 2014;
and (b) expand to the extent that the Chinese government supports.
The China Agricultural Outlook Committee mentions that the
demand forEVOis expected to reach38.0Mtby2031.They also aim to
expand the future planting area for soybean, peanut, and rapeseed to
13.3, 8.8, and 5.0Mha, respectively68,69. Therefore, in this study, we
further project the potential expansion of crop planting areas in future.

Based on the city ranking of maize yield in Central China and South
China, the bottom rankedcitieswill appropriate 75%of the planting area for
maize to promote the maize-soybean intercropping until the soybean
expansion goal is met70. By referring to the established ecological sub-
regions in the soybean-growing region, we retrieved the percentage of
intercropped soybean yield to monocropping soybean yield for the study
cities from previous related studies28,66,71–74. With the projected soybean
yield, the above-mentioned percentage and the planting area for inter-
cropped soybean, we computed the soybean production in the maize-
soybean intercropping system69.
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For the rapeseed-growing cities, we calculated the winter fallow field
area as the difference between the total cropping area and the subtotal
planning area for rapeseed and winter wheat. Based on the city ranking of
rapeseed yield, the top-ranked citieswill use 75%of thewinter fallowfield to
grow more rapeseed until the expansion goal is met. For peanuts, we rank
the cities based onpeanut yield, and starting from the citywith highest yield,
the future peanut area expands by 75% of 2014 (resulting in an expanded
area of 175% of the original) until the national area reaches 5.0Mha70.
Meanwhile, the EVO demand of 2031 would reach 38.0%68.

(iii) EVOproductionprojection. Basedon crop yield andplanting area,
we calculated the oil crop production changes. Also, we calculated the EVO
production based on the oil crops productions, national percentage of
pressing amount (which is 27%, 47%, and 90% for soybean, peanut, and
rapeseed, respectively), and oil extraction rate (which is 16.5%, 35.0%, and
34.0% for soybean, peanut, and rapeseed, respectively)5.

Defines of temporal-spatial compound extreme climate
Occurring of extreme heat and drought during crop growth periods would
directly lead yield decreasing. The frequency and intensity of above extreme
events vary spatially across different planting regions, leading to differential
crop exposure and directly affecting national oil crops and EVOproduction.
Therefore, the most direct manifestation of extreme weather impacts on
national oil crops is reflected in changes in total production. In this study,
according to the crop production and EVO production changes (both his-
torical and future projected) as compared to the baseline level, we used the
10% threshold of production reduction rate to identify the extreme heat and
drought years27. In a given year, if changes in HDD (SPEI) lead to a 10%
production reduction in any oil crop production, this particular year would
be deemed a temporal-spatial extreme heat (drought) year for the oil crop(s).
In years when changes in HDD and SPEI both lead to a 10% production
reduction in oil crop, such years would be considered as temporal-spatial
compound extreme heat and drought years. In this way, we categorized the
studyyears into four types: normal, temporal-spatial extremeheat, temporal-
spatial drought, and temporal-spatial compound extreme heat and drought.

Data availability
The authors confirm that all data analyzed during this research are included
in this manuscript.

Code availability
All code used in this research is available from the corresponding author by
request.
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