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Weight illusions explained by efficient

coding based on correlated natural
statistics
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Paul M. Bays ®

In our everyday experience, the sizes and weights of objects we encounter are strongly correlated.
When objects are lifted, visual information about size can be combined with haptic feedback about
weight, and a naive application of Bayes’ rule predicts that the perceived weight of larger objects
should be exaggerated and smaller objects underestimated. Instead, it is the smaller of two objects of
equal weight that is perceived as heavier, a phenomenon termed the Size-Weight lllusion (SWI). Here
we provide a normative explanation of the SWI based on principles of efficient coding, which dictate
that stimulus properties should be encoded with a fidelity that depends on how frequently those
properties are encountered in the environment. We show that the precision with which human
observers estimate object weight varies as a function of both mass and volume in a manner consistent
with the estimated joint distribution of those properties among everyday objects. We further show that
participants’ seemingly “anti-Bayesian” biases (the SWI) are quantitatively predicted by Bayesian
estimation when taking into account the gradient of discriminability induced by efficient encoding. The
related Material-Weight lllusion (MWI) can also be accounted for on these principles, with surface
material providing a visual cue that changes expectations about object density. The efficient coding
model is further compatible with a wide range of previous observations, including the adaptability of

weight illusions and properties of “non-illusory” objects. The framework is general and predicts
perceptual biases and variability in any sensory properties that are correlated in the natural

environment.

The size-weight illusion (SWI), one of the strongest and most robust per-
ceptual illusions, has been studied for over a century'. It is commonly viewed
as a challenge for computational theories that describe perception in terms
of optimal probabilistic inference’™, because Bayes’ rule is often interpreted
as a bias in sensory estimation towards expectations set by prior experience.
Larger objects are, on average, heavier than smaller objects in our everyday
experience, yet the SWI consists of a bias in the opposite direction to this
expectation: observers perceive a larger object to be lighter than a smaller
object of the same weight. Previous attempts to account for the illusion have
therefore appealed to violations of expectation’, categorical representations
of relative density’, and optimality for long-distance throwing®, among
others. However, these accounts have typically relied on ad hoc assumptions
about underlying mechanisms or objectives. Here we show that efficient
coding based on the empirical correlation between objects’ masses and
volumes in the everyday environment provides a parsimonious explanation
for the illusion based on normative principles. Unlike previous accounts,

this model predicts a specific relationship between bias and variability in the
estimation of weight, which we confirm with quantitative fitting of empirical
weight estimates generated by human observers for objects of varying size.

According to the efficient coding hypothesis, sensory systems are
optimized to transmit information about the natural environment™". This
can be achieved by distributing neural resources underlying encoding of
sensory properties according to the relative frequency with which those
properties are encountered in the world". This principle has previously been
invoked to explain anisotropies in human judgments about visual
orientation'*"’. Specifically, human observers are better able to discriminate
small differences in angle for edges that are aligned nearly horizontally or
vertically (0° or 90°, the cardinal angles) than for edges that are oriented
diagonally (45° or 135°, the oblique angles): this is known as the oblique
effect'*. According to the efficient coding account, encoding fidelity is
prioritized for cardinal orientations over obliques because cardinals are
more prevalent in the environment.
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In addition to the classical oblique effect, human judgments of orien-
tation also display systematic biases, typically characterized as repulsion of
an estimated angle away from the nearest cardinal axis. The fact that dis-
criminability varies over the space of possible angles of a stimulus has been
proposed as the basis of this bias. According to this account, the gradient of
discriminability (the oblique effect) makes uncertainty about the angle
increase with proximity to the obliques, and this shifts optimal estimates of a
stimulus’ orientation away from the cardinals, a phenomenon termed
likelihood repulsion*"”.

Subsequent work has generalized and refined the conditions under
which this result holds'*™" and shown that the predicted linear relationship
between bias and the gradient of squared discrimination threshold,
b(x) o (D(x)z)/, is replicated across a wide range of stimulus variables".
However, while the theoretical model has been extended to multi-
dimensional stimuli*>*', empirical examples of these phenomena have so far
been limited to single sensory variables. In this study, we analyzed a set of
properties whose occurrence is correlated in the natural environment: the
size, weight, and surface material of liftable objects.

Methods

Estimating natural statistics

We estimated the environmental joint distribution of object mass and
volume by collating datasets 1-4 of Peters et al.”, consisting of measured
properties of a sampling of everyday objects. We excluded unliftable objects
(dataset 5) on the basis that the mass of such objects would not be expected
to contribute to prior expectation for lifted objects, the basis of the SWI
according to an efficient coding model.

Efficient coding model of the SWI
Following the empirical observations, our model of the SWI assumed
a bivariate normal joint prior distribution over log-mass (m) and

log-volume (v),
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The prior distribution of log-mass conditioned on log-volume is then
given by
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Following the formulation of Wei & Stocker”, an efficient coding of log-
mass of an object with respect to its log-volume will result in a
discrimination threshold or just-noticeable difference for log-mass,
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and a Bayesian estimate of log-mass based on this encoding will have bias,

b, (m,v) o< (D, (m,v)?), )

with this and all derivatives taken with respect to m. The sign of the pro-
portionality is positive (ie., repulsive) for the posterior mean estimate
(minimizing squared error) and all estimates that minimize loss functions
with exponent > 1. The s.d. of the Bayesian estimate is

G,,(m, v) o D,,,(m, v)(1 + b}, (m,v)). ©)

We fit this model to data from the SWI study of Peters et al.”. Stimuli were
twelve cubes comprising three different masses and four different volumes.
Thirty healthy young participants (see source study for demographic
details) lifted objects in pairs of the same mass but different volumes, and
reported an estimate of the ratio of their masses. We assumed that the

estimated log-mass 71;; of an object with log-mass m; and log-volume v; is
normally distributed with bias b;; and s.d. ?fij given by Egs. (4) & (5) above,

i ~ N (ml- + by, &fj), (6)

in which case the log of the estimated mass ratio of two objects with the same
log-mass m; and log-volumes v; and vy is then also normal with

log iy, = ity — ity ~ N (b = by 0 + %) @)

Note that the assumption of normality in log-mass estimates (and hence
log mass ratio estimates) is made primarily for model simplicity and
computational efficiency. A more detailed implementation of the encoding-
decoding process, like that in Wei & Stocker'’, would also make predictions
for higher moments of the estimate distribution, including skewness.
However, these predictions would vary with model specifics, including the
internal noise distribution and the loss function, whereas the relationships
we rely on above (Egs. (3)-(5)) are more general'® and have been empirically
validated for a range of stimuli'.

Implementing the model. The model as described above is over-
parameterized (i.e., different combinations of parameters make identical
predictions), so we re-write the prior density conditional on volume
(Eq. (2)) as

p(mlv) = ¢(m; Bv + ¢,y 5) ®

with ¢(x; 4, 0) the normal p.d.f. evaluated at x. The new parameters with
respect to those of Eq. (2) are

o
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Defining ¢, and ¢, as proportionality constants in Egs. (4) & (5), we have bias

b,,(m,v) = c,(p(m|v)"2) (12)

and s.d.

G(m,v) = ¢, (1 + b, (m,v)) p(m|v)™"

— ¢, (1+ c(plmlv) ) p(ml)” (43

We used non-linear optimization to obtain maximum likelihood values for
each participant of parameters f3, c,,, and s, the slope, intercept, and s.d.
describing the prior distribution, and ¢, and ¢, the constants of
proportionality for bias and s.d., respectively. Specifically, for each
participant, we used a custom-coded pattern search algorithm to iteratively
search for parameters that minimized the summed negative log-likelihoods
of the reported mass ratio estimates on each trial, based on the mass and
volumes of each pair of lifted items. To protect against local minima, each
search was repeated with 100 sets of randomized starting parameter values,
and the parameters corresponding to the global maximum likelihood
selected. To enhance search efficiency, the fitting algorithm used the
parameterization {, c,,, s*,10g,,(c,,),log,,(c,)} and the obtained max-
imum likelihood values were subsequently transformed to values of
{B, ¢ 5, cm» co} for ease of interpretation. Medians calculated from
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maximum likelihood fitted parameter values with y, = 6, 0,,,, = 5, were used
as parameters of an illustrative bivariate normal prior.

Efficient coding model of the MWI

We extend Eq. (2) in our model of the SW1 to describe the prior distribution

of log-mass conditioned on both log-volume and surface material as
mlv, M ~ N (v+ d(M),s*), (14)

where d(M) is the mean log-density of material M.

We fit data from the study of Buckingham et al.”’, which compared the
perceived weights of lifted objects that appeared to be made of different
materials. Stimuli consisted of three cubes, each of a different surface
material: aluminum (of density 2.7g cm™), wood (0.7g cm™®), and
expanded polystyrene (0.1 gcm™). All three cubes were identical in mass
(700 g) and volume (1000 cm?), having the density of wood (0.7 gcm™).
Twenty-five healthy young participants (see source study for demographic
details) lifted each cube 15 times in a randomized sequence of triplets,
reporting an absolute magnitude estimate of object weight after each lift.
Each participant’s magnitude estimates were z-scored in the original study
(scaled and shifted to have a pooled mean of zero and s.d. of 1). The authors
noted a consistent tendency for magnitude estimates to increase over the
course of the experiment, so we additionally detrended the data by sub-
tracting the mean rating from each triplet of lifts in the sequence, before
calculating the s.d. of estimates for each object.

For modeling purposes, we assume that the magnitude estimates, y, are
linearly related to the perceived log-mass on each lift, ie., ¥, = ym; + ¢,
with m; ~ N(m + b;, [7?) as above (Eq. (6)), and bias b; and variability 6;
for each material obtained from the corresponding prior (Eq. (14)) asin Egs.
(4) & (5). We used the same non-linear optimization method as for the SWI
to find maximum likelihood parameters s, the s.d. of the conditional prior
density; ¢, and c,, constants of proportionality for bias and s.d., respectively.

Inferential statistics were assessed with Bayesian ANOVA in JASP*
using the default Jeffreys-Zellner-Siow prior on effect sizes.

The present study was not preregistered. As secondary analysis of fully
anonymized data this study was exempted from ethical review, following
guidelines of the University of Cambridge.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results

Correlated natural statistics

We began by considering the natural statistics of size and weight. Based on a
large sample of liftable objects found in everyday environments™, we
observed that mass and volume have a joint density that is approximately
bivariate log-normal with a strong positive correlation (bivariate normal on
log axes, Fig. 1A; correlation, p = 0.67). As a consequence, visual evidence
that a lifted object has a larger or smaller volume would imply a conditional
probability density for the object’s mass that is log-normal with a peak at
higher or lower mass, respectively. Efficient coding theory dictates that
encoding resources should be allocated according to this natural frequency,
inducing a gradient of discriminability for mass that reflects its conditional
probability given the evidence for volume (blue curves in Fig. 1B, top and
bottom).

For two objects with different volumes (one large, one small; Fig. 1B,
top and bottom) that invoke the same haptic feedback about mass when
lifted (corresponding to arrow and dashed line), the differing gradients of
discriminability result in likelihood functions for mass that are skewed in
opposite directions. In other words, the internal representation is compa-
tible with a range of masses that deviates further in the direction of
decreasing prior probability, because those masses are encoded with less
precision. This produces a relative bias in point estimates of mass (e.g., the
mean posterior estimate) such that the larger object is perceived as lighter

than the small object, qualitatively matching the SWI. Figure 1C illustrates
how variability (circle diameter) and bias amplitude and direction (arrows)
in mass estimates are expected to vary for objects of different mass and
volume, assuming a correlated joint distribution (blue contours).

Fits to empirical data

Figure 2 shows variability (black circles) and relative bias (black arrows)
estimated from empirical observations of reported weight ratios of differ-
ently sized objects lifted by human participants”. These results, which
demonstrate a strong SW1, conform to the predicted pattern of Fig. 1C. Both
estimation bias and variability depend on the combination of mass and
volume in a manner qualitatively consistent with jointly correlated statistics
(extreme evidence for effects of mass on bias, BF;,q=7.42 x 10%, and SD,
BFj,q=121x10% effects of volume on bias, BF,,q=c0, and SD,
BF;nq=3.89x 10" and mass-volume interaction effects on bias,
BF,,q = 2.56 x 10°, and SD, BF,,4 = 7.38 x 10°).

Red circles and arrows show mean predicted variability and bias,
respectively, for the fitted efficient coding model (maximum likelihood
parameters, median values: prior intercept, c,,, = 2.40; prior slope, 8 = 0.306;
prior s.d., s=3.22; bias constant, ¢, =0.0123; s.d. constant, ¢,= 0.0102;
individual participant parameters shown in Fig. S1A; equivalent parameters
for empirical sample shown in Fig. 1A for comparison: ¢, =1.10,
$=0.483,5s=0.361).

Figure 3A (black circles) plots the mean estimated weight ratios for
individual pairs of lifted objects from which the empirical estimates in Fig. 2
are calculated, along with predictions of the fitted efficient coding model
(red lines). Despite each lifted pair having equal mass, the object of smaller
volume was, on average, estimated as heavier (weight ratio > 1) for every
pair of objects in each mass condition, demonstrating the SWI. The strength
of the SWI decreased as the ratio of the volumes decreased (left to right
within each panel), and increased on average as mass of the objects increased
(left-hand to right-hand panels). Each of these patterns was quantitatively
reproduced by the efficient coding model (red lines), based on the non-
linear relationship between mass, volume and prior probability depicted in
Fig. 2 (blue contours).

Notably, the SWI differed in strength for pairs of objects with the same
volume ratio (labeled with an equals sign in Fig. 3), in most cases being
stronger for the smaller pair (generating the zig-zag pattern in Fig. 3A
middle and right-hand panels), and this pattern was also captured suc-
cessfully by the efficient coding model. This variation arises because the
model-predicted relative bias between two objects depends only indirectly
on their relative volumes, and is instead mediated by the probability of the
objects’ masses and volumes under the prior. Thus, two objects with
the same volume ratio (e.g., volume pairs A/B and C/D in Fig. 2, separated by
the same distance on this logarithmic volume axis) may be situated asym-
metrically relative to the prior density (contour lines) and so differ in their
individual and relative biases.

Figure 3B (black circles) plots the within-participant s.d. of weight
ratio estimates in the same format as Fig. 3A. Variability in estimation
increased with object mass (left-hand to right-hand panels), and for pairs
with equal volume ratio, was in most cases greater for the smaller pair
(zig-zag pattern in middle and right-hand panels). The efficient coding
model quantitatively captured the average SD within each mass condi-
tion, the increase in SD with mass, and also the pattern of variation in SD
across pairs for the heaviest objects (550 g), although it underestimated
the amplitude of variation in SD across object pairs for the 150 g (and to a
lesser extent the 350 g) objects.

Variant encoding models

In addition to the encoding model based on conditional prior density,
described above, we considered two alternative encoding schemes that also
achieve the efficient coding objective. These variant models, presented in
detail in Supplementary Text, led to qualitatively (Fig. S2) and quantitatively
similar predictions (Fig. S3) to the conditional density model, also consistent
with the SWI. Formal model comparison using AIC indicated that a model
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based on factorizing the prior distribution into independent components fit
less well, in most cases, than a model based on allocating resources according
to the joint prior density, which performed very similarly to the conditional
density model. The best-fitting model was the conditional density model for
53% of participants (16/30), the joint density model for 37% (11/30), and the
factorized density model for 10% (3/30).

Haptic evidence

Material-weight illusion

We next considered whether the efficient coding principle could explain the
material-weight illusion (MWI)®, in which an object with the visual
appearance of dense material is perceived on lifting as lighter than a matched
object of seemingly less dense material. We assumed that the visual
appearance of different surface materials (Fig. 4A; objects used in ref. 23)
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Fig. 1 | Predictions for bias and variability based on correlated environmental
statistics. A Mass and volume of a large sample of liftable everyday objects™ plotted
on logarithmic axes. Blue contours show the best-fitting bivariate log-normal dis-
tribution (normal on these axes). B Illustrates estimation of mass for objects of larger
(top) and smaller (bottom) volume. Blue arrows indicate corresponding volumes in
(A). Discriminability (inverse of discrimination threshold or JND) varies in pro-
portion to the conditional probability of object mass, given visual evidence of object

volume (blue curves). For the same haptic feedback of object mass (black dashed
line), the different gradients of discriminability cause likelihood functions (red) to
skew in opposite directions. Red arrows show the relative directions of bias in mean
posterior estimates of mass. C Predicted SD (circle diameters) and bias (arrows) in
estimates of mass for objects with a range of true volumes and masses. Estimated
weights of larger objects are underestimated relative to smaller objects of the same
weight, as in the SWL
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pairs with equal volume ratio. Different panels show results for three sets of objects
with different common masses. Error bars and shading indicate + 1 SEM. B Within-
participant SD of weight ratios, plotted as in (A). C Shape and volume of the objects.

would invoke different prior distributions based on previous experience of
objects made of that material, as illustrated in Fig. 4B. Specifically, we
assumed the induced prior would reflect a mean density matching that of
the surface material (dashed lines indicate combinations of mass and
volume consistent with the density of each material).

As llustrated in Fig. 4C, the consequence of efficiently encoding object
mass conditioned on its volume and surface material depends on the dif-
ference between the density of the surface material and the density of the
object. If the surface material is of higher density than the object as a whole
(top panel), the prior distribution conditioned on volume will peak at a
higher mass than the one indicated by haptic evidence from lifting the object
(vertical dashed line), resulting in a gradient of discriminability (green line)
that biases the mean posterior estimate towards lower masses (red arrow).
The converse holds for a surface material of lower density than the object
(bottom panel). For a surface material that matches the object density
(middle panel), the prior probability, and hence the discriminability, peaks
at the true mass of the object, so no bias is induced. Additionally, the
discriminability of mass in this case is predicted to be greater than when the
surface material and object density are in conflict.

Figure 5A plots relative bias in magnitude judgments of weight when
lifting the objects illustrated in Fig. 4A. Consistent with the MWI, the data
show a positive bias in estimated mass for less compared to more dense
surface materials, despite all the objects having the same mass and volume.
Figure 5B shows the corresponding within-participant SDs (maximum
likelihood parameters, median values: prior s.d., s=10.3; bias constant,
cp= 0.0092; s.d. constant, ¢,=0.0257; individual participant parameters
shown in Fig. S1B).

Note that aligning prior densities with the actual densities of the
experimental materials reported by Buckingham et al.” is a simplification
for computational convenience and to limit model flexibility: in reality, we
would not expect individual observers to infer the precise density of a
material from its visual appearance, and this would introduce individual
variability in the alignment of prior densities (along the mass axis in Fig. 4B).
However, because the different experimental materials had very different
densities we would not expect this to qualitatively affect the results.

Discussion

We have shown how weight illusions arise as an indirect consequence of
efficient coding based on everyday experience with objects, in which var-
iation in the discriminability of object properties, reflecting their relative
prevalence in the environment, induces estimation biases when haptic
evidence for a lifted object’s mass is uncertain. This account of the SWI as an
adaptation of encoding to environmental statistics may also explain why
prolonged exposure to objects for which size and weight were anti-
correlated caused a reversal of the illusion®®. This would match the pattern of
adaptation recently demonstrated for orientation biases after exposure to
stimuli drawn from a distribution that favored oblique angles”’, and implies
that efficient coding is not an immutable feature of sensory processing but is
based on continual learning of environmental statistics.

This is not the first study to propose that the seemingly “anti-Bayesian”
bias of the SWI might be consistent with Bayesian estimation. Peters et al.”
suggested that, when comparing two objects, A and B, the brain evaluates
three categorical hypotheses about their relative densities: that they have
equal density, that A is more dense than B, or that A is less dense than B.
Each category is associated with a different prior distribution over relative
volume and density, and the influence of these competing priors leads to a
bias in the posterior estimate of relative weight in the direction of the SWL
However, the assumption that relative density is treated categorically in
weight comparison seems to have no independent justification, beyond the
service it performs in the model. Moreover, while the categorical model with
hand-tuned parameters reproduced the magnitude and overall pattern of
decreasing SWI with decreasing volume ratio, it failed to predict the
empirical differences in SWT for object pairs with the same volume ratio
(marked by equals signs in Fig. 3A) and also the effects of object mass on
SWI (compare panels left to right in Fig. 3A). The categorical model also
makes no explicit predictions for variability of estimates, and its quantitative
predictions were not evaluated or compared to data. The present model
reproduced all of these elements of the SWI based on the ecological goal of
efficient coding and a single prior grounded in natural statistics. In parti-
cular, and distinguishing it from previous attempts to model weight illu-
sions, the efficient coding account made novel quantitative predictions
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Fig. 4 | Predicted effects of surface material on mass estimation. A Illustration of
the experimental objects, which were three cubes of identical size and weight but

different surface material. B Contours illustrate possible prior distributions over

mass and volume based on past experience of objects made from the three different
materials. In the absence of haptic feedback, the expected mass-volume ratio of the
three objects will approximately match the density of the surface material (dashed
lines). The red disc corresponds to the actual mass and volume of all three objects.

Heavier

C Illustrates estimation of mass for a lifted object with an expected density that is
larger (top), equal (middle), or lower (bottom) than its actual density. Discrimin-
ability varies in proportion to the conditional probability of object mass, given visual
evidence of object volume and object density. For the same haptic feedback (black
dashed line), the different gradients of discriminability lead to different likelihood
functions (red curves) and different biases (red arrows) in the mean posterior
estimates.

relating bias and variability in weight estimation, which were confirmed by
close fits to data from SWI and MWTI experiments.

The SWI** and MWTI” can be induced by preceding visual observation
of an object’s size, even if visual and haptic evidence of size is prevented
during the lift. The magnitude of both illusions was found to be weaker in
this scenario than with concurrent vision, consistent with greater uncer-
tainty about object volume (SWI) or density (MWT), leading to a broadening
of the prior distribution with respect to object mass. According to the
efficient coding model, bias magnitude is proportional to the gradient (rate
of change) of prior probability with respect to mass: when the prior is
broader and flatter (increased s.d.), the strength of bias is expected to
decrease. Similarly, Ellis & Lederman™ observed a weaker SWI based on
visual evidence of size alone than with both visual and haptic feedback,
consistent with the efficient coding account. They also observed that the
SWI based on haptics alone was stronger than with vision only, suggesting
that haptic feedback obtained from holding an object supported a more
precise estimate of the object’s volume than visual observation™”.

The SWI persists over the repeated lifting of the same objects, but
anticipatory motor responses, in the form of grip and load forces, adapt over
only a few lifts to become appropriately scaled for veridical object
weights™**. This dissociation may reflect the different goals of perceptual
and sensorimotor systems. Whereas the SWI can be interpreted as the
perceptual system attempting to minimize estimation error while taking
into account anisotropy in encoding fidelity, the sensorimotor system’s goal
is to apply the correct forces to smoothly lift each object without slipping.
Lift kinematics and haptic feedback provide strong error signals about
inappropriate grasp that can be used for corrective adjustment of force on
the next lift of the same object, and iterated until the desired kinematics are
achieved. In contrast, the SWT is a bias in relative judgments of weight that,
according to the present account, reflects optimal perception given the

combination of haptic and visual feedback experienced during alift. As such,
there is no error signal generated by repeated lifting that would lead this
perception to change.

The present study draws on previous work that has formulated the goal
of efficient coding in terms of allocation of Fisher Information""'*'°, which
can, in turn, be related to discriminability via the Cramér-Rao bound™. The
model of weight illusions presented here, therefore, makes clear predictions
for discrimination thresholds (JNDs), in addition to estimation bias and
variability. However, relatively few empirical studies have measured weight
discrimination performance while varying secondary object properties such
as size. One such study™® reported that weight discriminability was maximal
for “non-illusory” objects, i.e., those whose apparent weight on lifting is the
same whether visual evidence about the object’s material and size is present
or absent’. This aligns quite precisely with predictions of the efficient coding
model of the SWI and MWI, in which biases arise from and vary in pro-
portion to the gradient of (squared) discriminability (Methods, Eq. (4)),
with the result that peak discriminability coincides with zero estimation bias.
A further prediction of the model, that might be tested in future work, is that
this peak corresponds to the empirical maximum of the conditional prior
density, i.e., that the “non-illusory” weight for an object is the weight that is
most probable given its visual properties, based on natural statistics.

Limitations

We performed independent model fits to data from each of the thirty
participants in the source study of the SWI. Examination of individual fits
(Fig. S1A) indicated variability in maximum likelihood parameter estimates,
with some significant outliers, although it is unclear to what extent this
reflects true inter-individual differences versus variation in data quality or
the relatively small number of mass ratio judgments (median 154) per
participant. Most individual fits clustered around the median parameter
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Fig. 5 | Material-weight illusion data and fits. Black
circles indicate mean relative bias (A) and mean

A

within-participant SD (B) of human observers 04 085
(n =25) in estimating the mass of lifted objects with
different surface materials but identical mass and H
volume™. Error bars indicate + 1 within-subject o8l
SEM. Red lines show predictions of the fitted effi- 02 | .
cient coding model.
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values, corresponding to prior densities for log-mass and log-volume
comparable to the empirical sample of liftable objects collated by Peters
et al.”’, with respect to intercept and slope. However, there was a notable
discrepancy between the conditional prior s.d. parameters obtained by
model fitting (median 3.22 log-units) and the equivalent measure in the
empirical sample (0.361 log-units), suggesting that the internal prior dis-
tribution used by participants for estimation was substantially broader than
the range of masses per volume obtained by the previous authors by mea-
suring everyday objects.

There are a number of possible explanations for this discrepancy: it
could simply reflect the inherent difficulty of obtaining a sample of object
properties that is representative of human experience, or it could indicate
that the prior applied by participants in the estimation task differs from our
assumptions, e.g., is based on a broader category than liftable objects. An
alternative interpretation for the broadness of estimated priors is that par-
ticipants have relatively weak expectations about mass-volume relationships
in novel objects and accordingly distribute their probability mass over a
large range. One simplifying assumption of the model is that participants
could visually estimate the volumes of the different objects without noise.
This could contribute to the discrepancy in s.d., because uncertainty in
estimating object volume would be expected to increase uncertainty in the
conditional probability of mass, exceeding the natural variation in mass of
objects of that precise volume. These possibilities could be addressed in
future experiments that directly examine observers’ expectations about mass
and volume, for example, by asking them to estimate object weights based
solely on visual appearance, and additionally report their uncertainty in the
estimates.

Biased estimates of weight in the model ultimately arise from the
fact that size and weight are correlated in our everyday experience of
lifted objects. By symmetry, this principle should also predict a bias in
estimating an object’s size due to its weight (an inverse, “weight-size”
illusion). However, we might expect this bias to be significantly weaker
and so more difficult to detect than the size-weight illusion, because of
the relatively high precision evidence vision provides about object size.
We know of only one study that has looked for an influence of weight on
size estimates: Smeets et al.”” obtained free-magnitude estimates of the
size of objects lifted at a distance via a pulley mechanism, and did not
detect an influence of lifted weight on size judgments. However, it is
possible that the combination of indirect lifting mechanism (participants
pulled horizontally on a string) and restricted visual input (objects were
10 cm luminous balls viewed briefly at >2 m distance in total darkness)

disrupted the association between haptic and visual feedback of the object
necessary for an illusory effect. Future studies could employ different
experimental methods to add to the evidence regarding the putative
weight-size illusion.

The present results do not uniquely specify a coding scheme for the
relevant object properties, and a number of different encodings consistent
with the efficient coding goal are compatible with the observed biases and
variability in estimation. In addition to the conditional density model of the
SWI presented in the main text, which implicitly assumes that object volume
is encoded separately from object mass, we also considered a variant that
encodes the two properties jointly, by factorizing their joint prior density
into two orthogonal components, as well as a variant where encoding of
mass is efficient with respect to the joint, instead of conditional, prior. These
alternative models were found to make qualitatively similar predictions
consistent with the SWI, and fitting showed them to have similar com-
patibility with the data (see Supplementary Text for full details). While the
predictions for bias differed only weakly within the experimental range of
masses and volumes, larger deviations might be observed for more extreme
pairings of object properties, potentially allowing future studies to better
discriminate between alternative encoding schemes. However, the largest
discrepancies between models will tend to coincide with the lowest prior
probabilities (e.g., objects with unnaturally high or low density), which could
prove challenging to evaluate experimentally.

The conditional density model, in combination with the bivariate
Gaussian prior, admits a particularly simple implementation: encoding an
object’s log-weight in relative terms as a deviation from its expected log-
weight given object volume. Allocating coding resources (e.g., neuronal
tuning density) preferentially to smaller deviations would achieve efficiency
with respect to natural statistics (note this scheme depends on properties of
the bivariate Gaussian prior and might not be realizable for a different prior
distribution). Early accounts of weight illusions frequently appealed to the
contrast between expected (based on visual properties) and actual sensory
feedback experienced during the lift as the basis of the illusion®*, i.e., a larger
object feels lighter when lifted because it is lighter than expected. While this
informal account is only descriptive of the illusion, the present results
present a normative basis for biasing perception relative to the
expected mass.

Conclusions
We presented a computational account of weight illusions in which biased
perception reflects Bayes-optimal estimation given the variation in the
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fidelity with which object weights are encoded in the neural system: varia-
tion that, in turn, reflects an efficient allocation of coding resources based on
the natural frequency with which objects with different properties are
encountered. This account made specific predictions connecting bias and
variability of weight estimates, which we confirmed with quantitative fitting
of human participant data from studies of the Size-Weight and Material-
Weight Illusions.

Data availability
Data related to this study is available at https://doi.org/10.17863/CAM.
108265.

Code availability
Code related to this study is available at https://doi.org/10.17863/CAM.
108265.
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