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Temporally resolved analyses of aperiodic
features track neural dynamics
during sleep
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The aperiodic (1/f-like) component of electrophysiological data, whereby power systematically
decreases with increasing frequency, as quantified by the aperiodic exponent, has been shown to
differentiate sleep stages. Previous studies typically measured this exponent over narrow frequency
ranges and averaged across sleep stages. A systematic review following PRISMA 2020 guidelines,
which identified 16 eligible studies examining aperiodic neural activity during sleep, revealed
heterogeneous frequency ranges and methodological approaches across studies. Building on these
insights, the present study expands the analysis to include wider frequency ranges and alternative
models, such as detecting ‘knees’ in the aperiodic component, which reflect bends in the power
spectrum indicating changes in the exponent. Additionally, we applied time-resolved analyses to
examine the dynamic patterns of aperiodic activity during sleep. We analyzed data from two sources:
intracranial EEG (iEEG) from 106 epilepsy patients and high-density EEG from 17 healthy individuals
and compared different frequency ranges and model forms of aperiodic activity. Results showed that
broadband aperiodic models and the inclusion of a ‘knee’ feature effectively captured sleep stage-
dependent differences in aperiodic activity. The knee parameter exhibited stage-specific variations,
indicating different processing timescales across sleep stages. Time-resolved analysis of the
aperiodic exponent tracked sleep stage transitions and responses to external stimuli, highlighting
rapidly varying temporal dynamics during sleep. These findings offer valuable insights into brain
dynamicsduring sleepand reveal novel insights and interpretations for understanding aperiodicneural
activity during sleep.

Studies investigating the electrophysiology of sleep have classically relied on
a scoring system focused on oscillatory activity (such as alpha oscillations,
sleep spindles and slow wave activity) to classify sleep into different stages1.
However, the electrophysiological signal contains a mixture of oscillatory,
periodic components that rise above a non-oscillatory, aperiodic signal2–4.
The aperiodic signal decays with increasing frequency in a 1/f x relationship,
quantifiable by the aperiodic exponent (x),which corresponds to the slopeof
the log-log power spectrum3–6. Building on earlier research that identified
differences in aperiodic activity between sleep and wake states2,3,7–9, recent
studies have consistently found that the spectral exponent varies across
different sleep stages10–18, contributing to a growing body of literature
focusing on aperiodic brain activity during sleep.

Changes in aperiodic activity during sleep provide potential
information about the underlying physiological activity. Computational
models, supported by empirical data from animal studies, have identi-
fied the spectral exponent as a non-invasive indicator of key neural
processes including (i) transitions between up and down states19,20,
or (ii) the cortical excitation-inhibition (E-I) balance15,21–24, where a
steeper exponent suggests stronger inhibitory control, and a flatter
exponent indicates higher excitation. This relationship is consistent
with observations that the spectral exponent of the electro-
encephalography (EEG) signal becomes progressively steeper with
deeper sleep12–14,17, consistent with an increase in inhibitory processes
during sleep25,26.
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Accurately measuring and interpreting aperiodic activity requires
methods that effectively differentiate aperiodic and oscillatory activity,
which need to be employed using appropriate settings27. A key decision
when examining aperiodic neural activity includes selecting the frequency
range to analyze, including considering if chosen ranges could be biased by
overlapping spectral peaks28. Previous sleep studies have thus far examined a
wide variety of frequency ranges. Narrow frequency ranges such as the
30–45Hz range13,14,29, are often chosen due to their potential relationship to
the E-I ratio22.

In addition to the frequency range, analyzing aperiodic neural activity
requires choosing the appropriatemodel formby selecting the function tofit
to the power spectrum. The vast majority of the existing literature in sleep
research has applied measures of a single exponent fit. As a result, pre-
vious studies have tended to examine a simple model fit to a narrow range,
only characterizing and describing a restricted part of the neural power
spectrum.

A key potential strength of analyzing aperiodic activity is to be able to
characterize broad frequency ranges. To do this, one has to assess the overall
shape of the power spectral density (PSD) to choose the most appropriate
frequency range andmodel form.Notably, the neural power spectrumoften
displays an inflection point, referred to as the “knee“4,30. The frequency at
which this knee occurs, referred to as the knee frequency, has beenproposed
to reflect the population timescale, i.e. the characteristic durationoverwhich
a neural population integrates or processes information4,30. Notably, this
knee frequency has also been shown to vary systematically across sleep
stages13,31. Collectively, this suggests that analyses of aperiodic neural activity
during sleep may benefit from formalizing and potentially extending the
frequency range under investigation. However, this requires considering
different fit functions (e.g., fitting a function with a knee parameter), and
selecting appropriate frequency ranges to fit across.

In addition,most studies of aperiodic activity during sleep thus far have
predominantly focused on examining aperiodic activity over entire sleep
stages. Recent methodological and empirical development have demon-
strated the rich temporal dynamics of aperiodic activity and their relation to
behavior32–34. This suggests that previous analyses may have overlooked
nuanced dynamics within and across sleep stages. Novel methods are now
available that can now be used to investigate questions such as whether
changes in aperiodic activity show sharp transitions or slow drifts between
sleep stages, and explore whether aperiodic activity undergoes event-related
changes during sleep. Based on these considerations, our objective was to
extend previous research by broadening the investigation of aperiodic
activity during sleep.

Specifically, in this exploratory, data-driven investigation, we eval-
uated different frequency ranges and model forms for examining aper-
iodic activity in sleep recordings. We then applied these measures in a
time-resolved manner to examine dynamics across multiple timescales
throughout the night. In doing so, we sought to explore the temporal
dynamics of aperiodic neural activity during sleep, hypothesizing that
changes in such activity would track sleep stage transitions. To this end,
we analyzed publicly available intracranial EEG (iEEG) data from across
different sleep stages35, as well as a high-density EEG dataset from healthy
human participants through an entire night of sleep36. To measure
aperiodic neural activity, we used the specparam toolbox -formerly
‘FOOOF’-to compare model forms32, fit spectral models, and compute
time-resolved estimates.

In doing so, we highlight the advantages of using a model form for
aperiodic activity that examines broader frequency ranges and accounts for
the presence of the aperiodic knee. By further expanding the model forms
and the temporal resolution of aperiodic activity measures, we aim to
capture and characterize more of the variance of sleep data, in a way that
highlights systematic relationships to sleep architecture and offers putative
interpretations of the underlying neural circuits.

Methods
We did not preregister the analyses for this study.

Literature search
We conducted a systematic review of the literature to identify reports
examining aperiodic neural activity during sleep and to investigate the
frequency ranges used in such studies. The literature search was performed
following the PRISMA 2020 guidelines37 using the LISC Python toolbox
(v0.3.0)38, which finds publications based on specified search terms in the
Pubmed database. Literature searches collected reports published between
1929—the year of the first published EEG paper—and the end of 2024.

Systematic reviewof aperiodic activity. To examine the prominence of
investigations into aperiodic activity during sleep and its evolution over
time, we quantified the number of publications mentioning predefined
terms related to sleep and spectral properties. The initial search included
descriptors of sleep activity (“sleep”) as well as terms related to measures
of aperiodic activity. To contextualize these findings, we conducted
parallel analyses for other EEG-derived measures, specifically the Lya-
punov exponent and measures of chaotic dynamics, which served as
controls to compare the relative growth trajectories of differentmeasures.
Eligibility Criteria: Studies were included if they i) reported on brain
activity or sleep, ii) included aperiodic or 1/f features, and iii) employed
electrophysiological techniques (EEG,MEG, iEEG).We excluded reports
that used consumer-grade devices. Data Collection and Analysis: Sear-
ches were conducted using the co-occurrence of the term “sleep” with: i)
aperiodic measures (“aperiodic exponent,” “spectral slope,” “1/f,” and
“power-law exponent”), ii) Lyapunov exponent (“Lyapunov exponent,”
“Largest Lyapunov exponent,” “Maximal Lyapunov exponent,” “Lya-
punov characteristic exponent”), and iii) chaos dynamics (“chaos,”
“chaotic dynamics,” “deterministic chaos,” “nonlinear dynamics,”
“chaotic measures”). We restricted these searches to electrophysiological
modalities (“EEG,” “MEG,” “iEEG”) and extracted the results over two-
year intervals. For visualization purposes, the time rangewas set to start at
the year with the first non-zero number of publications. We provide a
flow diagram illustrating the search in Supplementary Fig. 1A.

Frequency range for investigating the spectral exponent in sleep. To
examine studies that investigated the aperiodic exponent in the context of
sleep, we ran an additional literature search to collect reports and
metadata on such studies. The search terms specifically targeted studies
examining the spectral exponent in sleep. These included variations of
the spectral exponent (‘spectral slope’, ‘spectral exponent’, ‘1/f exponent’,
‘1/f slope’, ‘aperiodic slope’, ‘aperiodic exponent’, ‘power-law exponent’,
‘power-law slope’) combined with the keyword “sleep.” Eligibility Cri-
teria: We included studies that, i) focused on aperiodic features of neural
activity, and ii) examined these features in the context of sleep. Data
Collection and Analysis: The search yielded 21 studies, and metadata
(publication year, title, abstract) were reviewed to confirm relevance. Five
studies were excluded for the following reasons: i) consumer grade
recording device (1 study), ii) absence of neural data (3 studies), or iii)
non-human data (1 study). An additional five studies were excluded due
to the absence of clear mention of the frequency bands used to estimate
the aperiodic exponent. In addition, we manually added five studies
meeting the inclusion criteria that were not detected by the literature
searches7,8,15,16,39. In total, 16 studies were included in our analysis, detailed
in Supplementary Table 1. We provide a flow diagram illustrating the
search in Supplementary Fig. 1B.

Datasets
iEEG data. We analyzed an openly accessible and previously published
dataset of iEEG data from the Montreal Neurological Institute (MNI;
https://mni-open-ieegatlas.research.mcgill.ca/). The dataset consists of
one-minute recordings from 106 patients (52 females, 33.1 ± 10.8 years)
with focal epilepsy during quiet wakefulness with eyes closed, NREM
sleep (N2 and N3), and REM sleep. The dataset contains 1772 channels
duringWake40, 1468 channels in NREM sleep and 1012 channels in REM
sleep35.
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Preprocessing. Already pre-processed data was accessed from the MNI
database, which provides channels of bipolar data collected from neigh-
boring pairs of electrodes. Briefly, raw data were low-pass filtered at 80 Hz
and resampled to 200Hz. Line noise was attenuated using an adaptive
filtering approach that estimated the amplitude of the line noise frequency
(50 or 60 Hz depending on recording site) and the first two harmonics,
whichwere subsequently removed. The datawere then visually inspectedby
an expert neurophysiologist, and artefactual segments of the signal were
removed. Consequently, for some patients, the data used to compile one
minute of recording comprised several non-consecutive segments. Each
channel in each segment was demeaned, and when continuous 60 s data
were unavailable, multiple shorter segments were concatenated. To mini-
mizepotential artifacts at segment boundaries, a 2-s buffer of zero amplitude
was inserted between concatenated artefact-free segments. Up to five such
segments were concatenated per condition, resulting in a maximum of four
2-second buffers and a maximum total duration of 68 s (60 s of EEG data
plus 8 s of inter-segment buffers). As the number of clean segments varied
across recordings, the number of inserted buffers also differed. Therefore, to
ensure uniformity in signal length across all channels, sleep stages, and
patients, signals shorter than 68 s were zero-padded at the end to reach a
consistent length of 68 s. This standardization ensured consistent data and
buffer durations across all recordings, preserving the comparability of PSD
estimates across channels, sleep stages, and participants. The data set con-
tains signals organized into 38 brain regions, with each region containing
data from five patients. The five patients differed between regions but were
always the same across sleep stages per region. Detailed preprocessing steps
are described in the associated paper35.

EEG data. We further analyzed a dataset of high-density EEG from 17
healthy human participants (14 females, 22.6 years ±2.3) who spent two
nights in the sleep laboratory at the University of Salzburg36. We did not
collect data on the race or ethnicity of the participants. The first night
served as an adaptation night, in which we recorded polysomnography
(PSG) data. The second night was an experimental night, during which
we recorded PSG data while also presenting sounds throughout the
night. For the analyses presented here, we used data only from the
experimental night. The sounds were the subject’s own name (SON) and
two unfamiliar names (UNs) spoken by either a familiar voice (FV) to
the subject or an unfamiliar voice (UFV). The stimuli were played via in-
ear speakers and started immediately when the subjects went to bed.
Throughout the night, auditory stimuli were presented continuously for
90 min (stimulation periods) then followed by a 30-min phase of quiet
sleep (no-stimulation periods). This accounts for a 120-min cycle that
was repeated four times during the night. We adjusted the sound volume
individually for each participant based on their preference, ensuring that
it was clearly audible without being excessively loud to avoid disrupting
their sleep. We jittered the inter-stimulus interval between 2800 and
7800 ms in 500 ms steps. At the beginning of the experiment, all par-
ticipants signed written informed consents. Participants received com-
pensation in the form of money or credit hours upon completion of the
experiment. The ethics department of the University of Salzburg
approved the experiment. Acquisition and preprocessing: We used a
high-density EEG 256-channel GSN HydroCel Geodesic Sensor Net
(Electrical 478 Geodesics Inc., Eugene, Oregon, USA) and a Net Amps
400 amplifier. Data were acquired at a sampling rate of 250 Hz with Cz
as the online reference. For preprocessing, face and neck channels (53
channels) were excluded and the analyses were carried out on 183 EEG
channels. We high-pass-filtered the signal from these channels at 0.1 Hz,
then removed the 50 Hz line noise using a notch filter. Thereafter, we
removed and interpolated bad channels, restored the reference electrode
(Cz), and re-referenced the data to an average reference using the PREP
pipeline41. Finally, we performed independent component analysis
(ICA) in EEGLab and visually labeled and removed noise-, heart-, and
eye-related components.

Simulated data. For demonstration purposes of fitting spectral models,
we simulated an example neural power spectrum using the specparam
toolbox32, with a frequency range of 1–45 Hz including two oscillatory
peaks at 10 and 30 Hz, a knee frequency at 13.13 Hz, an exponent
value of 1.25.

Sleep staging and K-complex (KC) detection
Sleep EEG data were scored semi-automatically using an algorithm
developed by the Siesta group (Somnolyzer 24×7; The SIESTA Group
Schlafanalyse GmbH., Vienna, Austria42,43, based on the criteria of the
American Academy of Sleep Medicine (AASM)44. Sleep staging was
conducted using two frontal (F3, F4), two central (C3, C4), two parietal
(P3, P4), and two occipital (O1, O2) EEG electrodes. Two EOG channels
were extracted from the high-density EEG cap: one positioned above the
right eye and the other below the left eye, both referenced to the right
mastoid. Bipolar EMG channels were recorded from facial muscles using
EEG electrodes placed above the cheek muscles, with one electrode on
each side of the face.

For the detection of K-complexes (KCs), we employed a dedicated
algorithm developed by the SIESTAGroup, which has been validated for its
effectiveness in identifyingKCs45,46. Briefly, the detectionwas carried out in a
two-step process; first, the algorithm detects possible KCs via an approach
that combines a matched-filtering detection method and a slow-wave
detectionmethod47. First, events that had (a)minimumnegative-to-positive
peak-to-peak amplitude of 50mV and (b) a duration between 480 and
1500ms were detected. Second, all detected events were matched to a
prototypical template via wavelet analysis, and we used linear discriminant
analysis (LDA) to select only real KCs. For our analysis, we considered real
KCs tobe eventswith anLDAscoreof 0.8orhigher.KCsweredetected atC3
andC4, and the events detected atC3wereused for the analysis. EvokedKCs
were defined as events that started within the 2 s post-stimulus-onset win-
dow during N2 sleep. Further details on the sleep architecture-related
processing are described in ref. 48.

PSD estimation
PSD estimation across entire sleep stages (EEG and iEEG data). To
estimate power spectra across entire sleep stages, we used Welch’s
method49 on both EEG and iEEG data, with a 15 s window length with
50% overlap and tapered with a Hamming window. We created average
PSDs per stages by taking the mean over all segments per epoch then
averaging over all epochs. To compare the performance of the model at
different frequency ranges and time windows of PSD calculation, we
employed different time windows and frequency ranges for Welch’s PSD
calculations, with all other settings left unchanged. We used four dif-
ferent time windows (5 s, 10 s, 15 s, 20 s) and examined different fre-
quency ranges covering either broad (1–30 Hz, 1–45Hz, 1–60Hz,
1–75 Hz) or and narrow ranges (30–45Hz, 25–45 Hz, 1–20 Hz, 1–8 Hz).
These ranges were informed by the literature search. Additionally, we
varied the locations of the frequency bands while keeping the bandwidth
fixed (1-20 Hz, 10-30 Hz, 20-40 Hz, 30-45 Hz) to control for possible
effects related to the position of the frequeny range. We report the results
averaged over all sleep stages of iEEG (Wake, N2, N3, and REM) or EEG
(Wake, N1, N2, N3, and REM) data. For the whole night time-frequency
plot, we plotted the average value per epoch.

PSD estimation across sleep stage transitions (EEG data only). For
analyses across sleep stage transitions, the EEG data were segmented into
20 s intervals with a moving window of 2 s, resulting in a 90% overlap
between adjacent segments.We then appliedWelch’smethod to calculate
the PSD for each of these segments using the same parameters outlined in
section above. We focused on segments falling within a 120 s timeframe
around the transitions, extending from 60 s before to 60 s after each
transition, to capture the spectral dynamics occurring around these
changes in sleep stages.
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Analysis of the temporal dynamics during specific events (EEG
data only). For measuring aperiodic activity during auditory stimulation
and KC events, we computed frequency representations using a multi-
taper approach within the 1–45 Hz frequency range, with 0.5 Hz steps.
We used Discrete Prolate Spheroidal Sequences (DPSS) as tapers and
performed FFT-based convolutions with the number of cycles for each
frequency set to match the frequency, resulting in a consistent time
window of 1 s across all frequencies (e.g., at 1 Hz: 1 cycle→ 1 swindow, at
45 Hz: 45 cycles → 1 s window). EEG data were segmented into 10-s
epochs centered around the event of interest (stimulus onset or KC
onset). Bad epochs (amplitude fluctuations >1000 μV) were excluded
from analysis. To avoid edge artifacts, the first and last second of each
epoch were discarded. We then baseline-corrected the resulting time-
resolved aperiodic estimates by subtracting the mean of the estimates in
the 500 ms pre-stimulus-onset window. We used a sampling rate of
250 Hz for all time-resolved analyses except for KC vs no-KC analysis,
where we downsampled the data to 128 Hz, as KCs were scored on
downsampled data. For KC analysis, we used 74.47 ± 45.04 trials on
average per subject. For the comparison between the exponent during
stimulation and no-stimulation periods, one subject was removed from
NREM and another from REM analysis due to poor model fit (R2 values
lower than 2 standard deviations below the mean). Thus, these analyses
were conducted on 16 subjects. Further, for NREM, we restricted the
analysis to only N2 and N3 stages, since brain responses to external
stimuli are well documented during these stages.

Spectral parametrization
The specparam toolbox (formerly: ‘FOOOF’, v1.0.0) was used to para-
metrize iEEG and EEG power spectra32. Unless otherwise specified, power
spectra were parameterized across the frequency range 1–45Hz. This fre-
quency range was used as a standard, except in cases where we specifically
focused on investigating the impact of different frequency ranges. Settings
for the algorithmwere defined as: peak width limits: 1–12Hz, max number
of peaks: 8; minimum peak height: 0; peak threshold: 2. Aperiodic activity
was defined according to the formula: 10b × 1/(k+ f1/x), where x is the
exponent at given frequency range (f), b is the y-axis intercept and k is the
knee parameter. The aperiodic mode was set to either ‘fixed’ for a fixed/
single-exponent model, i.e. a model that fits a single exponent value to the
whole spectrum was used or ‘knee’ when adding a knee parameter to the
model, which models a bend in the PSD at a specific frequency after which
the exponent changes. The knee frequency is calculated from the knee
constant using the formula: kneefreq = k1/x, where k is the knee value, and x is
the exponent30. We excluded knee frequency values that were more than
2 standard deviations from the mean knee frequency for each subject and
each sleep stage. Further, we checked the goodness-of-fit (R2) for all the
spectral models. To examine potential changes in aperiodic parameters
across the course of the night, we split the total number of epochs, per sleep
stage, into quartiles, and examined average exponent values per quartiles
across participants.

Event-related potential (ERP) analysis
Tomeasure the auditory ERPsof all stimuli aswell as the difference between
the ERPs of the different stimulus categories (FV vs. UFV and SON vs.
UNs), the data were segmented into 10 s epochs centered around stimulus
onset. We performed baseline correction using the 500 ms prestimulus-
onset window and according to the formula: (data –mean baseline values)/
meanbaseline values, followed by calculating the grand average of all epochs
per participant

Classification analysis
In order to evaluate thediscriminability of different sleep stagesbased on the
estimated aperiodic parameters, classification analysis was done using the
scikit-learn toolbox50. We employed an LDA classifier with K-fold cross-
validation (5 splits, 2 repetitions). The number of 30 s epochs per stage was
equalized and the total number of trials over all stages used for training and

testing was equalized between conditions. For iEEG data regions with less
than25 trials per conditionwerediscarded leavingdata from16out of the 38
regions average, the number of epochs used per subject was 41.25 ± 19.72
per condition for the iEEG data and 182.7 ± 0.47 for the EEG data. We
employed a stratified K-fold cross-validation with 5 splits and 2 repetitions,
ensuring that in each iteration, the classifier was trained on 80% of the trials
and evaluated on the remaining 20%. Chance levels were defined as the
reciprocal of the numberof alternative outcomes. For instance, in the case of
a five-class classification, a chance level of 1/5 or 0.2, denotes the accuracy
level that could be achieved only by guessing. To assess the relative
importance of the knee frequency and Exponent in the knee Model, we
performed a random forest analysis using 100 estimators with 5-fold cross-
validation. Subsequently, we conducted a permutation feature importance
analysis with 1000 repetitions to quantify the contribution of each feature to
themodel’s predictive performance. To address collinearity, we reduced the
number of features to one, ensuring that the analysis focused on a single
predictor at a time.

Statistical analysis
For comparisons of exponent values and knee frequencies across sleep
stages as well as decoding accuracies between different parameters, we
performedFriedman chi-square tests and reported chi-square (X2) statistics,
p-values, as well as Kendall’sW as ameasure of effect size.Wwas computed
by the equation: W =X2/N(K-1), where N is the sample size and K is the
number of measurements per subject. Kendall’s W ranges between 0,
indicating no relationship, and 1, indicating a perfect relationship. Inter-
pretation of W values followed commonly used benchmarks, where W
values between 0.00 and 0.20 indicate slight agreement, 0.21–0.40 fair
agreement, 0.41–0.60 moderate agreement, 0.61–0.80 substantial agree-
ment, and values above 0.80 reflect almost perfect agreement51. We per-
formed post-hoc tests, when applicable, via Dunn’s test with Bonferroni’s
correction formultiple comparisons and reported the z-values, p-values and
Cliff’s delta (cd) as a measure of effect size which is interpreted using the
following values: <0.33 (small), from 0.33 to 0.474 (medium), and ≥0.474
(large)52. To provide 95%confidence intervals for cd,we used a large-sample
normal approximation. Specifically, Cliff’s delta was expressed as cd = 2
p− 1, where p denotes the probability that a randomly chosen observation
fromone group exceeds an observation from the other group. The standard
error of p was approximated as: SEp = √p(1-p)/(n1*n2), with n1 and n2
denoting the group sizes. The 95%CI for pwas calculated as p ± 1.96⋅SE and
subsequently transformed back to Cliff’s delta. This procedure assumes
independence of pairwise comparisons and no ties, and should be regarded
as an approximation. For comparing R2 values between broadband and
narrowband frequency ranges, we performed aWilcoxon sign-rank test and
reported W as test statistic, p-values and rank biserial correlations (r) as a
measure of effect size. Correlations between knee frequency and exponent
values were performed either using Pearson’s or Spearman’s according to
the results of the normality test and correlation coefficients and p-values
were reported.

We measured model performance using the Bayesian Information
Criterion (BIC) for Gaussian models53 for the different models, calculated
through the equation: BIC =N × log(mse)+ np * log(N), where N is the
sample size,mse is themean squared error calculated as square of themodel
error parameter, and np is the number of parameters in themodel. Since we
fit a maximum of 8 peaks, the number of parameters was equal to:
n_peaks * 3+ n_ap_params, where n_peaks depends on the model fit (up
to a maximum of 8), and n_ap_params was 2 for the fixed model (offset,
exponent), and 3 for the kneemodel (offset, knee, exponent). Adifference in
BIC between the twomodels between 0 and 2 constitutes ‘weak’ evidence in
favor of the model with the smaller BIC, a difference between 2 and 6
constitutes ‘positive’ evidence; and a difference above 6 constitutes ‘strong’
evidence54.

We compared classification accuracies against chance levels using a
permutation t-test.We createdan array of chance level values that is equal to
the original array of observations. Then, we generated a distribution by
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shuffling the labels of the two arrays then split the resulting array into two
before performing a t-test. This process was repeated 10,000 times and we
calculated the averages of t-value.We report Bonferroni-corrected p-values,
and Cohen’s d effect sizes.We compared feature importance results using a
parametric t-test and reported Cohen’s d effect sizes. To track the change in
aperiodic parameters (exponent and knee frequency) across epochs of sleep
stages, a regression analysis was done for every sleep stage using the stats-
models toolbox in Python55 and the regression coefficients (R2), the F-sta-
tistics, and the p-values were reported. Comparison of time-series data was
done using a cluster-based permutation analysis implemented in the
Fieldtrip toolbox56,57 in Matlab (v. 2019a) using a two-sided t-test and 5000
permutations. Alpha level was set at 0.025 and we report the sum of
t-statistics (∑t) of the cluster, p-values aswell asCohen’s dmeasuredover all
possible permutations.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Model selection for estimating aperiodic activity
Aprimary aim for this studywas tobroaden the scopeof analyzing aperiodic
activity during sleep. Given the growing interest in this field in recent years
(Fig. 1A), previous studies have employeddiverse frequency ranges (Fig. 1B)
and model forms, which can lead to substantial variability in the resulting
fits (Fig. 2). To address this, we first systematically investigated how the
selection of frequency ranges and model forms influences the results.

To evaluate the impact of the chosen frequency range on themeasured
aperiodic parameters, we manipulated two settings of the PSD estimation
procedure: a) the frequency range themodel isfit to, andb) the timewindow
used in Welch’s power estimation, which influences the frequency resolu-
tion. For this analysis, we used the iEEG dataset, including all patients,
regions, and sleep stages, to fit a fixed exponent model to either broad
(Fig. 3A) or narrow frequency ranges (Fig. 3B). This approach allowed us to
evaluate the stability of the models across varying conditions. The results

demonstrated that although all models had consistently high R2 values,
irrespective of frequency range or time window (all >0.86), R2 values were
significantly higher for broadband (0.99 ± 0.004) ranges as compared to
narrow band (0.95 ± 0.04) ranges (Wilcoxson sign rank test: W = 136,
p < 0.001, r = 0.92). Broadband models also showed less variation in R2

values between the different frequency ranges and time windows (Fig. 3C,
Wilcoxson sign rank test:W = 0, p < 0.001, r = 0.98), suggesting thatmodels
fit on broadband ranges provide more stable model estimates.

Furthermore, the exponent values calculated across various broad and
narrow frequency ranges (Supplementary Fig. 3A, B) exhibited substantially
reduced variability with broad ranges relative to those derived from narrow
frequency bands (Fig. 3D,Wilcoxson sign rank test:W = 0, p < 0.001, r = 1).
Additionally, to examine the association between model fit stability and
spectral estimates, we compared the variance of spectral exponents with the
variance of R2 values using Spearman correlation analyses, conducted
separately for broadandnarrow frequency rangeswhile controlling for sleep
stage (Fig. 3E). In the broad frequency range, the partial correlation revealed
amoderate positive association between exponent variance and R2 variance
(rho(13) = 0.37, p = 0.003, 95% CI = [0.13, 0.56]). A similar effect was also
observed in the narrow frequency range,with a partial correlationof r = 0.37
(rho(13) = 0.003, 95% CI = [0.14, 0.57]). These results indicate that greater
variability in model fits corresponds to greater variability in exponent
estimates, suggesting that instability in model fitting can reduce the
replicability of spectral exponent measures.

We observed similar results using the knee model (Supplementary
Fig. 3C, D). However, in the EEG data, model performance varied more
notably with frequency range: broader ranges yielded lower model fits
compared to narrower bands. For instance, the 1–8Hz range resulted in
a higher model fit than 1–65Hz and 1–75Hz (Supplementary Fig. 4).
Further, we foundno correlation between theR2 and exponent values across
all models, indicating that the exponent values are not systematically biased
by model fit quality (Supplementary Fig. 5). To validate our analysis and
disentangle whether differences inmodel fits were driven by the bandwidth
(narrow vs. broad) or the location of the frequency range used (low vs. high
frequencies), we conducted additional analyses where we varied either the

Fig. 1 | Review of literature on aperiodic activity during sleep. A The number of
peer-reviewed articles retrieved from searches combining “sleep” with predefined
electrophysiological measures. Specifically, searches included: i) aperiodic activity
(“aperiodic exponent,” “spectral slope,” “1/f,” and “power-law exponent”), ii) Lya-
punov exponent (“Lyapunov exponent,” “Largest Lyapunov exponent,” “Maximal
Lyapunov exponent,” “Lyapunov characteristic exponent”), and iii) chaotic
dynamics (“chaos,” “chaotic dynamics,” “deterministic chaos,” “nonlinear dynam-
ics,” “chaotic measures”). Results were restricted to electrophysiological modalities
(“EEG,” “MEG,” “iEEG”) and aggregated over two-year intervals. Notably, the

number of articles investigating aperiodic activity during sleep increased sub-
stantially in recent years, whereas studies on Lyapunov exponents and chaotic
dynamics did not witness such growth. This contrast indicates that the observed rise
reflects a specific increase in interest in aperiodic activity rather than a general trend
across electrophysiologically-derivedmeasures of sleep.BAheatmap illustrating the
frequency ranges used to measure aperiodic brain activity in the sleep literature.
Each number represents the number of studies using the frequency range defined by
the lower limit on the x-axis and the upper limit on the y-axis.
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width of the frequency band (Supplementary Fig. 6A) or its location along
the spectrum (Supplementary Fig. 6B). These analyses revealed a decline in
model fit (R2) when narrower frequency bands were used or when lower
frequencies were excluded. Collectively, while R2 values do not in isolation
adjudicate between good and bad models (see e.g. Fig. 2), these results
suggest that fitting spectral models over broader frequency ranges, parti-
cularly those that include lower frequencies, provides more reliable
estimates.

Stage-specific aperiodic activity in iEEG data
To examine the results of different models for estimating aperiodic
parameters in empirical data, we analyzed publicly accessible iEEG sleep
data containing epochs from Wake, N2, N3, and REM sleep35. In a first
step, we visually inspected the PSDs of the different sleep stages,

averaged over cortical regions (Fig. 4A). Based on the visible appearance
of a knee in the PSDs, we fit a knee model, as illustrated in the annotated
model-fit example (Fig. 4B). The knee model better captured the data as
compared to using the fixed model (Supplementary Fig. 7). Moreover,
the single-region PSDs per sleep stage (Fig. 4C) demonstrated that when
the knees were detected in the average PSD, they were consistently
present across the recorded brain areas but varied in their frequencies
across stages.

Previous findings have reported that the spectral exponent differs
between sleep stages12–14,18. We sought to replicate these findings using both
the knee model and the fixed model. Applying the knee model, the differ-
ence in the exponent values between the stages was significant (Fig. 4D left;
Friedman chi-square test: X2 = 46.11, p < 0.001,W = 0.4). Dunn’s post-hoc
test with Bonferroni’s correction revealed that the exponent decreased

Fig. 2 | Schematic ofmeasuring aperiodic activity frompower spectra, examining
different frequency ranges and model forms. A An example of a simulated power
spectrum, with 2 oscillatory peaks at 10 Hz and 30 Hz, a knee at 13.13 Hz and an
exponent of 1.25. Periodic components are highlighted in green, and the simulated
aperiodic component is shown as dashed blue line. B An example spectral model fit
using a ‘knee’model, i.e. amodel that incorporates a knee parameter, with annotated
spectral features. Notably, fitting this model over a broad frequency range (1–45 Hz)
produced a very high goodness-of-fit measure (R2 = 0.99) and low mean squared
error (MSE = 0.004). C Example spectral model fit using the same frequency band
butfitting afixedmodel, i.e. amodel that assumes a single exponent value, resulted in

a high R2 (0.99) but increased error (MSE = 0.013) as compared to the knee model.
Note the difference in the number of oscillatory peaks (green) between B and C -
while both models can attain high R2, if there is a model mismatch, the fixed model
tends to overfit oscillatory peaks. D An example model fit of a fixed model fit
over a narrow (30–45 Hz) frequency band. This model had the lowest model per-
formance (R2 = 0.95, MSE = 0.016). For an example of fitting a model without
simulated a knee component see Supplementary Fig. 2, which also shows that
both the knee and fixed models resulted in high and comparable performance
levels (both with an R2 of 0.99), in contrast to the narrowband model fit which
had a lower fit value (R2 = 0.95).
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significantly from wakefulness to N2 (pbonf < 0.001), to N3 (pbonf < 0.001),
and to REM (pbonf < 0.001). There was no statistically significant difference,
however, between the exponents of the different sleep stages (N2-N3, N2-
REM, andN3-REM: pbonf = 1), see Table 1 for the detailed statistical results.
Importantly, the knee frequency exhibited significant stage-dependent
differences (Fig. 4D right; Friedman chi-square test: X2 = 95.34, p < 0.001,
W = 0.84). Specifically, the knee frequency decreased from Wake to N2
(pbonf < 0.001), toN3 (pbonf < 0.001), and to REM (pbonf = 0.001).Moreover,
the knee frequency was lower for N3 than N2 (pbonf = 0.001) and REM
(pbonf < 0.001), but did not differ between N2 and REM (pbonf = 0.13) The
detailed results of the post-hoc tests are reported in Table 2. We also
observed significant stage-specific differences in the exponent of the fixed
model (Fig. 4E, Friedman chi-square test: X2 = 99.69, p < 0.001, W = 0.87),
replicating previous work. Specifically, the exponent decreased significantly
fromWake toN2 (p_bonf < 0.001),Wake toN3 (pbonf < 0.001), fromN2 to
N3 (pbonf = 0.001), from N2 to REM (pbonf < 0.001), and from N3 to REM
(pbonf < 0.001). However, there was no significant difference between
Wake and REM (pbonf = 1). The detailed results are reported in Table 3.
R2 values of the models are depicted in Supplementary Fig. 8. It is also
important to note that the knee model we use fits a Lorentzian function,
which assumes a flat exponent below the knee frequency. As this is not
always true, we aimed to assess whether pre-knee exponents differ across
stages. Thus, we fit a fixed model to the frequency range from 1 Hz up to

the knee frequency. The resulting exponents showed sleep-stage-dependent
variations (see Table 4 and Supplementary Fig. 9).

To test whether the aperiodic parameters are good predictors of the
difference between sleep stages, we employed an LDA classifier trained
on the knee frequency, the exponent of the knee model, or the exponent
of the fixed model, using brain regions as features (Fig. 4F). The classi-
fication results revealed significantly above chance-level classification
accuracy using the knee frequency (t(15) = 10.57, pbonf < 0.001, d = 3.73),
the exponent of the fixed model (t(15) = 18.28, pbonf < 0.001, d = 6.46), as
well as the exponent of the knee model (t(15) = 5.61, pbonf < 0.001,
d = 1.99). A comparison of the three parameters yielded significant dif-
ferences (χ2(2) = 24.13, p < 0.001, W = 0.75). Dunn’s post-hoc test with
Bonferroni’s correction revealed no significant difference in decoding
accuracy between knee frequency and the exponent of the fixed model
(z(15) = 1.79, pbonf = 0.22, d = 0.4). However, decoding with the exponent
of the knee model was significantly worse than with that of the fixed
model (z(15) = 5.03, pbonf < 0.001, d = 1) or with the knee frequency
(z(15) = 3.23, pbonf = 0.004, d = 0.7).

Given this pattern of multiple aperiodic parameters relating to sleep
stages, we next sought to explore the potential relationship between these
parameters. To do so, we computed Spearman correlations between the
knee frequency and the exponent estimates while controlling for sleep
stages. Comparing the knee frequency of the knee model and the exponent
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Fig. 3 | Effects of frequency range and time window on model performance in
iEEG data. A The R2 values, indicating goodness-of-fit, for models applied to dif-
ferent broad frequency ranges (x-axis) and with different time windows (y-axis).
BTheR2 values formodels using narrow frequency ranges. Note the variability ofR2

values in comparison to (A). Models incorporating broadband frequencies
demonstrated a marked reduction in variance for C R2 values and D estimated
exponents. E The relationship between R2 variability and exponent variability.

A significant positive correlation was observed between the variances in R2 and
exponent values of the narrow andbroad frequency ranges. iEEGdatawere obtained
from 38 brain regions across 106 subjects, with each region including a different
subset of subjects. Each point on the graphs symbolizes the value for a particular
combination of time window and frequency range, averaged across data from all
sleep stages. **p < 0.001.
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of the fixedmodel – there was a significant negative correlation (Fig. 4G left;
rho(149) =− 0.64, 95% CI [−0.73,− 0.54], p < 0.001). This relationship is
reversed when examining the exponent values resulting from the knee
model. Specifically, the correlation between the knee frequency and the
exponent of the knee model was positive and significant (within-model
correlation: Fig. 4G right; rho(149) = 0.61, 95% CI [0.50,0.70], p < 0.001).
Further we conducted a Spearman correlation to examine the relationship
between the exponents from the two differentmodels and found aweak and
non-significant correlation (Fig. 4H; rho(149) = 0.08, 95% CI [−0.08,0.23],
p = 0.35). These findings highlight a potential interdependence between the
knee frequency and the spectral exponent, suggesting that in the presence of

a knee, exponent estimates derived from the fixed model may par-
tially reflect underlying changes in the knee frequency. In the context of
sleep data, this suggests that previously reported sleep-stage differences in
the exponent may, at least in part, be driven by differences in the knee
frequency between sleep stages, as seen herewhen explicitlymeasuring knee
models.

To compare the performance of the two models in the iEEG data, we
used the Bayesian Information Criterion (BIC) for Gaussian distributions
(Fig. 4I), which is based on the likelihood function and evaluates model fit
while penalizing complexity. BIC differences between the knee and fixed
models favored the knee model across all sleep stages, as indicated by the
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negative difference (knee - Fixed) values (Wake: −4.71, N2: −1.82, N3:
−4.04, REM:−4.77).Additionally, to identify the strongerpredictor of sleep
stages (knee frequency vs exponent) within the kneemodel, we conducted a
random forest analysis followed by permutation importance analysis
(Fig. 4J). Results showed that the knee frequency (permutation importance:
0.14 ± 0.07) is significantly more important than the spectral exponent
(permutation importance: 0.07 ± 0.05) (t(15) =−5.13, p < 0.001, d = 1.06),
suggesting that within the knee model the knee frequency serves as a more
informative predictor of sleep stages than the exponent.

Stage-dependent patterns in EEG aperiodic activity
Based on the results of the iEEG analysis, we next examined sleep-related
aperiodic activity in a full night recording of EEG, as most previous results
are in extracranial data. Starting again with a visual inspection, we saw that
the PSDs across distinct sleep stages revealed differences in the exponent
across stages, as well as a stage-dependent knee (Fig. 5A). Specifically, we
observed a prominent knee during REMsleep that appears to be attenuated
in wakefulness, N1 and N2, and looks to be absent during N3. Figure 5B
illustrates PSDs for different sleep stages, across participants, emphasizing
the consistency of stage differences across all regions, and highlighting the
consistency of the knee parameter in REM sleep.

We next fit spectral models to all 183 EEG electrodes, with the goal of
replicating the analyses from the iEEG data, in order to evaluate the effec-
tiveness of the exponent and knee parameters in differentiating between
sleep stages in EEG data (Fig. 5C, D). Using the knee model, we observed
significant differences in the exponent across sleep stages, similar to the
findings from the iEEG data (Fig. 5C left; X2 = 58.21, p < 0.001, W = 0.86).
Specifically, we observed an increase in the exponent from wakefulness to
sleep, with further variations observed between different sleep stages. The
detailed outcomes of the post-hoc tests can be found in Table 5. Similarly,
the knee frequency differed significantly across sleep stages (Fig. 5C, right;
χ2 = 16.48, p < 0.001,Kendall’sW = 0.41). Post-hoc comparisons viaDunn’s
test revealed the most significant differences between N3 and Wake
(p = 0.02), N3 andN2 (p = 0.004), andN3 andREM(p = 0.03), highlighting

Fig. 4 | Aperiodic activity in iEEG sleep data.AAverage PSDs of the different sleep
stages of the iEEGdata.BAnexample of the aperiodicfit fromone brain region using
the knee model across a broad frequency range in the different sleep stages of the
iEEG data. The model was fit to the average PSD of each sleep stage. C The PSDs of
the different sleep stages, where each color represents a different region.D (Left) The
exponent values from the knee model across sleep stages (fit range: 1–45 Hz). Note
that the exponent values are different between wakefulness and sleep but show no
differences across sleep stages. (Right) The knee frequency values across sleep stages.
Unlike the exponent, the knee frequency differed significantly between sleep stages.
E The exponent of the fixed model (fit range: 1–45 Hz) was significantly different
between sleep stages. F The classification accuracy between sleep stages using an
LDAclassifier that uses either the knee frequency, the exponent of thefixedmodel, or
the exponent of the knee model. All three parameters demonstrated above perfor-
mance in differentiating between sleep stages. G Correlations between the knee
frequency and the exponents of both the knee and the fixed models. The change in

knee frequency correlates negatively with the exponent of the fixed model and
positively with the exponent of the knee model.HCorrelation between exponents of
both models, showing a weak, non-significant positive correlation. I, J Comparison
of aperiodic models and features in iEEG data. I) BIC comparison between the knee
model and the fixed model. (Left) absolute BIC values for both models across sleep
stages, with lower values indicating better fit. (Right) BIC difference (knee -
fixed) across sleep stages. Negative values indicate that the knee model outperforms
the fixed model. Dots represent mean values, and lines indicate 95% confidence
intervals. J Random forest feature-importance analysis comparing the knee fre-
quency and the exponent of the knee model, indicating greater importance of the
knee frequency. Dots representmean values, and lines show the standard error of the
mean (SEM). iEEG data were obtained from 38 brain regions across 106 subjects,
with each region including a different subset of subjects. Each dot represents one
brain region in the iEEG data. Horizontal lines represent chance level
(0.25). **p < 0.001.

Table 2 | The statistical results of the post-hoc Dunn’s test to
the Friedman test of the difference in knee frequencies
between sleep stages in iEEG

Pairwise z p cd [95% CI]

Wake vs N2 6.18 <0.001 0.94 [0.92, 0.97]

Wake vs N3 8.21 <0.001 0.99 [0.98, 1.00]

Wake vs REM 3.87 0.001 0.73 [0.68, 0.78]

N2 vs N3 3.76 0.001 0.78 [0.73, 0.83]

N2 vs REM 2.31 0.13 0.47 [0.39, 0.55]

N3 vs REM 6.07 <0.001 0.86 [0.82, 0.90]

Upper bound of CI clipped at 1.00 because Cliff’s δ cannot exceed 1.
z z-value, p Bonferroni-corrected p-values, cd Cliff’s delta effect size.

Table 3 | The statistical results of the post-hoc Dunn’s test to
the Friedman test of the difference in exponent values of the
fixed model between sleep stages in iEEG

Pairwise z p cd [95% CI]

Wake vs N2 5.22 <0.001 0.92 [0.88, 0.95]

Wake vs N3 8.21 <0.001 1 [0.98, 1.00]

Wake vs REM 0 1 0.26 [0.16, 0.36]

N2 vs N3 3.70 <0.001 0.98 [0.96, 1.00]

N2 vs REM 4.02 <0.001 0.84 [0.79, 0.89]

N3 vs REM 8.21 <0.001 0.99 [0.97, 1.00]

Upper bound of CI clipped at 1.00 because Cliff’s δ cannot exceed 1.
z z-value, p Bonferroni-corrected p-values, cd Cliff’s delta effect size.

Table 4 | The statistical results of the post-hoc Dunn’s test for
sleep-stage differences in pre-knee exponent in iEEG data

Pairwise z p cd

Wake vs N2 6.08 <0.001 0.92 [0.90, 0.94]

Wake vs N3 8.21 <0.001 0.99 [0.98, 1.00]

Wake vs REM 1.94 0.05 0.56 [0.52, 0.60]

N2 vs N3 2.34 0.02 0.64 [0.60, 0.68]

N2 vs REM 3.26 0.001 0.69 [0.66, 0.72]

N3 vs REM 6.41 <0.001 0.92 [0.90, 0.94]

Upper bound of CI clipped at 1.00 because Cliff’s δ cannot exceed 1.

Table 1 | The statistical results of the post-hoc Dunn’s test to
the Friedman test of the difference in exponent values of the
knee model between sleep stages in iEEG

Pairwise z p cd [95% CI]

Wake vs N2 5.45 <0.001 0.79 [0.76 0.82]

Wake vs N3 5.74 <0.001 0.82 [0.79 0.85]

Wake vs REM 5.82 <0.001 0.77 [0.74, 0.80]

N2 vs N3 0 1 0.04 [−0.01 0.10]

N2 vs REM 0 1 0.07 [0.02 0.12]

N3 vs REM 0 1 0.03 [−0.02 0.08]

z z-value, p Bonferroni-corrected p-values, cd Cliff’s delta effect size.
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the significantly low knee frequency in N3. For detailed post-hoc statistics,
see Table 6.When applying a fixedmodel (fit range 1–45Hz), the exponent
also showed a significant difference between sleep stages (Fig. 5D; Friedman
chi-square test:X2 = 61.93, p < 0.001,W = 0.91). The results of the post-hocs
test are detailed in Table 7. The R2 of the various models for different sleep
stages are depicted in Supplementary Fig. 10A, B.

To investigate how aperiodic parameters vary across sleep stages, we
examined the classification accuracies using the different exponent esti-
mates with EEGelectrodes as features, including the exponent of the a) knee
model, b) fixed model broad range, and c) fixed model narrow range
(30–45Hz), which was added to compare to previous reports. The results
showed that the exponents of allmodels performed significantly higher than
chance levels (Fig. 5E; exp_knee: t(16) = 17.47, pbonf < 0.001, d = 5.99,
exp_fix_broad: t(16) = 16.87, pbonf < 0.001, d = 5.79, exp_fix_narrow:
t(16) = 17.65, pbonf < 0.001, d = 6.05). Comparing the accuracies of these
three parameters demonstrated a significant difference between the accu-
racy values from the differentmodels (Friedman chi-square test:X2 = 25.53,
p < 0.001,W = 0.75). Post-hoc comparisons viaDunn’s test revealed that the
exponent of the fixed model (broad range) performed significantly higher

than that of the knee model (z(16) = 4.03, pbonf < 0.001, d = 0.81), and the
exponent fit over the 30–45 (narrow) range (z(16) = 3.93, pbonf < 0.001,
d = 0.76). There was no statistically significant difference between the
exponent of the knee model and that of the narrow range (z(16) = 0.1,
pbonf = 1, d = 0.02).

Similar to our analysis of iEEG data, we computed the BIC difference
between the knee model and the fixed model in EEG data (Fig. 5F). The
results revealed a sleep stage-dependent performance for these models.
Specifically, we calculated the BIC differences between the knee and fixed
models (Knee - Fixed) inEEGdata.The results indicate strongevidence for a
better fit of the knee model during Wakefulness (−8.22), N1 (−6.77), and
REM sleep (−14.9). In contrast, the fixedmodel provided a better fit during
N2 (45.52) and N3 (9.95), as reflected by lower BIC values. Further,
Spearman correlation analysis while controlling for sleep stages (Supple-
mentary Fig. 10C, D) revealed a significant negative correlation between the
knee frequency and the exponent of the fixed model (between models;
rho(73) =−0.31, p = 0.006, 95% CI = [−0.5, −0.09]), consistent with find-
ings from iEEGdata. However, we found no significant correlation between
the knee frequency and the exponent of the knee model (within-model;

Fig. 5 | Aperiodic activity in EEG sleep data. A PSDs of the different sleep stages
calculated at electrode Cz.BThe PSDs of the different stages per subject measured at
electrode Cz. Note the stage-dependent observation of the ‘knee’ in the PSD.
C Exponent values (left) and knee frequency values (right) of the knee model (fit
range: 1–45 Hz) across sleep stages. D Exponent values of the fixed model across
sleep stages (fit range: 1–45 Hz). The exponents of both the kneemodel and the fixed
model significantly differed between sleep stages, while the knee frequency did not.
E Classification accuracy of sleep stages based on the EEG exponent of the different
sleep stages using an LDA classifier trained on the fixed model exponent, the knee
model exponent, or the exponent of a fixed model with a narrow band (30–45 Hz).
Regardless of the frequency range and the model used, the classifier was able to use
the exponent to classify between the stages with an above chance (0.2) accuracy.

F BIC comparison between the knee model and the fixed model suggesting that the
knee model provided a better fit than the fixed model in a stage-dependent manner.
The left panel presents absolute BIC values for bothmodels across sleep stages, while
the right panel shows their difference (knee - fixed). Negative values indicate that the
kneemodel outperforms thefixedmodel. Note the differences of the preferredmodel
across stages. Dots represent mean values, and lines indicate 95% confidence
intervals. G Topographical maps depicting the spatial distribution of the
exponent of the knee model (top) and the knee frequency (bottom) across the
scalp. Note the consistency of the central topography of the exponent and the
knee frequency across stages. We used EEG data from 17 healthy participants
during overnight sleep. Each dot represents one participant of the EEG dataset.
Horizontal lines represent chance level (0.2). *p < 0.05, **p < 0.001.
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rho(73) =−0.0007, p = 0.99, 95% CI = [−0.23, 0.23]). Overall, these ana-
lyses of model forms and aperiodic parameter relationships to sleep stages
suggest a difference in prominence of the aperiodic knee as compared to the
intracranial data – while there are observable knees in the EEG data, with
differences across stages, the variability of this parameter is such that the
knee frequency is less predictive of different sleep stages.

We also examined the aperiodic parameters across the scalp, whereby
the topographies for the exponent of the kneemodel and the knee frequency
across sleep stages show a consistent spatial pattern of the largest exponent
and knee frequencies around the central and posterior electrodes, with this
topography being consistent across sleep stages (Fig. 5G; see Supplementary
Fig. 10E for the topography of the fixed model).

Time-resolved EEG exponent tracks sleep architecture
Building on the observed differences in aperiodic parameters across sleep
stages, our next aim was to explore the temporal dynamics of aperiodic
activity during sleep (Fig. 6A). Using the kneemodel, we examined changes
of the exponent across time.Todo so,we extracted the exponent at electrode
Cz for each epoch within each sleep stage, perserving the chronological
order of epochs across the entire night. We then analyzed these stage-
specific, time-ordered exponents using separate regressionmodels for each
sleep stage (Fig. 6B). The findings revealed distinct temporal patterns in the
exponent values across different sleep stages. Duringwakefulness, there was
a notable increase in the exponent value as the night advanced. A significant
portion of this increase could be attributed to the passage of time (R2 = 0.83,
F(1,11) = 55.1, p < 0.001). Conversely, we observed a significant effect of
time on the decrease in the exponents during N3 and REM (N3: R2 = 0.26,
F(1,129) = 46.66, p < 0.001, REM: R2 = 0.07, F(1,90) = 7.24, p = 0.008). For
N1, although there was an upward trend in the exponent values, the change
was not statistically significant (R2 = 0.13, F(1,12) = 1.76, p = 0.21), while
during N2 sleep, the exponent values showed no significant change
(R2 = 0.002, F(1,190) = 0.3, p = 0.58).

To further examine the fluctuations in aperiodic activity over the
course of the night, we assessed the changes in the exponent by dividing
epochs for each sleep stage into quartiles and comparing exponent values
across these quartiles (Fig. 6C). In this analysis, the exponent during REM
decreased significantly over quartiles of the night (Friedman chi-square test:
X2 = 13.31, p = 0.004, W = 0.26), while the exponent of N1 increased sig-
nificantly across the night (Friedman chi-square test: X2 = 8.65, p = 0.001,
W = 0.17). There was no statistically significant difference for Wake
(Friedmanchi-square test:X2 = 3.21,p = 0.36,W = 0.06),N2 (Friedmanchi-
square test: X2 = 2.29, p = 0.51,W = 0.04), or N3 (Friedman chi-square test:
X2 = 6.04, p = 0.11,W = 0.12).

Next, we evaluated the temporal precision of the changes in aperiodic
activity by analyzing time-resolved exponent values during transitions
between sleep stages, as identified by our sleep scoring algorithm. To gain
insights into how the exponent values change during these transitions, we
compared them to a baseline condition of equal length where no change in
sleep stage occurred. We specifically focused on the most prevalent transi-
tions during sleep, includingN1 toN2,N2 toN1, andN2 toN3, as indicated
by the transitionmatrix (Supplementary Fig. 11).Comparing the transitions
fromN1 to N2 against a baseline of continuous N1, i.e. two consecutive N1
epochs (Fig. 6D), we found that the exponent increased shortly after the
transition from N1 to N2 reaching a significant difference to that of the
baseline starting at 24 s following the transition (28.71 ± 10.02 trials -
24–60 s: ∑t(16) = 87.82, p < 0.001, d = 1.38). Similarly, when examining
transitions from N2 to either N3 or N1 (Fig. 6E), the results revealed a
significant decrease in the exponent 18 s after transition from N2 to N1
(17.59 ± 7.1 trials - ∑t(16) = 164.24, p < 0.001, d = 1.58), and a significant
increase in the exponent 14 s after the transition from N2 to N3
(22.18 ± 6.81 trials - 14–30 s:∑t(16) = 33.19, p = 0.003, d = 1.38).

Furthermore, we sought to examine a pivotal transition in sleep that
marks a significant change in brain activity: the shift from NREM sleep to

Table 6 | The statistical results of the post-hoc Dunn’s test to
the Friedman test of the difference in knee frequency between
sleep stages in EEG

Pairwise z p Cd [95% CI]

Wake vs N1 <0.001 1 0.30 [0.08, 0.52]

Wake vs N2 <0.001 1 1 [0.92, 1.00]

Wake vs N3 2.40 0.02 1 [0.92, 1.00]

Wake vs REM <0.001 1 1 [0.92, 1.00]

N1 vs N2 <0.001 1 0.1 [−0.12, 0.32]

N1 vs N3 1.14 0.25 0.63 [0.43, 0.83]

N1 vs REM <0.001 1 0.02 [−0.20, 0.24]

N2 vs N3 3.10 0.002 0.92 [0.77, 1.00]

N2 vs REM <0.001 1 0.13 [−0.09, 0.35]

N3 vs REM 2.34 0.02 0.73 [0.53, 0.93]

Upper bound of CI clipped at 1.00 because Cliff’s δ cannot exceed 1.
z z-value, p Bonferroni-corrected p-values, cd Cliff’s delta effect size.

Table 7 | The statistical results of the post-hoc Dunn’s test to
the Friedman test of the difference in exponent values of the
fixed model between sleep stages in EEG

Pairwise z p cd

Wake vs N1 <0.001 1 0.62 [0.57, 0.67]

Wake vs N2 4.68 <0.001 0.89 [0.85, 0.92]

Wake vs N3 6.86 <0.001 0.98 [0.96, 0.99]

Wake vs REM 2.29 0.02 0.83 [0.79, 0.87]

N1 vs N2 3.28 0.001 0.91 [0.87, 0.94]

N1 vs N3 5.54 <0.001 0.99 [0.97, 1.00]

N1 vs REM 0.37 0.71 0.78 [0.73, 0.82]

N2 vs N3 0.84 0.40 0.88 [0.84, 0.92]

N2 vs REM 0.87 0.38 0.88 [0.84, 0.92]

N3 vs REM 3.56 <0.001 0.99 [0.97, 1.00]

Upper bound clipped of CI at 1.00 because Cliff’s δ cannot exceed 1.
z z-value, p Bonferroni-corrected p-values, cd Cliff’s delta effect size.

Table 5 | The statistical results of the post-hoc Dunn’s test to
the Friedman test of the difference in exponent values of the
knee model between sleep stages in EEG

Pairwise z p cd [95% CI]

Wake vs N1 <0.001 1 0.62 [0.47, 0.77]

Wake vs N2 5.23 <0.001 0.96 [0.89, 1.00]

Wake vs N3 6.07 <0.001 0.98 [0.92, 1.00]

Wake vs REM 3.30 0.001 0.89 [0.79, 0.99]

N1 vs N2 3.77 <0.001 0.99 [0.93, 1.00]

N1 vs N3 4.64 <0.001 0.99 [0.93, 1.00]

N1 vs REM 1.63 0.10 0.77 [0.63, 0.91]

N2 vs N3 <0.001 1 0.29 [0.08, 0.50]

N2 vs REM 0.24 0.81 0.52 [0.33, 0.71]

N3 vs REM 1.58 0.11 0.70 [0.53, 0.87]

Upper bound clipped of CI at 1.00 because Cliff’s δ cannot exceed 1.
z z-value, p Bonferroni-corrected p-values, cd Cliff’s delta effect size.
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Fig. 6 | EEG exponent tracks the dynamics of sleep architecture. A Temporally
resolved estimates of the spectral exponent, overlaid on top of the sleep staging and
spectral plot for the entire night, taken from an example subject. B Epoch-by-epoch
exponent values from across the night for each sleep stage. Notably,Wake and N1 show
an increase in the exponent as the night progresses, while N3 and REM show a decrease,
and N2 shows no significant change. C Stage-specific exponent values split across the
quartiles of the night, where each dot represents a subject. The exponent shows no
significant differences across the quartiles, except for N1 where it increases and REM
sleep where it decreases significantly across the night. D–F Time-resolved estimates of
the spectral exponent during sleep stage transitions. Each transition is compared to a
control period of adjacent epochs when no change in sleep stage occurred.D Sleep stage

transition from N1, showing an increase in the exponent in the transition from N1 to
N2 sleep stages, which is significant starting 24 s after transition. E Sleep stage transi-
tions from N2 to either N1 or N3. Post-transition from N2 to N1, the exponent
significantly decreased after 18 s. Conversely, transitioning from N2 to N3 led to an
increase in the exponent, this change was significantly different from the period of
uninterrupted N2 sleep during a short time window (14–30 s). F Transitions from
NREM (N2 and N3) to REM sleep, showing a significant decrease in exponent starting
18 s after the transition. All exponent values in this analysis reflect the exponent of the
kneemodel (fit range: 1–45Hz).We used EEG data from 17 healthy participants during
overnight sleep. Vertical dashed lines in (D–F) indicate the transitions between stages.
Horizontal lines indicate significant clusters.
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REM sleep (Fig. 6F). For this purpose, we analyzed the exponent during the
transition fromNREM (either N2 or N3) sleep to REM sleep, contrasting it
with a baseline period of uninterrupted NREM sleep. The results demon-
strate a significant decrease in the exponent during the NREM-to-REM
transition as compared to the NREM baseline (4 ± 1.53 trials - 16–60 s:
∑t(16) = 73.39, p = 0.002, d = 1.12).

Overall, these results align with the expected changes in the aperiodic
exponent observed in non-time-resolved analyses and highlight the tem-
poral precision of these changes across sleep stages. Additionally, we con-
ducted time-resolved analyses of sleep stage transitions using both the
exponent of the fixed model and the knee frequency (see Supplementary
Figs. 12 and 13). The results are broadly consistent, and we found no
statistically significant difference in the model fits (R2 values) between the
knee and fixed models (Wilcoxon sign-rank test: t(16) = 1.885, p = 0.108,
d = 0.22), suggesting that the two models may capture complementary
aspects of stage-dependent spectral dynamics rather thandiffering in overall
fit quality.

Selective EEG exponent responses to auditory stimuli
during sleep
Next, we aimed to investigate how the exponent responds to external events
by analyzing evoked responses to auditory stimuli. To do so, we first
computed and analyzed time-resolved measures of aperiodic activity time
locked to auditory stimuli, as compared to baseline periods of equal length

where no stimuli were presented. During NREM (N2 and N3) sleep, we
observed a significant increase in the exponent following stimulus pre-
sentation (Fig. 7A,−0.08 s to 1.12 s:∑t(15) = 1029.54, p < 0.001, d = 1.94).
It’s noteworthy that the average duration of these stimuli was 808ms,
suggesting that the dynamics of the transient exponent matched the time
course of the stimulus presentation. In contrast, during REM sleep, there
was no statistically significant change in the exponent following the pre-
sentation of stimuli (Supplementary Fig. 14A). To ensure the validity of the
observed changes in the exponent values and to confirm that these changes
were genuine andnot a result of poormodelperformance,we assessed theR2

values around the timeof stimuluspresentation.TheR2 valueswere found to
be high (all R2 > 0.99) and stable across time (Supplementary Fig. 14B, C).

We noted that the aperiodic responses we observedwere similar to the
typical auditory-evoked KC responses that have also been reported during
NREMsleep48. To evaluate how these transient aperiodic responses relate to
KC activity, we compared the changes in the exponent in trials where a KC
was evoked with those where no KCs were detected (Fig. 7C). The results
indicated that trials in which a KCwas evoked showed a significantly larger
change in the exponent compared to trials without a KC (−0.14 to 2.07;
∑t(16) = 789.86, p < 0.001, d = 1.99). This suggests a possible association
between the aperiodic evoked response and the auditory-evoked KC.
Indeed, when we conducted a comparison between the PSDs at the peak of
the exponent responses when KCs were elicited and when no KCs were
elicited, we observed a broadband power difference indicating an exponent

Fig. 7 | Auditory-evoked exponent and ERP responses during sleep. A Time-
resolved estimates of aperiodic exponent in response to auditory stimuli (blue) com-
pared to data segments with no stimuli (orange) during NREM sleep (N2 and N3),
showing a transient, time-locked increase in exponent values during stimulus pre-
sentation. B Comparison of auditory-evoked exponent changes for trials with and
without elicited K-complexes during N2. C Auditory-evoked exponent responses split
by auditory stimuli, comparing unfamiliar voices (UFV) and familiar voices (FV), as
well as one’s own name (SON) and unfamiliar names (UNs). Aperiodic exponent

responses differ by voice familiarity, but not by stimulus content.D Same as in (A) but
for ERP responses, showing temporal responses to sounds during NREM sleep. E Same
as in (B) but for ERP responses, comparing stimulus trials with and without evoked
K-complexes. F Same as in (C) but for ERPs, comparing responses across stimulus
conditions, showing ERP responses also differentiate the familiarity of voice. We used
EEG data from 17 healthy participants during overnight sleep. Across all panels, the
onset of the stimulus is marked by dashed vertical lines, and clusters representing
significant differences between plotted measures are indicated by solid horizontal lines.
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shift (Supplementary Fig. 15, 1–13Hz:∑t(16) = 234.54, p < 0.001, d = 1.23;
15–45Hz:∑t(16) = 103.06, p = 0.003, d = 1.35). Thus, an aperiodic shift in
neural activity might go hand in hand with the appearance of a KC –
althoughwe still observed exponent responses in trials where no evokedKC
was detected, suggesting that these two phenomena do not fully overlap.

Additionally, we examined whether these evoked responses of the
aperiodic exponent are sensitive to different types of stimuli. Our investi-
gation encompassed a range of stimulus categories, particularly contrasting
familiar voices (FV) with unfamiliar voices (UFV), and the subject’s own
name (SON) against unfamiliar names (UNs) during bothNREMandREM
sleep. During NREM sleep, the analysis indicated a significantly larger
response of the exponent following the presentation of UFVs as compared
to FVs (Fig. 7D-Top,−0.14 s to 1.03 s:∑t(16) = 577.26, p = 0.003, d = 1.19).
Subsequently, the exponent for UFVs decreased to be significantly lower
than FVs (2.44 s to 4 s:∑t(16) = 793.48, p = 0.001, d = 1.06). No discernible
difference was found when comparing the exponent’s response to the SON
and UNs (Fig. 7D-Bottom). During REM sleep, the responses did not sig-
nificantly differ between either the different voices or the names (Supple-
mentary Fig. 7–1E).

Finally, we also investigated time-domain responses by examining
the auditory ERPs for all auditory stimuli, as well as for the different
categories of stimuli. The analysis revealed negative peaks in response to
auditory stimuli during NREM sleep (Fig. 7E, ∑t(16) =−249.72,
p = 0.003, d = 0.9), but no difference to no-stimulation periods in REM
sleep (Supplementary Fig. 7–1D). The ERPs exhibited a stronger negative
peak in trials that triggered a KC (Fig. 7G, 0.41–0.96 s:∑t(16) =−249.72,
p = 0.003, d =−1.03). Further, while we observed a negative peak fol-
lowing UFV presentations compared to FVs between 0.45 s and 0.72 s, it
lacked statistical significance (Fig. 7H-top; ∑t(16) =−151.97, p = 0.12,
d = 0.56). However, a significant positive deflection was noted following
UFVs in the duration from 2.23 s to 3.96 s (∑t(16) = 1293.46, p < 0.001,
d = 0.89). No significant variations were observed in the responses to
different names (Fig. 7H-bottom). Last but not least, ERPs during REM
showed no difference between either voices or names (Supplementary
Fig. 7–1F). Taken together, our findings once more point to a potential
overlap between measures of ERPs, KCs, and the aperiodic exponent in
neural activity during sleep, though with some notable distinctions
between them. In particular, we observe stimulus-related responses in the
exponent when no KCs are detected, when there is also no clear ERP
response, suggesting at least some independence between the different
features.

Discussion
Recent investigations of electrophysiological data have established that
aperiodic neural activity offers information about brain function beyond
what is available using conventional approaches that focus primarily on
periodic, oscillatory aspects27,58. This includes research establishing that
aperiodic activity varies systematically across the sleep cycle7,9,12–14,16. In this
exploratorywork, we sought to extend the investigation of aperiodic activity
during sleep, by examining it across modalities (EEG and iEEG), frequency
ranges, model forms, and across time. In doing so, we were able to replicate
previous findings of variations of aperiodic activity during sleep, while
extending these results to demonstrate how multiple aperiodic features
show variations with temporal dynamics that track sleep stage transitions
and neural responses to external stimulation.Overall, these findings suggest
that by improving our approaches for measuring aperiodic activity, we can
capture aperiodicfluctuations that reflect bothmacro- andmicro-structures
of sleep, offering a more comprehensive view of sleep dynamics.

In reviewing the previous literature on aperiodic activity during sleep,
we noted that previous studies have typically used a variety of different
frequency ranges to estimate aperiodic activity, with no clear consensus.We
therefore investigated the influence of varying the frequency range for
model fitting. Overall, we observed a high model fit (R2 > 0.86) across all
ranges, however, when using narrow frequency ranges, there was a trend
towards i) lowermodel fit quality, ii) more dependency on the length of the

time window, and iii) higher variability in model fit quality and parameter
results. This suggests that while different frequency ranges can be validly
examined, choosingbroader rangesmayoffermore stable estimates. Indeed,
the use of broader frequency ranges led to reduced variance in the derived
parameters, suggesting increased reliability. Thus, we suggest that future
studies of aperiodic activity during sleep should explicitly indicate which
fitting ranges are used, consider fitting broader ranges (>20Hz bandwidth
and encompassing lower frequencies) where appropriate, and, where pos-
sible, include sensitivity analysis examining the dependency of findings on
the fitting range.

Another notable aspect of the previous literature is the use of ‘fixed’
exponent models, which estimate the spectral exponent by fitting the
equivalent of a straight line in the log-log space within a narrow frequency
range, typically, between 30 and 50Hz14,22. While this approach has proven
effective in distinguishing between sleep stages12–14, it does not capture the
breadth of aperiodic activity, which by definition extends across all fre-
quencies. Notably, fitting a single exponent to a narrow band range avoids
detecting a ‘knee’ or bend in the PSD, after which the exponent changes4,30,
which can provide additional information beyond the single-exponent
model9. By examining broader frequency ranges, such analyses can capture
more variance in the data, including of slower frequencies which are par-
ticularly relevant during sleep, and can also explicitly measure the knee
frequency and what it reflects. Accordingly, we sought to build on previous
work that investigated the narrowband exponent to explore sleep dynamics
anddifferentiate sleep stages by extending the frequency range andexplicitly
incorporating the aperiodic knee —an approach that may provide a more
complete and physiologically grounded representation of the underlying
neural dynamics. Notably, selection of frequency ranges and model forms
should be considered together – for example, examining whether fitting a
broader frequency range would require fitting a knee parameter – as qua-
litativedifferences in the structureof thedatamay impactmodelfitting, even
if quantitative measures of goodness-of-fit such as R2 are similar.

By applying a spectral parameterization approach that examines broad
frequency ranges and fits an aperiodic model with a knee, we demonstrate
differences in aperiodic activity between sleep stages that go beyond what
can be captured by a single-exponent (fixed) model. For instance, in the
intracranial data, our findings demonstrate that when fitting a knee model,
the knee frequency is more effective than the exponent at distinguishing
between sleep stages. This suggests that, at least in this dataset, a prominent
change across sleep stages is primarily in the knee frequency, whereby this
can look like an exponent change when using a single-exponent model.
Further supporting this, we observed a negative correlation between the
knee frequency (in the broad range knee model) and the exponent of the
fixed model, both in iEEG and EEG data. Moreover, the comparable
EEG topographies observed for both the knee frequency and the exponent
may also imply overlapping underlying processes. Overall, while a single
exponent fit within a narrow band frequencymay suffice if the primary goal
is to differentiate between sleep stages, the underlying changes in the data
may be better captured by fitting more complex models over broader fre-
quency ranges. Although our approach goes beyond a single exponent
model, it is also important to acknowledge that the Lorentzian function we
fit assumes a near-zero slope below the knee, potentially oversimplifying
low-frequency dynamics that also appear to be sleep stage-specific. Future
work should aim to incorporate models capable of estimating the knee, as
well as both pre- and post-knee exponents to more accurately characterize
the full aperiodic signal.

Notably, the presence of a knee in electrophysiological signals is not
universal, particularly in EEG in which very little research has sought to
measure a knee as it is usually assumed to be absent. In the EEG dataset
examined here, a knee is most prominently visible during REM sleep, while
being somewhat visible duringWake and N1, and seemingly absent during
NREMstagesN2andN3.The seemingly variable presence of the knee in the
EEG data introduces a model-selection challenge, whereby no single model
definition is best across all sleep stages in EEG. This underscores that while
both the knee and the fixed models might be suitable for a qualitative
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differentiation between sleep stages, an informed model-selection decision
is crucial for accurately and quantitatively investigating the specific neural
activity patterns within each stage.

In terms of interpretations of aperiodic neural activity, previous
investigations which have largely focused on changes in the aperiodic
exponent, have typically interpreted changes in this parameter in termsof its
putative relationship to the excitation-inhibition (E-I) balance, whereby a
steeper slope signifies an increase in inhibition, and conversely, a flatter
slope indicates an increase in excitation21,22. The pattern of changes in
previous studies is consistent with a general shift towards more inhibition
during the transition from wakefulness to sleep25,26, with the exponent
becoming steeper from wakefulness to NREM to REM sleep14,15. While our
findings partially align with previous observations, demonstrating that the
exponent differs significantly across the sleep-wake cycle, the direction of
these differences varies depending on the model used. Specifically, when
fitting a fixed exponent model to both iEEG and EEG sleep data, we
observed a progressive steepening of the exponent from wakefulness to
sleep. In contrast, iEEG data analyzed with the knee model showed a
decrease in the exponent fromwakefulness to sleep, with no further changes
observed during sleep.

This discrepancy reflects distinct features of the data that are captured
by the knee and fixed models. The relationships of the aperiodic features to
each other, within and between the different models, and their differing
patterns across stages emphasize that these differentmodels and features are
related, but not equivalent. This relates to the impact and importance of the
knee – while a true 1/f signal has the same exponent value across all fre-
quency ranges (whichcan alsobe calledmono-fractal or scale-free), the knee
reflects a frequency-specific transition in thepower spectrum. In such a case,
which canbe calledmulti-fractal ormulti-scale, thekneeparameter reflects a
transition between 1/f regions, and the exponent of the knee model reflects
the frequency region beyond the knee frequency. Even when models (knee
vs single-exponent) are fit across the same frequency range, their exponents
show only weak non-significant correlation, further confirming that they
capture different spectral properties andmay lead todistinct interpretations.
This suggests that aperiodic parameters cannot be interpreted in isolation,
for example, the exponent from a knee model should be considered in
relation to the measured knee and may differ from the exponent of a fixed
model. This also implies that the association between the exponent and E/I
balance is necessarily more nuanced than a one-to-one mapping, as dif-
ferent frequency ranges canhavedifferentmeasured exponent values,which
may relate to E/I balance in different ways. While the results here support
the use of the knee model, further work is needed to relate results and
interpretations of the aperiodic exponent measures of these different
models, as well as in comparison to previous work that typically examined
narrower ranges.

In applying the kneemodel, this studyhighlightsnotable changes in the
knee parameter across sleep stages, which provide distinct insights into
neural dynamics. The knee frequency, reflecting the “timescale” of neural
processing, maps directly to the decay time constant from the auto-
correlation function4,30. N3 sleep exhibited the lowest knee frequency,
indicating the longest processing timescale, while REM sleep and wakeful-
ness showed higher knee frequencies, suggesting faster processing. These
findings align with prior sleep-related autocorrelation analyses59 and
timescale estimates from spiking activity60. Our results suggest that sleep-
related changes in aperiodic activity involve both E-I balance and neural
timescales. While E-I dynamics inferred from the exponent reflect global
changes between wake and sleep, knee frequency more effectively differ-
entiates sleep stages and explains exponent changes when using a single-
exponentmodel. This pattern is particularly clear in the intracranial data, in
which measurements of neural timescale from local field potential (LFP)
data have been established30, though similar patterns are observed in EEG
data, indicating the potential for extracranial recordings to measure neural
timescales as well.

By analyzing sleep data from intracranial (iEEG) and extracranial
(EEG) recordings, we identified both similarities and modality-specific

differences thatwarrant further investigation.Thekneeparameterwasmore
pronounced in iEEG but less consistent in EEG with model selection
comparisons suggesting that the knee model fits iEEG data better overall,
whereas in EEG, no singlemodel emerges as universally superior. However,
EEG showed a clear knee during certain sleep stages, with a better knee
model fit inWakefulness, REM, and N1, indicating that the prominence of
the knee parametermay be sleep-stage-dependent. These findings highlight
the need for further research into stage-specific knee dynamics in EEG.
While stage-dependent knee frequency has been observed in other
contexts31,61,62, its role in sleep spectral dynamics remains underexplored.
This underscores the importance of data-driven model selection, prior-
itizing broadband frequency ranges, adequate time windows, and robust
goodness-of-fit measures to improve reproducibility and model selection
across neural states. Another potential contributor to the differences
between iEEG and EEG recordings may be their respective referencing
montages. While we re-referenced EEG data to an average reference, iEEG
recordings used a bipolar montage, which may impact power spectral
characteristics and, as a consequense, model fitting outcomes.

Interestingly, applying the knee model revealed differences between
modalities that were not evident when using the fixed model. Specifically,
while thepatternof exponent values across sleep stageswas consistent across
modalities in the fixedmodel—and remained similar in the EEG data when
using the kneemodel—the iEEGdata showed a distinct pattern of exponent
changes across stages under the knee model. This suggests potential
modality-specific effects, likely related to the influence of knee prominence
on exponent estimates. These differences may also reflect variation in
underlying signal sources between EEG and iEEG. Overall, this result
highlights the importance of selecting model forms that align with the
characteristics of thedata and the goals of the analysis, and contributes to the
broader research effort aimed at understanding how different para-
meterizations capture neural dynamics across modalities. Future studies
should further examine knee occurrence in sleep EEG and explore how
exponent changes relate to knee shifts across sleep stages, as observed in
iEEG, and seek to further understand the differences between modalities.

Another key aspect of this investigation is the use of time-resolved
measures of aperiodic activity, extending beyond and complementingmore
common analyses of temporal patterns of oscillatory components63. In this
study, we showed that by tracking the temporal fluctuations of the spectral
exponent, we can map the dynamics of transitions between distinct sleep
stages, as well as event-related, transient, stimulus-specific responses of the
sleeping brain to auditory perturbations. This is consistent with con-
temporary work emphasizing the dynamic nature of aperiodic activity, with
rapid changes across brain states and in response to external stimuli33,34.
Previous research has shown that the spectral exponent of NREM sleep
flattens across successive sleep cycles11, and that time-resolved aperiodic
activity can distinguish between healthy and disordered sleep10. Building on
these findings, our work refines measurement methods for aperiodic
activity, capturing fluctuations at macro and micro levels of sleep structure
to enhance our understanding of sleep dynamics. Future work can further
probe the temporal dynamics of aperiodic activity during sleep, offering
insights into its role in predicting spontaneous sleep-specific events (KCs,
sleep spindles, slow waves, etc), as well as its broader functional sig-
nificance during sleep64.

These advancements may deepen our understanding of the neural
processes underlying sleep and their relation to brain function. On a similar
note, our findings also have implications for sleep scoring – including
suggesting features that may assist in the detection of different sleep stages,
and information about the transitions between sleep stages. While sleep
scoring is defined primarily in terms of oscillatory features, this work sup-
ports previous research suggesting the aperiodic exponent may be a useful
parameter for adjudicating between different sleep stages13,14,39. In addition,
ourfindings extendprevious results by showing that the aperiodic kneemay
also be especially useful in distinguishing between sleep stages, potentially
contributing to improving the accuracyand reliability of the staging process.
Of particular interest is the finding that time-resolved aperiodic parameters
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show distinct deviations over time during sleep stage transitions, suggesting
that these measures may be useful for empirically investigating the pro-
gression between sleep stages, and potentially offer increased time-
resolution for detecting changes within and between sleep stages. The
generalizability and reliability of these findings should be assessed through
further research and validation across different sleep datasets.

Our analysis of evoked responses to external stimuli revealed transient,
event-related steepening of the aperiodic exponent during NREM sleep,
suggesting an increase in neural inhibition that may support sleep
maintenance36,48.Notably, the responseswere stimulus-specific,with greater
steepening following unfamiliar voices compared to familiar ones, con-
sistent with prior findings of similar trends duringNREM sleep48. Crucially,
we observed similarities between exponent responses, ERPs, and elicited
KCs, which raises questions about their independence and overlap. While
our analyses suggest an aperiodic component contributes to evoked KCs,
exponent changes were also observed in trials without KCs and appear
partially distinct from ERP responses. Additionally, our KC detection
method, based on a strict amplitude criterion, may have missed weaker or
atypical KCs, potentially influencing the observed spectral changes. Pre-
vious work has shown that event-related exponent changes differ from
ERPs65,66, suggesting aperiodic responses as a distinct measure of neural
activity. These findings establish event-related aperiodic responses during
sleep and highlight the need for further research to explore their role in
stimulus-specific processing and their relationship to other evoked
responses.

Limitations
Limitations of this study include the relatively small number of subjects in
the EEGdataset, as well as the relatively small amount of data per subject in
the iEEG dataset, which precluded evaluating the analyses across larger
datasets. Potential confounds, such as differences in referencing procedures
between EEG and iEEG, may affect the comparisons between the different
recording modalities. The complexity of model selection—particularly
regarding the presence or absence of the knee parameter across sleep stages
and modalities—also poses challenges for standardizing analyses across
applications so as to be directly comparable. Relatedly, although the spectral
parameterization approach using the Lorentzian function allows for
examining the knee points in the spectrum, it does not always fully capture
low-frequency activity. Future studies with larger, more diverse cohorts and
furtherwork advancing themodeling techniques are needed to validate and
extend these findings in order to further clarify the physiological basis of
aperiodic features and improve their applicability in both clinical and
research contexts.

Conclusion
In this investigation, we sought to explore aperiodic activity during sleep in
both intra- and extracranial data. We have shown that by using a broader
frequency range andfitting amodelwith a knee,we can characterizemoreof
thedata andobtain estimates of aperiodic activity thatmaponto sleep stages,
sleep stage transitions, and transient responses to external events. A key
aspect of this work is the analysis of the knee frequency, which effectively
discriminates between sleep stages and provides potentially new insights
into the timescale of neuronal processing during sleep. Overall, these
findings highlight the importance of studying aperiodic neural activity
during sleep. By adopting these expanded parameters, we can gain new
insights and perspectives on sleep processes, improving our understanding
and interpretation of both the temporal and spectral dynamics of neural
activity during sleep.

Data availability
iEEG open-access data are available on theMontreal Neurological Institute
(MNI; https://mni-open-ieegatlas.research.mcgill.ca/). The EEG sleep
dataset analyzed in the current study is available from the corresponding
author upon request.

Code availability
Code for this project was primarily written in the Python programming
language (v3.10.6), except for the pre-processing and segmentation of EEG
data which were primarily done using EEGLab67 (v14.1.1b) functions in
Matlabv.2019a.Weanalyzed iEEGandEEGdatausingMNE-Python68, and
performedspectral parameterizationanalyses using the ‘specparam‘ toolbox
(https://github.com/fooof-tools/fooof). We deposited the code of this pro-
ject in the project repository and made it openly available and licensed for
reuse at https://github.com/mohamedsameen/Aperiodic_sleep.
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