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Real-life social interactions often unfold continuously and involve dynamic cooperation and
competition, yet most studies rely on discrete games that do not capture the adaptive and graded
nature of continuous sensorimotor decisions. To address this gap, we developed the Cooperation-
Competition Foraging game—an ecologically grounded paradigm in which pairs of participants
(dyads) navigate a continuous shared space under face-to-face visibility, deciding in real-time to
collect rewarded targets either individually or jointly. Dyads (n = 58, 116 participants) spontaneously
converged on distinct stable strategies along the cooperation-competition spectrum, forming three
groups: cooperative, intermediate, and competitive. Despite the behavioral complexity, our
computational model, which incorporated travel path minimization, sensorimotor communication,
and recent choice history, predicted dyadic decisions with 87% accuracy, and linked prediction
certainty with ensuing dynamics of spatiotemporal coordination. Further modeling revealed how
sensorimotor factors, such as movement speed and skill, shape distinct strategies and payoffs.
Crucially, we quantify the cost of cooperation, demonstrating that inmany dyads prosocial tendencies
outweigh the individual benefits of exploiting skill advantages. Our versatile framework provides a
predictive, mechanistic account of how social and embodied drivers promote the emergence of
dynamic cooperation and competition, and offers rigorousmetrics for investigating the neural basis of
naturalistic social interactions, and for linking personality traits to distinct strategies.

People and animals often face choices that require balancing or alter-
nating between cooperative and competitive strategies, especially in
settings involving shared or limited resources.Whether foraging for food,
hunting, or engaging in economic exchanges, the dynamics of coopera-
tion and competition play a crucial role in determining outcomes such as
efficiency, fairness, and overall success. In dyadic interactions between
two individuals, each must evaluate not only their own goals and actions
but also the intentions and actions of their partner. However, it is often
uncertain whether others intend to compete or cooperate, and how to
flexibly adjust strategies in such volatile situations1. Furthermore, these
interactions often unfold continuously in time and space, grounded in
real-time, embodied decision-making. Understanding how such deci-
sions are made, and what drives cooperation or competition, is essential
for unraveling the fundamentals of social behavior2–5. Here, we elucidate
the behavioral and computational mechanisms of continuous, embodied
dyadic foraging, using an innovative paradigm where human

participants can freely choose cooperative, competitive, and intermediate
strategies.

Classical game-theoretical approaches have relied on discrete strategic
interactions, focusing on a binary dichotomy between cooperation and
competition6–12. While some resource allocation paradigms, such as the
Ultimatum, Dictator, Trust and Public Goods games, involve gradual
options (e.g., howmuch to share)13,14, typical 2 × 2matrix games use binary
choices. Competitive zero-sum games and pure coordination games allow
for only one meaningful strategy. Even in mixed-motive dilemmas such as
Prisoner’s Dilemma, Stag Hunt, and Chicken / Hawk-Dove, decisions are
reduced to a stereotyped binary choice between cooperation and selfish
defection. Yet, real-world decisions often transcend such dichotomies15. To
enable a continuous spectrumof strategies that reflect thenon-dichotomous
nature of social decisions, a recent study developed a game called the Space
Dilemma,wherepairs of participants are presentedwith a spatial choiceon a
continuous one-dimensional scale between cooperation and competition16.
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The continuous nature of this game is however limited to a single choice in
each discrete trial, where each participant makes an isolated decision
informed by the history of previous outcomes and predictions about their
partner’s upcoming decisions.

To capture the continuous complexity of realistic interactions—in both
time and space—less structured and more dynamic pacing and flow are
needed. Unlike discrete “simultaneous” and sequential turn-based games,
natural social exchanges typically rely not only on predictions from past
experience, but also on real-time, moment-to-moment information17–19. In
animals, simple forms of associative learning are compromised when
decisions are temporally separated from their consequences20, and even in
cognitively advanced nonhuman primates, coordination based on mutual
choice history is more demanding than relying on the immediately obser-
vable actions of others21–25. Theoretical simulations show that cooperative
populations evolve more easily under a continuous flow of information
between agents19, and that action visibility enhances cooperation in coor-
dination games26. Likewise, transitioning from discrete to continuous
repeated interactions promotes greater cooperation in humans27,28, and
synchronous action fosters cooperative economic exchanges29. Action vis-
ibility andmovement timingmay play an equally significant role in shaping
competitive strategies24,30–32. More generally, individual dispositions and
psychological traits lead to biases towards being more cooperative or more
competitive, independent of the payoff formulation33. These biasesmight be
especially prominent in continuous environments, where face-to-face and
action visibility strongly influence strategic considerations24,34–38. These
findings highlight the insights and possibilities gained by shifting from
discrete to continuous decisions39.

Importantly, the transition to continuous interactions not only shapes
strategies; it also enables ethologically grounded, fundamental link between
decision-making and sensorimotor control40. Unlike the classical serial
models in which decisions precede actions, in continuous action spaces,
choices are not solely driven by abstract computations of expected payoffs,
but are interwoven with concurrent perceptual and motor processes41–44,
reflecting naturalistic “decide-while-acting” scenarios45–49. The dynamic
feedback loops between observation and response allow adjusting decisions
based on environmental cues and the actions of others, facilitating coordi-
nation and modulating cooperative or competitive inclinations depending
on moment-to-moment evidence. Such embodied decision-making is
especially relevant in foraging, where real-world constraints like effort
expenditure and biomechanical limitations50–52 impose cost-benefit trade-
offs53,54. Foraging efficiency is shaped by the dynamic balance between
cognitive effort, physical effort, and reward, along with continuous
adjustments to feedback through perception-action coupling55–58. As
a result, decisions in spatially and temporally rich environments emerge
from a combination of deliberate strategies and sensorimotor-driven
adjustments59,60.

Here, we explore the interplay between reward, effort, cooperation and
competition, focusing on how strategies emerge and are maintained during
economic decision-making in a continuous dyadic foraging context. We
developed a paradigm called “Cooperation–Competition Foraging” game
that affords a wide range of interactions between two participants who can
collect rewards together or independently. In line with increasingly com-
mon use of engaging game-like paradigms to study cognition61,62, we
designed a free-flowing social game, in which participants use continuous
arm movements to select targets in a real-time face-to-face “transparent”
setting24,26,63, enhanced by compelling audiovisual feedback. By examining
the spatiotemporal trajectories and strategic choices made by participants,
we seek to capture basic cognitive processes that underpin these dynamic
decisions.

The game features two types of targets: joint targets, which require
coordinated cooperation for shared reward, and single targets, which can be
collected by either participant. We hypothesized that this structure would
engender a broad range of strategic interactions. On the one hand, the
“gamified” environment with real monetary incentives could stimulate
competitive tendencies, resulting in strategic positioning, race-like

dynamics, and influence of individual motor skills. Conversely, the imme-
diacy of face-to-face engagement and continuous game flow could promote
the inherent prosocial cooperativeness and propensity for fairness that
characterizes many human interactions64, leading to leader-follower
dynamics and reciprocal turn-taking24. We anticipated that past depen-
dencies and information flow between participants, such as cues that signal
willingness to cooperate, would be higher during cooperative behaviors to
facilitate coordination, compared to competitive interactions.

Methods
Participants
124 adult human participants participated in the study as paid volunteers.
All participants gave written informed consent for participation after the
procedures had been explained to them and before taking part in the
experiment. Experiments were performed in accordance with institutional
guidelines for experimentswithhumans and adhered to the principles of the
Declaration of Helsinki. The experimental protocol was approved by the
ethics committee of the Georg-Elias-Mueller-Institute for Psychology,
University of Goettingen (GEMI 17-06-06 171). Participants were tested in
pairs as 62 unique dyads, i.e., each participant contributed only once.
4 dyadswere excluded fromthe current analysis because they exhibited large
differences in behavior between blocks. The analyzed dataset included 116
participants in 58 unique dyads (mean ± SD age: 25 ± 4 years, range
18–36 years; 19 females and 97 males, as reported by participants; resulting
in 46 male dyads, 7 female dyads, and 5 mixed female/male dyads). Most
participants were male because they were recruited for a related ongoing
study of male hormonal effects. These participants responded affirmatively
to the question “Bist du chromosomal geschlechtlich männlich?” ("Are you
chromosomally male?”).

We did not collect or report data on participants’ race, ethnicity, or
other socially defined groupings, as these variables were not pertinent to the
research questions addressed in this study.

Experimental procedures
Pairs of participants (dyads) played theCooperation–CompetitionForaging
game, sitting face-to-face across the table (120−140 cm inter-subject dis-
tance) with a large transparent screen in between (Eyevis 55 inch OLED,
1920 × 1080 pixels, 60Hz refresh rate, Supplementary Movie S1, YouTube,
OSF)24,63. The visual stimuli presented on the screen were visible from both
sides. The task was implemented in Python 3.10 and run on Ubuntu 20.04
LTS. Prior to the experiment, participants received written instructions
detailing the gamemechanics, the payoff structure for each target type, and
the procedure for determining their earnings (see Supplementary Infor-
mation, Instructions for participants). Verbal clarificationswereprovidedas
needed to ensure full comprehension. In particular, participants were
explicitly informed that their earnings would be performance-based,
reflecting their cumulative payoffs during one randomly selected game
block. Each experimental session consisted of two game blocks, each lasting
20min. Participants were given breaks between blocks tominimize fatigue.
Participants were not allowed to talk. At the end of the session, participants
rolled a die to randomly determinewhich block’s accumulated payoffwould
serve as their actual earnings.

There was no preregistration for this study.

The cooperation–competition foraging game
The participants’ objective in the dyadic Cooperation–Competition Fora-
ging game is to earn money by collecting targets. To collect a target, parti-
cipants were required to hover with their mouse-controlled cursors
("agents”, blue and orange smaller circles, 2 cm diameter, 1.9 degrees of
visual angle [∘]) at 60 cm viewing distance) over the selected target (a bigger
circle, 5 cm diameter, 4.8∘) for one second. At any given time, the game field
(a square with 51 cm side, 56∘, with visible borders) contained three targets:
one single target and two joint targets. All targets and agents were visible to
both participants and were positioned randomly at the start of the session
block using the 2D uniform distribution. After target collection (end of
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collection cycle), the target of the same type immediately reappeared at a
new randomposition, with no restrictions on reappearing near the previous
position, but without overlap with the other two targets. The positions of
both agents and the two remaining uncollected targets were not reset,
ensuring a continuous transition between successive collection cycles.

The single target, which was white, could be collected by one partici-
pant alone ("winner-takes-all”). When an agent entered a single target, its
color changed tomatch the agent’s color, signalingwhose agentwasfirst and
which participant would receive the payoff of 7 cent. The other participant
received no payoff. Joint targets, which were partly blue, partly orange,
required both participants to hover their agents over the target simulta-
neously to initiate the collection period. The color of joint target sectors
reflected the asymmetric payoff distribution: one type offered 5 cent to the
blue agent and 2 cent to the orange agent, and vice versa. The accumulated
payoff of each participant was continuously shown in the lower right corner
of the game field.

During target collection, a transparent disk expanded from the center
to the edge of the target, visually indicating collection progress. Auditory
feedback was provided through a sound with a continuously increasing
pitch. If a participant left the target before the collection was complete, the
progress was reset, and an error soundwas played. Successful collectionwas
confirmed by the target’s disappearance and a short reward-
associated sound.

To reduce the dependence of motor skill and to reflect the spatio-
temporal limitations of realistic foraging, amaximumagent speedwas set to
to 42.6 cm/s. If a participant exceeded this maximum, their agent lagged
relative to the mouse input. To ensure high temporal precision of the
movement data, the agents’ position was tracked at a sampling rate
of 120 Hz.

Timecourse of strategies over an experimental session
For the analysis of the stationarity of the strategies over an experimental
session, we calculated the moving average of the fraction of single targets
(FST) collected byboth agents in dyad in amovingwindowof 1min. For the
analysis of the target choice prediction by different models, we used the
moving average window of 30 s.

Generalized Linear Model (GLM) for dyadic target choice
To model the choice behavior in the game, we analyzed which factors
determine the target choice of the dyad in each collection cycle. Specifically,
we predicted the collected target identity from the position of the two agents
at the beginning of the collection cycle, the position of the targets, and
potentially from the outcomes of the previous cycles. For distance-based
predictions, the predicted target jpred is the one with the weighted minimal
potential distance:

jpred ¼ argminj DS 1� wð Þ;DJ;A � w;DJ;B � w
� �

j
; ð1Þ

whereDS is the minimal distance from the single target to either agent,DJ,A

(orDJ,B) is themaximal distance between the joint target benefiting agentA
(or B) to either agent and w a weighting factor such that the observed
fraction of single targets (FST) is reached (for details, see Supplementary
Methods 1.1).

Thismodel was also used to simulate the optimal strategy for the dyad.
For the range of possible weighting factors, we ran simulations of the game,
where the choice of the target was given by the weighted distance formula
above. We ran two different simulations: the agents either moved simul-
taneously or, when one agent was collecting a single target, the non-
collecting agent placed itself on the game field such that the subsequent
expected acquisition time isminimal (called “advantageous placement”, see
Supplementary Methods 1.1).

For the full GLM, we framed our model as a multiclass classification
problem.We predicted the probability of observing the collection of each of
the three targets given the vector x!, that is the distances to the targets, the
identities of targets collected in previous cycles, and whether an “invitation”

is present in the current cycle (the non-collecting agent is near a joint target):

Pð jobs ¼ jj x!Þ ¼ Softmax θT � x!� �
j: ð2Þ

We took certain symmetries of the problems into account, mainly that the
identity of both players are interchangeable, to reduce the number of
parameters to be estimated (see Supplementary Methods 1.2). The regres-
sion coefficients θwere estimated byminimizing the loss with the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm. To avoid overfitting and for
estimating the accuracy of the model, we used 5-fold cross-validation.

To quantify the uncertainty of dyad's choice, wemeasured the entropy
H of the target prediction:

H ¼ �
X3

j¼1

Pð jobs ¼ jj x!Þ � log2 Pð jobs ¼ jj x!Þ� �
: ð3Þ

Trajectory classification
To characterize the ongoing decision processes during the acquisition
period, we classified spatiotemporal movement trajectories based on their
shape relative to the targets, into six categories—“invitation”, “failed invi-
tation”, “strongly curved”, “different targets”, “one ahead” and “con-
current”—using a set of heuristic rules for each category applied in that
specific order. If the trajectory followed the rule, the trajectory was classified
as such, if not, the next rule was tried. For precise definitions, see Supple-
mentary Methods 1.3.

Disentangling spatiotemporal factors shaping the payoff
To understand how trajectory efficiency, speed, and positioning influence
agents’ payoffs, we disentangled these different factors. We expressed the
payoff as an addition/subtraction of the different factors that determine the
trajectory length, divided by the mean speed, to obtain the contribution of
each factor to the total joint payoff for each dyad. This decomposition is not
exact: estimating the average payoff per cycle using the average trajectory
lengthandmean speed introduces a small error, since the averageof a ratio is
not strictly equal to the ratio of averages. However, in this case, the corre-
lation is nearly perfect (r = 0.99, see also Supplementary Methods 1.4).

Competitive skill difference estimation
The skill difference between participants influences how successfully an
agent competes for single targets. To estimate this competitive skill differ-
ence, we measured the proportion of contested single targets each agent
managed to collect, focusing specifically on cycles where both agents
attempted to reach the single target ("one ahead to the same target” and
“concurrent to the same target” classes; see Supplementary Methods
1.5 and 1.6). Thus, we could not estimate the skill difference if the agents
always played cooperatively using only the joint targets.

Estimating of the cost of cooperation from counterfactual
scenarios
Toobtain an estimate of the cost of cooperation, i.e. an estimation ofwhat
would have happened if dyads had played more competitively than
observed, we built a model that allows us to counterfactually estimate the
payoff for other values of the FST Φ than observed for the dyad in
question. Specifically, we estimated the payoff R̂

XðΦÞ of each agent X by
combining an estimate of the average joint payoff R̂ðΦÞ with an estimate
of the difference of payoff between the two agents in a dyad R̂

X
ΔðΦÞ (see

Supplementary Methods 1.6). The estimate of the average joint payoff
was obtained by fitting the variables that shape the payoff, the average
distance between target collections, the average reduction of this distance
due to an advantageous placement, the average increase of distance due to
trajectory curvature, and the average agent speed over all dyads. The
difference of payoff between agents was estimated per dyad individually
and is dependent on the skill difference of the participants. Thus, with
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this estimation of the dependence of the payoff on the FST, we could
obtain the potential payoff increase if the participants had played more
competitively.

Statistical analyses
All statistical tests were two-sided, and the data met, at least approximately,
the key assumptions of the tests used. For the nonparametric Mann-
Whitney U tests and pairedWilcoxon signed-rank tests, the median (Mdn)
followed by the interquartile range (IQR: [quartile 1, quartile 3]) for each
group or condition is reported; the effect size rrb was measured by the rank
biserial correlation, and 95% confidence intervals (CI) for the effect size are
provided. For the binomial tests, the Clopper-Pearson exact method for the
95% confidence intervals of the proportion was used. Pearson’s product
moment correlation coefficient r and its 95% CI were used to report cor-
relations; here data distribution was assumed to be normal but this was not
formally tested.

To calculate the statistical significance of the coefficients of the GLM
in each dyad, we used the Wald test and estimated the required variance
matrix by inverting the Hessian matrix at the maximum likelihood
estimate65. The resulting p-values were adjusted for multiple compar-
isons (n = 58) to control the false discovery rate using the Benjamini-
Hochberg procedure.

Statistical tests were calculated in R version 4.4.2 and in Python 3.10.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
A transparent continuous dyadic foraging game
To study interactions in a controlled setting, we recruited 62 pairs of human
participants (dyads) who sat face-to-face across a large transparent bidir-
ectional visual display and played the foraging game together on a two-
dimensional (2D) field (Fig. 1a; we recommend viewing the setup and
gameplay demo videos for a clearer understanding of the experimental
procedures and interaction dynamics: Supplementary Movies). The game
reflects the real-world nature in being continuous—both in time and in 2D
space—and in enabling the dyads to choose between various levels of
cooperation or competition when foraging. Hence, we name it a
Cooperation–Competition Foraging (CCF) game. Each participant used a
mouse-controlled cursor as a virtual agent visible to both participants. At
any moment, there were three randomly positioned targets on the screen
(Fig. 1b, left) visible to both participants: one “single target” that could be
collected by a single agent (worth 7 cent), and two “joint targets” that could
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Fig. 1 | Experimental setup and the game. See Supplementary Movie S1,
YouTube, OSF. a Two participants playing the Cooperation–Competition Fora-
ging (CCF) game on a transparent OLED screen, in front of each other. Note: the
people depicted here are authors, the people shown in the Supplementary
Movie S1 are lab members, and all have provided explicit consent and are only
shown for illustrative purposes. b Left: Game depiction. Small blue and orange
circles are the two cursors ("virtual agents'') controlled by the participants with a
computer mouse. Agents collect targets (larger circles) by hovering over them.
Each agent can collect the white target ("single target'') on their own, while the
colored targets ("joint targets'') can only be collected cooperatively—when both
agents hover over it simultaneously. If both agents arrive at a single target, the
agent who first reaches the target wins. Right: Game progression. Each collection
cycle begins with an acquisition period that lasts until one or both agents select a

target. During the subsequent collection period, if a single target is collected as in
this example, the free agent can move around. Immediately after the target’s
disappearance at the end of the collection, the target reappears at a random
position, and the next cycle begins. The color of trajectories represents elapsed
time from the start of the period (visualizing the relative timing of the two agents:
e.g., in the third frame the blue agent begins moving after the orange agent). c An
agent (or both agents) enter the target andhover over it for 1 s to collect it. Once the
collection of the white single target starts, it changes to the color of the collecting
agent. The expanding transparent circle from the target’s center indicates the
collection progress. At the end of each collection cycle, the sound is played and the
display of total earnings in Euro is incremented.dPayoffmatrix. The payoffs of the
two participants in each cycle depend on the type of target collection.
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only be collected together, but have asymmetric payoffs (providing 5 cent to
one, and 2 cent to the other agent, or vice versa) (Fig. 1c, d). By design, only
one target can be collected at any time. Once a target is collected—requiring
one agent for single targets or both agents for joint targets to remain on it for
one second—it reappears at a random locationon theplayingfield, initiating
the next collection cycle (Fig. 1b, right). Crucially, the locations of the agents
and the remaining two targets are not reset, preserving spatial continuity
and allowing interactions to unfold naturally across successive cycles.

Although the single targets are designed to elicit a competitive element,
we do not call them “competitive” because they can also be used coopera-
tively (see later). Nonetheless, since such cooperative strategy appeared only
in one dyad, we refer to the dyads that mainly collected single targets as
competitive, and to those thatmainly collected joint targets as cooperative if
not stated otherwise.

To avoid introducing an a priori bias towards the single or joint targets,
we assigned the same joint payoff (i.e. the sum of payoffs for both partici-
pants) for both target types. Participants were informed about the corre-
sponding payoffs (Fig. 1d) and were instructed to collect as many targets as
possible, to earn their payment. To make the game more realistic by
introducing a “travel cost”, and avoid a total payoff being uniquely depen-
dent on skill, the maximal movement speed was limited. If the limit was
exceeded, the agent’s position (cursor) lagged relative to the mouse until
they slowed down.

After a short initial practice to familiarize themselves with the game
mechanics, participants played two20-minblocks andwere rewardedby the
cumulative payoffs collected in one randomly chosen block. By embedding
foraging in a shared virtual space and a salient social context, our setup
provides a controlled yet dynamic environment to study howdyads develop
cooperative or competitive strategies.

Dyads converge to stable strategies on the
cooperation–competition spectrum
Due to the continuous and open nature of the game, we expected
a variety of strategies to emerge. Indeed, most dyads, after an
initial transient, converged to a specific set-point on the
cooperation–competition spectrum, as represented by a relatively stable
fraction of single targets (FST; the number of single targets collected over
a certain period divided by the number of all targets collected over the
same period; Fig. 2a). We found that all but 4 (58/62) dyads exhibited a
stable FST after the 14min period (Fig. 2b), and most dyads converged

within 10min. Therefore, we excluded the first 10min and used the
remaining relatively stable 30min of interaction (1.5 blocks) for our
analysis focusing on stable strategies. The 4 dyads that abruptly changed
their FST after the initial convergence period were excluded from further
analysis. Interestingly, most dyads that changed their FST during the
initial period became more cooperative during this time (Fig. 2d). After
convergence, dyads were distributed along the entire FST axis (Fig. 2c).
But the FST distribution is not uniform—dyads can be categorized into
three “groups” along the continuum of FST: (1) cooperative dyads that
mainly coordinate to collect joint targets (FST ≤ 0.1), (2) dyads that
mostly compete for single targets (FST ≥ 0.9), and (3) dyads with inter-
mediate, yet stable, strategies (0.1 < FST < 0.9, with a peak around
FST≃ 1/3). The spontaneous emergence of the three apparent groups
raises the question about the strategies underlying the choices along the
cooperation–competition spectrum. In what follows, we show that
cooperative dyads use across-cycle history effects and leader-follower
dynamics to coordinate on joint targets; competitive dyads race to single
targets and often employ strategic positioning; and intermediate dyads
frequently select the closest target, but also draw on interaction history
and sensorimotor invitations to cooperate.

Path minimization and cooperation–competition ratio shape
dyadic strategies
To build a theoretical foundation for describing the observed strategies, we
derive the optimal dyad strategies (in terms of joint payoffs) under different
assumptions. According to the optimal foraging theory53,57, and economic
decision theories51,66–70, foraging agents should maximize reward and
minimize effort. We expand on these principles for the case of dyadic
decisions.

For idealized agents thatmove in a straight line at themaximal possible
speed (which is limited by game design), the distance to the collected target
determines the payoffs that can be obtained within a fixed time. If one
assumes that both agents always share the same position at the start of each
collection cycle, then selecting the closest among three potential targets
implements path minimization (Fig. 3a). Minimizing the path leads, due to
the random target placement, to an optimal FST of exactly 1/3 (Fig. 3c, gray
curve, middle purple square).

However, an identical positioning of both agents at the start of every
collection cycle is not the best strategy for optimizing the joint payoff.
Instead, during the collection of a single target, the non-collecting (free)

Fig. 2 | Each dyad converges to a specific stable
strategy on the cooperation–competition spec-
trum. aMoving average (1 min window) of the
fraction of single targets (FST) for three representa-
tive dyads. (b) Mean absolute deviation from a
dyad’s eventual stable strategy as a function of time
(shaded band represents 95% confidence interval).
After 14 min, all 58 included dyads have converged
to a stable FST. c Distribution of the stable FST
across dyads, which we categorize into three groups:
largely cooperative, preferentially collecting joint
targets (FST ≤ 0.1, n = 14, Supplementary Movie S2,
YouTube, OSF), largely competitive, preferentially
collecting single targets (FST ≥ 0.9, n = 14, Supple-
mentary Movie S4, YouTube, OSF), and an inter-
mediate, performing mixed collections
(0.1 < FST < 0.9, peaking around≃ 1/3, n = 30,
Supplementary Movie S3, YouTube, OSF). Colors
along the vertical axis represent the stable FST of
each dyad, from brown to cyan. Here and in (d), the
non-circle markers (plus, diamonds) indicate spe-
cial strategies described later. d First-minute FST vs
stable FST (from 10−40 min). Most dyads decrease
their FST (i.e. become more cooperative) over time.
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agent can place itself to minimize the expected distance to the next target
—thereby contributing cooperatively to joint efficiency, across collection
cycles. Such “advantageous” placement must satisfy two conditions.
First, it should minimize the expected distance from either agent to the
next randomly appearing single target (Fig. 3b and Supplementary Fig.
S1a). Second, the free agent should not place itself further from the
nearest joint target than the currently collecting agent (e.g., stay within
the circle around the “blue” joint target in the example in Fig. 3b).
Thereby, the free agent does not delay a potential subsequent collection of
the joint target (Supplementary Methods 1.1). The combination of both
conditions results in a non-uniform landscape with a minimum, such as
the map shown in Fig. 3b. As a consequence of such advantageous pla-
cement, the two agents together cover a larger area any agent can reach
within a limited time, increasing the probability that collecting the newly

appearing single targetwill be a better choice than collecting a joint target.
Therefore, higher FST values are now yielding better results, with an
optimum at FST ≈ 0.55 instead of 1/3 (simulation results in Fig. 3c, black
curve, see also Supplementary Fig. S1 for details).

It is important to emphasize that this advantageous placement
strategy is not competitive. It maximizes the joint payoff of a dyad. It is
thus a cooperative placement minimizing the expected distance to the
next target; but during the acquisition period, both agents might com-
pete again. In a fully competitive strategy, the free agent would not aim at
minimizing the expected distance from either agent to the single target.
Instead, the free agent would optimize the probability to be nearer to the
newly appearing single target than the collecting agent. In practice, this
leads to a placement near to the collecting agent, but a bit closer to the
center of the game field (Supplementary Fig. S1f).

(1)

(2)

(3)

Same 
starting position

(1)

(2)

(3)

previously collected 
target

W
ei

gh
te

d
di

st
an

ce
s

Different
starting position

Advantageous
starting position

Distance
decrease 

due to
adv. 

placement

≥0.9

joint 
preferred
w = 0.3

equal
weighting
w = 0.5

single
preferred
w = 0.7

joint 
preferred
w = 0.3

equal
weighting
w = 0.5

single
preferred
w = 0.7

* * * * * *

G
am

e 
fie

ld
(5

1 
cm

)

Fig. 3 | Weighted path minimization and advantageous placement. a Two
example initial conditions. Three distances are relevant for target selection (solid
arrows): for the single target, the shortest distance (1) from either agent; for each
joint target, the longest distance (2, 3) from either agent. Irrelevant distances are
shown as dotted arrows. Examples of “weighting” these distances by different FST
preferences are shown below, where the target with the shortest weighted distance
(indicated by asterisks) is selected. b Example of advantageous placement for one
spatial configuration. While one agent collects a single target, the free (non-col-
lecting) agent (blue in this example) strategically moves into a starting position that
minimizes the expected distance to the next target, as indicated by the colormap (see
Supplementary Methods 1.1 and Supplementary Fig. S1 for details). c Simulated
optimal strategies. Varying the weighting of distance-based preferences produces
different FST levels and mean distances to collected target. The markers correspond
to the weights illustrated in (a). Simulations assume either the same starting position
as in the left panel in (a) (gray curve) or advantageous placement (black curve).
dMean distance to collected target in simulated strategies (curves) and actual dyads

(n = 58, markers). In addition to the simulations from (c), two lighter gray curves
represent simulations with the same starting position but when the weighted closest
target is chosen in only 70% (upper gray curve) or 90% (middle gray curve) of
collection cycles, and a random selection otherwise. The markers represent the
observed mean distance to the target for each dyad; the red vertical lines indicate the
mean distance reduction due to the specific degree of advantageous placement
performed by each dyad. Note that the actual dyads' data contain, in contrast to the
simulations, a jitter due to the limited amount of target collections. Intermediate
dyads span the space between 90% and 70% simulated strategies when the distance
reduction due to advantageous placement is subtracted (top of red lines). Mostly
cooperative dyads (FST ≤ 0.1, brown markers and shading) and mostly competitive
dyads (FST ≥ 0.9, cyan markers and shading) are plotted separately to illustrate
larger deviations from the weighted path minimization, such as strict turn-taking
between the two joint targets (diamond markers) and varying use of advantageous
placement.
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Despite these clear theoretical optima, actual dyads spanned the
entire range of FSTs (Fig. 3d), thereby deviating from a simple path-
minimizing strategy. Therefore, we explore optimality under the con-
straint of a specific FST. For each dyad, we introduced a specific
weighting factor, representing their manifested preference to choose
single versus joint targets (Supplementary Fig. S2, “target type weight-
ing”). This weighting factor reflects the overall preference of a dyad for
joint or single targets, typically approximating their preference for
cooperation or competition. For example, if a dyad prefers joint targets
over single targets, they might choose a joint target even when the single
target was physically the closest (Fig. 3a, left panel, brown rectangle). If
however the single target is very close, then even a dyad that strongly
prefers joint targets might occasionally select the single target (Fig. 3a,
right panel, brown rectangle).

For each FST, we calculated the optimal strategy—the minimal
distance attainable (Fig. 3c), either by assuming simple path minimiza-
tion (gray curve) or additionally taking into account advantageous pla-
cement of the free agent (black curve). While for simple path
minimization there is a clear optimum at FST 1/3, there exists a con-
tinuumof similarly good strategies for pathminimizationwith additional
advantageous placement (0.4≤ FST ≤1; note the nearly flat black curve
starting at 0.4 in Fig. 3c). Most actual dyads, however, performed
advantageous placement only to a certain degree (Fig. 3d and Supple-
mentary Fig. S1g). Therefore, the equal weighting path minimization
without advantageous placement can explain the formation of the
intermediate group around FST 1/3. For each dyad, we computed the
mean distance to the selected target across trials; statistical comparisons
between groups were then performed on the distribution of these per-

dyad means using nonparametric tests, which assess differences in
group-level medians. Indeed, the distance to target in the intermediate
group is reduced compared to the cooperative and the competitive
groups (Mann-Whitney U test, intermediate vs cooperative: U = 388,
p < 10−5, n1 = 30, n2 = 14, Mdn1 = 17.52, IQR1 = [17.00, 18.30],
Mdn2 = 20.22, IQR2 = [19.36, 21.72], rrb = 0.68, CI = [0.51, 0.8]; inter-
mediate vs competitive:U = 367, p < 10−4, n1 = 30, n2 = 14,Mdn1 = 17.52,
IQR1 = [17.00, 18.30], Mdn2 = 20.78, IQR2= [19.63, 22.21], rrb = 0.60,
CI = [0.31, 0.79]; all tests in this paper are two-sided).

To estimate how well the dyads follow a (weighted) path mini-
mization strategy, for each collection cycle we predicted the subsequent
choice of the target (Supplementary Methods 1.1). For non-weighted
path minimization, the average choice prediction accuracy across dyads
was 59%, and the median 61%, significantly higher than the 33% chance
(Fig. 4a,Wilcoxon signed-rank test,W = 3, p < 10−6, n = 58,Mdn1 = 0.61,
IQR1 = [0.53, 0.68], Mdn2 = 0.33, IQR2 = [0.33, 0.33], rrb = 0.87, CI =
[0.85, 0.87]). The dyads with intermediate strategies were particularly
well predicted (average accuracy 65%; Mann-Whitney U test comparing
accuracies of intermediate and non-intermediate dyads,U = 740, p < 106,
n1 = 30, n2 = 28, Mdn1 = 0.68, IQR1 = [0.62, 0.69], Mdn2 = 0.53,
IQR2 = [0.45, 0.58], rrb = 0.65, CI = [0.49, 0.79]), suggesting that the
intermediate dyads often perform true (non-weighted) path minimiza-
tion. For the weighted path minimization, the average choice accuracy
increased to 78% across all dyads (Fig. 4a, Wilcoxon signed-rank test
comparing non-weighted vs weighted minimization, W = 21, p < 10−6,
n = 58, Mdn1 = 0.61, IQR1 = [0.53, 0.68], Mdn2 = 0.75, IQR2 = [0.69,
0.88], rrb = 0.85, CI = [0.79, 0.87]). Thus, a substantial portion of the
observed dyadic strategies can be accounted for by combining simple

Dyad 29

Fig. 4 | Cooperation/competition-weighted pathminimization and across-cycles
predictors explain dyadic target choice. a Predicting the choice of the next target,
using (i) the closest distance, (ii) the weighted closest distance or (iii) the “full”
generalized linear model (GLM). The full GLM, which includes across-cycles pre-
dictors such as target choice history and invitations, explains the target choices
across all dyads (n = 58) in 87% of collection cycles. bModel improvement (Akaike
information criterion, AIC) when including across-cycles predictors, shown as box-
and-whisker plots (median, interquartile range, min/max, and outliers). Integrating

recent choice and social information, represented by across-cycle predictors,
improves the prediction in the cooperative group (Coop, n = 14) and is even more
pronounced in the intermediate group (Inter, n = 30), compared to the competitive
group (Comp, n = 14). c Timecourse of actual (gray curve) and predicted FST
(moving average over target choice prediction, teal and blue curves) in one
exemplary dyad. While the random target placement drives the fluctuations around
the mean FST (left panel), incorporating the full GLM better matches the observed
variance (right panel, see Supplementary Fig. S3 for population data).
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path minimization with differential weighting of joint versus single
targets.

Beyond weighted path minimization: social and sensorimotor
planning factors
Although weighted path minimization—both within and across collection
cycles—already accounts for 78%of choices, we identified additional factors
that further enhance predictive accuracy. Analyses revealed that actual
moving average FST fluctuations are typically smaller than expected from
the weighted path minimization (Fig. 4c, Supplementary Fig. S3a), sug-
gesting that dyads use more sophisticated strategies. Specifically, during
single target collections, the free agent that is currently not collecting the
single target often positioned itself onto one of the joint targets, effectively
inviting the subsequent, cooperative joint target collection in the next cycle
(Supplementary Movie S5, YouTube, OSF). Another prevalent pattern
exhibited by many dyads in the cooperative and intermediate groups was a
tendency to avoid the newly appearing target.

To account for these patterns, we incorporated invitations and the
identity of the two previously collected targets as across-cycle predictors in a
generalized linear model (GLM), in addition to the weighted path mini-
mization. This model, calculated separately for each dyad, predicts the next
collected target at the start of each acquisition period. The mean prediction
accuracy improved compared to theweighted pathminimization from78%
to 87% (Fig. 4a, Wilcoxon signed-rank test, W = 14, p < 10−6, n = 58,
Mdn1 = 0.75, IQR1 = [0.69, 0.88], Mdn2 = 0.84, IQR2 = [0.81, 0.98],
rrb = 0.79, CI = [0.70, 0.84]). The model improvement (AIC) due to inclu-
sion of across-cycle predictors was apparent in the cooperative group in
contrast to the competitive group (Fig. 4b, Mann-Whitney U test, U = 15,
p < 10−4, n1 = 14, n2 = 14, Mdn1 = 127, IQR1 = [75, 338], Mdn2 =−8,
IQR2 = [− 8, 7], rrb = 0.72, CI = [0.49, 0.84]), and it was even more pro-
nounced in the intermediate group (U = 128, p < 0.05, n1 = 14, n2 = 30,
Mdn1 = 127, IQR1 = [75, 338], Mdn2 = 317, IQR2 = [271, 395], rrb = 0.31,
CI = [0.03, 0.64]).

The GLM coefficients quantifying the effect of invitations are sta-
tistically significant in 30 dyads, with 29 showing a positive effect (Wald
tests, here and further: p < 0.05, Benjamini-Hochberg-adjusted across 58
dyads). Thus, there is a significant increase in the collection probability of
the invited joint target across dyads (binomial test, proportion = 0.97,
95%CI= [0.82, 0.99], Z = 4.9, p < 10−6). Note that in the case of an invite,
the previously collected target is a single target that is subsequently
avoided. The effect of avoiding the previous target is also clear if the
previous target is a joint target (Wald tests, p < 0.05 in 37 dyads) but is
inconsistent when the previous target is a single target and no invite is
present. In the latter case, the GLM coefficients indicate a significant
(Wald tests, p < 0.05) tendency to avoid the previous single target for 14
dyads but also a significant increase in the single target collection
probability for 9 dyads (no consistent effect across dyads, binomial test,
proportion = 0.61, CI = [0.38, 0.80], Z = 0.83, p = 0.43). Thus, beyond
cooperation/competition-weighted path minimization, additional
planning factors across cycles—invitations and previous target identities
—shape the dyadic strategies.

The prediction improvement introduced by these additional factors is
also apparent in the time course of the actual and predicted FST. In contrast
to the weighted distance prediction, the “full” GLM captures the dyads
moving average FST fluctuations better (Fig. 4c, Supplementary Fig. S3,
Wilcoxon signed-rank test comparing the differences of standard deviations
between 30-second moving average FST of the actual and each of the two
model’s predictions for the 40/58 dyads that exhibited FST fluctuations,
W = 258, p < 0.05, n = 40, Mdn1 =− 0.01, IQR1 = [− 0.03, 0.02],
Mdn2 = 0.0008, IQR2 = [− 0.009, 0.02], rrb = 0.32, CI= [0.04, 0.62]). In
other words, with few exceptions dyads primarily follow
cooperation–competition weighted path minimization, but if the random
target placement sequence happens to dictate a substantial deviation from
their established mean FST, the across-cycle predictors come into play. For
example, if weighted path minimization prompts several single target

collections in a row, participants would perform an invite leading to the
collection of a joint target, and thus avoid a potential breakdown of estab-
lished cooperation.

These findings highlight the influence of social and sensorimotor
planning factors that extend beyond a cooperation–competition weighted
path minimization. We propose that the observed reluctance to repeat the
same target type reflects a dual contribution: a sensorimotor bias favoring
prospective planning and coordination for already visible targets47,71, and a
social motivation for fairness. The latter is especially pronounced in the
extreme case of the three exclusively cooperative dyads (FST = 0), who
exhibited strict normative turn-taking between the two joint targets
regardless of distance (Fig. 4a, diamondmarkers, SupplementaryMovie S6,
YouTube, OSF).

Likewise, the invitations represent one of the most basic forms of
sensorimotor communication72. During the collection of a single target—
primarily a competitive act—the non-collecting agent conveys a compelling
social signal for cooperation by placing itself on a joint target. Indeed, our
findings reveal that these invitations are accepted in the majority of cases
(88%), even when the new single target is closer (79%). This indicates that
beyond path minimization, invitations play an important additional role in
shaping intermediate strategies, highlighting the interplay between social
signaling and strategic decision-making.

Choice certainty shapes ensuing spatiotemporal interactions
Thus far, our analyzes dealt with the prediction of discrete target choices at
the beginning of each collection cycle. However, these choices are the result
of sensorimotor interactions in the continuous action space. Here, we link
the choice modeling to the classification of spatiotemporal trajectories, to
characterize ongoing decision processes and dyadic coordination. Beyond
the prediction of the discrete target choices in each cycle, we derive the
certainty of this prediction,measurable via its entropy. This choice certainty
represents an estimate of how sure the participants are about their next
move, given the current spatial contingencies and dynamics across collec-
tion cycles as modeled by the GLM. Note that for this analysis, we exclude
the dyads that mostly collected single targets (FST ≥ 0.9) since there is
always a high certainty in their target choice. To relate target choice certainty
to ensuing dynamics that precede and determine the subsequent collection,
we analyzed the ongoing decision processes reflected in spatiotemporal
trajectories. We classified the collection cycles into several representative
classes, associated with different levels of apparent coordination (Fig. 5a;
Supplementary Methods 1.3).

One prominent class of high coordination is the already mentioned
invitations, where one agent places itself on a joint target in advance. This
invitation could be reciprocated—the other agent moving towards it—or
denied, leading to a “failed invitation”. By definition, the invitations canonly
take place in dyads that collect single targets aswell as joint targets from time
to time. The next two classes are characterized by amovement towards the
same (either single or joint) target. Following the collection of the previous
target, the agentsmove simultaneously to the next target ("concurrent to the
same target”), or one agent leads and the other follows ("one ahead to the
same target”). Third, the trajectories could be “strongly curved”, due to
starting a preemptive movement before the choice is made43,44, initial mis-
coordination, or multiple changes of mind (Supplementary Movie S7,
YouTube, OSF). Lastly, one of the agents could select a joint target while the
otherwould go to collect a single target (denoted here by “different targets”).

The above classification is performed separately for each collection
cycle. Given the continuous transition between the cycles, we explored the
across-cycles transition probabilities, using Markov chain representation.
The most prominent node is the “concurrent to same target”: it is the most
probable class after any type of interaction except when the invitation is
present but not yet reciprocated. Thesemiscoordinations, “different targets”
and “failed invitation”, elicit a social pressure and are typically corrected by
the subsequently accepted “invitation”. Such invitations are often passive
(54% of all invitations)—the inviting agent communicates by remaining on
the joint target they entered previously. The other 46%are active invitations,

https://doi.org/10.1038/s44271-025-00348-w Article

Communications Psychology | (2025)3:170 8

https://youtube.com/watch?v=JX6eRWcVqmM&list=PLhzM71eHyrnKDxxGqp3qdM-De8q4oeYYN
https://osf.io/56hw7/files/osfstorage/6797ae936d29718b15df37a9
https://youtube.com/watch?v=7vbOkynnq08&list=PLhzM71eHyrnKDxxGqp3qdM-De8q4oeYYN
https://osf.io/56hw7/files/osfstorage/6797ae8f62bb9aef11df34e4
https://youtube.com/watch?v=JY_1L8-ZYyE&list=PLhzM71eHyrnKDxxGqp3qdM-De8q4oeYYN
https://osf.io/56hw7/files/osfstorage/6821c1459e11edce309c430e
www.nature.com/commspsychol


taking place after both agents aimed for the single target (concurrent or one
ahead). Thus, we can divide the invitations into passive and active sensor-
imotor communication.

By relating the trial classes to the target choice uncertainty of GLM
predictions, we found that higher uncertainty is associated with a higher
prevalence of less coordinated interactions (Fig. 5b). In some situations of
high uncertainty, dyads manage to maintain coordination, either by one
agent moving ahead and signaling the next target ("one ahead to same
target”), or by multiple trajectory adjustments leading to “strongly
curved” trajectories. In other situations, however, high uncertainty leads
to a breakdown of coordination ("different targets”). In contrast to these
classes, the mean uncertainty of collection cycles classified as invitation is
significantly reduced (Fig. 5c, Mann-Whitney U test comparing predic-
tion entropy of initial conditions with and without the invite factor,
Wilcoxon signed-rank test comparing prediction entropy of initial
conditions with and without the invite factor, W = 2297395, p < 10−6,
n = 5948, Mdn1 = 0.08, IQR1 = [0.01, 0.37], Mdn2 = 0.61, IQR2 = [0.24,
0.98], rrb = 0.59, CI = [0.57, 0.61]), demonstrating the utility of salient
sensorimotor communication for efficient coordination.

The relation between spatiotemporal dynamics and uncertainty is
also apparent in the observed distribution of collection classes over stable
FST (Fig. 5d). One of the two classes associated with high uncertainty,
“different targets”, is peaking at intermediate FSTs, in line with high
certainty of target type choice for low and high FST dyads. The other
class, “strongly curved”, is uniformly distributed because it encompasses
multiple components: the uncertainty about which of the two joint

targets to select (low FST dyads), which of the three targets to select
(intermediate FST dyads), and the uncertainty about position of the next
single target (high FST dyads; “go-before-you-know” or “decide-while-
acting” effect that refers to when the action starts before the goal is
determined44,47; Supplementary Fig. S4).

More generally, Fig. 5d shows that in high FST dyads, both agents
nearly always moved toward the same (single) target, indicating that these
participants were indeed competing, rather than allowing one another to
collect the target.

These analyzes show that our generalized linear model captures, to a
large extent, the cognitive processing underlying the ensuing dyadic choices.
At the same time, it is remarkable that even at a highmodel uncertainty, the
agents still often exhibit straight, coordinated concurrentmovements to the
same target. This can be explained, at least in part, by co-evolving online
coordination, whereby participants closely observe each other’smovements
and continuously adjust their trajectories.

Spatiotemporal variables shape joint payoff
As demonstrated in the preceding sections, real dyads do not always choose
the (target type-weighted) nearest target, and they might perform advan-
tageous placement only to a certain degree. Furthermore, real dyads do not
always move in straight lines at constant speed. Here, we disentangle the
contribution of these deviations from idealized patterns to the obtained
payoffs.

In a first approximation, the main contributing factors to the joint
payoff are the dyads’ average trajectory length and their average speed,

Fig. 5 | High uncertainty of target choice increases
the probability of uncoordinated trajectories.
aWe classify the trajectories within each collection
cycle into different classes (outer panels; the color of
the trajectory represents the time from the start of
the collection cycle, the faded targets are the targets
collected in the preceding cycle). Transition prob-
abilities are shown using a Markov chain (inner
panel, the intensity of the arrows indicates transition
frequencies). The color of the nodes (circles) cor-
responds to one of the six classes. bDistinct fractions
of trajectory classes are observed across varying
levels of target choice uncertainty, as estimated by
the full GLM. Trajectories associated with mis-
coordination or failed prediction of the partner’s
choice ("Strongly curved” and “Different targets'')
are often apparent when the model has a higher
uncertainty. In contrast, trajectories with high
coordination between agents (accepted “Invita-
tions” and “Concurrent to the same target'') are
predominant at low model uncertainties. Trajectory
classes are denoted by the same color as in (a).
c After an invite by sensorimotor communication
the uncertainty about target choice is significantly
reduced. dAverage frequency of trajectory classes as
a function of stable fraction of single targets (FST).
Note that in (a) (inner panel), (b, c) only dyads with
non-negligible target choice uncertainty are inclu-
ded (FST < 0.9, n = 44); in (d) all dyads are inclu-
ded (n = 58).

***
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which explainswhy the joint payoff increases as a function of FST up to 1/
3 and then stabilizes (Fig. 6a). The payoff in this task is proportional to the
total amount of targets collected, which is again approximately propor-
tional to the inverse of the mean collection cycle duration (Pearson’s
correlation coefficient r(56) = 0.99, p < 10−6,CI = [0.99, 0.99]). Themean
acquisition duration is well approximated by the limiting agent’s mean
trajectory length and speed (r(56) = 0.99, p < 10−6, CI = [0.99, 0.99]). For
single targets, the limiting parameters are the trajectory length and the
speed of the agent who collects the target. For joint targets, these para-
meters are determined by the agent that enters the target last. The
resulting trajectory length is a U-shaped function of FST (Fig. 6b). The
speed increases with FST (Fig. 6c, r(56) = 0.71, p < 10−6,CI = [0.55, 0.82]),
demonstrating that more competitive dyads move faster (this result also
holds for the average speed of the two agents rather than the agent that
won the single target r(56) = 0.59, p < 10−5, CI = [0.39, 0.73]). Due to the
increased speed, the effect of longer trajectories at high FSTs on payoffs is
compensated; therefore, this U-shaped function does not translate to the
joint dyad payoffs—the payoff of high FST dyads does not drop (Fig. 6a).

To understand the U-shaped pattern in trajectory length, we decom-
posed it into three components: distance to the next target, curvature, and
advantageous placement (Supplementary Fig. S5d-f). Most dyads followed
pathminimization, with distances falling between simulated scenarios with
70% and 90% closest (weighted) target. Curved trajectories were more
common in dyads focusing on joint targets, often due to initial mis-
coordination. Notably, turn-taking dyads (diamond markers) avoided
miscoordination through consistent alternation. On the other extreme
(FST = 1), some fast-acting dyads exhibited curved paths due to “go-before-
you-know” behavior (Supplementary Fig. S4,43). Finally, the contribution of
advantageous placement that shortens the anticipated path scaled up with
FST but dyads only partially exploited the theoretically possible distance
reduction. Some agents stayed close to their collecting partner (Supple-
mentary Movie S4, YouTube, OSF), others positioned themselves strategi-
cally close to the center to compete (Supplementary Fig. S1f, Supplementary
Movie S8, YouTube, OSF). One unique dyad (plus marker) efficiently split
the field to collect single targets cooperatively (Supplementary Movie S9,
YouTube, OSF).

In conclusion, this decomposition demonstrates how sensorimotor
variables shape the joint payoff, leading to the lower payoff of cooperative
dyads (Fig. 6a). Most cooperative strategies (FST < 1/3) come at the cost
of (i) longer distances to the next target, (ii) lower speed, (iii)more curved
trajectories for some dyads because of initial miscoordination, and (iv)
the loss of the optimization opportunity by advantageous placement
before the beginning of a collection cycle. Special cooperative cases
include the highest scoring dyad that effectively split the field to share
single targets, and strict turn-takers that move faster that most other
dyads with equally low FST. Similarly, more competitive dyads

compensate for the longer distances by higher speed and advantageous
placement optimizations.

Payoff differences between participants, skill and cost of
cooperation
Thus far, we considered the joint payoff and the observed strategies at the
level of a dyad. However, the two participants in a dyad might differ in
several regards, for instance in their ability—orwillingness—to collect single
targets, or due to a biased collection of joint targets benefiting one partici-
pant. Therefore, here we explore the factors underlying within-dyad payoff
differences and assess the cost of deviating from individually optimal
strategies.

Across dyads, within-dyad payoff difference (ranging from 0 to 14
Euro; Fig. 7a) correlated with the FST (r(56) = 0.67, p < 10−6, CI = [0.50,
0.79]). This correlation was nearly perfectly accounted for by the difference
in the number of single target collections between the two agents (Fig. 7b,
r(56) = 0.99, p < 10−6, CI= [0.98, 0.99]).

Assuming that if both agentsmove straight to the single target it reflects
competition (see the classification in Fig. 5 and Methods), we identify the
difference in single target collections that can be explained by the dis-
crepancies in the competitive skill between the twomembers of a dyad. Such
discrepancies accounted for the large part of single target collection differ-
ences (82%), especially in more competitive dyads (FST ≥ 0.9, 96%). The
remaining part of the difference in single targets might reflect varying
attitudes toward deviating from cooperation on joint targets in favor of
opportunistically pursuing a nearby single target ("different targets” class,
see Fig. 5). Those selections are not considered to be related to the skill
difference and are not incorporated into subsequent analyses.

We numerically estimated the resulting individual payoff as a
function of competitive skill difference and FST (Fig. 7c), assuming the
average dyad’s speed and trajectory length at each FST. For equal skill, the
expected individual payoff corresponds to half of the joint payoff (Fig.
6a), showing a flat plateau between FST 1/3 and 1. A competitive skill
difference leads to considerable payoff discrepancies at high FST. The
estimated payoff at (-30%; 30%) skill difference qualitatively corresponds
to the observed payoff difference range (Fig. 7a). Even small skill dif-
ferences (above 6%) make a competitive FST = 1 strategy optimal for the
more skilled participant (Fig. 7c). For the less skilled participant, the
optimal FST is around 1/3 (see Supplementary Fig. S6b). The greater the
skill difference, the more the individual participants’ optimal strategies
deviate from each other (Fig. 7c).

This analysis begs the question of how far the chosen strategy of each
participant, i.e. their level of cooperation vs competition, deviates from the
optimal given their skill. In particular, higher-skilled participants who chose
cooperation could have increased their payoffs by adopting a competitive
approach. Note that it only makes sense to consider the options of the

Fig. 6 | Spatiotemporal factors shape the payoff in a continuous action space.
a The joint payoff across both participants in a dyad is proportional to the mean
acquisition duration. The mean acquisition duration is well-approximated by
dividing the mean trajectory length (b) by the mean movement speed (c) on these

trajectories. Note the increase in speed with higher fractions of single targets (FST).
Eachmarker represents one dyad (n = 58). See Supplementary Fig. S5 for the analysis
that decomposes the mean trajectory length in (b) into three contributing
components.
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higher-skilled participants because only they can make a profitable uni-
lateral decision to pursue single targets competitively insteadof cooperation.
To quantify the loss of payoff (the cost of cooperation) due to a suboptimal
individual strategy, we use the estimated competitive skill difference within
the dyad, assuming its independence of FST.Under this assumption, we can
extrapolate the expected payoff to other FST values. For each higher-skilled
participant, we calculate the loss of payoff as compared to the optimal
FST = 1 scenario (Fig. 7d). The largest cost of cooperationwe could estimate
is as high as 8.7 Euro (>42% of individual earnings).

Overall, these results demonstrate that many participants do not
follow their individually optimal strategies. All participants in the highly
cooperative dyads at FST = 0 are suboptimal independently of their
potential skill differences. That includes the lower-skilled participants,
who would also benefit from increasing the amount of single target to
around FST = 1/3 (Supplementary Fig. S6b). The intermediate dyads
around FST = 1/3 are around the estimated optimum for the lower-
skilled participant. Here the higher-skilled participants could simply
increase the FST to exploit their optimal competitive strategy. Instead,
however, they choose a more prosocial cooperative strategy. Interest-
ingly, we did not observe a correlation between the skill difference within
the dyad, and whether the dyad chose to follow a competitive or coop-
erative strategy (Supplementary Fig. S6a). This suggests that factors
beyond the selfish monetary gains of the higher-skilled participant
influence the choice of the final strategy.

In summary, our findings demonstrate the interplay between skill
differences within dyads and the optimal trade-off between cooperation
and competition. As skill disparities increase, the individually optimal
strategies of participants diverge, with higher-skilled participants bene-
fiting from competitive strategies and lower-skilled participants profiting
more from intermediate strategies. Despite these differences, many dyads
chose to incur a cost of cooperation, favoring more prosocial strategies
over maximizing their economic gain. This deviation from the optimal
strategies underscores the complexity of decision-making in social

settings, where factors beyond individual reward and effort, such as
prosocial preferences or adherence to previously established cooperation,
influence behavior.

Discussion
Using a continuous transparent foraging game andbehavioralmodeling,we
found that human dyads converge on distinct strategies along a
cooperation–competition spectrum. Some dyads competed for winner-
take-all single targets, others cooperatively shared joint targets, and many
adopted intermediate strategies. Amodel incorporating dyad-specific target
weighting, movement efficiency, and interaction history captured much of
this variability, with intermediate dyads often relying on sensorimotor cues
such as invitations to coordinate. The certainty of model predictions was
linked to spatiotemporal dynamics of mutually coupled sensorimotor
decisions. Beyonddecision processes, we identified systematic sensorimotor
influences on payoff distribution: competitive dyads benefited from faster
movements, many intermediate dyads achieved comparably high payoffs
through efficient path minimization, whereas largely cooperative dyads
earned less. Notably, many higher-skilled participants nonetheless adopted
more cooperative strategies than individually optimal, thereby accepting a
cost of cooperation.

Historically, interaction experiments have been conducted using social
dilemmas from game theory in a rigorous context but discrete in time and
space. Compared to such discrete decisions, a tighter integration of con-
tinuous decisionswith physical effectors such as eyes and limbsmakes them
more susceptible to sensorimotor affordances, as actions are not only
planned but are iteratively recalibrated through direct sensory
feedback39,45,73. Recent paradigms adoptedmore continuous approaches that
resemble real-world decision-making19,27,35,39. Prior work already leveraged
cooperative23,28,74, as well as competitive interactions31,32,75,76, into continuous
action spaces. Similarly, in our foraging experiment participants could
directly observe and react to their partner’s ongoing decisions, embedding
the interaction within embodied, real-time sensorimotor flow. The face-to-

Fig. 7 | Individual payoff, skill difference and cost
of cooperation.The optimal individual strategy that
maximizes the individual payoff is determined by
skill differences, and in general favors collecting
single targets. Nevertheless,many participants chose
a more cooperative strategy with joint targets and
paid a cost of cooperation. a Individual payoff and
difference between participants. Each bar represents
the lower and the higher individual payoff in a dyad
(bottom and top ends of the bar, respectively);
hence, the bar length represents the payoff differ-
ence between the participants. If the payoff differ-
ence is below 30 cents a marker instead of a bar is
used. Dyads (n = 58) are arranged in order of
increasing FST. b The payoff difference within a
dyad (n = 58) is mainly determined by the difference
in single targets collected by each agent, and only
little by a bias towards one or another joint target.
c Estimated payoff depends on FST and skill dif-
ferences within a dyad. The greater the competitive
skill difference (i.e., the normalized difference in
single targets collected in cycles which we assume to
be competitive, see Methods), the more beneficial
competitive strategies become for the higher-skilled
participant. Note that the black curve (skill diff. =
0%) corresponds to the average profile for the joint
payoff data shown in Fig. 6a, divided by two.
d Estimated loss of payoff, representing the mone-
tary “cost of cooperation” for the higher-skilled
participant within a dyad (n = 44). Despite this cost,
many participants still chose to cooperate (lower
FST) rather than maximize their economic gain.

skill diff. 30%

10%
0%

-10%

-30% 30%
10%

0%

https://doi.org/10.1038/s44271-025-00348-w Article

Communications Psychology | (2025)3:170 11

www.nature.com/commspsychol


face arrangement and spatial continuity between collection cycles provided
an additional layer of naturalism.

However, this transition towards continuity happens not only on the
level of action spaces but also on the type of social interaction.While typical
experiments offer only a fixed social context—either a cooperative, a
competitive, or atmost abinarydichotomybetween these two—recentwork
by Pisauro and colleagues has began to investigate the continuous trade-off
between these extremes along a 1D axis16. In their Continuous Dilemma
study, the shifts from cooperation to competition were elicited experi-
mentally by the change of payoff formulation. Our work extends this
emerging line of research by combining direct action visibility in a con-
tinuous 2D action space with the opportunity to manifest graded, spatially-
dependent cooperative, intermediate, or competitive strategies, all within
the same “neutral”—if actual spatiotemporal contingencies are disregarded
—social context.

Emergent strategies and underlying decision processes
Conceptually, our paradigm synthesizes ideas from classical games such as
StagHunt (coordination required to collect joint targets), Battle of the Sexes
/ Bach or Stravinsky (asymmetry of coordination options), and Prisoner’s
Dilemmas (choice between cooperation and competition), transferring
them onto a continuous spatiotemporal interaction in a two-dimensional
action space. Using this foraging paradigm, we recorded over 40 h of con-
tinuous dyadic interactions that spanned the entire
cooperation–competition spectrum. Strategies emerged not only at the
extremes of pure cooperation and competition but also within a range of
intermediate strategies. Our analysis indicates that travel pathminimization
underlies the emergence of this intermediate group. Generalizing this path
minimization, by weighting target types based on stable cooperative or
competitive tendencies in each dyad, we successfully characterized the large
part of emergent strategies. Extending our model by recent interaction
history and invitations (sensorimotor communication)72,77–80 across collec-
tion cycles further enhanced prediction accuracy. Due to spatial continuity
between cycles, a non-engaged participant can signal their intention to
cooperate by inviting the partner to select a specific joint target. As hypo-
thesized, the prediction improvement was more apparent in cooperative
dyads compared to predominately competitive ones. However, contrary to
our initial expectations, the effect was even stronger in the intermediate
group. Thus particularly within the intermediate group, where decisions are
made under constant tension between cooperative and competitive
dynamics, the generation and integration of social information are
increased. We speculate that invitations, especially the “active invitations”
that take place after both participants tried to collect the single target, serve
to relieve the social pressure after the competitive episode, and can be
framed as a measure of trust in cooperative reciprocation by the partner.

Another consequence of continuity between cycles is a possibility for
the free agent to position itself strategically during single target collection by
the other. Depending on the spatial configuration and the chosen location,
such advantageous placement may benefit either participant—and thus
reflect a trust in eventual reciprocation—or gain a competitive edge for the
free agent. In practice, most dyads who employed the advantageous pla-
cement showedamixof thesemodes, likely reflecting limitedunderstanding
of optimality and reliance on heuristics to gain timing advantages. This
ambiguitymakes it difficult to infer motivation from spatial behavior alone,
without incorporating movement skill and reaction times into a model.

Linking across-cycle dynamics to within-cycle effects, we demon-
strated that target choice uncertainty significantly shapes ensuing spatio-
temporal interactions, leading to either mutually coupled sensorimotor
dynamics or miscoordination when social information is unavailable and
uncertainty is high39,75. By quantifying the utility of sensorimotor commu-
nication as a reduction in target choice uncertainty, we found that inter-
mediate dyads effectively leveraged this signal to arbitrate between
cooperative and competitive strategies. The emergence and strategic use of
sensorimotor communication for coordination are key outcomes of our
continuous game design79,81,82, distinguishing it from traditional discrete

paradigms. Thesefindings directly address the open question of how, and in
which interactive scenarios, the sensorimotor communication arises,
demonstrating that continuous, adaptive interactions are crucial for its
emergence72.

Since each collection cycle ends with the selection of one of three
targets, it might seem that, similar to discrete mixed-motive games, deci-
sions in our paradigmare reduced to a binary—or trinary, if the type of joint
target is considered—choice between cooperation and competition. From
this perspective, the gradual ratio of cooperation and competition is
achieved only across multiple interactions. However, we argue that, unlike
discrete paradigms, decisions in our task are shaped by a varying context
determined by distances to targets and the partner. For instance, choosing a
distant joint target over a nearby single target reflects a higher degree of
cooperation than selecting a very close joint target. Additionally, classifi-
cation can sometimes be misleading—e.g., participants may attempt to
converge on a joint target but fail to coordinate, ultimately leading to a single
target collection. In such cases, despite the final competitive outcome, the
underlying interaction was mostly cooperative. Thus, in our paradigm
varying levels of cooperation and competition can manifest not only across
multiple but also within each cycle.

Our dyadic foraging game differs from classical foraging paradigms,
which typically focus on the trade-off between exploiting the current
resource and exploring new options under constraints of depleting rewards
and the cost of exploration83–85. In our task, the only limited resource is the
finite duration of the session, meaning that participants are not balancing
exploitation versus exploration but instead adapting their collection stra-
tegies within clearly defined, stable economic yet potentially volatile social
context. Furthermore, human participants playing for modest monetary
rewards differs from naturalistic animal foraging in terms of ecological
stakes. Despite these differences, our paradigm is grounded in fundamental
principles of foraging, as participants must dynamically weigh action and
opportunity costs, allocate effort and make decisions under uncertainty—
which arises not from environmental variability but from partly unpre-
dictable actions of their partner. The sequential nature of decisions under
spatiotemporal continuity creates a setting where distinct cooperative and
competitive strategies emerge spontaneously, making this an ecologically
valid variation of foraging in shared resource environments86.

Determinants of payoff efficiency and cost of cooperation
Analyzing the payoff efficiency showed that many participants did not
adhere to their individual optimal strategy. Our analysis revealed two
variables shaping the payoff function along the cooperation–competition
spectrum unique to continuous action spaces: (i) the effect of an increase in
movement speed for higher degrees of competition, associated with
increased payoffs, and (ii) within-dyad sensorimotor skill differences. These
factors are omnipresent in real-world scenarios and other continuous action
spaces31,44, yet they are not captured in discrete (in time or in space)
experiments. Beyond a competitive advantage, higher movement speeds
towards single targets might reflect higher motivation when foraging for
oneself 87–89. At the same time, our analysis highlights the critical role of skill
differences, since they determine the optimal balance between cooperation
and competition, both within our task and presumably across other con-
tinuous action spaces. But despite the opportunity for more skilled parti-
cipants to maximize their individual payoff in a selfish manner, many
adhered to overly cooperative strategies, paying a cost of cooperation.

The reluctance to exploit more competitive strategies, even when they
are optimal, is likely an interplay ofmultiple factors. Itmight be explainedby
prosocial tendencies, characterized by empathy and a preference for fairness
and reciprocity90–92, as well as social norms93–95. In addition, once sponta-
neously established, social conventions may act as a stabilizing force,
encouraging participants to adhere to a certain level of cooperation to
maintain predictability and successful coordination28,96,97. The stabilizing
effect of continuous transparent co-action is in line with continuous-time
models of cooperation, which show how the propensity of agents to initiate
cooperation and to mirror their partner’s actions stabilizes at an
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evolutionary equilibrium19. Cooperationmay also be a pragmatic strategy to
reduce both physical and cognitive load. As in real foraging or hunting,
participants might prioritize strategies that require less rapid, energy-
intensive movements, thereby valuing comfort and sustainability over
competitive optimization in a long experiment. Many dyads, especially the
three fully cooperative turn-taking dyads, alternated between the joint tar-
gets,minimizingdecision complexity98. Lastly, successful cooperationmight
be less stress-inducing or more rewarding, and thereby subjectively more
appealing than competition99.

Cooperative tendencies in our study might be further amplified by the
face-to-face visibility and the transparency of action consequences19,27. Even
though the actual interaction took place on the abstract game field between
the two virtual agents, the presence and direct visibility of a real partner has
likely increased social salience100. Indeed, it has been demonstrated that
dynamic reciprocity is abolishedwhenparticipants believe that they interact
with a computer agent101. At the same time, the attribution of agency and
intentions to movements of virtual agents102,103 was, in addition to our
results, apparent in the emotional reactionof viewers to gameplay sequences
(to experience this firsthand, we encourage readers to view the gameplay
videos: Supplementary Movies).

Understanding continuous interactions
Our CCF game captures the continuous, dynamic nature of realistic social
interactions by letting dyads to navigate a shared space.Whenwatching the
gameplay movies, the remarkable behavioral complexity of continuous
spatiotemporal interactions and mutual coupling between agents become
very apparent. Therefore, the transition towards studying continuous
decisions requires not only the development of tasks that capture the range
of archetypal interactions, but also sophisticated analysis techniques39,59.
Despite the strategic diversity, we successfully modeled a large part of the
observed interactions and characterized the inherent links between target
choice uncertainty, trajectories, and the underlying continuous decision
processes. The trajectories, however, clearly provide more information
about the continuous decision processes than could be captured by our
modeling approach. Due to game continuity and action transparency
mediatingmutually coupled interactions, we observedmany high curvature
trajectories reflecting miscoordination, indecision, changes of mind or
online adjustments to partner’s actions, consistent with the integration of
information over short timescales104. Models that approximate the con-
tinuity of the spatiotemporal trajectories more closely, i.e. by predicting
actual spatiotemporal dynamics that incorporate ongoingmutual coupling,
represent a promising researchdirection.Tomake the game evenmore real-
world-like and elicit richer dynamics, future experimentsmightmanipulate
the ambiguity of information about the targets and the partner actions, or
make the landscape non-uniform in terms of effort and reward
probability16,59. These adaptations also offer an opportunity to infer the
decision points in a large number of interactions, which could serve as
salient alignment points for the neural analysis of continuous
decisions44,47,59,105.

Limitations
Our analysis of continuous decisions along the cooperation–competition
spectrum yields valuable insights for the design of future experiments. First,
it emphasizes the importance of factoring in the effect of increased move-
ment speed during competitive behavior when formulating the payoff.
While we successfully demonstrated that participants performed overly
cooperative strategies that incur an associated cost of cooperation, our “flat”
payoff formulation did not allow manifesting strategies that are overly
competitive and result in a “cost of competition”. This is because we did not
anticipate, and hence did not compensate for the increase in speed during
competition in our payoff formulation. By decreasing the payoff for single
targets,wehypothesize thatmanifestations andquantificationof suchoverly
competitive strategies will become possible. The second insight is that the
within-dyad skill difference determines the optimal trade-off between
cooperation and competition. We developed a post-hoc competitive skill

difference measure to estimate the cost of cooperation for intermediate
dyads, but its reliability is inherently dependent on the frequency of single
target collections, and for highly cooperative dyads (FST < 0.1) we could
only estimate a lower bound due to limited data. In future work, an inde-
pendent calibration of skill closely aligned with the task should provide a
cleaner dissociation between strategic choices and individual motor or
planning abilities, and a more robust and comprehensive estimation of the
cost of cooperation.

Finally,whilewe can reliably predict stable decision-making, it remains
unknown what causes the broad strategic diversity in the first place. This
raises the question of whether the convergence to a specific strategy in each
dyad is a consequence of (i) few initial spatial configurations that strongly
shape the ensuing interactions (akin to a complex system evolving towards
an attractor), (ii) a specific combination of personality predispositions of the
two participants106–109, or (iii) an interplay of both factors. Future research
should explore these possibilities by systematically manipulating initial
conditions, assessing personality traits, and leveraging computational
modeling to disentangle their relative contributions to strategic
convergence.

Summary
In summary, we contribute to the growing field of continuous decisions
by developing a richly flexible but tractable paradigm that affords
cooperative and cooperative strategies within the same social context,
under conditions of direct action visibility. Our analysis reveals the
spontaneous emergence of stable strategies, spanning from cooperation
to intermediate strategies to pure competition. The model incorporating
weighted path minimization and across-cycle dynamics demonstrates
that dyads with intermediate strategy rely on sensorimotor commu-
nication to facilitate coordination between cooperation and competition.
We show that preceding interactions together with the initial conditions
at the start of each collection cycle shape the decision uncertainty and
within-cycle spatiotemporal dynamics, ultimately giving rise to specific
target choices. These results form a solid basis for future research aimed
at identifying where and how these factors are represented in the brain
and exploring the interplay between different strategies, individual per-
sonality traits, and social contexts.

Data availability
The data for this study are available at the public Open Science Framework
repository, https://osf.io/56hw7, https://doi.org/10.17605/osf.io/56hw7.

Code availability
The code related to this study, including the code to run the experiment,
analyses and simulations, is available at the publicOpen Science Framework
repository, https://osf.io/56hw7110, https://doi.org/10.17605/osf.io/56hw7.
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