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KYUCOG-1401-A study
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BACKGROUND: The predictive power of the treatment efficacy and prognosis in primary androgen deprivation therapy (ADT) for
advanced prostate cancer is not satisfactory. The objective of this study was to integrate genetic and clinical data to predict
castration resistance in primary ADT for advanced prostate cancer by machine learning (ML).

METHODS: Clinical and single nucleotide polymorphisms (SNP) data obtained in the KYUCOG-1401-A study (UMIN000022852) that
enrolled Japanese patients with advanced prostate cancer were used. All patients were treated with primary ADT. A point-wise
linear (PWL) algorithm, logistic regression with elastic-net regularization, and eXtreme Gradient Boosting were the ML algorithms
used in this study. Area under the curve for castration resistance and C-index for prognoses were calculated to evaluate the utility of

the models.

RESULTS: Among the three ML algorithms, the area under the curve values to predict castration resistance at 2 years was highest
for the PWL algorithm with all the datasets. Three predictive models (clinical model, small SNPs model, and large SNPs model) were
created by the PWL algorithm using the clinical data alone, and 2 and 46 SNPs in addition to clinical data. C-indices for overall
survival by the clinical, small SNPs, and large SNPs models were 0.636, 0.621, and 0.703, respectively.

CONCLUSION: The results demonstrated that the SNPs models created by ML produced excellent prediction of castration
resistance and prognosis in primary ADT for advanced prostate cancer, and will be helpful in treatment choice.

BJC Reports; https://doi.org/10.1038/s44276-024-00093-3

BACKGROUND

Androgen deprivation therapy (ADT) is widely used as the
backbone therapy for advanced prostate cancer [1]. Current
intensive therapies for metastatic prostate cancer include radia-
tion, docetaxel, and novel androgen receptor signaling inhibitors,
such as abiraterone, darolutamide, enzalutamide, and apaluta-
mide, in addition to ADT [2]. Furthermore, triplet combination
therapy, which adds such novel androgen receptor signaling
inhibitors to ADT plus docetaxel, has recently been shown to
prolong survival in metastatic prostate cancer [3, 4]. Therefore,
prognostic estimation in ADT can help in choosing the best
treatment. However, prognostic estimation in ADT using clinical
parameters such as prostate-specific antigen (PSA), Gleason score,
and TNM category is not satisfactory for producing C-indices of
>0.7 [5-7]. Therefore, novel predictive models to more precisely
estimate the response to ADT for advanced prostate cancer are
needed.

Genetic background has been suggested to affect the efficacy
and prognosis in ADT for prostate cancer, as indicated by different
outcome among different ethnicities and consistent outcome
within families [8-10]. Over the past few decades, genome wide
association studies (GWAS) have discovered associations between
single nucleotide polymorphisms (SNPs) and various features [11].
In a previous study, we investigated the association between the
SNPs and prognosis in Japanese patients undergoing primary ADT
for advanced prostate cancer by GWAS [12]. In that study, two
SNPs, rs76237622 in PRR27 and rs117573572 in MTAP, were
validated to be associated with prognosis in ADT, but their
predictive ability was not satisfactory [12].

Machine learning (ML) is a statistics-free approach that uses
algorithms to identify patterns in rich and unwieldy data [13]. ML
can resolve complex datasets of high dimensionality such as
genomic data [14, 15]. In this study, we aimed to integrate genetic
and clinical data that were obtained in the previous study [12], to
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predict castration resistance in primary ADT for advanced prostate
cancer by ML.

METHODS

Study population

Japanese patients with de novo advanced prostate cancer (TanyN1MO or
TanyNanyM1) enrolled in the KYUCOG-1401-A study (UMIN000022852)
that was conducted in conjunction with a prospective multi-institutional
clinical trial (KYUCOG-1401; UMINO00014243, jRCTs071180035) were
included in this study. Inclusion and exclusion criteria for the KYUCOG-
1401-A study have been described previously [12]. Patients (n=38)
censored before 2 years were excluded from this study. In the KYUCOG-
1401 study, patients were randomized to receive gonadotropin-releasing
hormone (GnRH) antagonist (degarelix) or agonist (leuprorelin or goserelin)
plus the antiandrogen bicalutamide [16]. This study was conducted in
accordance with the Declaration of Helsinki and the Japanese Ethical
Guidelines for Medical and Health Research Involving Human Subjects.
Eligible patients provided written informed consent. This study was
approved by the Kyushu University review board (23087-00).

Clinical data

Clinicopathological information and efficacy in treatment data were
collected prospectively using an electronic data capture system, as
described previously [12]. Progression was defined as PSA progression
(defined as PSA level of 2.0 ng/mL or higher, a rise of 50% or more from
the lowest value, and three consecutive increases in PSA measured at
least one week apart) or radiographic progression, as described previously
[12, 17, 18]. For the analysis of progression-free survival (PFS), cancer-
specific survival (CSS), and overall survival (OS), progression or death
from any cause, death from prostate cancer, and death from any cause
were defined as events, respectively. Patients who did not experience
any of these events were censored at the last follow-up visit. For the
survival analysis, the number of days from enrollment to the earliest event
or censoring date was calculated. Patients who progressed to castration
resistance at 2 years were defined as non-responders and patients who did
not were defined as responders. Risk stratification by J-CAPRA risk score
was performed as described previously [19].

Genetic data

Genetic data were obtained as described previously [12]. Genomic DNA
was genotyped using a Japonica Array v2 according to the manufacturer’s
instructions (Thermo Fisher Scientific, Waltham, MA, USA) [20-22]. This
Axiom Array was customized for the Japanese genome by the Tohoku
Medical Megabank Organization. Genotype calling was conducted using
Genotyping Console software v4.2 (Thermo Fisher Scientific). We used the
PSA-PFS at 2years-associated 2 and 46 SNPs with p<1.0x107> and
p < 1.0x 10" that were identified in a previous study [12].

Construction of simple prediction scores
The variables were classified as binary (1 or —1) or quantitative.
Quantitative variables were normalized by subtracting the mean value
and dividing by the standard deviation. Missing values were set to 0.
The prediction models were constructed using three ML algorithms (point-
wise linear algorithm, logistic regression with elastic-net regularization
algorithm, and eXtreme Gradient Boosting) and three datasets (clinical,
clinical and 2 SNPs, and clinical and 46 SNPs). Details of the clinical dataset
are provided in Supplementary Table 1. The point-wise linear (PWL)
algorithm is a deep learning-based algorithm that was implemented using
PyTorch 1.5.1 and Python 3.7.4 [23]. The PWL algorithm uses a deep (multi-
layered) neural network structure that generates a logistic regression model
for each sample; i.e., a weight vector tailored to each sample. The importance
of each feature is computed using its weight vector. Deep unified networks
were used to construct the deep neural network in which the network layers
and neurons are connected in a mesh-like structure that reduces the risk of
overfitting [24]. The logistic regression with elastic-net regularization (LR)
algorithm and eXtreme Gradient Boosting (XGBoost) were used to build the
baseline models (implemented using scikit-learn v0.24.2, xgboost 1.0.2, and
Python 3.7.4) [25]. The best hyper-parameter of each model was determined
by 5-fold cross validation using the discovery cohort [23]. The prediction
performance of each model was calculated by area under the curve (AUC)
and evaluated using the validation cohort and the models fitted by the best
hyper-parameter.

The important features to predict castration resistance were deter-
mined based on an importance score that was calculated using the
weight vector of the PWL algorithm. The sample-wise importance score
was calculated as described previously [26]. Importance score was
defined by the rate at which a sample was ranked in the top 10% of
features with sample-wise importance scores. Parameters with impor-
tance scores >0.1 were extracted as important features. An importance
score of 0.1 indicated that at least 10% of the samples had parameters
that were in the top 10% of important features. Simple prediction scores
were constructed using important features and the sign of the median of
sample-wise weights in those features. We used the original values for
the variables in the simple prediction scores. The prediction perfor-
mance of the simple prediction scores was evaluated by AUC using
discovery and validation cohorts.

Estimation of effect by genetic background among different
ethnic populations

Allele frequency data were obtained from the 1000 Genomes Project
(https://www.internationalgenome.org/home). Estimated effect was the
sum of the value for each SNP calculated as: coefficient x 2 x (minor allele
frequency) x (1 — minor allele frequency) + 2 x coefficient X (minor allele
frequency)?.

Statistical analyses

Statistical analyses were performed using JMP16 software (SAS Institute,
Cary, NC, USA). Continuous and categorical data are presented as
median with interquartile range and number with percentage, respec-
tively. The association among the categorical data was analyzed by the
chi-square test. Survival analysis was performed using the Kaplan-Meier
method and log-rank test. Harrell's C-index was calculated using Stata
v18 (College Station, TX, USA) as described previously [7]. All P-values
were two-sided, and P-values < 0.05 were considered significant for all
the analyses.

RESULTS

Patients assignment

A total of 119 patients were included in the study, and were
divided randomly in a 7:3 ratio into discovery (n=282) and
validation (n = 37) cohorts. Clinical parameters of the patients in
each cohort are provided in Supplementary Table 1. Several
clinical parameters including Gleason score, extent of disease
grade, PSA level, and hemoglobin value were different between
non-responders and responders in the discovery cohort (Supple-
mentary Table 1). In addition, history of cerebral infarction, total
type | procollagen-N-propeptide (P1NP), white blood cell count,
and neutrophil count were higher in non-responders compared
with their levels in responders in the discovery cohort (Supple-
mentary Table 1).

Predictive ability of castration resistance by three ML
algorithms using genetic and clinical data

The ability of three ML algorithms (PWL, LR, XGBoost) to predict
castration resistance using genetic and clinical data was
evaluated. Using only the clinical data (Supplementary Table 1)
to predict castration resistance at 2 years, the AUC, sensitivity,
and specificity in the discovery cohort were 0.710-0.785,
0.568-0.704, and 0.644-0.689, respectively (Table 1). In the
validation cohort, AUC, sensitivity, and specificity were
0.720-0.786, 0.688-0.875, and 0.579-0.684, respectively (Table 1).
When the two SNPs associated with PSA-PFS at 2 years with
p<1.0x 10> were used together with the clinical parameters,
AUC, sensitivity, and specificity in the discovery cohort slightly
improved to 0.796-0.810, 0.700-0.754, and 0.689-0.778, respec-
tively (Table 1). In the validation cohort, AUC, sensitivity, and
specificity also slightly improved to 0.701-0.878, 0.625-0.750,
and 0.684-0.789, respectively (Table 1). Finally, when the 46
SNPs associated with PSA-PFS at 2 years with p < 1.0x 10~* were
used together with the clinical parameters, AUC, sensitivity, and
specificity in greatly improved in the discovery cohort to
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Table 1. Predictive performance by machine learning methods using the indicated parameters.
Parameters Mechine learning Discovery cohort® Validation cohort
method
AUC Sensitivity Specificity AUC Sensitivity Specificity
Clinical data PWL 0.773 0.639 0911 0.786 0.812 0.684
LR 0.710 0.568 0.644 0.727 0.688 0.684
XGBoost 0.785 0.704 0.689 0.720 0.875 0.579
Clinical data and 2 SNPs PWL 0.810 0.754 0.778 0.878 0.750 0.789
(p<1.0x107%) LR 0801 0704 0.756 0862 0750 0.842
XGBoost 0.796 0.700 0.689 0.701 0.625 0.684
Clinical data and 46 SNPs PWL 0.988 0.864 0.978 1.000 0.938 1.000
(p<1.0x107% LR 0963 0725 0978 1.000 0938 1.000
XGBoost 0.962 0.600 0.978 0.984 0.875 1.000

AUC area under the curve, PWL point-wise linear, LR logistic regression with elastic-net regularization, SNP single nucleotide polymorphism, XGBoost eXtreme

Gradient Boosting.
#Mean values by 5-fold cross validation.

Table 2. Important features in clinical model.

# Parameter Score Median weight
1 Hypertension 0.776 0.012
2 Total testosterone 0.524 0.015
3 Total cholesterol 0.495 0.015
4 Lymphocyte (%) 0.356 0.012
5 Gleason score 0.337 —0.011
6 ALB 0.178 0.008
7 BUN 0.176 —0.012
8 N-category 0.171 —0.007
9 Age 0.132 0.006
10 Dyslipidemia 0.117 —0.007
1 AST 0.112 0.008
12 PSA 0.107 —0.009

ALB albumin, AST aspartate aminotransferase, BUN blood urea nitrogen, PSA
prostate-specific antigen.

0.962-0.988, 0.600-0.864, and 0.978-0.978, respectively (Table 1).
In the validation cohort, AUC, sensitivity, and specificity also
greatly improved to 0.984-1.000, 0.875-0.938, and 1.000-1.000,
respectively (Table 1).

Model creation to predict castration resistance using genetic
and clinical data by ML

The PWL algorithm produced the highest AUC values in the
three ML algorithms in the discovery and validation cohorts,
with the exception of the clinical model in the discovery
cohort (Table 1). Therefore, we created a prediction model for
castration resistance using genetic and clinical data by the PWL
algorithms.

When critical parameters associated with castration resistance
at 2 years were used, 12 clinical parameters were identified
(Table 2). Besides the known predictive factors, Gleason score, PSA
level, N-category, albumin level, and total testosterone level, other
factors including comorbidity with hypertension, total cholesterol
level, lymphocyte ratio, blood urea nitrogen level, comorbidity
with dyslipidemia, and aspartate aminotransferase level were also
identified as critical parameters (Table 2). When the predictive
model (clinical model) was created using the formula in
Supplementary Table 2, the AUCs in the discovery and validation
cohorts were 0.730 (95% Cl, 0.610-0.849) and 0.585 (95% Cl,
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0.383-0.787), respectively (Fig. 1A). When prediction scores
calculated by the clinical model were divided quarterly (Q1-Q4),
the ranges were —1.42267 to 6.86566 in Q1, 6.901361-8.656931 in
Q2, 8.7444-10.01411 in Q3, and 10.06535-13.23641 in Q4. The
clinical model correctly predicted 21/27 (77.8%) in Q1 and 16/27
(59.3%) in Q4 to be non-responders and responders, respectively
(p = 0.0049, Fig. 1B).

When the two SNPs (p < 1.0 x 107°) were added to the clinical
parameters, six clinical parameters and two SNPs were identified
to be critical to predict castration resistance at 2 years (Table 3).
Besides the known predictive factors, Gleason score and extent
of disease grade, other factors including comorbidity with
diabetes mellitus, creatine kinase level, total PINP level, and
lymphocyte ratio were also identified as critical parameters
(Table 3). When the predictive model (small SNPs model) was
created using the formula in Supplementary Table 2, the AUCs in
the discovery and validation cohorts improved to 0.857 (95% Cl,
0.756-0.959) and 0.852 (95% Cl, 0.706-0.998), respectively
(Fig. 1C). When scores calculated by small SNPs model were
divided quarterly (Q1-Q4), the ranges were —1.73 to 2.71 in Q1,
2.71-4.76 in Q2, 5.01-7.43 in Q3, and 7.6-13.24 in Q4. The small
SNPs model discriminated responders and non-responders; 27/
28 (96.4%) in Q1 and 27/28 (96.4%) in Q4 were correctly
predicted to be non-responders and responders, respectively
(p < 0.0001, Fig. 1D).

When the 46 SNPs (p < 1.0x 10 were added to the clinical
parameters, 4 clinical parameters and 19 SNPs were identified to
be critical to predict castration resistance at 2 years (Table 4).
Besides the known predictive factors, M-category and Gleason
score, other factors including total bilirubin level and glucose level
were also identified as critical parameters (Table 4). When the
predictive model (large SNPs model) was created using the
formula in Supplementary Table 2, the AUCs in the discovery and
validation cohorts were prominently improved to 0.920 (95% Cl,
0.854-0.986) and 0.978 (95% Cl, 0.932-1.000), respectively (Fig. 1E).
When scores calculated by the large SNPs model were divided
quarterly (Q1-Q4), the ranges were 0.8439-5.716 in QI,
5.834-7.5162 in Q2, 7.7932-9.5307 in Q3, 9.6555-14.3819 in Q4.
The large SNPs model discriminated responders and non-
responders; 19/21 (90.5%) in Q1 and 19/20 (95.0%) in Q4 were
correctly predicted to be non-responder and responder, respec-
tively (p <0.0001, Fig. 1F).

Prognosis stratification by predictive models created by ML in
advanced prostate cancer

We applied the three predictive models for prognosis stratifica-
tion. PFS was significantly stratified by Q1-Q4 groups in all three
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Predictive models of castration resistance at 2 years created by machine learning using clinical and genetic parameters. Receiver

operating characteristic curve for castration resistance at 2 years in clinical model (A), small SNPs model (C), and large SNPs model (E).
Distribution of predictive scores of samples among discovery and validation cohorts according to quarterly-divided groups (Q1-Q4) based on
scores by clinical model (B), small SNPs model (D), and large SNPs model (F).

Table 3. Important features in small SNPs model.
# Parameter Gene name Score Median
weight
1 Diabetes 0.763 —0.026
mellitus
2 Gleason score 0.659 —0.036
3 rs11231949 LOC101928443 0.561 —0.032
4 EOD grade 0.507 —0.025
5 rs2035081 PRIM1 0.432 —0.023
6 CK 0.224 0.032
7 Total PINP 0.202 —0.029
8 Lymphocyte (%) 0.137 0.015

CK creatine kinase, EOD extent of disease, PINP type | procollagen-N-
propeptide, SNP single nucleotide polymorphism.

models (Fig. 2A). The PFS was more prominently stratified in the
small SNPs and large SNPs models than it was in the clinical model
(Fig. 2A). The C-indices for PFS in the clinical, small SNPs, and large
SNPs models were 0.617 (95% Cl, 0.556-0.678), 0.727 (95% Cl,
0.681-0.774), and 0.730 (95% Cl 0.667-0.793), respectively
(Supplementary Table 3). The CSS was also significantly stratified
by the Q1-Q4 groups in all three models, but was stratified more
prominently in the large SNPs model than it was in the clinical and
small SNPs models (Fig. 2B). The C-indices for CSS in the clinical,
small SNPs, and large SNPs models were 0.678 (95% Cl,
0.546-0.809), 0.670 (95% Cl, 0.551-0.790), and 0.781 (95% ClI
0.671-0.890), respectively (Supplementary Table 3). The OS was
significantly stratified by the Q1-Q4 groups only in the large SNPs
model (Fig. 2C). The C-indices for OS in the clinical, small SNPs, and
large SNPs models were 0.636 (95% Cl, 0.520-0.753), 0.621 (95%
Cl, 0.512-0.731), and 0.703 (95% Cl 0.583-0.822), respectively
(Supplementary Table 3).

BJC Reports



M. Shiota et al.

Table 4. Important features in large SNPs model.
# Parameter Gene name Score Median weight
1 rs12979986 ZNF702P 0.988 —0.106
2 rs9625031 SRRD 0.968 —0.098
3 M-category 0.629 —0.038
4 rs1931229 VGLL2 0.512 —0.103
5 rs1660281 — 0.488 0.064
6 rs10064620 — 0.459 0.060
7 Gleason score 0.432 —0.066
8 rs10860210 RMST 0.395 —0.048
9 rs941207 BAZ2A 0.385 0.057
10 rs9868579 RPN1 0.317 —0.031
1 rs62174680 — 0.300 0.040
12 rs11232056 LOC101928443 0.259 0.040
13 rs8124833 C200rf78 0.251 0.037
14 rs74522810 — 0.234 —0.049
15 rs74369678 LRRN1 0.205 —0.036
16 NA (chr3:74213366) — 0.190 0.104
17 rs2035081 PRIM1 0.188 —0.045
18 T-Bil 0.176 0.033
19 Glucose 0.149 —0.041
20 rs79404120 FAM19A5 0.146 0.058
21 rs11672661 COL5A3 0.129 —0.030
22 rs28625772 — 0.112 0.028
23 rs9298681 — 0.105 —0.036

NA not available, SNP single nucleotide polymorphism, T-Bil total bilirubin.

The preexisting well-known risk model, J-CAPRA risk group
using TNM category, Gleason score, and PSA level stratified PFS,
but not CSS and OS (Supplementary Fig. 1). The C-indices for PFS,
CSS, and OS by J-CAPRA risk group were 0.588 (95% Cl,
0.536-0.639), 0.602 (95% Cl, 0.512-0.692), and 0.528 (95% ClI
0.429-0.627), respectively (Supplementary Table 3).

Allele frequency by ethnicity and estimated effect of
important SNPs in the large SNPs model on the response to
ADT

The allele frequency of SNPs is known to differ among ethnic
populations, which may affect the impact of genotype on
outcomes. We investigated the allele frequencies of important
SNPs in the large SNPs model. Minor allele frequency data for 16
SNPs were available in the 1000 Genomes Project, and differed
among different ethnic groups as shown in Table 5. We estimated
the effect of critical SNPs in the large SNPs model on the response
to ADT. The estimated effect of the 16 SNPs was 0.94 in East Asians
and —1.20 in Europeans, where a high value indicates higher
probability of responder (Table 5).

DISCUSSION

The results also showed higher predictive ability when SNPs
were used in addition to clinical parameters. Several risk models
using clinical parameters have been developed to predict the
response and prognosis of ADT. However, their predictive power
is modest, as indicated by AUCs of <0.7 [5-7]. We also found
that the clinical model had limited predictive power even when
created by ML, although the C-index was modestly higher
than that of previous risk models. The predictive power of the
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models created by ML was improved by adding small and
large numbers of SNPs to the clinical parameters. In particular,
the large SNPs model achieved C-indices >0.70 for PFS, CSS,
and OS. Considering various previous predictive models failed
to achieve C-indices >0.70, achieving higher prediction power
of castration resistance at 2 years and prognosis by measuring
19 SNPs in addition to four clinical parameters would be
valuable. Currently, intensive treatments have emerged as novel
standard treatments for advanced prostate cancer [2]. Therefore,
the large SNPs model will be helpful in choosing the best
treatment for individual patients. Intensive treatment may be
preferable if patient is a non-responder while de-escalated
treatment may be preferable if patient is predicted to be a
responder.

In addition, genetic parameters in the large SNPs model
supported the ethnic differences of response to ADT. Several
studies reported that Asians have a higher survival rate after
primary ADT compared with that of Caucasians and African
Americans [8, 9, 27]. Consistently, the score from allele frequencies
of 16 SNPs in the large SNPs model indicated a higher possibility
of responders in East Asians compared with that in people with
European ancestry.

We identified various clinical and genetic parameters that
were associated with response to ADT. Among 19 SNPs in the
large SNPs model, rs1931229 was associated with the expression
of TSPYL1, which is known to be a CYP17A1 and CYP3A4
regulator, by expression quantitative trait loci (eQTL) analysis,
whereas rs941207 and rs2035081 were associated with HSD17B6
expression (data not shown). Because TSPYLT and HSD17B6 are
both involved in androgen synthesis, they are associated with
the response to ADT through their role in this pathway [28, 29].



M. Shiota et al.

a Clinical model Small SNPs model Large SNPs model
g g g
2 2 1
=} 3 =]
(2] w [z}
(] (o] [
2 e o
> z z
kel o o
? 2 @
2 < o
{o2] j=2} [s2}
] o . o .
& & P <0.0001 T P <0.0001
0
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Ye Ye Ye
No. at risk (vears) No. at risk (vears) No. at risk (vears)
Q1 27 17 6 3 1 Q1 28 16 1 0 0 Qi 21 1 2 1 0
27 20 9 6 4 28 19 6 3 1 21 16 6 2 1
Q3 27 23 17 12 4 Q3 28 21 17 1 5 Q3 21 16 8 6 2
Q4 27 22 16 1" 6 Q4 28 28 27 20 12 Q4 20 20 19 16 10
b Clinical model Small SNPs model Large SNPs model
1.0 : 1.0
© T = © [
> > >
e t 08 =)
g = 1_“L'_‘L‘_._._._u_ g 0.8
(2] 2] [z}
2 2 06 L—u £ 06
£ = £
g g g
% ¢ 04 _ g @ 04| g
9] 1] Q2 L o Q2
g S 02| —as S 02| —as
o [¢) — Q4 P=0.037" [¢) — Q4 P=0.0010"
0 0
0 1 2 3 4 5 0 1 2 3 4 5
(Years) . (Years)
No. at risk No. at risk No. at risk
Qi 27 27 27 20 13 4 Qi 28 27 23 19 8 3 Qi 21 18 15 10 5 2
27 27 24 17 10 3 28 26 25 21 15 5 21 21 20 18 12 3
Q3 27 26 24 21 14 8 Q3 28 28 26 17 8 2 Q3 21 21 19 17 9 2
Q4 27 25 24 22 1 4 Q4 28 28 28 26 19 9 Q4 20 20 20 17 13 5
(o] Clinical model Large SNPs model
© T ©
> > >
e 2 2
=] =3 =}
(2] 12} 1z
T T T
g ) —a
Q2
© © 0.2 — Q3 ©
Q4 P=0.086 — Q4 P =0.0079"
0 0
0 1 2 3 4 5 6 0 1 2 3 4 5 0 1 2 3 4 5
(Years) (Years) (Years)
No. at risk No. at risk No. at risk
Q1 27 27 27 20 13 4 Q1 28 27 23 19 8 3 Q1 21 18 15 10 5 2
27 27 24 17 10 3 28 26 25 21 15 5 21 21 20 18 12 3
Q3 27 26 24 21 14 8 Q3 28 28 26 17 8 2 Q3 21 21 19 17 9 2
Q4 27 25 24 22 " 4 Q4 28 28 28 26 19 9 Q4 20 20 20 17 13 5

Fig. 2 Prognosis stratification by predictive models of castration resistance at 2 years created by machine learning using clinical and
genetic parameters. Progression-free survival (A), cancer-specific survival (B), and overall survival (C) among discovery and validation cohorts
according to quarterly-divided groups (Q1-Q4) based on scores by clinical model (left), small SNPs model (middle), and large SNPs model

(right).

Preexistence of hypertension was associated with favorable
response to ADT, whereas preexistence of diabetes mellitus and
high glucose level were associated with unfavorable response to
ADT. This is consistent with our previous finding that comorbid-
ity with hypertension and diabetes mellitus were associated with
longer and shorter survival in primary ADT, respectively [30, 31].
Higher total cholesterol level was also associated with better
response to ADT, whereas preexistence of dyslipidemia was
associated with poor response to ADT, implying a close
relationship between ADT and lipid metabolism.

This study had several limitations. The sample size was relatively
small. Although the SNPs models had excellent predictive
performance in the Japanese population, future work is needed
to explore the generalizability of the predictive performance of
these SNPs models in other populations. Primary ADT alone is no

longer a standard therapy, and utilized in a combination with
other treatments such as androgen receptor signaling inhibitors.
Conversely, a strong point of this study is that the clinical data
were obtained from patients enrolled in a prospective trial, in
which the treatment and testing schedules were subject to strict
protocols.

CONCLUSION

Our results demonstrate that the SNPs models using clinical and
genetic parameters created by a PWL algorism produced
excellent prediction of castration resistance and prognosis in
primary ADT for advanced prostate cancer. These models are
expected to be helpful in treatment choice for advanced
prostate cancer.
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Table 5. Minor allele frequency by ethnics and estimated effect on the response to androgen deprivation therapy.

SNP identification Coefficient 1000 Genome
SAS
rs12979986 —1 0.26
rs9625031 —1 0.14
rs1931229 —1 0.35
rs1660281 1 0.26
rs10064620 1 0.41
rs10860210 -1 0.45
rs941207 1 0.16
rs9868579 —1 NA
rs62174680 1 0.29
rs11232056 1 0.26
rs8124833 1 0.10
rs74522810 —1 0.20
rs74369678 —1 NA
NA (chr3:74213366) 1 NA
rs2035081 —1 0.22
rs79404120 1 0.17
rs11672661 —1 0.40
rs28625772 1 0.05
rs9298681 1 0.24
Estimated effect —0.16

AFR EUR AMR EAS
0.08 0.34 0.34 0.21
0.02 0.29 0.19 0.23
0.10 0.28 0.33 0.50
0.49 0.11 0.21 0.38
0.26 0.37 0.32 0.26
0.50 0.38 0.46 0.32
0.08 0.26 0.25 0.26
NA NA NA NA

0.03 0.32 0.28 0.34
0.28 0.17 0.41 0.47
0.20 0.13 0.25 0.39
0.18 0.21 0.18 0.18
NA NA NA NA

NA NA NA NA

0.33 0.38 0.33 0.26
0.01 0.14 0.11 0.16
0.06 0.48 0.48 043
0.30 0.06 0.07 0.08
0.47 0.20 0.45 0.26
1.70 —1.20 0.08 0.94

AFR Africa, AMR native Americans, EAS East Asia, EUR Europe, NA not available, SAS South Asia, SNP single nucleotide polymorphism.

DATA AVAILABILITY
The data sets generated and/or analyzed during the current study are available from
the corresponding author upon reasonable request.
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