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Mental health care faces a significant gap in service availability, with demand for services significantly surpassing available care. As
such, building scalable and objective measurement tools for mental health evaluation is of primary concern. Given the usage of
spoken language in diagnostics and treatment, it stands out as a potential methodology. With a substantial mismatch between the
demand for services and the availability of care, this study focuses on leveraging large language models to bridge this gap. Here, a
RoBERTa-based transformer model is fine-tuned for mental health status evaluation using natural language processing. The model
analyzes written language without access to prosodic, motor, or visual cues commonly used in clinical mental status exams. Using
non-clinical data from online forums and clinical data from a board-reviewed online psychotherapy trial, this study provides
preliminary evidence that large language models can support symptom identification in classifying sentences with an accuracy
comparable to human experts. The text dataset is expanded through augmentation using backtranslation and the model
performance is optimized through hyperparameter tuning. Specifically, a RoBERTa-based model is fine-tuned on psychotherapy
session text to predict whether individual sentences are symptomatic of anxiety or depression with prediction accuracy on par with
clinical evaluations at 74%.
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LAY SUMMARY

Mental health services struggle to keep up with growing demand. This study explores how a RoBERTa large language model can
help by analyzing text for signs of anxiety or depression. It uses online therapy transcripts and forum posts, learning to spot
symptoms from what people write, even without tone or facial cues. With accuracy similar to human experts, this approach shows
promise for making mental health evaluation more accessible and scalable.

INTRODUCTION
There is currently a mental health crisis as the demand for mental
health services vastly outstrips the availability of quality care. In
the United States and Canada, approximately 60 million people
grapple with mental health concerns, yet, over two-thirds of those
in need are unable to receive care despite a staggering $250
billion in healthcare expenditures [1, 2]. The prevailing model of
care delivery relies on one-on-one interactions between clinicians
and patients, which is labor-intensive and thus lacks scalability.
The paucity of mental healthcare clinicians hampers the efficacy of
this traditional format. The World Health Organization estimates
around half the world’s population lives in countries where there
is one psychiatrist for 200,000 or more citizens [3]. In Canada, such
inefficient utilization of resources has led to wait times of
8–16 months to see a psychiatrist from the initial referral [4].
Furthermore, the considerable degree of clinician involvement
further inflates the cost of conventional treatment. Between 2011
and 2021, Ontario saw a 50% increase in mental health-related
emergency department (ED) visits, often resulting from delayed
access to outpatient psychotherapy [5, 6]. Nearly half of these ED
visits were first-contact encounters, underscoring the need for

improved triage and access to earlier-stage interventions [4, 7–9].
The higher cost of ED care ($500–$600/patient) compared to
psychiatric outpatient care ($80–150/patient) adds significant
pressure to the public health system [5, 10]. Additionally,
untreated mental health problems can increase the cost of
managing other chronic diseases by 1.5–3 times [11, 12], increase
the length of hospital stay and chances of readmission [13–15],
and yield poorer clinical outcomes [16]. Therefore, developing
systems that improve resource utilization and access to compre-
hensive and timely care must be a priority [17]. The COVID-19
pandemic has exacerbated this mismatch in care by increasing
demand for services, fostering mental health awareness, and
diminishing the stigma associated with seeking care. This has
created a persistent disparity between the supply and demand for
mental healthcare, enduring even beyond the pandemic’s
cessation. To address the growing demand for mental health
services, some healthcare systems have adopted stratified and
stepped-care approaches. These models aim to optimize resource
utilization by ensuring that limited and specialized services, such
as psychiatrist appointments, are prioritized for individuals with
the most severe or unstable conditions. This framework provides a
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tiered system of care, where patients with less severe conditions
can benefit from lower-intensity interventions, such as self-guided
or therapist-assisted digital therapies, while those with more
complex needs receive direct, specialized care (e.g. psychiatrist
appointments). Despite these advancements, the identification
process remains resource-intensive and time-consuming.
Currently, triage often involves the use of checklists and

questionnaires, which rely on subjective measures by asking
patients to report their symptoms and experiences on the intake
triage day. While this approach provides useful insights, it can be
limited by variability in patient responses, which may be
influenced by transient mood or situational factors. A more
effective model would integrate objective measures that go
beyond a single point-in-time assessment, analyzing patterns of
patient experiences over a period. Such an approach could
leverage longitudinal data to provide a more accurate picture of
the patient’s needs, allowing for a tailored determination of the
appropriate level of care. This would not only enhance the
precision of triage decisions but also reduce reliance on resource-
intensive processes. While LLMs are not required to interpret
structured numerical scales, their utility lies in synthesizing
narrative data beyond what checklists can capture. In systems
with integrated electronic health records, LLMs could help extract
longitudinal mental health information from previous clinical
notes or patient messages, where available, to inform triage
decisions. It is imperative to prioritize the development of
innovative solutions that streamline and automate the delivery
of mental healthcare to address this public health concern.
The field of mental health care has lagged behind broader

innovation in the healthcare industry. This discrepancy primarily
arises from the dearth of robust and precise quantitative
measurements, biomarkers, and evidence-based practices in this
domain compared to other medical specialties. Thus, it becomes
essential for the field to center its efforts on the cultivation of
novel data-driven measurement tools which can effectively
evaluate the mental status of patients. Thought leaders, including
Thomas Insel, have emphasized the need for diagnostic systems
that integrate multiple levels of information [18, 19]. Frameworks
such as the Research Domain Criteria (RDoC) [20] and the
Hierarchical Taxonomy of Psychopathology (HiTOP) [21] address
these gaps through dimensional, data-driven approaches to
classification. In line with these efforts, this study aims to
contribute to the development of scalable, objective tools that
support comprehensive mental health assessment, thereby
bridging the existing care gap and ensuring optimal treatment
for individuals in need.
Establishing objective measurement tools for mental health

evaluation is challenging due to their inherent complexity. Unlike
other chronic diseases which typically utilize one or few
biophysiological target variables, such as blood glucose in
diabetes or blood pressure in hypertension, mental health
disorders lack definitive biomarkers. As a result, there is a reliance
on indirect measurements, including changes in sleep patterns or
activity level [22] or changes in body posture [23] and speech tone
[24]. While these biophysical symptom proxies hold significance in
a clinician’s decision-making process, the patient’s verbalized
thought content plays a central role in psychiatric assessment,
particularly when integrated with affective cues, speech prosody,
and structured clinical interviewing. The assessment of thought
form and content, mood status, stressors and anxiety level
predominantly rely on the patient’s verbal expression. Accord-
ingly, scalable technologies for mental status evaluation may
benefit from focusing on patient language, while recognizing that
speech is typically elicited in structured interviews and interpreted
in the context of multimodal cues. However, patients’ speech is
unstructured data, which makes the process of extracting clinically
relevant data a challenging endeavor. Clinicians interpret patient
speech through a combination of attentive listening and

professional judgment, a process that natural language processing
(NLP) tools may one day support by assisting in identifying
symptom-relevant language patterns.
To address the scalability and objectivity challenges outlined

above, recent advances in deep learning, particularly in NLP, offer
promising tools to support mental health evaluation [25–29].
Unlike traditional statistical and machine learning methods, deep
learning methods do not heavily rely on feature engineering and
can process longer, more complex sentences in a context-
dependent manner. They also exhibit enhanced capabilities in
learning language structures, allowing for effective transfer
learning with limited data. Transformers, newer than convolu-
tional and recurrent neural networks, show promise in handling
sequential and textual data, making them suitable for mental
health applications [28]. In this work, the focus is on fine-tuning a
pretrained transformer model to detect symptomatic sentences
related to depression and anxiety in a client’s narrative. This paper
investigates whether a fine-tuned transformer model can accu-
rately detect depression- and anxiety-related language in psy-
chotherapy narratives and benchmark its performance against
existing approaches. This paper hypothesizes that a RoBERTa-
based transformer model, fine-tuned on annotated psychotherapy
narratives, can classify individual sentences as symptomatic or
non-symptomatic with accuracy comparable to that of expert
clinicians.

METHODS
Datasets
Training dataset. The non-clinical training data for this study was
collected from online mental health forums where individuals share their
personal experiences and challenges related to mental health. To prepare
the data, the stories were segmented into sentences, and each sentence
was carefully examined and labeled by an expert clinician (Expert A) as
either neutral or exhibiting signs of anxiety and/or depression. In addition,
sentences that relied on the previous or following sentence for context
were flagged as dependent examples. An illustration of this dependency
can be seen in the following pair of sentences: “Would I say my life is
perfect and I am happy every day? No.”. In isolation, each sentence does
not provide a clear indication of symptoms, but when considered together,
they reveal relevant information. Therefore, both sentences were marked
as dependent examples. Furthermore, sentences that were unrelated, such
as asides or emphatic statements, were also identified and flagged. These
two categories of sentences–dependent and unrelated–were subsequently
removed from the dataset as they were not suitable for labeling in the
context of this research question. Out of the initial 3780 sentences, only
97 sentences (2.6%) were removed based on criteria, resulting in a dataset
of 3683 sentences. The removal of non-emotional or context-dependent
sentences was conducted manually to ensure labeling quality. While
effective, this step limited scalability. Future iterations of this pipeline will
implement a preliminary model to automate the identification of non-
relevant content before classification. Sentences labeled as displaying
signs of anxiety, depression or both were categorized as symptomatic
(positive) examples while neutral sentences served as non-symptomatic
(negative) examples. The resulting training dataset was 36% symptomatic
and 64% non-symptomatic sentences. Once the training data was
prepared, it was shuffled and split into a typical 80% training
(2946 sentences) and 20% validation (737 sentences) dataset. The test
set for evaluation purposes consisted of a clinical dataset. This sentence-
level split may have allowed for stylistic overlap between sentences from
the same user in both training and validation sets.
The training sentences used in this study had an average length of 19

words and 102 characters for symptomatic sentences, whereas non-
symptomatic sentences had shorter averages of 16 words and 83
characters (Figs. 1, 2). In terms of data sources, each user contributed an
average of 26 sentences. The highest number of sentences from a single
patient in the dataset was 180 while the lowest contribution was
2 sentences.

Testing dataset. The clinical data utilized in this study was collected from
a board-reviewed and ethically compliant online psychotherapy clinical
trial conducted at Queen’s University between 2020 and 2021. The study
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underwent a thorough review process by the Queen’s University Health
Sciences and Affiliated Teaching Hospitals Research Ethics Board to ensure
adherence to ethical standards (File #: 6020045). As part of their
participation, patients provided written informed consent for the utiliza-
tion of their anonymized data in academic research and publications. 55
subjects participated in the trial. During the trial, participants diagnosed
with major depressive disorder (MDD) received 12 sessions of therapist-
supported electronic cognitive behavioral therapy (e-CBT) in an asynchro-
nous format. This asynchronous therapy involved engaging with weekly
interactive online modules, which were delivered through a secure cloud-
based online platform. During the initial week of the trial, participants were
invited to share their narratives detailing their experiences with mental
health challenges.
Participant narratives were segmented into 930 total sentences.

Following the same inclusion criteria as the training dataset, 31 sentences
(3.3%) were excluded, leaving 899 sentences for testing the algorithm
performance. These sentences were similarly labeled as neutral or
containing signs of anxiety and/or depression by two expert clinicians
(Expert J and Expert M), who were different from the clinician involved in
labeling the training dataset. Among the 899 sentences, Expert J
considered 28% as symptomatic and 72% as non-symptomatic, while
Expert M categorized 41.5% as symptomatic and 58.5% as non-
symptomatic. Notably, this resulted in an inter-rater overlap (i.e. proportion
of sentences having similar labels from both Experts J and M) of 76%,
indicating a significant level of agreement between the two experts
regarding sentence labeling. For testing purposes, the model performance
was evaluated separately against the labels of each expert. No third expert
was used to resolve disagreements, a consensus label was not set. This
approach allowed for transparent comparisons between model predictions
and individual clinician judgments. To assess label consistency across
datasets, Expert J was also tasked with labelling the training dataset. The
inter-rater overlap between Expert A and Expert J for the training dataset
was 80%. This level of agreement reflects the inherent subjectivity in
assessing symptom presence from isolated sentences and supports the use
of expert consensus as a comparative benchmark in NLP model evaluation.

Model design. Due to the vast array of tasks in NLP, it is crucial to clearly
define the specific task of interest before any modeling work. In this study,
the task is a classification task, where the objective is to classify the text
input based on a predefined label. Specifically, it is a binary sentence
classification task, where the aim is to categorize a sentence input as one
of two labels, symptomatic or non-symptomatic. Two particularly relevant
subtasks in text classification are emotion recognition and sentiment

analysis. Emotion recognition aims to assign a specific emotion (e.g. happy,
sad, angry) to the input sentences. On the other hand, sentiment analysis
focuses on capturing the overall attitude expressed in an input sentence
(i.e. positive, negative, neutral). Given the nature of mental health,
particularly anxiety and depression, these two subtask categories exhibit
strong interrelationships and relevance to the current study.

Model training. The Transformer model class was selected due to its
superior performance in NLP tasks related to emotion detection,
surpassing previous models that lacked contextual understanding
[30, 31]. Several models were selected from the HuggingFace transformer
model library, including a standard Bidirectional Encoder Representations
from Transformers (BERT) model as well as other BERT-based models
including RoBERTa [32], DistilBERT [33], ALBERT [34], DeBERTa [35], and
XLM-RoBERTa [36]. RoBERTa is a transformer-based language model that
builds on BERT, optimized for downstream NLP tasks. BERT was chosen as
it has established itself as the de facto and widely adopted baseline for
NLP experiments [37]. In addition to training the baseline models, training
was conducted on commonly employed baseline model variants, such as
cased and uncased versions, as well as large-sized models, ensuring a
comprehensive exploration of the model landscape.
A selection of transformer models that had undergone further fine-

tuning for text classification and specific subtasks was also included in the
initial model selection phase. While models from subtasks relevant to the
current task (emotion recognition, sentiment analysis) were of particular
interest, a wide range of subtasks were considered. These models were
chosen based on their popularity within the HuggingFace community (as
determined by the number of downloads) and their demonstrated
performance in various tasks. A total of 44 unique models were tested
using a standardized set of hyperparameters. Each model was trained for 5
epochs. The remaining training hyperparameters were set to their default
values provided by HuggingFace.
Most models (75%) were baseline models that had been fine-tuned to

another task before our training (Fig. 3). Among these fine-tuned models,
57% were specifically fine-tuned for a text classification task, 16% for token
classification, and 2% for fill mask tasks. The token classification models
were exclusively tuned for name entity recognition (NER) subtasks, while
the fill mask task was for a biological subtask. The text classification models
were primarily trained on subtasks of sentiment analysis (36%) and
emotion recognition (32%) subtasks.
Before model training, the training examples underwent tokenization

using HuggingFace’s tokenizer class, which employs base model-specific
(i.e. BERT, DistilBERT, RoBERTa) tokenization techniques. It is worth noting
that the training data exhibits an imbalance, with only 36% of sentences
meeting the criteria for being symptomatic. To address this imbalance, a
weighted cross-entropy loss function was employed during model training,
where the weights were determined based on the distribution of the two
classes. Model accuracy was used as the sole criterion for model selection
due to the sensitive nature of the given task, which necessitates
maximizing correct predictions even if it comes at the expense of
computational efficiency, such as model size or latency. Specifically, the F1
score was used as the model accuracy metric, as it maintains a balance
between precision and recall. For the given task, it is crucial to try to
accurately predict as many symptomatic cases as possible (recall) while
also maintaining a high level of confidence in the positive predictions
(precision). Therefore, both metrics were considered essential in evaluating
the model performance.
Data augmentation serves as a valuable approach to enhance the

training dataset by introducing additional examples through slight
modifications of existing ones. While in image datasets this can be
achieved through simple techniques such as scaling, rotation, or color
manipulation, text datasets require methods that preserve sentence
meaning. Simple text augmentations like random word swap or insertion
are not sufficient for complex tasks such as emotion detection, where
sentence meaning plays a pivotal role. Therefore, alternative methods that
better preserve sentence meaning were considered and compared,

Fig. 1 The sentence length by label type, symptomatic and non-
symptomatic where symptomatic sentences were less frequent and
shorter.

Fig. 2 Natural language processing mental health task process figure where a narrative sentence is input to a transformer model with a
classifier to predict status as either symptomatic or non-symptomatic.
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including the use of back translation. These methods offer more effective
ways to generate synthetic training examples that contribute meaningfully
to the training process.
Back-translation, the technique employed in this study, involves translat-

ing the original sentence to another language and then back to English. It
was implemented here with the NLPAug library for textual augmentation,
utilizing HuggingFace transformer-based translation models. This approach
is expected to maintain the sentiment of the sentence more accurately. The
number and type of language intermediates used in the translation process
were treated as additional tunable hyperparameters. Each available
language intermediate on HuggingFace (as of 2022) was individually tested,
effectively doubling the size of the training dataset with the inclusion of the
back-translated synthetic counterparts for each sentence. During augmenta-
tion, the original class distribution (36% symptomatic, 64% non-sympto-
matic) was maintained to reflect the natural imbalance found in real-world
clinical narratives to prioritize ecological validity. Moreover, various ratios of
back-translated synthetic sentences to the original sentence were explored,
along with different combinations of language intermediates. A compre-
hensive investigation was conducted across 20 individual languages,
followed by experimentation with the top 11 performing models in different
combinations on the complete dataset. The number of languages used was
incrementally increased until a drop in performance was observed. For
details on this analysis, consult Appendix A2.
Hyperparameter tuning was conducted using the Tree Parzen Estimation

(TPE) method with HyperOpt, employing an Asynchronous Successive Halving
(ASHA) scheduling algorithm implemented with Ray Tune [38, 39]. The
selected hyperparameters and their respective ranges for tuning were chosen
based on their ability to significantly enhance model performance in prior
works [39]. The hyperparameters chosen included the number of training
epochs, the random seed, the number of training examples per batch, and the
learning rate. The final hyperparameters used can be found in Table 1.
The fine-tuned model trained on non-clinical data was then evaluated on

the clinical dataset to assess its diagnostic capabilities. The model’s
performance was calculated and compared against the labels of Experts J
and M, and the results are presented in Table 1. To limit the burden on clinical
data and reduce computational costs, the test set evaluation on the best-
performing model only was the focus, allowing for a direct comparison to
human experts. The overall process of data augmentation, training, and tuning
is outlined in Fig. 4.

RESULTS
Performance evaluation was conducted across 44 different models
by comparing their F1 score (harmonic mean of precision and
recall) and balanced accuracy (bA) on the training dataset. The top
11 models, based on their performance, were fine-tuned using the
augmented training dataset. A detailed comparison of these
models can be found in Table A1.1 in Appendix A1.
The model that achieved the highest performance in our

evaluation was a fine-tuned RoBERTa model that was previously

trained on the TweetEval [40] dataset before this dataset.1

TweetEval is a dataset specifically designed for multi-class
emotion recognition in Tweets, consisting of over 5000 Tweets
categorized into four emotions: anger, joy, sadness, and optimism.
By leveraging this dataset, the RoBERTa model demonstrated
superior performance, outperforming word-based, context-free
algorithms like fastText by approximately 10%. For a detailed
analysis of each model’s performance, please consult
Appendix A1.
Subsequently, we assessed the performance of the best-

performing model, trained on the public dataset, using the clinical
dataset that was labeled by two additional experts. The model
achieves an accuracy of approximately 74%. It is worth noting that
even human experts do not exhibit complete consistency. The
inter-rater overlap between Experts J and M was found to be 76%,
which is comparable to the accuracy of the model. This suggests
that the model approximates expert-level performance in
identifying symptomatic content, at least within the context of
sentence-level classification of psychotherapy narratives.
The results table displays results for the baseline model, which

refers to the Emotion RoBERTa model. The Augmented column
refers to the Emotion RoBERTa model applied to the augmented
training dataset. Finally, the Tuned performance is after hyper-
parameter tuning.
Both the F1 score (F1) and balanced accuracy (bA) are crucial

metrics included in our evaluation. These metrics are specifically
employed for classification tasks involving imbalance datasets,
such as this. It is important to highlight that the F1 score maintains
a balance between precision and recall, whereas the balanced
accuracy assesses specificity and recall. The balanced accuracy
metric directly considers true negatives, making it particularly
useful when both true positives and true negatives are equally
significant. On the other hand, the F1 score prioritizes the positive
cases, emphasizing the accuracy of identifying positive instances.
By utilizing both metrics, we ensure a comprehensive assessment
of the model’s performance in handling imbalanced classification
scenarios.

DISCUSSION
In this project, we conducted fine-tuning on a variety of
transformer models to identify symptomatic sentences in a client’s
mental health narrative, specifically those related to depression
and anxiety. We aimed to compare the performance of these
models and address the limited availability of labeled data by
employing augmentation techniques to expand our dataset.
Our findings demonstrate that our most effective model

achieved an accuracy of approximately 80% (F1: 79.3%, bA
84.0%) when distinguishing between symptomatic and non-
symptomatic sentences, which is comparable to the performance
of human experts. While these results are promising, they
represent an incremental step toward scalable mental health
evaluation. This study focuses on sentence-level classification for
anxiety and depression using text alone and does not incorporate
other clinical signals such as facial expression, prosody, or
interactional nuance. As such, this is not a diagnostic system,
but rather a proof-of-concept for language-based symptom
detection. Alternative approaches, including multimodal learning,
full narrative modeling, or temporal tracking of symptom
expression across sessions, may further strengthen clinical utility.
Despite being trained on a public dataset, this model showcased a
similar level of accuracy when classifying sentences from a clinical
dataset collected from 55 patients participating in a separate
clinical trial (average F1= 74%, bA= 73.5%). Notably, our model’s

Fig. 3 Task and subtask distributions of models used in model
selection. BERT models were pretrained on an emotion recognition
task before the current study training.

1The model has been made available on HuggingFace as
margotwagner/roberta-psychotherapy-eval
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performance is in line with the level of agreement between
different expert raters, indicating its reliability.
Through the fine-tuning of various transformer models,

augmentation techniques, and comparative analyses, our project
has successfully developed a model capable of accurately
classifying symptomatic sentences. Its accuracy on both public
and clinical datasets, combined with its performance comparable
to interrater agreement, highlights its effectiveness and potential
for practical applications.
Our study aimed to identify the most effective model for the

given task, and our analysis revealed that the RoBERTa model,
fine-tuned on the TweetEval benchmark, outperformed the other
models examined. RoBERTa is an enhanced version of the original
BERT transformer model, benefiting from robust optimization
during pretraining, which ultimately resulted in improved model
performance [32, 40, 41]. Unlike BERT, RoBERTa underwent
pretraining using an expanded dataset, comprising five English-
language corpora that totaled over 160 GB of uncompressed text.
These corpora include BOOKCORPUS [42], WIKIPEDIA, CC-NEWS
[43], OPENWEBTEXT [44], STORIES [45].
The model was further fine-tuned on the TweetEval benchmark

before our task. Specifically, it utilized the Emotion Recognition
dataset, which contains over 5000 text statements sourced from
Twitter. Each statement is associated with one of four emotions:
anger, joy, sadness, and optimism. The exceptional performance
of the RoBERTa model highlights the significance of emotion
classification as a valuable precursor for mental health diagnostics.
It is worth noting that the BERT base model, XLM-RoBERTa
pretrained on a sentiment analysis task, and DistilBERT base
models closely trailed in terms of performance.
By highlighting the superior performance of the RoBERTa model

fine-tuned on Emotion TweetEval, our study highlights its strong
performance relative to alternatives in this specific task. These
findings suggest that emotion classification may be a useful

component in supporting future mental health evaluation tools,
though additional work is required before this approach can
inform diagnostic decision-making.
One effective strategy for enhancing model training involves

employing diverse data augmentation techniques to expand the
training dataset. In our study, we explored the back-translation
technique and observed a notable improvement in model
performance as a result. Interestingly, we discovered that using
intermediate languages from the Indo-European, Turkic, or Uralic
language families yielded superior results compared to other
language families, such as Sino-Tibetan, Japonic, Austronesian, or
Afro-Asiatic. This can be attributed to the fact that languages
belonging to the same language family as English tend to capture
sentence structure and meaning more effectively due to their
greater similarity.
To maximize the benefits of back-translation, we identified the

combination of Turkish and Danish as particularly effective,
allowing us to triple the size of the training dataset by generating
two additional augmented sentences for each origin training
sentence. This language combination produced the highest model
performance, achieving an approximate 2% increase in the
F1 score. These results also highlight that the model’s perfor-
mance is influenced by syntactic similarity to English. Individuals
whose native language differs significantly from English, particu-
larly non-Indo-European, may express symptoms in ways that the
model struggles to interpret. This raises concerns about potential
diagnostic bias in multilingual or culturally diverse populations.
Future research should evaluate model performance across
diverse linguistic and cultural groups to improve fairness and
generalizability. For a detailed analysis of the language combina-
tion, corresponding performance, and the impact of increasing the
ratio of synthetic sentences to original sentences, please refer to
Appendix A2 Table A2.
By strategically implementing back-translation and specifically

leveraging the Turkish and Danish languages, we successfully
amplified the training dataset and enhanced the model’s
performance. The observed improvements validate the effective-
ness of this approach for training models for the given task.
During the hyperparameter tuning process, we focused on

optimizing several key hyperparameters, including the number of
training epochs, random seeds, the number of training examples
per batch, and the learning rate. While these hyperparameters
were carefully tuned, it is worth noting that there may still be
room for further optimization. After thorough experimentation, we
observed only a modest improvement in the overall model
performance, with the F1 scores increasing by a mere 0.2%. For a
comprehensive list of the final set of hyperparameters employed
in this study, please refer to Appendix A3. Moving forward, further
exploration and optimization of hyperparameters may garner
additional model success. It is an avenue that warrants future
investigation and can potentially yield more substantial
improvements.
The findings from this study highlight the promising potential

of training a transformer model for a nuanced and intricate clinical
task, specifically the detection of symptomatic language use, even

Table 1. Performance of trained models across datasets.

Hyperparameter-Tuned Augmented Data Fine-Tuned fastTexta

Public Dataset F1: 79.3
bA: 84.0

F1: 79.1
bA: 83.6

F1: 77.2
bA: 82.3

F1: 68.1
bA: 75.2

Clinical Dataset (Expert J) F1: 73.0
bA: 72.0

Clinical Dataset (Expert M) F1: 75.0
bA: 75.0

aAll other non-DL models performed worse than fastText. For more details, please refer to Appendix A1.
Bold indicates best performing model.

Fig. 4 Schematic of the overall training process. The training
dataset is augmented and then used to fine-tune a transformer
model. The model is optimized through hyperparameter tuning
before the final model is attained.
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when faced with limited labeled data. Furthermore, the transfer-
ability of the model’s knowledge to diverse datasets collected in
distinct clinical settings is a crucial outcome. Ultimately, these
transformer models can revolutionize the field by enabling
scalable and objective mental status evaluations based on
patients’ language usage.
As we move forward, it becomes imperative to envision future

clinical trials that leverage these objective measurements to
predict essential clinical outcomes. These outcomes could expand
to include factors such as patient engagement, symptom
reduction, or even relapse prediction. By incorporating these
objective measurements into the design of future trials, we can
potentially enhance our understanding of the complex interplay
between language use and clinical outcomes.
Looking ahead, future research should explore the model’s

generalizability across different diagnostic domains, such as
psychosis, posttraumatic stress disorder, obsessive-compulsive
disorder, and eating disorders, and its potential integration into
digital triage platforms and clinical workflows. Prospective trials
should assess the model’s utility in real-time settings, such as
predicting therapy engagement, tracking symptom progression,
and flagging early signs of relapse. These steps will help translate
this proof-of-concept into a clinically actionable tool within a
stepped-care framework.
By utilizing the power of transformer models and their ability to

accurately analyze language patterns, we pave the way for more
precise and comprehensive evaluations of mental health. This has
the potential to significantly impact clinical practice and improve
patient care. A logical next step is to strategically integrate these
models into clinical research and care delivery, enabling insight-
driven enhancements to mental health services.
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