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Although prior research has identified abnormal brain connectivity in remitted depressed adolescents, there is limited work
associating these alterations with real-time affective dynamics, which may shed insight about specific biological markers that
contribute to depression recurrence. Effective brain connectivity was estimated using renormalized partial directed coherence
(rPDC) from resting-state EEG data collected in adolescents (N= 144; ages 13–18), including youth with remitted depression
(n= 85) and healthy controls (n= 59). Additionally, over the course of 180 days, ~2.3 million messages from adolescents’
smartphones were passively obtained, and sentiment (i.e., words connoting positive and negative emotion) was extracted using the
Python tweetNLP package. At the baseline and 6-month follow-up assessments, clinical interviews were administered to assess
depressive symptom severity. Compared to healthy adolescents, youth with remitted depression exhibited hyperconnectivity in
theta and delta frequency bands as well as hypoconnectivity in alpha, beta, and gamma in occipito-temporal regions (ps < 0.05).
Across all participants, lower connectivity between the precuneus and middle temporal gyrus within the beta and gamma
frequency bands was associated with greater negative sentiment in smartphone-based language (beta: B=−0.019, p= 0.006;
gamma: B=−0.180, p= 0.007) but not depressive symptoms (beta: B= 0.073, p= 0.415; gamma: B= 0.093, p= 0.289). Conversely,
lower alpha band connectivity from the mid cingulate cortex to the precuneus is associated with greater depressive symptoms at
follow-up relative to baseline (B=−0.239, p= 0.013). These findings suggest that resting-state effective connectivity may serve as a
neural marker of vulnerability for elevated depressive symptoms and negative affective expression during adolescence,
highlighting potentially separable neurophysiological targets that, if replicated, could inform future preventive interventions.

NPP – Digital Psychiatry and Neuroscience; https://doi.org/10.1038/s44277-025-00044-x

LAY SUMMARY

We studied brain activity in adolescents with and without a history of depression, and how it relates to their everyday emotional
expression in text messages. Using EEG, we found that certain patterns of brain connectivity were linked to more negative language
and to later increases in depressive symptoms. These findings suggest that specific brain activity patterns may serve as early
warning signs for depression risk, helping guide future prevention efforts.

INTRODUCTION
Major depressive disorder (MDD) is a major public health concern
amongst adolescents, as approximately 20% will experience a
depressive episode by age 18 [1]. Rates of depression are
increasing in the United Sates, with the majority of adolescents
experiencing recurrent episodes both during adolescence and
across the lifespan, contributing to academic struggles, risky
behavior engagement, psychiatric comorbidity, and heightened
suicide risk [2, 3]. Adolescence is thus a critical period for both the
onset and recurrence of depression, underscoring the urgent need
to identify neural markers that signal vulnerability for depression.
Although many adolescents achieve clinical remission, recurrence

remains common, suggesting that symptom-based assessments
alone may be insufficient to capture future risk.
Previous studies have suggested that affective vulnerability may

manifest across both internal symptoms and external behavioral
outputs, such as emotional expression in language [4–6].
Characterizing how neural connectivity supports both dimensions
of affective functioning may enhance efforts to detect residual risk
[6]. Resting-state brain connectivity has emerged as a promising
candidate biomarker, as it can reveal persistent disruptions in
brain networks even after symptoms have subsided. In particular,
resting-state electroencephalography (EEG) provides a non-
invasive and scalable method for measuring fast-changing neural
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dynamics implicated in emotion regulation and cognitive control
—processes central to both the onset and recurrence of
depression. EEG connectivity is commonly analyzed across
canonical frequency bands—delta (1–4 Hz), theta (4–8 Hz), alpha
(8–14 Hz), beta (14–30 Hz), and gamma (30–40 Hz)—each asso-
ciated with distinct neurocognitive and affective functions. Delta
and theta oscillations are linked to emotional regulation, self-
referential thinking, and large-scale network integration, including
activity within the default mode network (DMN) [7, 8]. Alpha is
implicated in cortical inhibition and attentional control [9], while
beta and gamma frequencies support semantic processing,
language comprehension, and top-down regulation of emotion
[10, 11].
Prior EEG studies in individuals with MDD and remitted MDD

(rMDD) have identified frequency-specific alterations in connec-
tivity that may reflect persistent disruptions in affective and
cognitive processing systems. Elevated theta and alpha connec-
tivity have been associated with increased self-referential proces-
sing and impaired emotion regulation [12, 13]. Disruptions in beta
and gamma bands, particularly in frontotemporal and parietal
regions, have been linked to deficits in language, memory, and
social cognition [14–16]. Importantly, some of these neural
abnormalities appear to persist after remission. Elevated theta-
band coherence across the default mode, salience, and frontopar-
ietal networks has been observed in adolescents with remitted
MDD, suggesting lingering dysregulation in large-scale emotional
control circuits [17]. Similarly, increased functional connectivity
between the posterior cingulate cortex and subgenual prefrontal
cortex has been identified in remitted individuals, pointing to a
potential electrophysiological “scar” linked to rumination [18].
In the current study, we quantified brain connectivity using

effective connectivity, which captures directional, time-sensitive
interactions between brain regions—unlike functional connectiv-
ity, which reflects only undirected statistical associations. Speci-
fically, we applied renormalized partial directed coherence (rPDC)
[19], a multivariate frequency-domain method that estimates the
flow of information between neural sources over time [20]. This
approach is well-suited to EEG’s millisecond-level resolution and
provides a mechanistic view of neural communication that may
underlie both depressive symptoms and real-world emotional
expression.
In parallel with clinician-rated symptom measures, we examined

a real-world behavioral indicator of emotional expression:
negative sentiment in adolescents’ daily smartphone text
messages. As digital communication has become a primary mode
of peer interaction during adolescence, recent studies have
leveraged passively collected smartphone data to better under-
stand behavioral patterns linked to MDD in youth [4]. With
smartphone use being nearly universal among adolescents [10],
these devices offer a unique, ecologically valid window into
naturalistic language use—providing an opportunity to capture
subtle linguistic markers of depression in everyday contexts.
Importantly, emerging research has begun to link neural
connectivity with real-world language behavior in adolescents
[6]. For example, reduced connectivity between the salience
network (SN) and central executive network (CEN) has been found
to moderate the relationship between depressive symptoms and
the use of negative emotion words during smartphone-based
communication [6]. This finding suggests that everyday language
may reflect underlying neurocognitive vulnerabilities associated
with adolescent depression.
Building on this work, the present study integrates clinical,

behavioral, and neural domains to examine whether resting-state
effective connectivity patterns in adolescents with remitted MDD
are associated with both (1) clinician-rated depressive symptoms
and (2) emotional expression through digital communication. This
dual-outcome framework supports our conceptualization of EEG-
based connectivity as a latent risk marker that influences both

internal mood states and their external expression. Therefore, the
present study aimed to test whether adolescents with rMDD
exhibit frequency-specific alterations in resting-state effective
connectivity relative to healthy controls, and whether these
patterns are associated with both future depressive symptoms
and naturalistic negative sentiment expression in text messages.
First, we hypothesized that rMDD youth would show increased
delta, theta, and alpha connectivity in frontal regions, decreased
alpha in parietal-occipital regions, and altered beta/gamma
connectivity in temporoparietal areas—consistent with prior
findings on emotion regulation, attention, and language proces-
sing [12–14, 17]. Second, we predicted that lower posterior alpha
connectivity at baseline would be associated with greater
depressive symptoms at 6-month follow-up. Last, we adopted
an exploratory, data-driven approach to identify whether baseline
effective connectivity patterns are also related to the use of
negative sentiment in daily smartphone-based social messaging.
By bridging neural and behavioral markers, we aim to clarify how
brain network dynamics relate to risk for symptom recurrence and
affective expression in naturalistic adolescent contexts.

METHODS AND MATERIALS
Participants
Participants were enrolled from September 2020 to June 2023, as part of
an ongoing longitudinal project investigating social processing deficits in
adolescent depression (for details, see [4, 16]). Briefly, adolescents ages
13–18-years-old were recruited from community and mental health clinics
in the New York, NY and Chicago, IL areas. Inclusion criteria included: (a)
Tanner Stage ≥3 [21], (b) proficiency in English, (c) Wechsler Abbreviated
Scale of Intelligence-II (WASI-II) score ≥85 [22], (d) ownership of a personal
smartphone (Android or iOS), and (e) right-handedness. General exclusion
criteria included: (a) history of head injury, seizures, or other neurological
disorders, (b) current moderate or severe substance use disorder, and (c)
lifetime history of bipolar or psychotic disorders, oppositional defiant
disorder, conduct disorder, organic mental disorder, or developmental
disorder (e.g., autism).
Additional criteria were applied to the remitted depression group. These

participants had a confirmed past episode of MDD, a Children’s Depression
Rating Scale-Revised (CDRS-R) [23] score ≤54 at enrollment, and no current
MDD episode or persistent depressive disorder. Further exclusions for this
group included: (a) lifetime history of the psychiatric conditions listed
above, (b) current high suicide risk, and (c) use of psychotropic
medications other than antidepressants or stimulant medication. The final
sample (N= 144) included remitted depressed adolescents (n= 85) and
healthy controls with no lifetime history of psychiatric disorders (n= 59).
See Table 1 for summary of sociodemographic and clinical characteristics.

Procedure and materials
All study procedures adhered to the Declaration of Helsinki and were
approved by the New York State Psychiatric Institute Institutional Review
Board. Informed assent and consent were obtained from minor
adolescents and their parents, respectively, and 18-year-old adolescents
provided informed consent. Participants were administered the WASI-II
(two-subtest form) to evaluate verbal intelligence (Vocabulary subtest) and
nonverbal intelligence (Matrix Reasoning subtest). Then, participants
installed the Effortless Assessment Research System (EARS) app [24] on
their personal smartphones to obtain keyboard inputs over a 6-month
period. In this study, keyboard inputs refer to text (e.g., words, emojis) from
a participants’ typical smartphone use, including real-world typing in
messaging and other digital interactions (e.g., text messages, social media
posts). Participants were instructed to keep the app active while using their
phones as usual. The EARS app was configured to run in the background,
automatically collecting data without requiring manual intervention. If the
app was closed or its background activity was interrupted, this was
discernible from the data logs, which recorded gaps in data collection.
There were two primary technical reasons for missing text data. First, some
participants chose not to install the EARS keyboard or later uninstalled it
due to usability issues, resulting in partial or full absence of language data.
A small subset also opted out of language tracking entirely. Second, both
iOS and Android operating systems automatically disable unused apps
(after ~12 days for iOS and ~3 months for Android). When the EARS app
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was deactivated in this manner, all data collection—including keyboard
input—ceased until the app was reactivated, typically following study
team outreach. These sources of missingness were unrelated to study
conditions and stemmed from technical and behavioral compliance
factors. On average, participants contributed usable text data for
162.07 days (SD= 17.02) out of the 180-day (6-month) observation period.
There was no significant difference in the number of days with valid
sentiment data between adolescents with remitted MDD and healthy
controls (t(142)= 0.368, p= 0.713), suggesting comparable data avail-
ability across groups. These findings indicate that missingness did not
systematically differ by diagnostic status and that language data coverage
was robust across the sample.
In a separate session, resting state EEG data were acquired. Clinical

interviews assessing depressive symptoms were re-administered at the
6-month follow-up assessment.

Clinical interviews
During the initial lab visit, participants were administered the Kiddie
Schedule for Affective Disorders and Schizophrenia (K-SADS-PL; [25]) to
evaluate lifetime psychiatric disorders (k= 0.98). At the baseline and the
6-month follow-up assessment, participants also completed the CDRS-R, a
17-item interview assessing depressive symptom severity. The total score
on the CDRS-R ranges from 17 to 113, with higher scores indicating greater
severity of depressive symptoms.

Electrophysiological recordings and data reduction
Resting-state EEG (3-minutes eyes closed) data were acquired using the 32-
channel ActiCHamp from Brain Products (Brain Products, Munich,
Germany) positioned according to the 10–20 international system using
the BrainVision Recorder. The data were digitized at a 500 Hz sampling rate
and referenced online to FCz. The ground electrode was placed between
electrodes Fp1 and Fp2. Vertical and horizontal EOG data were recorded,
and electrode impedances were maintained below 20 K ohms. For details
regarding the preprocessing procedures, see the Supplement.

Effective connectivity analysis
EEG preprocessing and source analysis were performed using the EEGLAB
and groupSIFT toolboxes [26]. After artifact rejection and re-referencing,
we applied infomax independent component analysis (ICA) to decompose
EEG signals into temporally independent sources. Equivalent dipole
models were estimated for each component using a standard boundary
element head model. Components with dipole locations outside the brain
or residual variance >15% were excluded [20, 27, 28]. Only dipoles
localized within cortical gray matter and outside artifact-prone regions
(e.g., eyes, neck) were retained. To enable group-level analysis, we used the
groupSIFT framework to cluster dipoles into anatomically defined brain
regions based on the AAL atlas [27, 28]. For each participant, ICA identified
multiple independent components (bounded by data rank), each localized
with DIPFIT (dipole-fitting toolbox). Brain-source ICs were retained. Across

Table 1. Clinical and Sociodemographic Characteristics Stratified by Group.

Total
Sample

Healthy
Adolescents

Remitted Depressed
Adolescents

t-/χ2 test df p

N= 144 n= 59 n= 85

Age 15.85 (1.47) 16.75 (1.48) 0.898 133.36 0.3708

Sex 105 (72.92%) 35 (59.32%) 70 (82.35%) 8.224 1 0.004

Race 5.618 5 0.345

White 70 (48.61%) 24 (40.68%) 46 (54.12%)

Asian 25 (17.36%) 12 (20.34%) 13 (15.29%)

Black/African American 18 (12.50%) 11 (18.64%) 7 (8.24%)

American Indian/Alaska Native 1 (0.69%) 0 1 (1.18%)

Native Hawaiian or other Pacific
Islander

0 0 0

More than one race 16 (11.11%) 6 (10.17%) 10 (11.76%)

Unknown or Not reported 14 (9.72%) 6 (10.17%) 8 (9.41%)

Family income 1.735 5 0.885

Less than $25,000 6 (4.17%) 1 (1.69%) 5 (5.88%)

$25,000 – $50,000 18 (12.5%) 8 (13.56%) 10 (11.76%)

$50,000 – $75,000 9 (6.25%) 4 (6.78%) 5 (5.88%)

$75,000 – $100,000 23 (15.97%) 9 (15.25%) 14 (16.47%)

$100,000 or more 63 (43.75%) 27 (45.76%) 36 (42.35%)

Unknown or Not Reported 25 (17.36%) 10 (16.95%) 15 (17.65%)

Lifetime social anxiety disorder 22 (15.28%) – 22 (25.88%)

Lifetime generalized anxiety
disorder

26 (18.06%) – 26 (30.59%)

Lifetime posttraumatic stress
disorder

11 (7.64%) – 11 (12.94%)

Lifetime attention-deficit
hyperactivity disorder

14 (9.72%) – 14 (16.47%)

Lifetime substance use disorder 3 (2.08%) – 3 (3.53%)

Smartphone type 0.923 1 0.337

iOS 126 (87.5%) 54 (91.53%) 72 (84.71%)

Android 18 (12.5%) 5 (8.47%) 13 (15.29%)

Site 18.36 1 <0.001

New York 83 (57.64%) 47 (79.66%) 36 (42.35%)

Chicago 61 (42.36%) 12 (20.34%) 49 (57.65%)
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participants, this yielded a large pool of brain-source ICs, from which we
computed the grand-mean IC×IC effective connectivity separately for each
group. This method allows for the aggregation of component time series
into common spatial nodes, making it possible to compare effective
connectivity patterns across participants. This approach allows for source-
level connectivity estimation even in low-to-moderate density EEG
recordings [27–29]. Although high-density EEG offers finer spatial
resolution, several studies have shown that meaningful connectivity
dynamics can be extracted using GroupSIFT from datasets with as few as
20–40 channels [27–29]. These findings support the robustness of our
pipeline for identifying meaningful connectivity dynamics even with
limited spatial resolution.

IC-space effective connectivity. Using groupSIFT, we estimated rPDC in the
IC×IC space to quantify directed, frequency-resolved connectivity among
retained ICs. The rPDC served as a weighting factor during this
transformation, accounting for dipole density contributions across
participants. The rPDC was selected for its capacity to capture directional
connectivity in multivariate time series, which is advantageous for
exploratory EEG studies. Unlike dynamic causal modeling (DCM), which
provides detailed biologically informed modeling, rPDC operates without
the need for participant-specific anatomical data such as MRIs, offering a
more accessible and versatile approach in the context of EEG. Furthermore,
rPDC is uniquely suited to high-temporal-resolution EEG data due to its
computational efficiency and adaptability in handling complex, non-
stationary signals, enabling a comprehensive analysis of dynamic brain
connectivity patterns.

GroupSIFT source-space projection. Inference was performed in source
space rather than at the sensors. To place ICs into a common anatomical
frame, each IC’s dipole coordinate was convolved with a 3-D Gaussian
kernel (FWHM= 20mm) to generate a probabilistic dipole-density field
[20, 29]. Dipole density within brain space was then segmented into a
modified AAL atlas (76 nodes) in which subcortical labels are consolidated
into upper basal and lower basal groups to avoid over-interpreting specific
subcortical nuclei from scalp EEG (mitigating depth bias in single-dipole
fits and the spatial extent of cortical generators) [29, 30]. Using the
resulting region-wise density weights, IC→ IC rPDC was projected to
regions of interest (ROI)→ ROI by weighting each connection according to
the probability that its source IC belongs to ROI i and its target IC to ROI j.
This procedure yields subject-consistent, atlas-indexed connectivity
matrices and resolves post-ICA inter-subject variability in IC numbering
and location.

Group-level node definition. Because analyses occur in source space,
multiple ICs from a given participant can contribute to multiple regions.
To ensure stability at the group level, we retained only regions with
broad coverage—nodes to which ≥65% of participants contributed at
least one cortical dipole. This threshold was chosen to balance the need
for adequate representation of participants and the reliability of data
across nodes, guided by thresholds commonly employed in similar
studies [26, 27] and informed by considerations of data quality. Of the 76
atlas nodes, 47 met this criterion and were used for all ROI-level
analyses. These 47 nodes captured 80.2% of the total cortical dipole-
density mass across participants, indicating that selected nodes were
reliably represented in the sample. This serves as a proxy measure to
ensure the nodes selected for connectivity analysis were reliably
represented across participants. Subsequently, connectivity metrics were
derived exclusively from these 47 shared nodes, facilitating robust and
interpretable group comparisons.

Statistical analysis. To identify group differences in effective connectiv-
ity, we computed pairwise rPDC between all retained cortical nodes
(N= 47) across five frequency bands. This resulted in 1081 directed
connections per band. Given the large number of comparisons, we used
a cluster-level permutation test implemented in the groupSIFT toolbox
to control the family-wise error rate (FWER) at p < 0.05 [27, 28].
Specifically, we applied a nonparametric approach using 2000 label
shuffles with cluster correction based on spatial adjacency across nodes.
This provides a weak FWER correction, balancing sensitivity and
specificity when large-scale network patterns are of primary interest.
For further details on this workflow and tool application, see prior work
[26, 27] and consult the GroupSIFT repository for practical guidelines and
software setup.

Key input data and sentiment analysis
To capture naturalistic emotional expression, we collected keyboard input
data using the EARS app (Effortless Assessment Research System; Ksana
Health Inc.), which was installed on participants’ personal smartphones.
The app includes a custom keyboard that passively records keypresses
across all applications, capturing only self-generated text. Incoming
messages and third-party content were not collected. All keystrokes,
including deletions (e.g., backspaces), were time-stamped, locally
encrypted, and transmitted to a HIPAA-compliant cloud server. Additional
privacy and security protocols are detailed in the Supplement. Each
keystroke was labeled with metadata indicating the active app when
available. Due to iOS 16+ restrictions, app metadata was missing for
approximately 11.4% of messages. Among the remaining messages, 81.8%
were generated in social communication apps, with Apple Messages,
Instagram, and Snapchat being the most frequently used.

Message reconstruction and preprocessing. Raw keystroke data were
reconstructed into complete messages using a custom Python pipeline
[5]. Logical message boundaries were defined by pauses ≥5 s, app
switches, or return/enter key usage. In addition, the EARS platform
segmented messages based on either (1) the first entry in a given app or
(2) a string with <50% overlap with the preceding message. We removed
partial or redundant strings—defined as messages entirely contained
within the subsequent message and typed in the same app within 60 s—to
reduce noise. Of the 144 participants included in the analysis, 126 (87.5%)
used iOS devices and 18 (12.5%) used Android. Typed text was recorded
uniformly across platforms. On Android devices, system-generated
messages (e.g., ‘Send message…’) were occasionally recorded. These were
identified based on duplication, structure, or trailing ellipses and manually
removed during preprocessing. No such artifacts were observed in iOS
data. A message was retained if it contained more than one character,
unless it was a single-character emoji. No minimum word count was
required, as the TweetNLP model is optimized for short-form digital
content including single words and emojis.

Text cleaning and sentiment classification. Text data were preprocessed to
optimize sentiment classification while preserving emotional nuance.
Following best practices, we: (a) Removed URLs and user mentions (e.g.,
“@username”); (b) Normalized elongated words (e.g., “noooo” → “no”); (c)
Retained punctuation, capitalization, and emojis to preserve affective cues;
and (d) Translated non-English messages (0.3%) using Google Cloud’s
Translation API, as TweetNLP supports English only. Initial preprocessing
scripts included hashtag segmentation (e.g., “#joytotheworld” → “joy to
the world”), a step adopted from pipelines using lexicon-based tools like
VADER. However, TweetNLP—trained on 124 million tweets—is robust to
social media syntax, including hashtags and emojis. We verified that
sentiment labels remained consistent with and without hashtag segmen-
tation, so hashtags were retained in their original form for final analyses.

Sentiment metrics and data coverage. Sentiment classification was
conducted using the TweetNLP Python package [31], which includes a
RoBERTa-based transformer model fine-tuned on tweets from 2018–2021.
Each message was assigned a single sentiment label (positive, negative, or
neutral) using the tweetNLP classifier, which detects the dominant
sentiment based on contextual cues. Although some messages may
contain mixed emotional tones, the model assigns the sentiment that is
most strongly conveyed. Future work could benefit from multi-label or
emotion-specific models to better characterize nuanced affective content.
For each participant, we computed the daily proportion of positive and

negative messages (relative to total daily messages), and averaged these
proportions across the 6-month follow-up period to generate person-level
sentiment metrics. To account for individual differences in overall
expressivity and emotional valence, daily proportions of positive sentiment
were included as covariates in analyses examining negative sentiment.

Data analytic approach
For smartphone communication data, we included participants who had
sent at least 3 messages per day and had data available for at least 7 days
within the initial 180-day period. Among the 144 participants, 18
individuals (7 remitted depressed adolescents, 11 healthy controls) were
excluded due to a lack of EEG collection. Additionally, 5 participants (2
remitted depressed, 3 healthy controls) were further excluded due to poor
EEG data quality. Thus, the final analysis included a total of 121 participants
(76 remitted depressed, 45 healthy controls). We used a two-stage
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approach: (i) baseline group differences (discovery): cluster-based permu-
tation testing with omnibus FWER control across time × frequency ×
edges; and (ii) predicting depressive symptoms and sentiment in language
(targeted associations): theory-constrained outcome models with within-
outcome FDR.

Baseline group differences. Cluster-level correction was employed to
control the generalized familywise error rate using permutation tests
(i.e., to identify which connectivity effects remained statistically significant)
[26]. To generate surrogate statistics representing the null hypothesis (i.e.,
no group effect), the group labels of renormalized partial directed
coherence arrays were iteratively shuffled (N= 1000). Statistical compar-
isons were then repeated for each iteration and each graph edge.

Predicting sentiment in language and depressive symptoms. To select
specific connections for the association analysis between EEG effective
connectivity and depressive symptoms as well as sentiment in language,
we focused on region-to-region connections, guided by our hypothesis
and previous findings. For depressive symptoms at the 6-month follow-
up, we focused on one a priori hypothesized pathway: effective
connectivity between the mid-cingulate cortex (MCC) and the precuneus
in the alpha band, based on prior studies linking this connection to
internally directed thought and depressive rumination [12, 13, 17]. To
assess frequency specificity, we also tested the same MCC–precuneus
edge in delta, theta, and beta bands. Similarly, for negative sentiment in
daily smartphone messaging, we selected region-to-region connections
within each band that both (1) showed significant group differences, and
(2) involved regions relevant to semantic and affective processing (e.g.,
middle temporal gyrus, precuneus) [6, 7, 32]. These edges were chosen
to ensure theoretical interpretability and limit model complexity. Across
all edges, the second-largest F-statistic-weighted cluster was extracted in
each iteration to generate a null distribution for each effect. This
approach, consistent with prior research emphasizing network-level
effects, helps mitigate the risk of spurious findings driven by single large
clusters. The true F-statistic-weighted mass of clusters was then
compared to this null distribution, with significance determined at p <
0.05. Only significant results, which are depicted in Fig. 1, were included
in subsequent analyses.
We tested whether baseline resting-state connectivity was associated

with the negative sentiment of smartphone social communication,
adjusting for the covariates of positive sentiment, age, sex, site, and
phone type. Additionally, a negative binomial regression model using
generalized estimating equation analysis of repeated measures esti-
mated the association between resting state connectivity and depres-
sion symptoms at the 6-month follow-up assessment, while adjusting for
baseline depression severity, age, sex, and site.
Although negative sentiment and depressive symptoms are related

constructs, we did not include baseline depression as a covariate in the
sentiment model in order to preserve meaningful behavioral variance in
linguistic expression. Negative sentiment in typed messages may reflect
early emotional dysregulation or day-to-day affective tone that is not
fully captured by retrospective symptom ratings.

RESULTS
Baseline group differences
The connectivity matrix representing the group-difference
(remitted depressed versus healthy subjects) of each EEG band
activity (a predefined p < 0.0001, corrected; two-tailed [27]) is
shown in Figure S1. The results revealed a number of significant
hubs for effective connectivity (i.e., increased or decreased EEG
phase coherence between two cortical regions) for each band: 11
for delta (1–4 Hz), 20 for theta (4–8 Hz), 25 for alpha (8–14 Hz), 23
for beta (14–30 Hz), and 3 for gamma activity (30–40 Hz).

Delta band activity (1–4 Hz). Compared to healthy youth,
remitted depressed adolescents exhibited decreased effective
connectivity from a region near the right precuneus to the right
MCC, and from the left MCC to the right calcarine gyrus (Fig. 1).
Additionally, there was greater connectivity between the right and
left cuneus and occipital areas observed in the remitted depressed
group relative to the control group.

Theta band activity (4–8 Hz). The overall pattern of theta
connectivity was similar to delta band activity. Remitted
depressed adolescents displayed a similar pattern of greater right
hemisphere connectivity flow in the occipital area compared to
healthy controls (Fig. 1). Relative to controls, remitted youth also
showed decreased effective connectivity from a region near the
right precuneus to the right MCC, as well as increased interaction
between the left MCC and left precuneus. Notably, greater
effective connectivity was observed from the left posterior
cingulate cortex to the right lingual gyrus in the remitted
depressed adolescents compared to the controls.

Alpha band activity (8–14 Hz). Connectivity alterations were
observed among the temporal, middle cingulate, and occipital
regions in remitted depressed adolescents compared to healthy
controls. These networks overlapped across beta and alpha band
activities. Specifically, greater effective connectivity was observed
from the left cuneus to the right middle temporal gyrus (MTG) in
controls than in remitted depressed adolescents. Unlike at lower
frequencies (<8 Hz), there was greater connectivity from occipital
nodes (lingual gyrus) to the precuneus and MCC in controls
compared to remitted depressed adolescents.

Beta band activity (14–30 Hz). Similar to the alpha band, remitted
depressed adolescents showed weaker effective connectivity from
the right MCC to the left cuneus compared to healthy controls.
Additionally, there was significantly greater connectivity from
both the precuneus and cuneus to the MTG was found in controls
compared to the remitted depressed group.

Gamma band activity (30–40 Hz). Controls exhibited greater
connectivity from both the precuneus and cuneus to the MTG
compared to the remitted depressed group. On the other hand,
greater connectivity from the left calcarine to the right angular
gyrus was observed in the remitted depressed group compared to
controls.

Predicting depressive symptoms and smartphone
communication sentiment
Interestingly, reduced alpha-band effective connectivity from the
MCC to precuneus was associated with greater depressive
symptoms at the 6-month follow-up (b=−0.239, SE= 0.096,
p= 0.013) while controlling for baseline depression severity, age,
sex, and site (Table 2). The standardized effect size for the
association between alpha-band connectivity and depressive
symptoms was Cohen’s d=−0.143, indicating a small to
moderate association. Although the model’s R² was 0.323,
reflecting the combined explanatory power of all predictors,
including baseline symptoms and covariates, alpha-band con-
nectivity remained a statistically significant predictor even when
accounting for baseline symptoms, age, sex, and site; this suggests
its potential utility as a neural marker. However, no significant
associations were found between alpha-band connectivity (MCC
to precuneus) and negative sentiment (b= 0.003, SE= 0.007,
p= 0.712). Supplementary analyses showed that this relationship
was not observed in delta, theta, or beta bands (see Supplemen-
tary Table 1), supporting the frequency specificity of the effect. We
did not examine the gamma band for this connection due to the
absence of reliable MCC dipole representations in that frequency
range.
We also conducted a correlation analysis to examine the

relationship between negative sentiment and CDRS scores. The
results revealed a significant positive correlation (r= 0.310,
p= 0.001), suggesting that higher levels of negative sentiment
are associated with more severe depressive symptoms. Research
has consistently shown that individuals with depression tend to
exhibit lower positive sentiment and higher negative sentiment in
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Fig. 1 Effective connectivity of resting-state EEG activity in healthy and remitted depressed adolescents. Red arrow indicates high
effective connectivity and blue arrow indicates low connectivity in remitted depressed adolescents relative to healthy comparison subjects.
Sphere size indicates the amount of total outflow in each node. remMDD, adolescents with remitted major depressive disorder; HC healthy
controls.
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their social media posts (e.g., Facebook, Twitter), effectively
distinguishing those with depression from those without [33–35].
Based on the strength of connectivity observed in the baseline

analysis, we also examined its association with negative sentiment
in adolescents’ smartphone social communication over a 6-month
period. As shown in Fig. 2, reduced beta-band connectivity from
the precuneus to the MTG was associated with more negative
sentiment (Fig. 2A: b=−0.019, SE= 0.007, p= 0.006), covarying
for positive sentiment, age, site, sex, and phone type. Gamma-
band connectivity exhibited a similar pattern, as lower connectiv-
ity between the precuneus to the MTG was associated with more
negative sentiment (Fig. 2B: b=−0.018, SE= 0.007, p= 0.007),
adjusting for covariates (Table 3). There were, however, non-
significant relationships in other bands, including: alpha (cuneus
to MTG), theta (precuneus to MCC), and delta (precuneus to MCC;
Table 3). Sensitivity analyses indicated that there were no
significant associations between connectivity from precuneus to
MTG in the beta-band (b= 0.073, SE= 0.089, p= 0.415) or in the
gamma band (b= 0.093, SE= 0.088, p= 0.289) and depression
severity at the 6-month follow-up assessment.

DISCUSSION
The present study investigated altered brain connectivity patterns
across various frequency bands in adolescents, comparing those
with remitted depression to healthy controls. Using a multivector
autoregressive modeling approach, we found that remitted
depressed youth exhibited hyperconnectivity in lower frequency
bands (delta and theta) and hypoconnectivity in higher frequency
bands (alpha, beta, gamma), particularly in occipito-temporal
regions. Additionally, we examined associations between con-
nectivity differences and two key outcomes at the 6-month follow-
up period: (a) future depressive symptoms and (b) negative
sentiment in smartphone social communication. These findings
are consistent with prior research suggesting that depression is
linked to disruptions in resting-state EEG connectivity. Specifically,
individuals with MDD often show increased theta coherence and
reduced alpha and beta connectivity, indicating impaired top-
down regulation and cognitive control [36–38]. The hyperconnec-
tivity in delta and theta bands observed in the remitted group
may reflect residual deficits from prior depressive episodes [37,
38], while reduced connectivity in faster frequency bands may
may compromise the modulation of cognitive and inhibitory
processes [37, 39], contributing to difficulties in filtering out
irrelevant information and focusing attention [9, 40, 41].
This study also tested the association between resting-state

brain connectivity and future depressive symptom severity in
adolescents. We found that weaker alpha-band connectivity
between the MCC and the precuneus, key nodes within the
DMN, was associated with an increase in depressive symptoms at
a 6-month follow-up. Alpha-band oscillations, often associated
with attentional processes, have been linked to the DMN role in
self-referential thought and emotional processing [7]. Our findings
suggest that altered communication within this network, as
reflected by decreased alpha-band connectivity, may contribute to
depressive symptoms at follow-up [32]. At follow-up, 9.4% of
participants (n= 8) met or exceeded the clinical cutoff score
(CDRS-R ≥ 55), suggesting that a subset may have experienced
clinically significant symptom recurrence—underscoring the
importance of identifying neural markers of risk even within a
remitted sample.

Fig. 2 Association between resting-state effective connectivity and negative sentiment expressed in adolescents’ smartphone
communication. Effective connectivity is represented by the log-transformed renormalized Partial Directed Coherence (log(rPDC)) from the
precuneus to the middle temporal gyrus (MTG). Negative sentiment was computed as the daily proportion of negative messages (relative to
total daily messages), averaged across the 6-month follow-up period to yield person-level metrics. A Beta-band connectivity. B Gamma-band
connectivity. HC healthy controls, remMDD adolescents with remitted major depressive disorder.

Table 2. Alpha band connectivity strength from mid cingulate cortex
to precuneus predicting depression symptoms at the 6-month follow-
up assessment.

Estimate SE z value p-value

Intercept 1.976 0.501 3.944 <0.001

Age −0.004 0.024 −0.159 0.873

Sex −0.166 0.084 −1.969 0.050

Site −0.049 0.071 −0.684 0.494

Baseline depressive
symptoms

0.024 0.007 3.371 0.001

Baseline connectivity
(MCC→Precuneus)

−0.239 0.096 −2.490 0.013

Children’s Depression Rating Scale = Depressive symptoms; MCC mid
cingulate cortex.
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Additionally, this study explored the association between brain
connectivity and smartphone social communication patterns
across all participants. Among all frequency bands and connectiv-
ity edges, we found that lower connectivity in the beta and
gamma bands between the precuneus and the MTG at baseline
was associated with greater negative sentiment in smartphone
communication over the following six months. Previous research
has also implicated reduced functional connectivity within the
temporal and occipital lobes in the pathophysiology of depression
[42]. Beta and gamma waves are associated with active informa-
tion processing, focus, and higher cognitive functions such as
language comprehension [43, 44]. The MTG plays a critical role in
deciphering the meaning of words, social cues, and regulating
emotions [45, 46], while the precuneus is crucial for mental
imagery and empathy [47, 48]. A previous fMRI study found
activation in both the precuneus and the MTG when respondents
had to make empathic judgments in a verbal task [49, 50].
Accordingly, weaker connectivity between these areas may reflect
alterations in the communication pathways involving regions
critical for understanding others’ emotions and interpreting social
cues. Furthermore, a recent fMRI study identified that lower
connectivity between the SN and the CEN moderated the
association between depression and negative emotion word
usage in adolescent smartphone communication [6].
Together, these findings highlight distinct yet overlapping roles

of DMN connectivity in internalizing symptoms and external
emotional expression. Specifically, while MCC–precuneus connec-
tivity was associated with depressive symptom severity,
precuneus–MTG connectivity was linked to the emotional tone
of adolescents’ digital communication. This pattern suggests a
broader vulnerability at the network level that spans both
affective experience and its expression [51]. Notably, both
outcomes were associated with resting-state effective connectivity
within overlapping neural systems—particularly the precuneus—
supporting a unifying hypothesis: that disruptions in DMN and
semantic-affective pathways may underlie both internalizing
symptoms and real-world emotional communication in adoles-
cents at risk for depression recurrence [51, 52].
Although these findings provide preliminary evidence for the

potential of EEG-based connectivity analysis in understanding
emotional processing and regulation in remitted depressed
adolescents, there are notable limitations. First, one important
limitation of the present study is the use of a 32-channel EEG
system, which inherently restricts the spatial resolution of source
localization. Although this configuration does not support precise
mapping of cortical generators, we addressed this constraint by
applying ICA-based source separation and estimating equivalent
dipoles. These dipoles were then grouped into standardized brain
regions using the groupSIFT pipeline, a method that has been
validated for use with low-density EEG systems [27–29]. This
approach enabled us to examine large-scale connectivity patterns
across participants while minimizing the risks of spurious
localization. Nonetheless, future studies employing high-density
EEG or multimodal imaging approaches (e.g., EEG-fMRI) are
warranted to improve spatial precision and further validate these
findings. Second, our study relied on resting-state data rather than
task-based data, which limits our understanding of the specific
psychological process implicated by the EEG signal. Task-based
data could potentially offer more robust insights into the
functional dynamics of brain regions involved in social commu-
nication and emotional regulation. Third, the assessment of
depressive symptoms is not as temporally fine-grained as the
collection of smartphone communication data. Symptoms were
evaluated at the 6-month assessment, whereas smartphone
communication was continuously monitored during this period.
Aligning these assessments more closely in future studies could
provide a clearer picture of the relationship between real-time
behavioral data and depressive symptomatology. Fourth,Ta
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although our findings highlight the relevance of MTG and MCC in
predicting depressive symptoms and negative sentiment across
the entire sample, it is important to acknowledge the potential
value of exploring group-specific patterns. The unique composi-
tion of our sample, which includes both remitted MDD youth and
healthy controls, offers an opportunity to examine whether
individuals with a history of depression exhibit distinct
connectivity–symptom associations that may reflect residual
vulnerability. Although the current analysis did not reveal
significant group-by-connectivity interactions, this may be due
to limited statistical power given the modest subgroup sizes.
Future studies with larger samples are needed to clarify whether
these neural patterns differentially characterize youth with prior
depression, ultimately informing more personalized approaches to
intervention. Additionally, the current study is the gender
imbalance between groups, which reflects the higher prevalence
of adolescent depression in females. Although all analyses
controlled for gender, caution is needed when generalizing these
findings. Last, test-retest reliability was not explicitly assessed in
this study, which we acknowledge as a limitation. Although prior
research has demonstrated moderate-to-high test-retest reliability
for resting-state EEG connectivity metrics, particularly within
similar frequency bands and analytic frameworks [53, 54], the
stability of these connectivity patterns over time remains an
important consideration.
Despite these limitations, this study provides novel evidence

linking resting-state EEG connectivity to both prospective depressive
symptoms and naturalistic emotional behavior, suggesting its
potential utility as a transdiagnostic risk marker. Specifically,
connectivity patterns among the MCC, precuneus, and MTG emerged
as candidate predictors of both internal symptoms and externally
expressed affect. These results underscore the possibility that how
adolescents feel and how they communicate emotion in everyday life
may be supported by shared neural mechanisms. Importantly, the
inclusion of passively collected smartphone language provides an
ecologically valid, scalable behavioral marker that complements
traditional clinical assessments. Within this framework, our findings
point to future opportunities for integrated brain–behavior monitor-
ing using mobile and wearable technologies.
In sum, this study highlights a convergent set of neurophysio-

logical features—including MCC–precuneus and precuneus–MTG
connectivity—that may underlie adolescent vulnerability to persis-
tent emotional difficulties. These connectivity patterns were
associated not only with clinician-rated symptoms but also with
adolescents’ real-world emotional language. This dual-outcome
approach illustrates the promise of combining EEG-based biomar-
kers with digital behavioral signals to support early detection and
targeted intervention. By focusing on neural systems that
contribute to both emotional experience and expression, future
tools may better identify and assist youth at heightened risk for
ongoing affective challenges. Therapeutic interventions aimed at
enhancing connectivity within specific brain networks, such as
neurofeedback or transcranial magnetic stimulation, could be
explored to address the underlying neurobiological mechanisms
contributing to depression recurrence.

DATA AVAILABILITY
Data are publicly available through the National Data Archive.
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