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Overnight maternal heart rate variability
for early prediction of gestational diabetes
mellitus: a retrospective cohort study

M| Check for updates

Yanqi Wu'?, Sima Asvadi'®, Myrthe van der Ven>*®, M. Beatrijs van der Hout-van der Jagt'?®,
Elisabetta Peri'? Pedro Fonseca'?®, Sebastiaan Overeem'’, S. Guid Oei'**, Massimo Mischi'? &
Xi Long'?

Areliable early risk prediction of gestational diabetes mellitus (GDM) allows for early lifestyle modifications
during pregnancy to reduce the risk of developing GDM. In this retrospective study, we developed a
logistic regression machine learning model with heart rate variability (HRV) characteristics during
overnight sleep in early pregnancy as predictors for GDM prediction. The study used the nuMoM2b
dataset from 2748 nulliparous women in the USA who underwent a standardized home sleep test
between 6 and 15 weeks’ gestation with subsequent GDM assessment at 24-28 weeks. A total of 52
overnight HRV features were analyzed alongside the baseline risk factors recommended by the National
Institutes of Health (NIH). The model combining baseline and HRV features achieved an area under the
receiver operating characteristic curve (AUC) of 0.73, outperforming the model using only baseline
features (AUC = 0.69) and that using only HRV features (AUC = 0.65). These machine learning models all
performed better than the early GDM risk assessment based on the NIH guidelines (AUC = 0.63). The
findings suggest that overnight maternal HRV characteristics can be used as early predictors of GDM.

Gestational diabetes mellitus (GDM) is defined as glucose intolerance with
onset or first recognition during pregnancy', and is one of the most common
adverse pregnancy outcomes (APOs). The prevalence of GDM varies across
countries and regions. A recent meta-analysis reported an average pre-
valence of GDM of 14.7% based on the criteria of the International Asso-
ciation of Diabetes and Pregnancy Study Groups (IADPSG)”. In South or
East Asia, it can be higher than 20%"'. Differences in GDM diagnostic
standards can explain differences in prevalence’. For decades, less attention
was spent on GDM than on other APOs, since it was considered, in com-
parison with other outcomes that could directly cause maternal or fetal
death, to have a relatively mild impact and was often considered fully
reversible after delivery. However, it is increasingly understood that in
addition to causing maternal hyperglycemia, GDM can induce breathing
difficulties™, cesarean section®, urinary tract infection’, hydramnios, preg-
nancy induced hypertension', and even preeclampsia'’ on the mother.
Uncontrolled GDM has a possibility of up to 87% in developing type II
diabetes in 5-10 years after delivery'’. For the infant, GDM exposes the
newborn to an elevated risk of macrosomia'’, postpartum hypoglycemia'*,
and future obesity'’. GDM also imposes an additional economic burden on

family and society. Research shows that pregnant women with diagnosed
GDM spent up to 34% more costs in maternal care and 49% more in
neonatal care than non-GDM pregnancies™"’.

Currently, clinical GDM risk screening is usually performed by an oral
glucose tolerance test (OGTT) between 24 and 28 weeks of gestation. In the
second trimester, as pregnancy progresses, surges in local and placental
hormones, including estrogen, progesterone, leptin, cortisol, placental lac-
togen, and placental growth hormone, combine to promote a state of insulin
resistance’’. Women who cannot produce enough insulin to adapt to this
resistance will have increased blood glucose levels, so OGTT can screen out
GDM at this stage'®. However, emerging evidence indicates that abnormal
fetal growth can start prior to the commonly used GDM diagnosis
period"*”’. Moreover, for pregnant women with advanced maternal age or
BMI, GDM diagnosed at 24-28 weeks’ gestation already affected fetal
abdominal circumference’. Various studies have demonstrated that early
lifestyle modifications during pregnancy can help reduce the risk of devel-
oping GDM”. By making lifestyle adjustments (such as improving diet and
physical activity) as early as possible in pregnancy - typically before 15 weeks
—and maintaining them throughout the pregnancy, this effect is
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enhanced”. Early screening also offers advantages over the 24-28 weeks
OGTT in reducing the incidence of adverse neonatal outcomes and severe
perineal injury’*”, with the greatest benefits observed when interventions
are initiated before 14 weeks. Furthermore, early diagnosis enables more
precise ultrasound monitoring of fetal growth trajectories, allowing for the
early detection of abnormal growth patterns (e.g., slow early growth fol-
lowed by catch-up or accelerated early growth followed by slowing), both of
which may increase the long-term risk of metabolic complications™’.
Hence, to facilitate effective treatment and lifestyle adjustments, it is pivotal
to accurately predict the risk of developing GDM early in pregnancy.

Numerous studies on early risk prediction of GDM indicate that the
most used risk factors are maternal demographics, family history and
obstetric history factors (e.g., age, BMI, race and ethnicity, parity, history of
GDM, family history of diabetes). Although they are attractive due to their
good accessibility, their predictive power is unsatisfactory”. Recent research
on biomarkers (e.g,, fasting blood glucose and hemoglobin Alc level”) has
been shown to improve GDM prediction accuracy. However, these markers
are limited by their invasive and obtrusive acquisition methods and are not
widely used in clinical practice. The National Institute of Health recom-
mended a guideline (National Institutes of Health (NIH) guidelines) for
early GDM risk assessment based on eight demographics and history
questions. According to the NIH guidelines, the mothers would be graded
for the risk of GDM from zero to eight, where a higher grade corresponds to
a higher GDM risk.

This study assessed heart rate variability (HRV) as a new predictor for
the early prediction of GDM. HRV is the physiological phenomenon of
variation in the time interval between heartbeats (known as inter-beat
intervals or IBIs). HRV measures can be obtained using, for example, wearable
or unobtrusive devices, demonstrating good accessibility, in particular for
pregnant women who are already using a wearable device. While technolo-
gical advancements may enhance accessibility, current adoption requires
consideration of device affordability and user literacy. HRV, characterized and
quantified using different metrics, can change during pregnancy. In early
pregnancy, in order to provide sufficient nutrients for the development of the
fetus, maternal cardiac blood volume increases by 30-40% compared with the
non-pregnant state, and the average heart rate is also 10-15% faster”. Stein
et al.” reported that mean heart rate (HR), standard deviation of normal-to-
normal intervals (SDNN) and power of low frequent band (LF) showed
significant difference in early pregnancy, compared with non-pregnant state.
Bester et al.”” also reported that the worsening of systolic pulse in pregnant
women was significantly different from that in non-pregnant women.

The contribution of autonomic nervous system (ANS) imbalance to
the metabolic syndrome is well documented™*. The overactivation of
sympathetic nervous system will stimulate and inhibit pancreatic (-cell
insulin secretion’ and may promote insulin resistance by inducing hemo-
dynamic and cellular effects™. A systematic review’” reported that HRV can
be used as an indicator of T2DM. Patients with T2DM had significantly
higher HR, lower SDNN, RMSSD, LF and HF compared with healthy
people. Both GDM and T2DM are associated with impaired insulin
secretion and insulin resistance. For pregnancies with potential GDM, due
to the fluctuations in hormone levels, automatic imbalances may be more
easily induced or amplified.

Yet up to now, the effect of HRV characteristics in GDM prediction has
not been explored, and no study has ever established any model using HRV
in early pregnancy to predict GDM. This study is the first to develop models
based on machine learning (ML) algorithms to verify whether HRV can be
used as an early risk predictor for GDM and whether the GDM prediction
can be improved when combined with risk factors suggested by existent
guidelines for early GDM risk assessment such as the NTH guidelines.

Results

Cohort and HRV characteristics

Among all 9289 participants in the nuMoM2b database, 431 (4.6%) had no
OGTT, 134 (1.4%) had pre-existing diabetes mellitus, and 6060 (65.2%) did
not participate in the home sleep test or did not have the minimum number

of 5-min valid segments, resulting in a total of 2748 (29.6%) pregnant
women included in this study. Overnight sleep ECG signals were collected
during the home sleep test between 11 and 14 weeks of gestation. In
nuMoM2b, individuals’ race and ethnicity were originally classified into 8
categories: Non-Hispanic White, Non-Hispanic Black, Hispanic, American
Indian, Asian, Native Hawaiian, Other, Multiracial. The “Other” category
refers to individuals with clear race and ethnicity information who do not
fall into the first six categories and are not multiracial. As shown in Table 1,
compared with participants without GDM, those diagnosed with GDM
exhibited a significantly higher age and BMI (p < 0.001), higher (diastolic
and systolic) blood pressure measures in early pregnancy (p < 0.001), and a
higher prevalence in family history of diabetes (p <0.05) and Asian
(p <0.001) and Other (p <0.001) in race and ethnicity. No statistical dif-
ference was observed in PCOS (p = 0.35), history of miscarriage (p = 0.60),
or in the racial/ethnic categories of Non-Hispanic White (p =0.21), Non-
Hispanic Black (p = 0.18), Hispanic (p = 0.87), American Indian (p = 0.75),
Native Hawaiian (p =0.20), and Multiracial (p =0.71). The mean (SD)
number of valid 5-min segments for individuals with GDM was 95.8 (22.7),
the proportion of valid segments compared to the total recording time
(TRT) was 70.9% (17.7). For non-GDM individuals, the mean (SD) number
of valid segments was 95.5 (22.0), the proportion of valid segments com-
pared to TRT was 70.2% (17.2). There were no significant differences
between the GDM and non-GDM groups in the number of valid segments
(p =0.94) or the proportion of valid segments to TRT (p = 0.75). In addition,
46 out of 52 overnight statistics features from HRV during early pregnancy
were statistically significantly different between GDM and non-GDM
pregnancies (Supplementary Table 4).

Evaluation of the NIH guidelines for GDM prediction

We first applied the NIH guidelines on all 2748 samples and obtained GDM
risk scores from eight binary variables (one not available as explained in the
“Methods”). Figure la, b depict the number of individuals and GDM pre-
valence for each risk assessment level from the NIH guidelines. Since the risk
factor “history of insulin resistance or blood glucose problems” is not
available for all pregnant women in this study, and no pregnant woman
meets all of the remaining seven risk factors simultaneously, the risk score
range provided by the NIH guidelines is zero to six. The highest risk level

Table 1 | Baseline characteristics of study cohort for GDM
prediction

Characteristics GDM (n =121) Non-GDM (n =2627) P value®
Age, mean (SD), y 29.7 (5.6) 26.6 (5.5) <0.001
BMI, mean (SD), kg/m? 29.7 (7.7) 26.1(6.1) <0.001
High blood pressure or 7(5.8) 50(1.9) 0.003
heart disease, No. (%)
Family history of diabetes, 37 (30.6%) 529 (20.1%) 0.005
No. (%)
PCOS, No. (%) 9 (7.4%) 143 (5.4%) 0.35
Race and ethnicity, No. (%)
Non-Hispanic White 69 (57.0%) 1647 (62.7%) 0.21
Non-Hispanic Black 9 (7.4%) 300 (11.4%) 0.18
Hispanic 21 (17.4%) 431 (16.4%) 0.87
Asian 13 (10.7%) 87 (3.3%) <0.001
American Indian 0(0.0%) 2(0.1%) 0.76
Native Hawaiian 1(0.8%) 6 (0.2%) 0.20
Other (as categorized in 4 (3.3%) 10 (0.3%) <0.001
the dataset)
Multiracial 4 (3.3%) 104 (4.0%) 0.71
History of miscarriage 33 (27.2%) 662 (25.2%) 0.60

*Two-sided Wilcoxon rank-sum test.
BMI body mass index, PCOS polycystic ovary syndrome. GDM gestational diabetes mellitus, kg/m?
kilogram per square meters.
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Fig. 1 | The number of participants. a and GDM prevalence b for each GDM risk
assessment level (risk score) from the NIH guidelines. The gray bar represents NIH-
assessed low-risk pregnancies (risk score equals to zero), yellow bar represents

average-risk pregnancies (risk score equals to one) and red bar represents high-risk
pregnancies (risk score larger than one). GDM: gestational diabetes mellitus.
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Fig. 2 | Receiver Operating Characteristic (ROC) curves of NIH guidelines
(orange dash line), the baseline model (green line), the HRV model (red line) and
the combined model (blue line). Each curve represents the mean performance of a
model across repeated experiments, with shaded areas indicating the 95% con-
fidence interval (CI) of the AUC. The CI for NIH guidelines is not available since the
risk scoring criteria of the NIH guidelines are fixed and do not need to be obtained
through training. AUC area under the receiver operating characteristic curve. HRV
heart rate variability. NIH National Institutes of Health.

(six) coincided with the highest GDM prevalence, with 10%, about 7 times
higher than the risk level zero, for which only ten participants had GDM
(less than 0.4%). To calculate the ROC curve when using the NTH guidelines
for GDM prediction, we varied the risk score from zero to six as the
threshold for decision making of GDM or non-GDM, obtaining an AUC of
0.63. As stated, NIH suggests that pregnancies with a score more than one in
the assessment are high-risk pregnancies for GDM™, corresponding to the
red bars in Fig. 1a. The NTH suggested-high risk group accounted for about
2/3 of the pregnancies in the studied cohort, but the actual GDM prevalence
was only slightly higher than the average (5.9% vs. 4.4%), leading to a large
number of false positives.

Evaluation of machine learning models for GDM prediction

Figure 2 shows the ROC curves and the resulting AUC after ten-fold cross-
validation for GDM prediction using the combined model, the baseline
model, the HRV model and the NIH guidelines. The combined model
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Fig. 3 | Precision-recall (PR) curve of NIH guidelines (orange dashed line), the
baseline model (green line), the HRV model (red line) and the combined model
(blue line). Each curve represents the mean performance of a model across repeated
experiments, with shaded areas indicating the 95% confidence interval (CI) of the
AUC. The CI for NIH guidelines is not available since the risk scoring criteria of the
NIH guidelines are fixed and do not need to be obtained through training. AUPRC
area under the precision-recall curve, HRV heart rate variability, NIH National
Institutes of Health.

achieved the highest AUC of 0.73 [95% CI, 0.72-0.74], superior to the
baseline model (AUC=0.69, [95% CI, 0.68-0.70]), the HRV model
(AUC = 0.65 [95% CI, 0.64-0.66]), and the NIH guidelines (AUC = 0.63).
The CI for NIH guidelines is not available since the risk scoring criteria of the
NIH guidelines are fixed (seen from Supplementary Table 3) and do not
need to be obtained through training. Although the NIH guidelines and the
baseline model shared the same risk factors, the AUC of the baseline model
is 6.1% higher than that of the NIH guidelines. The PR curves of the
combined model, the baseline model, the HRV model and the NIH
guidelines were shown in Fig. 3. The area under the PR curve (AUPRC) of
the combined model is 0.14 [95% CI 0.13-0.15], superior to the baseline
model (AUPRC =0.11 [95% CI 0.10-0.12]), HRV model (AUPRC = 0.07
[95% CI0.07-0.08]) and NIH guidelines (AUPRC = 0.08). The weighted F1
scores for the NIH guidelines, HRV model, baseline model, and combined
model were 0.22,0.93 [95% CI 0.93-0.94],0.94 [95% CI 0.93-0.94], and 0.94
[95% CI 0.94-0.94], respectively. Within the GDM subgroup, the

npj Women's Health | (2025)3:37


www.nature.com/npjwomenshealth

https://doi.org/10.1038/s44294-025-00081-z

Article

Age

BMI

Minimum Overnight HR
Mean Overnight HR

Asian

Non-Hispanic Black
Hypertension

Other

Family history of Diabetes
Overnight SD1 SD
Overnight RMSSD SD
Multiracial

Native Hawaiian

Minimum Overnight SD1/SD2
Mean Overnight HF

Mean Overnight PNN50
Non-Hispanic White
Overnight SDNN SD
Minimum Overnight PNN50
Mean Overnight PNN20

I Positive coef
I Negative coef

rﬂaynylmlllll

0.00 025 050 0.75 1.00

Coefficient

125 1.50

Fig. 4 | mean and standard deviation of the coefficient for 20 relative important
features in the combined (LR) model. Relatively feature importance was ranked
based on the average absolute coefficient of the normalized features across cross-
validation folds. The x-axis indicates the absolute value of the coefficient of each
feature, averaged between the ten-fold cross-validation; the error bars indicate the
corresponding standard deviation. The y-axis indicates the name of each feature.
Red bars indicate features with a positive coefficient, blue bars negative coefficients.
HR heart rate, BMI body mass index, HF band power of high frequency, SD standard
deviation, SDNN standard deviation of normal-to-normal intervals, RMSSD root
mean square of successive differences, PNN20 proportion of NN intervals differing
by >20 ms, PNN20 proportion of NN intervals differing by >50 ms. SD1 minor axis
of Poincaré ellipse, SD2 major axis of Poincaré ellipse.

corresponding F1 scores were 0.17, 0.96 [95% CI 0.95-0.96], 0.96 [95% CI
0.96-0.96], and 0.96 [95% CI 0.96-0.96]. In the non-GDM subgroup,
F1 scores were lower across all models, at 0.09, 0.13 [95% CI 0.12-0.14],0.19
[95% CI 0.18-0.20], and 0.22 [95% CI 0.20-0.23], respectively. The cali-
bration curves for the combined model, baseline model and HRV model was
illustrated in Supplementary Fig. 1. The combined model can truly reflect
the probability of GDM to a degree of 0-15%, superior to the baseline model
and the HRV model. Since the nuMoM2b dataset is highly unbalanced and
the number of positive samples is limited, the calibration curves of all three
models’ experiences fluctuates.

Relative feature importance was ranked based on the average absolute
coefficient of the normalized features across cross-validation folds, and top
20 relatively prominent features in the combined model were plotted in
Fig. 4. A positive coefficient means that the feature has a higher correlation
with GDM, while a negative coefficient means that the feature has a higher
correlation with non-GDM. It’s important to note that due to the elastic net
regularization, these coefficients reflect relative importance rankings rather
than absolute magnitudes of association, as the penalization process shrinks
toward zero to improve generalizability. This approach prioritizes stable
predictors while maintaining clinical interpretability of top-ranked features.
Since the combined model was trained and tested using ten-fold cross
validation, the coefficients of each feature are likely different. Thus, the SD of
each feature was also provided in Fig. 4 as error bars.

Including HRV features derived from noisy segments resulted in a
significant decline in model performance: the AUC of the combined model
decreased from 0.73 [95% CI 0.72-0.74] to 0.71 [95% CI 0.70-0.72]
(p <001), and that of the HRV model decreased from 0.65 [0.64-0.66] to
0.64 [0.63-0.65] (p <001). These findings highlight the importance of
excluding invalid segments when computing HRV features. The effect of
varying the minimum valid segment threshold on model performance was
evaluated using repeated experiments to derive AUC, AUPRC, and corre-
sponding 95% CI. Applying an appropriate threshold improved perfor-
mance for both the HRV and Combined models, compared with using no
threshold (Supplementary Fig. 4 and Supplementary Fig. 5). Although the
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Fig. 5 | The AUC of the baseline, HRV and combined models in different age
subgroups (<25, 25-30, >30 years). AUC area under the receiver-operating-
characteristic curves, HRV heart rate variability.
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Fig. 6 | The AUC of the baseline, HRV and combined models in different pre-
pregnancy BMI subgroups (<25 (underweight or healthy), 25-30 (overweight),
>30 kg/m’ (obese)). AUC area under the receiver-operating-characteristic curves,
HRYV heart rate variability, BMI body mass index, m* square meters.

Baseline model does not incorporate HRV features, its performance was also
affected due to changes in sample size. Around the threshold used in this
study (minimum of 24 valid segments), all three models demonstrated
stable performance with minimal variation.

Subgroup analysis

Figures 5 and 6 compare the performance of GDM prediction in different
age and BMI subgroups, respectively. The prevalence of GDM for age <25,
25-30 and >30 was 2.3%, 4.1% and 7.6%, respectively. For subgroups of
underweight/healthy, overweight and obese, the GDM prevalence was 3.2%,
5.0% and 8.2%, respectively. The combined model outperformed the
baseline and the HRV model for pregnant women in all age and BMI
subgroups (p < 0.001, Wilcoxon rank-sum test). Compared with the base-
line model, the accuracy improvement of the combined model is higher
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(10-15%) in the lower and intermediate age and BMI subgroups, and lower
in the higher age and/or obese subgroups (2-4%). The women in these two
subgroups had a higher prevalence of GDM, and this is consistent with
literature™*. The HRV model underperformed for most subgroups, except
for the subgroup of young pregnant women <25 years, where it out-
performed the baseline model.

Discussion

Early identification and intervention targeting GDM can help improve
pregnancy outcomes™”. To investigate predictors of this condition, we first
evaluated the NTH guidelines as the clinical practice baseline to predict the risk
of GDM in early pregnancy. A baseline ML model based on an LR algorithm
using the same risk factors from the NIH guidelines showed significantly
higher performance than the NTH guidelines (AUC of 0.69 versus 0.63). This
improvement likely results from LR’s ability to assign different weights to
individual risk factors based on their data-driven relative importance. As
illustrated in Supplementary Fig. 6, the coefficients in the baseline model vary,
and its performance exceeds that of an equal-weight model (AUC: 0.69 vs
0.66, Supplementary Fig. 7). These findings highlight the advantage of auto-
matic feature weighting in enhancing model performance. However, potential
limitations should be acknowledged, as data-driven models that optimize
weights may overfit, particularly when trained on small datasets. Such models
may exhibit limited generalizability compared with NIH guidelines.

To investigate whether overnight HRV characteristics in early preg-
nancy can be early predictors for the risk of GDM, we proposed a model
using only HRV characteristics, and another model where the HRV char-
acteristics and the risk factors from the baseline model were combined. The
combined model achieved the best performance with an AUC 0f0.73, 15.9%
higher than that using the NIH guidelines, 12.3% higher than the HRV
model and 5.8% higher than the baseline model. Considering the study
cohort is highly unbalanced, AUPRC was also used to evaluate model
performance. The combined model had the highest AUPRC of 0.14, i.e.,
75.0% higher than that using the NIH guidelines, 100% higher than HRV
model and 27.3% higher than the baseline model.

As maternal age and/or BMI increase, the frequency of sleep disordered
breathing events (such as sleep apnea) and nighttime awakenings may
increase*"*. Their presence would interfere with the measurement of HRV**
and weaken the effectiveness of HRV characteristics in GDM prediction.
From Fig. 4, age and BMI had the highest coefficients in the model, indicated
that the individuals with advanced age or BMI are assigned higher GDM
predicted value in the model. Often in current clinical practice, pregnant
women with advanced maternal age and/or BMI at the beginning of
pregnancy will be noted that they have a higher risk of developing GDM.
This implies that intervention can be started at the beginning of the preg-
nancy to reduce the risk of GDM and its adverse consequences. For the
younger age or healthier BMI individuals, their GDM risks are often
overlooked. The comparison results of model performance in different age
and BMI groups in Figs. 5 and 6 showed that the combination of HRV
characteristics and clinically suggested risk factors can help the model more
accurately identify the individual GDM risk in moderate age and BMI
groups, and the AUC can be improved by up to 15% in some subgroups.

It is well known that individuals identifying as Asian American/Pacific
Islander (AAPI) are at a higher risk of developing GDM compared to the
other race and ethnicity groups™. In our study cohort, the representation of
American Indian and Native Hawaiian participants was substantially lower
than that of Asian participants, and their corresponding risk factors were
not significantly associated with GDM. To address this, we combined
American Indian, Asian, and Native Hawaiian categories into a single AAPI
feature and conducted a sensitivity analysis to evaluate the impact of this
aggregation on model performance in Supplementary Tables 5 and 6. The
results indicated that feature aggregation did not significantly affect the
AUPRC across all three ML models. Although a statistically significant
change in the AUC was observed, the average change was less than 0.01.

It is challenging to accurately estimate the risk of GDM for nulliparous
pregnant women who did not have a history of GDM or avaliable early

plasma glucose level. Compared with biomarkers that require blood or body
fluid sampling, we investigated the possibility of using the unobtrusive and
easily accessible HRV characteristics as additional predictors to predict the
risk of GDM. Prior to this study, there was no study considering early
pregnancy HRV characteristics used in a prediction model for GDM, and
the analysis between HRV and GDM has focused mainly on the end of the
second trimester or later™*’. Although some studies*™* reported no dif-
ference between GDM and non-GDM pregnant individuals in terms of
HRV metrics, Péyhdnen-Alho et al.*’ reported that the HRV frequency
domain components were different between control and GDM groups. In
our study, most of the HRV characteristics listed in Supplementary Table 1
showed statistically significant difference (p <0.05 or p <0.001) between
GDM and non-GDM pregnancies in the nuMoM2b dataset. Furthermore,
in the feature importance analysis characterized by logistic regression
coefficients, we identified average HR (overnight mean and minimum) as
the strongest predictor positively associated with GDM risk. Elevated
average heart rate indicates sympathetic overactivation coupled with vagal
withdrawal, a pattern consistent with autonomic imbalance observed in
metabolic dysregulation™. Conversely, RMSSD, PNN50, SD1, SD1/SD2
ratio, and Poincaré plot area (S) exhibited negative associations with pre-
dicted GDM probability. The observed reductions in nocturnal RMSSD
means and their variability (SD), alongside diminished SD1 variability,
lower SD1/SD2 ratios, and decreased S values, reflect impaired para-
sympathetic tone and attenuated autonomic regulatory capacity’’. Specifi-
cally, the decline in SD1 and RMSSD indicates blunted vagally mediated
beat-to-beat adjustments, while reduced SD1/SD2 and S values suggest
compromised integration of short- and long-term cardiovascular control
mechanisms™”’. This confirmed the hypothesis that ANS activity and its
manifestation in cardiac rhythms would appear different already in earlier
phases of pregnancy in women who develop GDM in later pregnancy. Qiu
et al.”* reported that the (daytime, 5-min) resting heart rate in the first
trimester is associated with GDM, which also supports our findings. As
pregnancy progresses, fetal growth and changes in maternal hormone levels
have an impact on the cardiac system and ANS, thereby masking or
attenuating differences related to GDM. The findings in our study suggest
that the overnight maternal HRV characteristics measured during sleep are
novel physiological factors that can aid in the early risk prediction of GDM.
From an application perspective, HRV can theoretically be easily measured
with a wearable or unobtrusive device at home such as a bracelet, watch,
mattress, camera, and radar”™ . These unobtrusive methods make it pos-
sible to accurately and continuously monitor HRV for multiple nights or
even weeks in a home environment, possibly enabling further improve-
ments in the GDM prediction performance.

Although there s currently no consensus on conducting GDM screening
for all mothers in early pregnancy, this may be due to limitations of the OGTT.
Despite being the gold standard for diagnosing GDM, the OGTT is invasive,
time-consuming, and shows low sensitivity in early pregnancy™. Nevertheless,
some regional and international organizations have begun to recommend
screening for GDM in early pregnancy. For example, a new consensus has
been established in the Flanders region to measure fasting blood glucose in
early pregnancy””. It is recommended that women with a fasting blood glucose
of 5.3-6.9 mmol/L before 20 weeks of pregnancy be diagnosed with early
GDM. “International Federation of Gynecology and Obstetrics” (FIGO)
recommend screening universally in early pregnancy for diabetes and GDM®,
Italian recommendations state that pregnancies with high risk factors should
be tested at 16-18 weeks and an FPG > 5.1 mmol/L is diagnosed as GDM®".
And American Diabetes Association” and National Institute for Health and
Care Excellence” both recommend blood glucose screening in early preg-
nancy (<15 weeks) for high-risk pregnancies. Importantly, the lack of con-
sensus on early GDM screening not only highlights a research gap but also
reinforces the need to explore novel risk factors to enhance early prediction of
GDM. This aligns with the aim of our study to advance early risk stratification
and ultimately improve maternal and fetal outcomes.

While the LR model with elastic net regularization provided good
interpretability and reasonable performance, we also implemented a voting

npj Women's Health | (2025)3:37


www.nature.com/npjwomenshealth

https://doi.org/10.1038/s44294-025-00081-z

Article

ensemble that combines LR, support vector machine (SVM), and random
forest (RF) models. This was done to explore potential performance gains
and better capture complex interactions between HRV and other risk fac-
tors. The results in Supplementary Table 7 showed that the LR and SVM
models performed comparably, while the RF model yielded the poorest
results. As a result, the voting model achieved performance similar to the
standalone LR model but introduced additional complexity.

This study had several limitations. The nuMoM2b researchers used
three different standards of OGTT (non-fasting 50 g OGTT, fasting 75g-2h
OGTT, and fasting 100g-3h-OGTT) to diagnose GDM*. This might lead to
inconsistency in GDM samples used for training a GDM prediction model,
and it is difficult for us to evaluate the impact of the different diagnostic
criteria on the prediction of GDM in this dataset. Ideally, different diagnostic
standards should be applied and evaluated for same pregnancies, which
merits further investigation. Second, in the nuMoM2b dataset, the overnight
ECG recording was collected only once per participant during early preg-
nancy, with variable recording quality and duration. Although removing
these noisy segments could ameliorate the data quality and improve model’s
performance, the influence of reducing the number of segments on the
reliability of HRV estimates still existed. In addition to the ECG recording
duration and quality, sleep stage is another important factor that may
influence HRV characteristics”. Many invalid segments might likely cor-
respond to wakefulness with movement artifacts, which should be further
verified when sleep stages are available. However, sleep stage information
was not available in this dataset due to the absence of EEG, the required
signal modality in the gold standard polysomnography for sleep staging.
Given HRV-based sleep staging has been shown to be feasible®, the effect of
sleep stages should be further studied in the future. Besides, HRV char-
acteristics can also alter as pregnancy progresses”’. The time-dependent
discrepancy of HRV due to different gestational age might confuse the ML
model when including HRV for GDM prediction. Future work should
investigate the use of prolonged monitoring of HRV for potentially
improving the early prediction of GDM. Third, this study only used seven of
the eight risk factors recommended by NIH guidelines. The history of GDM,
macrosomia or stillbirth and history of insulin resistance or blood glucose
problem (except diabetes) are not available in the nuMoM2b dataset, this
study is unable to evaluate how the models’ performance would change after
including the above unavailable risk factors. Finally, the accessibility of
wearable devices used for HRV monitoring may vary across populations,
particularly for individuals with lower socioeconomic status (SES) or limited
health literacy. While our study demonstrates the technical feasibility of
HRV-based prediction, the current reliance on wearable technology could
pose barriers to equitable implementation in resource-constrained settings.
Future research should validate this approach in socioeconomically diverse
cohorts and explore alternative lower cost solutions to improve accessibility.

In conclusion, this study presents the first model designed to predict
the risk of GDM early in pregnancy by utilizing overnight maternal HRV,
which can potentially be measured unobtrusively at home. By integrating
HRV characteristics with risk factors identified in existing guidelines, there
was a notable improvement in the accuracy of early pregnancy GDM pre-
diction. This enhancement underscores the utility of maternal HRV char-
acteristics as physiological indicators for forecasting GDM risk.

Methods

Study population

This retrospective study population included individuals who were enrolled
in the observational cohort study “Nulliparous Pregnancy Outcomes Study:
Monitoring Mothers-to-Be” (nuMoM2b), in which nulliparous women
with singleton pregnancies were recruited from hospitals affiliated with
eight clinical centers in the USA between March, 2011 and September, 2013,
and 4 visits were scheduled at 6-13, 16-21, and 22-29 weeks of gestation and
at the time of the delivery®. The local institutional review board of each
study site approved the study protocol, and all women provided written
informed consent before participation. The study population was selected
from the original nuMoM2b participants as follows. Women were excluded

in case they were diagnosed with diabetes before the current pregnancy, or
when they did not undergo OGTT between 24 and 28 weeks gestation, or
when they did not join standardized level 3 home sleep test between 6 and
13 weeks’ gestation, or when the sleep monitoring device did not work
properly or valid sleep test duration of less than 2 h (equal to 24 valid 5-min
segments), resulting in a sample size of n =2748 participants (121 with
GDM [4.4%)]). The Eunice Kennedy Shriver National Institute of Child
Health and Human Development review board (approval date: December
15,2021, request ID: 11961) and Eindhoven Technology University ethical
review board (approval date: November 1, 2021, reference number:
ERB2021BME4) approved the study protocol. Our study complied with all
relevant ethical regulations, including the Declaration of Helsinki and the
Good Clinical Practice Guidelines.

Assessment of HRV characteristics

Overnight maternal cardiac rhythm was measured through a bipolar ECG
sensor of the Embletta-Gold device® during a home sleep test at the first
study visit between 6 weeks and 13 weeks plus 6 days of gestation. The
overnight ECG signals were divided into non-overlapping 5-min segments,
and a linear phase high-pass filter was used on each segment to eliminate the
baseline drift of the ECG signal. The filter used a 1.106 s Kaiser window, a
cutoff frequency of 0.8 Hz, and a sidelobe attenuation of 30 dB®. We then
removed segments whose average signal amplitude within 5-min segments
was much lower than the normal ECG signal (<0.1 mV) and visually con-
firmed the removed parts. A low-complexity precise QRS complex locali-
zation algorithm® was then used to extract the R interval. We further
removed the RR intervals that fell outside the range of more than 0.5-2 s.
In each 5-min interval, if the coverage rate of RR intervals was more than
50%, we considered it as valid segment otherwise it would be treated as noisy
segment.

After removing noisy segments disrupted by motion artifacts, for each
5-min segment, HRV properties were quantified as time-domain char-
acteristics (including average HR, SDNN, root mean square of successive
differences (RMSSD), proportion of NN intervals differing by >20 ms or
>50ms (PNN20/PNN50) and mean absolute deviation (MAD)),
frequency-domain characteristics (including ultra-low-frequency (VLEF),
low-frequency (LF) and high-frequency (HF)) and non-linear-domain
characteristics (including, minor axis of Poincaré ellipse (SD1), major axis of
Poincaré ellipse (SD2) and area of Poincaré ellipse (S)). Time-domain
metrics capture ANS dynamics through sympathetic-parasympathetic
balance (average HR), overall rhythm variability (SDNN), rapid para-
sympathetic modulation (RMSSD), and vagally mediated heartbeat fluc-
tuation thresholds (PNN20/PNN50)¥. Frequency-domain oscillations
correspond to distinct physiological regulatory processes: VLF associated
with metabolic homeostasis®’, LF oscillations reflecting baroreflex-mediated
blood pressure control”’, and HF components synchronized with
respiratory-driven vagal activity’'. Nonlinear-domain parameters char-
acterize cardiac rhythm complexity via Poincaré plot geometry, where SD1
quantifies instantaneous beat-to-beat variability, SD2 represents long-term
regulatory trends, and S (equal to SD1 multiplied by SD2) reflecting global
autonomic complexity’. Detailed description of the HRV characteristics is
provided in Supplementary Table 1. Then each HRV characteristic was
overnight summarized using sample statistics [maximum, minimum, mean
and standard deviation (SD)].

NIH guidelines for early risk assessment of GDM

The NIH recommended a self-administered, eight-binary questionnaire for
clinicians to determine GDM risk in early pregnancy™. The eight binary
questions were applied to data collected in the first study visit and corre-
sponded to eight risk factors: body mass index (BMI), family history of
diabetes, race and ethnicity, age, history of GDM or macrosomia or mis-
carriage or stillbirth, history of polycystic ovary syndrome (PCOS), history
of insulin resistance or blood glucose problem, and high blood pressure
(systolic pressure > 140 mmHg or diastolic pressure =90 mmHg) or heart
disease (Supplementary Table 2). This study selected this early risk
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screening or assessment tool to represent the current clinical baseline in
GDM early risk prediction, called “NIH guidelines”, for comparison with
the proposed ML models. Since all the pregnant women in the nuMoM2b
were nulliparous and the women with pre-existing diabetes were excluded
from our study population, only history of miscarriage in the risk factor
“history of GDM, macrosomia, miscarriage or stillbirth” was available. And
for the risk factor “history of insulin resistance or blood sugar problem”, the
specific pre-pregnancy blood glucose or insulin resistance levels were not
available in the nuMoM2b dataset. We were unable to confirm whether
there were participants who had insulin resistance or blood glucose pro-
blems before pregnancy except for those already diagnosed with diabetes. In
principle, the NIH guidelines assessed the individual’s GDM risk from zero
to eight through a risk score add-up methodology. For each question
answered “yes”, the individual’s risk score was increased by one”’. However,
since one question was not available on the nuMoM2b dataset, the max-
imum risk score that the NIH guidelines could provide is seven.

Machine learning prediction models

We developed three logistic regression (LR) based-ML models, each char-
acterized by the set of input features included: a baseline model, an HRV
model and a combined model. The baseline model included seven NIH-
recommended risk factors, consisting of age, BMI, race and ethnicity, family
history of diabetes, history of PCOS, high blood pressure or heart disease
and history of miscarriage. The history of insulin resistance or blood glucose
problems were not available except for those diagnosed with diabetes before
pregnancy, and this risk factor was removed. The HRV model included all
52 overnight statistics [max, min, mean, and SD] features from 13 HRV
characteristics mentioned above. The combined model included both the
NIH suggested risk factors and the overnight HRV characteristics. The
outcome variable for each subject was a binary value indicating whether the
participant was diagnosed with GDM (1) or not (0). (Supplementary
Table 3).

Given the simplicity and good interpretability of LR, it has been the
most widely used algorithm in GDM risk stratification or prediction®,
motivating us to employ the same technique in our study. While LR is often
positioned at the intersection of statistics and ML, this study considers it
within the framework of statistical ML model, given its data-driven opti-
mization of model parameters. Elastic net regularization was applied
separately in each fold of cross validation to cope with potential collinearity
and overfitting issues. To help with model convergence, features corre-
sponding to the risk factors or HRV characteristics were z-score normalized
before being entered into the model.

All the ML models were trained, validated and tested using ten-fold
cross-validation. Participants were randomly partitioned into ten equally
sized subsets, referred to as “folds”. Of the ten subsets, eight subsets were
used as training sets (80%) for model training, one subset was used as the
validation set (10%) for optimizing the model’s hyper-parameters and the
remaining one subset was held out as the test set (10%) for testing the model.
The cross-validation process was repeated ten times, with each of the ten
subsets used exactly once as the test set. Within each training set we com-
puted the Cohen’s d effect size for each feature to assess its discriminative
capability for GDM and then applied effect size-based feature selection
thresholds ranging from 0.2 (small effect) to 0.8 (large effect) during
hyperparameter tuning’. The hyperparameters were tuned using the vali-
dation set, including the regularization strength (C) over a range from 0.1 to
1, the L1 ratio with values from 0 to 1, and the effect size-based feature
selection threshold ranging from 0.2 (small effect) to 0.8 (large effect). The
model performance in predicting GDM was assessed using the area under
the receiver-operating-characteristic (ROC) curve (AUC) and area under
the precision-recall (PR) curve (AUPRC) and F1 score for all test results of
cross-validation. The 95% confidence interval (CI) of the AUC, AUPRC and
F1 score of each model was provided through 100 times randomly shuffled
repeated experiments.

To assess the impact of identifying and excluding invalid segments, we
first evaluated how the inclusion of such segments influenced model

performance by comparing results when HRV features were derived from
all segments versus only valid ones, with the study population being con-
stant. We then examined how the number of valid segments, among sam-
ples deemed to contain only valid data, affected the reliability of HRV
estimation and its contribution to model performance. Performance
metrics, including AUC and AUPRC with corresponding 95% CI, were
obtained through repeated experiments.

In the subgroup analysis, we compared the performance of the base-
line, the HRV and the combined model under different age and BMI sub-
groups. Calibration curves were also plotted to evaluate the agreement
between predicted probabilities and observed outcomes for the three ML
models.

For statistical analysis, the two-sided Wilcoxon rank-sum test was used
to examine the statistical significance of risk factors and characteristics
between the GDM and non-GDM groups, and Benjamini-Hochberg pro-
cedure was used to adjust p value. Model performance was also statistically
compared using the Wilcoxon rank-sum test.

Data availability

The datasets used and analyzed during the current study are available from
the Eunice Kennedy Shriver National Institute of Child Health and Human
Development—Data and Specimen Hub: https://dash.nichd.nih.gov/study/
226675.

Code availability
The code generated for data analysis in the current study is available from
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