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Tracing household transmission of SARS-
CoV-2 in New Zealand using genomics
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By early 2022, the highly transmissible Omicron variant of SARS-CoV-2 had spread across most of the
world. For the first time since the pandemic began, New Zealand was experiencing high levels of
community transmission of SARS-CoV-2. We enroled a cohort of households to better understand
differences in transmission dynamics among subvariants of Omicron. We enroled 71 households,
comprising 289 participants, and aimed to use viral genomes to gain a clearer understanding of
variant-specific differences in epidemiological parameters affecting transmission dynamics.
Approximately 80% of the households enroled experienced transmission of BA.2, while most of the
remaining households had infections with BA.1 or BA.5. Using a logistic regression generalised linear
mixed model, we found no difference in household secondary infection rate between Omicron
subvariants BA.1, BA.2 and BA.5. Of the households recruited, the vast majority (92%) experienced a
single chain of transmission with one inferred introduction. Further, we found that in 48% of the
households studied, all household participants became infected following an index case. Most
household participants tested positive within a week following an introduction, supporting the seven-
day isolation requirement for household contacts that was in place in New Zealand at the time. By
integrating genomic and epidemiological data, we show that viral transmission dynamics can be
investigated with a higher level of granularity than with epidemiological data alone. Overall,
households are a high risk setting for viral transmission in New Zealand.

During the first 18 months of the COVID-19 pandemic, New Zealand
largely avoided community transmission of SARS-CoV-2'. New Zealand’s
public health response used two main approaches for controlling com-
munity transmission of SARS-CoV-2. First, viral introductions into New
Zealand were minimised via border restrictions, coupled with either man-
aged isolation or quarantine for new arrivals dependent on their SARS-
CoV-2 status upon entry’. Second, local transmission chains were rapidly
extinguished by the use of national and regional lockdowns as well as the
isolation of cases and quarantine of their contacts’. Due to these stringent
measures, New Zealand, as of the 11 June 2021, had the lowest cumulative

COVID-19 mortality rate in the OECD, which was ~5.2 deaths per million
people”.

The arrival of Delta in August 2021° however, showed that previously
successful measures used to control community transmission of SARS-
CoV-2 in New Zealand were much less effective against more transmissible
variants®. Due to difficulties in controlling viral spread, coupled with high
vaccination rates (by the end of 2021, approximately 92% of the eligible
population had received a first dose of a COVID-19 vaccine”), New Zeal-
and shifted from an elimination strategy to a mitigation approach. By early
2022, with the arrival of the highly transmissible Omicron variant’, coupled
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with less stringent public health restrictions'’, New Zealand experienced

high levels of community transmission of SARS-CoV-2 for the first time,
with over 20,000 daily reported cases at the peak in early March 2022".
During the first quarter of 2022, Delta and Omicron (including both BA.1
and BA.2 subvariants) co-circulated in New Zealand, with Omicron rapidly
surpassing Delta in frequency’. The sheer number of cases during the 2022
Omicron wave precluded the collection of detailed epidemiological infor-
mation such as variant-specific patterns of infection. Close monitoring of
the transmission dynamics of SARS-CoV-2 within households using both
epidemiological data and viral genomics can help elucidate such patterns.

It has previously been suggested that households are a high risk setting
for the transmission of SARS-CoV-2'>", as they provide close contact and
repeat exposure, amplifying the risk of viral transmission'’. Therefore,
households are an ideal setting to ascertain epidemiological and genomic
parameters that affect rates of viral transmission'**™"’, These data have
previously been used to infer secondary infection rates (SIR), which can be
used to compare transmissibility of the different circulating subvariants.
Until September 2022 (and during the time of this study), all household
contacts of any index case in New Zealand were required to self-isolate for at
least 7 days. Yet, how this quarantine requirement affected the risk of sec-
ondary infections within households is unknown. Further, we have little
empirical data about temporal transmission dynamics within New Zealand
households and whether the seven-day self-isolation requirement for
household contacts was adequate.

In early 2022, we established a cohort study to examine the trans-
missibility of SARS-CoV-2 within New Zealand’s households. We aimed to
use viral genomes to elucidate variant-specific differences in epidemiological
parameters affecting transmission dynamics. We generated SARS-CoV-2
genomes from positive samples. Herein, we analysed a total of 71 house-
holds, made up of 289 participants, to investigate household transmission
dynamics of SARS-CoV-2 in New Zealand.

Results

Between 7 February and 2 October 2022, 71 households, comprising 289
individuals, were enroled into the study (Fig. 1). Household size ranged from
two to seven members, with a median of four (Fig. 1). The median age of all
participants was 18 (range 0-76) and showed a bimodal distribution,
reflecting both the requirement of households to have one member under 19
years old and the general makeup of nuclear families (Fig. 1¢). The median
age of participants in the first cluster was 8 (1 = 147) while the median age in
the second cluster was 39 (n = 142). Household participants included 166
females, 122 males and one identified as ‘other’. Most households (1 = 57)
followed a traditional nuclear family structure consisting of two parents and
their children, while eight households were made up of single parent families
as well as six multigenerational households.

During this study, 212 individual participants tested positive for SARS-
CoV-2. Two participants tested positive for SARS-CoV-2 twice in two
different transmission events in their household meaning that these were
identified as reinfections. A total of 814 RT-PCR tests were positive from the
212 positive participants, including serial swabs from the same individuals.
Of those who tested positive, the median age was 17. In n=20 of the
households, an index case was randomly assigned due to more than one
participant testing positive on day zero and their viral genomes being
indistinguishable. Household index cases were approximately evenly split
among female (56%, n=43) and male (44%, n=34) participants, and
among positive cases overall (58%, n = 124 female; 42%, n = 88 male). In
48% of households, all household participants tested positive for SARS-
CoV-2 within the 28-day period.

From February to October 2022, several different Omicron subvariants
circulated in New Zealand (Fig. 2) with the Delta wave diminishing around
this time. From the 814 samples that tested positive for SARS-CoV-2 during
this study, 603 viral genomes were successfully generated and their lineages
were assigned using Pangolin”. The majority (82%) of genomes belonged to
BA.2 (or progeny subvariants of BA.2*); the predominant subvariant in
New Zealand during the study period, which circulated from March until

early August 2022. Other subvariants present included BA.1*, BA.4*, BA.5*
and recombinant XN (it was difficult to distinguish between sublineages
below this parental level due to sequencing ambiguities). We found that viral
genomes generated from this household cohort fell within New Zealand
community lineages (Fig. 2).

Out of the 71 households recruited into this study, four households
experienced two different transmission events, 28 or more days apart
(Supplementary Fig. 1). In two of these households, the subvariant BA.2
circulated both times but infected different household members for each
event. The other two households were due to different subvariants (BA.1
followed by BA.4.6, and BA.1 followed by BA.2). The households that
experienced different subvariants of Omicron also included reinfections.
Using genomic data, we found that two households had two different var-
iants circulating within the household concurrently, meaning two separate
sources of infection. In one five-member household, three individuals tested
positive on the same day: two cases were identified as BA.2, while one was
BA.5 (Supplementary Fig. 1). The BA.2 variant spread to the remaining two
household members. The second household, also a five-member household,
experienced both a BA.1 and BA.2 infection at the same time (Supple-
mentary Fig. 1).

The majority (90%) of household transmission lineages generated little
to no genetic diversity (i.e. 0—1 SNPs) within the consensus viral genomes
inferred from each participant (Fig. 3). Household transmission events that
generated the largest number of viral Single nucleotide polymorphism
(SNPs) fell within the BA.2 subvariant. Viral genomes among three
households accumulated 5-6 SNPs and a household infection duration of
15-28 days after the index case was identified. Despite this accumulation of
SNPs, phylogenetic inference supports a single introduction, with the caveat
of this large clonal outbreak in New Zealand at the time. The mean (and 95%
confidence interval, CI) household SIR for subvariants BA.1, BA.2 and BA.5,
was 55% (17-93%), 61% (50-71%), and 67% (38-95%), respectively (Fig. 3).
The GLMMs provided no evidence of a difference in SIR between sub-
variants (p >0.8 for all models including subvariant as a covariate).
Households infected with BA.5 had an average of 0.65 doses (CI: 0.16-1.14)
of the COVID-19 vaccine per household member, while BA.1 and BA.2 had
an average of 1.8 (CI: 1.16-2.48) and 1.9 (CI: 1.71-2.01) doses per household
member, respectively. We found no statistical association between house-
hold SIR and the number of vaccine doses per household member (Sup-
plementary Table 2).

We compared the time (days) that household participants tested
positive after an index case was identified, along with the household SIR
between subvariants. Most household participants tested positive well
within seven days after an index case with the mean number of days before
becoming infected being 1.8, 3.3 and 5.7 days for BA.1, BA.2 and BA.5,
respectively (Fig. 4). The 95% confidence interval for becoming infected
following an index case was wider for BA.5 (2.6 - 8.8) compared to BA.1
(0.7-2.8) and BA 2 (2.6-4). Note that while households were only enroled
for a maximum of 28 days, six households continued to have positive
participants at the 28-day cut-off.

Discussion

We recruited 71 households to better understand transmission dynamics of
SARS-CoV-2. New Zealand’s first Omicron wave was dominated by BA.2,
which meant that comparisons between subvariants within households
were largely precluded as the number of households that experienced
transmission with other Omicron subvariants was low in comparison.
Nevertheless, while previous estimates of household SIR of Omicron var-
iants were, on average, 38% (range 29-65%)"**'~**, we estimated an average
household SIR to be as high as 71% for BA.5. Indeed, we found that in 75% of
households infected with BA.5, all participants within the household
became infected following an index case, excluding only one household due
to the co-circulation of both BA.5 and BA.2. By comparison, the estimated
average household SIR of both BA.1 and BA.2 were within the range
described previously (55% and 61%, respectively), albeit at the higher end of
this range and not significantly different from BA.5. It is worth noting that
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Fig. 1 | Timeline and demographics of the household transmission study and its

participants. a Number of reported SARS-CoV-2 cases in the New Zealand
community” and the timing of this study (pink). b Number of participants per
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the relatively small sample sizes of BA.1 (1 = 5 households) and BA.5 (n =9
households), compared to BA.2 (n =59 households) might explain these
observed differences.

By the second quarter of 2022, Omicron subvariants with dis-
tinct transmissibility advantages over then-dominant BA.1 and BA.2
began to spread globally”®. For example, BA.5, with the addition of
two mutations, L452R and F486V, in the spike protein had a viral
growth rate advantage over its predecessors and was found to
dominate new introductions of SARS-CoV-2 into New Zealand*”. It
is noteworthy that even though New Zealand in general had high
rates of vaccination against COVID-19, households infected with
BA.5 had the lowest vaccine coverage with an average of 0.65 doses
per household member. This is in contrast with an average of 1.8 and
1.9 doses per household member for BA.1 and BA.2, respectively.
Overall, however, the relatively high household SIR among all
Omicron subvariants estimated here suggests effective viral trans-
mission even within a highly vaccinated cohort, validating the

immune evasive properties of Omicron described previously”™,
particularly as this study took place prior the availability of bivalent
vaccines in New Zealand.

With the exception of two households, our genomic data cor-
roborated epidemiologically-identified household transmission clus-
ters. Two households were infected with two different subvariants
concurrently, allowing us to easily identify multiple sources of
infection. On the one hand, it is likely that further households had
more than one source of infection yet appeared to be genomically
linked due to the largely clonal outbreak, especially of BA.2, in New
Zealand at the time of the study. Yet, on the other hand, the seven-
day self-isolation requirements for positive cases and their household
contacts likely limited the number of separate introductions, meaning
that most households (97%) experienced just a single source of
infection. Indeed, the majority of viral genomes within households
were identical within their respective consensus genomes. Among
those household transmission clusters that generated considerable
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Fig. 2 | Phylogeny and genomic diversity of SARS-CoV-2 in New Zealand dur-
ing 2022. a Maximum likelihood time-calibrated phylogenetic tree (black branches)
showing the phylogenetic position of genomes generated within this household
cohort study (orange bars), genomes from SARS-CoV-2 within the New Zealand

community (purple bars) among a random selection of non-New Zealand SARS-
CoV-2 genomes (grey bars). Major subvariants of Omicron are labelled.
b Proportion of cases comprising different variants in New Zealand during 2022*.

genetic diversity; the duration of their infections was long (between
15 to a maximum of 28 days following the identification of an
index case).

Unlike many household transmission studies of SARS-CoV-2, we
integrated both epidemiological data, such as assigning participants into
clearly defined households, as well as genomic data, to accurately identify
index cases and inform the overall direction of transmission within
households. This study had several limitations. First, index cases were
recruited only upon testing positive for SARS-CoV-2 and were asked to self-
swab based on the number and severity of symptoms. This may cause the
household SIR estimate to be lower since participants may have had an
asymptomatic infection before the assumed index symptomatic case. Sec-
ond, there is an inevitable time-lag between the reporting of a SARS-CoV-2
positive index case and enroling the remainder of the household in order to
test them. This time-lag meant that many secondary cases tested positive on
day three yet could have been infected earlier. These limitations could have
been mitigated by enroling households before a SARS-CoV-2 infection
occurred and by systematically testing all household participants for SARS-

CoV-2 frequently, regardless of symptoms. By designing the study in this
way, it would broaden the study population and therefore more accurately
identify index cases, symptomatic and asymptomatic infections, as well as
associated temporal dynamics. However, this study design would be logis-
tically challenging. Finally, as mentioned previously, the dominance of BA.2
in New Zealand during the time of this study precluded robust comparisons
among subvariants.

Overall, households in New Zealand, like in many countries’ ™, are a
high risk setting for SARS-CoV-2 transmission. We show that in New
Zealand—where at the time of the study most population immunity was
vaccine-derived—in half of all households studied, SARS-CoV-2 infected all
household members and that reinfections within the study period were rare.
Household transmission of SARS-CoV-2 typically occurred following just a
single introduction and most secondary cases tested positive within just a
few days of an index case, justifying the seven-day isolation requirement for
household contacts that was in place at the time. We also found that the
average household SIR in New Zealand was relatively high compared with
other global estimates. While the requirement of household contacts to
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infected more than one household. e Duration of testing positive by RT-PCR for each
participant (days between first positive and first negative test) grouped by subvariant
parental lineage, including only those subvariants with more than one household.
Boxplots in (d) and (e) show the distribution of the lower and upper quartiles as well
as the minimum and maximum values, where a blue horizontal line indicates

the mean.
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self-isolate following an index case might have increased the household SIR,

direct comparisons with populations without such a requirement are dif-
ficult to make.

Methods

Ethics statement

All participants provided written consent allowing samples to be collected
for research purposes. This study was approved by the New Zealand Health
and Disability Ethics Committee (NTX/11/11/102).

Study design

From 2021, the already established Southern Hemisphere Influenza Vaccine
Effectiveness Research and Surveillance (SHIVERS) platform recruited
households to be part of a household cohort to research influenza and

SARS-CoV-2 transmission within households. This cohort, known as
WellKiwi Household cohort, was the fourth iteration of the SHIVERS study
(SHIVERSIV). For a household to be eligible to enrol, at least one household
member was required to be under the age of 19, the household had to enrol
for a minimum of two years and all members of the household had to agree
to participate. Beginning in February 2022, participants in the Wellkiwi
Household cohort received a weekly symptom survey in which they would
report whether any of the household members were experiencing respira-
tory disease symptoms. Responses were triaged by the WellKiwi clinical
team and participants would collect a nasal swab via self-swabbing. Swabs
were couriered to the WHO National Influenza Centre at the Institute of
Environmental Science and Research (ESR) and tested by the Clinical
Virology Department for SARS-CoV-2 by RT-PCR. Recruitment into the
SARS-CoV-2 household transmission study was based on a positive
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SARS-CoV-2 RT-PCR result. The household members of SARS-CoV-2
positive participants were then invited to participate in this sub-cohort
study. Recruited participants completed a daily symptom survey and col-
lected a nasal swab via self-swabbing every 3 days. Swabs were then cour-
iered to the laboratory for testing. RT-PCR results were returned within a
24-48-h timeframe. The follow-up period for household members was
defined by either the continuation of swabbing every three days until the
participant had returned negative SARS-CoV-2 RT-PCR results twice in
succession, or the household had participated for a total of 28 days. A
transmission event was classified as the circulation of SARS-Co-2 within a
household within a 28-day period. If transmission occurred more than
28 days after the last positive case within the household it was classified as a
separate transmission event or reinfection.

Viral RNA extraction and PCR

Viral RNA was extracted using the ZiXpress or Kingfisher Flex automated
analysers, using the Thermofisher Scientific® MagMax Viral/Pathogen
Nucleic Acid Isolation Kit (A48310) and used as per manufacturer’s
instructions. Nasopharyngeal samples collected from participants were
tested for SARS-CoV-2 using the CDC Influenza SARS-CoV-2 (Flu SC2)
Multiplex Assay and the Quantabio qScript XLT 1-step RT-qPCR Tough-
Mix (95132-500), and confirmed using the CCDC primers for N gene and
ORFlab, and the Quantabio qScript XLT 1-step RT-qPCR ToughMix™
(95132-500).

Virus genomic sequencing

All household samples that tested positive for SARS-CoV-2 by rRT-PCR
were then referred to the genomic sequencing department at the Institute of
ESR for genome sequencing. In brief, sequencing was performed following
the Midnight protocol v6™. This protocol contains a 1200-bp primer set for
tiling the SARS-CoV-2 genome, as well as using the Oxford Nanopore
Technologies R9.4 chemistry. Using a standardised pipeline (https://github.
com/ESR-NZ/NZ_SARS-CoV-2_genomics), which is based on well-
established bioinformatics pipelines (https://artic.network/ncov-2019/
ncov2019-bioinformatics-sop.html; v1.2.1) consensus viral genomes were
generated. These genomes were subject to quality testing and only genomes
with fewer than 50% ambiguities were selected for further analysis.

Genome sequence analysis

High-quality genomes were first designated lineages using Pangolin v4.0.6™.
Sublineages were grouped by parent lineage due to sequence ambiguities in
some genomes. Household cohort viral genomes were first aligned together
with SARS-CoV-2 genomes sampled during 2022 from New Zealand
(n=2029) and the rest of the world (n =1967) selected at random from
GISAID, as well as 408 global genomes sampled during 20202021 (see
Supplementary Table 1 for all genome accession numbers). Genomes were
aligned using NextAlign”, using Wuhan-Hu-1 (NC_045512.2) as a refer-
ence. A maximum likelihood time-calibrated phylogenetic tree was esti-
mated using IQ-TREE2”, using the Hasegawa-Kishino-Yano (HKY + I')
nucleotide substitution model” (the best-fit model was determined by
ModelFinder™), and branch support assessment using the ultrafast boot-
strap method*'.

SNP analysis for households was performed by first aligning genomes
for a given household using NextAlign and summing the number of
nucleotide differences. Households that showed two separate transmission
events, or two different subvariants that circulated concurrently were
aligned separately.

Data analysis

An index case was defined as the participant from the Wellkiwi Household
cohort who was the first to test positive for SARS-CoV-2 by RT-PCR upon
which the household was then recruited into the household transmission
study. In instances where more than one household member tested positive
for the same subvariant on the same day (i.e. day zero), and the virus genome
was genetically identical or an index could not be inferred from the

phylogeny, index cases were randomly assigned. The household SIR was
defined as the percentage of household members that tested positive fol-
lowing a positive test from the index case within 28 days and cases were
linked to the same transmission chain using genomics (methods below).
Statistical tests to compare household SIR among subvariants were per-
formed using logistic regression generalised linear mixed models (GLMMs).
It was assumed that secondary cases in households in which the same
Omicron subvariant circulated and genomes were phylogenetically linked
were from a single introduction following the index case. Households that
had two different subvariants circulating concurrently, and those that had
transmission events at vastly different times, were regarded as separate
transmission events. For the GLMMs, household was included as a random
effect, and the following variables were considered as potential confounders:
number of household members; vaccination status; and age. Analyses were
performed using the glmer command in the R package lme4™.

Data availability
SARS-CoV-2 genomes generated in this study are available online via
GISAID under accession numbers: EPI_ISL,_18565210-18565820.

Code availability

The software used in the analysis for this manuscript: PANGO v4.0.6,
NextAlign v.2.3.0 and IQTREE2. As well as the ARTIC bioinformatics
pipeline available from  (https://artic.network/ncov-2019/ncov2019-
bioinformatics-sop.html; v1.2.1).
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