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Cell surface RNA virus nucleocapsid
proteins: a viral strategy for
immunosuppression?

Check for updates

Alberto Domingo López-Muñoz & Jonathan W. Yewdell

Nucleocapsidprotein (N), or nucleoprotein (NP) coats thegenomeofmostRNAviruses, protecting and
shielding RNA from cytosolic RNAases and innate immune sensors, and plays a key role in virion
biogenesis and viral RNA transcription. Often one of themost highly expressed viral gene products, N
induces strong antibody (Ab) and T cell responses. N from different viruses is present on the infected
cell surface in copy numbers ranging from tens of thousands tomillions per cell, and it can be released
to bind to uninfected cells. SurfaceN is targeted byAbs,which can contribute to viral clearance via Fc-
mediated cellular cytotoxicity. Surface N can modulate host immunity by sequestering chemokines
(CHKs), extending prior findings that surface N interferes with innate and adaptive immunity. In this
review, we consider aspects of surface N cell biology and immunology and describe its potential as a
target for anti-viral intervention.

The host immune response drives the evolution of viral immunoevasion
mechanisms. Large DNA viruses such as herpesviruses and poxviruses
encode the best-known and most obvious immunomodulatory proteins.
These include interferon (IFN) antagonists, homologs of host cytokines,
CHKs and their receptors, and inhibitors of antigen presentation1,2. This
diverse arsenal is enabled by a large genome. Indeed,more than 50%of their
genome can encode such accessory genes, i.e., genes not required for pro-
ductive replication3–5.

RNA viruses face the same adversaries (e.g., us) but with a much
smaller genomic palette (typically 10 to 30 kB) that precludes wholesale
capture of host genes for evolutionary remodeling, a favorite trick of large
DNA viruses. This puts a premium on multi-tasking both at the level of
coding (overlapping genes) and proteins (multifunctionality). Almost all
negative and positive strand RNA viruses encode a protein that binds
genomic RNA, typically termed N or NP (HIV “gag” is an exception). N’s
canonical function is binding nascent genomic RNA genome through
electrostatic interactions, packing them into long helical ribonucleoprotein
complexes and participating in virion assembly. Despite major sequence
and structural differences, N proteins from different RNA virus families
have been reported to regulate innate and adaptive immunity by suppres-
sing IFN,modulating cytokine production, apoptosis, autophagy, and stress
granule formation6–8. Thus, N proteins playmultiple roles in viral evolution,
contributing to viral replication and immune evasion.

N proteins lack ER-insertion sequences. Their absence of N-linked
glycans added in the endoplasmic reticulum (ER) (though are glycosylated
when mistargeted to the ER)9,10, confirms their absence from the secretory
pathway. Despite this, N protein cell surface expression, detected by

antibody (Ab) binding to live cells more than 40 years ago, has proven to be
the rule rather than the exception among RNA viruses (Fig. 1, Table 1),
including (in order of discovery) influenza A virus (IAV)11,12, vesicular
stomatitis virus (VSV)13, lymphocytic choriomeningitis virus (LCMV)14,15,
human (HIV), simian (SIV) and feline immunodeficiency virus (FIV)16–18,
mouse hepatitis coronavirus (MHV)19,20, respiratory syncytial virus (RSV)21,
and measles virus (MV)22,23.

Given the typical high anti-NAb response during infections, surfaceN
is an obvious target of Ab-based adaptive immunity (complement lysis, Ab-
dependent cellular cytotoxicity (ADCC) and Ab-dependent cellular pha-
gocytosis (ADCP). Less obvious is surface N manipulation of innate
immunity, first reported 20 years ago for MV N as contributing to MV-
induced inflammation by inhibiting IL-12 secretion22,23. Later, surface RSV
N expression was reported to impair CD4 T cell immunological synapse
formation21. We reported that SARS-CoV-2 N is secreted during infection,
binding to the surface of infected cells and non-infected neighboring cells,
inhibiting CHK-mediated leukocyte chemotaxis, and enabling activation of
Fc-mediatedAb effector functions24. Recently, we extended thesefindings to
the human coronavirus (HCoV)-OC43 N protein25, suggesting that cell
surface N generally contributes to CoV innate immunoevasion.

LargeDNAviruses share evolutionary conservedmechanisms to evade
immunedetection anddestruction.One is the secretionof viral proteins that
interfere with the cytokine network. These include cytokine homologs,
cytokine-receptor homologs, and viral cytokine binding proteins26–28. The
growing list of surface N proteins (Table 1) suggests RNA viruses might
employ an alternative common strategy of using extracellular N to similarly
influence innate immunity. Here, we summarize and review current
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knowledge on surface RNA virus N proteins and their established and
potential roles in immunoevasion.

Summary of studies demonstrating cell surface N
expression
Usingpolyclonal (p)Abs, IAVNwas thefirstN reported tobepresent on the
surface of infected cells11 and has been the most intensively studied cell
surface N among the different viruses (Table I). Surface N expression was
definitively established usingmonoclonal (m)Abs12, a finding confirmed by
several laboratories. Passively transferred N pAbs can reduce IAV patho-
genesis and IAV replication in mice32,37,38. Although anti-N mAbs enable
complement-mediated lysis in vitro12, in vivo activity of anti-N pAbs is
FcγR-mediated and dependent on CD8+ T cells38. As anti-N mAbs also
mediate ADCP32, the extent to which anti-N-based protection is based on
Ab interactionwith cell surfaceN (ADCC and complement-mediated lysis)
vs. N in fragmented virions is uncertain (enhanced phagocytosis leading to
increased T cell activation). As with IAV N Abs, passive transfer of LCMV
N-specific Abs significantly decreased viral titers in infected mice15. The
in vivo anti-viral activity of LCMVN-specificmAbs was independent of C3
or FcγR, begging explanation.

HIV, SIV, and FIV encode three structural genes (gag, pol, and env),
common to all known replicative retroviruses. Once translated, the gag
polyprotein is proteolytically divided into four major domains: p17
(matrix), p24 (capsid), p7 (N protein), and p6. Although there are no
reports of gag p7 (N) cell surface expression, both p17 and p24 have been
detected on the surface of persistently HIV-infected cells by immuno-
fluorescence (IF) and radioimmunoassay with mAbs16,17. These authors
later extended these findings to SIV and FIV gag p24 using mAbs18, con-
sistentwith gag cell surface expression being a feature of lentivirus infection.

MHV N protein was detected on the surface of infected cells using IF
with mAbs as well as mAb-mediated complement lysis of infected cells.
Adoptively transferred mAbs protected mice against lethal MHC
infection19,20.

Additional biological activities of cell surface N from IAV, VSV,
LCMV, HIV, SIV, FIV, and MHV remain to be discovered.

Cell surface N-mediated immunosuppression
RSV
RSV N is expressed on the surface of infected cells, including mouse DCs,
detected with mAbs by flow cytometry (FC) and IF 24 h post-infection
(hpi)21. N is detected as early as 1 hpi with either infectious or inactivated

virus, demonstrating that surface N derives from the inoculum and not
endogenously synthesized protein. By 24 h post-infection, endogenously
synthesized N increases the N surface signal. N is released by infected cells,
possiblydue to secretionby the classical ER toGolgi complex (GC)pathway,
but the evidence for this conclusion is limited to marginal co-colocalization
with the GC by IF and partial effects of brefeldin A secretion blockade.
Soluble recombinant N binds cells, consistent with released N binding
accounting for N cell surface expression.

Adding soluble N to DCs or artificial MHC class II bearing
membranes impairs their ability to present peptides to naïve CD4
T cells. N did not colocalize with MHC-loaded peptides on artificial
membranes but colocalized with TCRs and even induced TCR clus-
tering on T cells, suggesting its interaction with one or more compo-
nents of the TCR micro cluster complex on the T cell surface, which
contains CD2, CD3, CD4, CD28 in addition to the TC.Whether RSVN
can also inhibit the activation of CD8 T cells remains unexplored. The
relevance of N interference with T cells in vivo remains to be estab-
lished. This will be difficult, particularly since RSV infection of human
CD4 andCD8 T cells39 likely contributes to RSV-associated defects in T
cell responses.

MV
The immunosuppressive properties of MV N were discovered by adding
recombinant N to mouse and human B cells. This revealed N binding to
FcγRII on the surface of B cells, as shown by 90% inhibition using anti-
FcγRII mAbs and the ability of FcγRII gene expression to confer N binding
to FcγRII negative cells. N binding to B cells reduced immunoglobulin
synthesis of activated human B lymphocytes by 50%35,36.

Extending these findings,MVNexpressed by human thymic epithelial
cells and peripheral blood lymphocytes infected with wild-type or vaccine
strains was detected on the cell surface with mAbs by FC and IF22,23. Newly
synthesized N enters the late endocytic compartment via an unknown
mechanism. N remains in endosomes if cells lack FcγRII (e.g., T cells). If
FcγRII is present, it associates with N and delivers N to the plasma mem-
brane, where it can dissociate and bind FcγRII on non-infected neighboring
cells by cell-to-cell contact and cell-free diffusion.N cell surface expression is
independent of other viral genes, as it is observed in FcγRII positive cells
expressing N from a transgene.

Biologically active N can also be released from dead and dying MV-
infected cells and bind other cell surface proteins expressed by human,
monkey, andmouse cells. Binding tohumanTcells requiresT cell activation
and blocks further proliferation22. Binding of N to human thymic epithelial
cells induces calcium influx and causes G0/G1 cell cycle arrest22. Both cell-
derived and recombinant N inhibit IL-12 secretion by human and mouse
macrophages. Injecting N or cells expressing a transgene encoding N
inhibits mouse ear swelling in an IL-12-dependent allergen model23. MVN
also binds to the B cell receptor, i.e., cell surface immunoglobulin, inhibiting
immunoglobulin synthesis35,36.

As with N from other viruses, gauging the in vivo importance of
N-based immunosuppression is complicated by the many other effects
induced by other viral proteins40.

HCoV
We found that SARS-CoV-2 N is localized on the surface of SARS-CoV-2
infected and transiently transfected Vero, BHK-21, Caco-2, Calu-3, CHO-
K1, HEK293-FT cells, with mAbs by IF, FC and ADCC reporter assays24.
Surface N, as expected, is a target for ADCC24,25,41. More recently, we
reported that N from the common cold HCoV-OC43 is robustly expressed
on the surface of infected cell lines by the same criteria25. Pooled human
airway epithelial cell cultures infected with SARS-CoV-2 or HCoV-OC43
demonstrated significant levels of cell surface N after 72 hpi by FC with
mAbs, showing the relevance of surface N expression to conditions
approximating human airway infections. As natural N is not glycosylated
(unlike artificially ER-targeted N), surface expression does not entail clas-
sical ER to GC export.

Fig. 1 | RNA viruses whose N and N-like proteins have been reported on the cell
surface during infection. Legend: HA/H (hemagglutinin), NA (neuraminidase),
NP (nucleocapsid protein), G (glycoprotein), GP120 (envelope glycoprotein), S
(spike), F (fusion protein). The figure was created with Biorender.com.
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We detected surface N on both infected cells and non-infected
neighboring cells24. N, like all N proteins, is highly positively charged, and
binding of endogenous N and cell-derived or recombinant N to cells
requires heparan sulfate/heparin (highly negatively charged proteoglycan),
as shown by the abrogation of binding by enzymatic or genetic removal of
heparan sulfate/heparin. Consistent with this finding, N binds to heparin/
heparin sulfate with nanomolar affinity but no other sulfated glycosami-
noglycans, and cell binding is blocked by polybrene, a cationic polymer that
neutralizes cell surface electrostatic charge24,25. N produced by SARS-CoV-
2-infected cells is transferred through 3 μm filters to non-infected cells,
demonstrating that cell contact is unnecessary. Levels are much higher,
however, in co-cultured cells, consistent with parallel and likelymore robust
transfer by cell contact.

The presence of N in serumwithin the first few weeks of SARS-CoV-2
infection suggests the physiological relevance of released N42–44. The extent
to which N detected in these assays is free vs. present in ribonucleoproteins,
virions, or exosomes remains to be determined45. Given the ubiquitous
expression of heparan sulfate/heparin on cells, including endothelial cells, it
seems unlikely that sufficient N is released by infected cells to saturate
available cell surfaces. In extending these findings, Wu et al.46 reported that
N derived from the Omicron variant binds more weakly to the plasma
membrane. They identified STEAP2, a likely non-glycosylated cell surface
protein, as a co-receptor in the cell lines tested. RNASeq, however, indicates
that STEAP2 mRNA is present at low levels in all human tissues except
prostate, inconsistentwith STEAP2being anormalNreceptor. In any event,
transiently expressed N was reported to mediate RNA and DNA transport
to recipient neighboring cells through STEAP2-mediated endocytosis,
achieving gene expression in the recipient cells, suggesting another function
for N46.

Amongall SARS-CoV-2 structural (spike,membrane, envelope andN)
and accessory proteins (ORFs 3a, 3b, 6, 7a, 7b, 8, 9b, 9c, and 10) screened for
interaction against 64 human cytokines by bio-layer interferometry, only N
bound 11 CHKs (CCL5, CCL11, CCL21, CCL26, CCL28, CXCL4, CXCL9,
CXCL10, CXCL11, CXCL12β, and CXCL14) with micromolar to nano-
molar affinity24. HCoV-OC43 N binds with high affinity to the same set of
11 CHKs as SARS-CoV-2 N, but also to an exclusive set of 6 additional
cytokines (CCL13, CCL20, CCL25, CXCL12α, CXCL13, and IL27)25.

In silico modeling of interaction with HADDOCK and AlphaFold2-
Multimer software between SARS-CoV-2 N and CXCL12β reveals a high
specificity of docking47. SARS-CoV-2 and HCoV-OC43 N proteins inhib-
ited in vitro CXCL12β-mediated leukocyte migration in chemotaxis assays.
Exogenous recombinant N from highly pathogenic (SARS-CoV, MERS-
CoV) and common cold HCoV (HKU1, NL63, and 229E) also inhibited
in vitro CXCL12β-mediated leukocyte migration. Notably, despite this
conserved function, the sequence homology betweenHCoVNproteins can
be considerably low even within the same viral genus (38% between SARS-
CoV-2 and HCoV-OC43)48,49.

Given the large number of CHKs bound byHCoVN, it will be difficult
to gauge their impact in animal models by targeted CHK gene knockout or
Ab-mediated interference.

Concluding remarks
N is typically among the most abundant viral proteins expressed during
RNA virus infection. Based on the increasing evidence, N expression on
the surface of RNA virus-infected cells is likely to be the rule rather than
the exception. There is limited evidence supporting in vivo N surface
expression. SARS-CoV-2 N has been detected in lung, intestine, and
kidney biopsies from fatal and recovered COVID-19 patients without
signs of viral replication50–52, consistent with its presence on the cell sur-
faces. Further, high levels of free SARS-CoV-2N in the blood and urine of
patients correlates with severe disease53–55. In vivo N cell surface expres-
sion is a critical question for future studies. There is no evidence that N
reaches the cell surface via the standard ER to GC secretory pathway; the
evidence suggests that N is secreted through a non-canonical secretory
pathway56, like HIV-Tat protein57,58. Several cellular proteins non-

canonically exported to the cell surface (e.g., FGF2, tau) bind proteogly-
cans such as heparan sulfate, which have been shown to mediate the
secretion of these proteins to the extracellular compartment59,60. This is an
obvious starting point for studying the secretion of HCoV N, given its
binding to heparin/heparin sulfate. More generally, N protein membrane
penetration may be typical of proteins with highly positively charged
domains. Cationic proteins (e.g., Tat) penetrate cells and can confer cell
penetration when appended to proteins. Anti-DNA Abs have long been
known to penetrate living cells and traffic to the nucleus61, a charge-
dependent process requiring a cationic Ab antigen binding site and cell
surface proteoglycans62.

Given their common binding to RNA via positively charged domains,
it is likely that many, if not all, or nearly all viral N proteins will, like the
HCoVNproteins studied, bind to cell surface proteoglycans.Other secreted
viral proteins also bind to the cell surface of infected or adjacent cells
through proteoglycans. These include innate immune immunosuppressive
factors such as herpes simplex virus 2 glycoprotein gG63, myxoma virus T1
protein64, ectromelia virus E163 protein65, vaccinia virus B18 protein66, and
molluscum contagiosum virus MC54L protein67.

N proteins are highly immunogenic, inducing rapid and robust IgG
response. IgGAbs against IAVNprotein promote viral clearance inmice by
mechanisms involving both Fc receptors and CD8+T lymphocytes38,
consistent with a contribution from ADCC of viral infected cells and pos-
sibly Ab-enhanced DCs cross-presentation of N containing viral debris to
activate CD8+T cells. Anti-N Abs have been shown to improve control of
SARS-CoV-2 in mice and hamsters68–70. We and others reported HCoVs N
as a target for Fc-mediated Ab effector functions, since anti-N Abs trigger
infected cell activation of NK cell24,25,41.

The strong immunogenicity and antigenic stability of N make it an
attractive candidate for vaccines aiming for broad coverage against closely
related viruses. A combination of spike+NmRNA (ancestral SARS-CoV-
2 sequence, Wuhan-Hu-1) vaccination induced more robust control of
the SARS-CoV-2 Delta and Omicron variants in the lungs than spike
mRNA alone, and reduced viral load in the upper respiratory tract in
preclinical models70. An N-based vaccine against IAV elicited significant
humoral and cellular NP-specific immune responses and reported to
provide an 84% level of protection against PCR-confirmed symptomatic
influenza compared to placebo in a phase 2 clinical trial71. Similar results
have been reported for a SARS-CoV-2 N-based vaccine in hamsters,
generating strong and broad-spectrum N immune responses across
multiple SARS-CoV-2 variants72.

While themost obvious benefit of N-based vaccines is the induction of
CD8+ and CD4+T cell responses, it will be important to assess the con-
tribution of anti-NAbs to viral clearance and protection. As with all human
virus protection studies, this will not be an easy task, as the contribution of
evenCD8+ T cells to protection against acute viral infections remains to be
firmly established. It will be equally difficult to establish the role of N pro-
teins in modulating anti-viral immunity, though clues may be offered,
ironically, in characterizing human immune responses to N vs. viral-
receptor-protein-based vaccines by analyzing serum and cell immune sig-
natures.Other clues to the evolutionary importance ofNCHK-bindingmay
come from mutational studies that identify residues critical for binding,
enabling experiments to determine the fitness of such mutants in animals
with various immune defects and resulting evolutionary changes in the
mutants.

Although surface N protein expression was discovered nearly 50 years
ago, research has been highly sporadic, with only a few dozen studies
reported to date. Hopefully, the intense worldwide interest to better
understand HCoV immunity, in particular, and viral immunity, in general,
will fuel interest in the role of N proteins in viral immunity and immune
evasion, leading to developing N based vaccines and possibly even
therapeutics.
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