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Strange relatives: the enigmatic arbo-
jingmenviruses and orthoflaviviruses
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Arthropod - and vertebrate-associated jingmenviruses (arbo-JMV) have segmented positive-strand
RNA genomes and are provisional members of the genus Orthoflavivirus (family Flaviviridae). Current
investigations have described arbo-JMV infection in vertebrate hosts in proximity to humans. This
raises concerns about the virus host range and public health implications. This review explores the
genomic and evolutionary relationship between arbo-JMV and orthoflaviviruses and evaluates the

potential of arbo-JMV to pose a public health threat.

Jingmenviruses (JMV) are a group of rapidly emerging viruses. They were
first described in Rhipicephalus microplus ticks collected in 2010 near
Jingmen City, China, during a survey for Huaiyangshan virus'. Currently,
JMYV has been identified in continental Asia, Africa, Oceania, Europe, North
and South America”"’. The JMV are regarded as provisional members of the
genus Orthoflavivirus (family Flaviviridae)'™", largely because of their
segmented genome structure and protein function""”. Other ortho-
flaviviruses like West Nile virus (WNV), dengue virus (DENV) and
Powassan virus/deer tick virus (POWV/DTV) are able to infect a wide
variety of animal hosts and are associated with serious health consequences
in human'*"”.

The JMV genome is comprised of single-stranded, positive-sense RNA
(ss (+) RNA) encoding structural and non-structural proteins (NS), similar
to the orthoflaviviruses genome. However, unlike other orthoflaviviruses,
the genome is in 4 or 5 segments; each containing at least one open reading
frame and each flanked by 5" and 3’untranslated regions (UTRs)'™". Seg-
ments 1 and 3 contain sequences, respectively, homologous to ortho-
flavivirus NS5 and NS3-NS2B complex, while segments S2 and S4 are highly
divergent and bear no obvious sequence similarity to known viral proteins'.
Segment 5 is non-essential during virus replication and has so far been
associated with only insect-restricted JMV, including Guaico Culex virus
(GCXV) and Mole Culex virus (MoCV)'"***'. The description of GCXV
genomic segments represent the multipartitism nature of JMV genome,
however, the mechanism and impact of this genome architecture on viral
replication remains undetermined***’. Nevertheless, the characteristic
genome organization pattern provides an important insight into possible
relationships with other orthoflaviviruses™, highlighting our limited
understanding of the prevalence and evolution of these pervasive viral
agents.

Another similarity between JMV and more typical orthoflaviviruses is
the host range. By host preference range, the orthoflaviviruses are clustered

into three broad phylogenetic groups (a) the no-known-vector flaviviruses
(NKV) with no established vector involved in their transmission, (b) the
vertebrate pathogenic group containing the mosquito- and tick-borne
orthoflaviviruses, and (c) the arthropod-specific group which reproduces
exclusively in arthropods and lacks any defined ability to infect
vertebrates™°. At present, the JMV can be broadly categorized into three
broad phylogenetic groups (Fig. 1): (a) an arbo-JMV group that infects both
arthropods and vertebrates represented by Jingmen tick virus (JMTV),
Alongshan virus (ALSV), Mogiana tick virus (MGTV), Kindia tick virus
(KITV) and Yanggou tick virus (YGTV)”, (b) an arthropod restricted group
such as GCXV, MoCV, Carajing virus (CaJ V), Inopus flavus jingmenvirus 1
(IFJV1) among others™ and (c) the Histiostoma jingmenvirus (HIMV)
group, which clusters between arbo- and arthropod-associated JMV. This
latter group has been identified in mites collected from home environments
but has so far not been detected in an established vector or vertebrate”.

The proper containment level of new viruses is determined by standard
processes at most institutions and many orthoflaviviruses, such as POWYV,
Japanese encephalitis virus (JEV) and Louping ill virus (LIV), are classified
as biosafety level 3 (BSL-3). However, the majority of the JMVs remain
unclassified apart from the BSL-2 GCXV (https://www.cdc.gov/labs/BMBL.
html). As additional information is acquired on the potential for these
viruses to cause human and animal disease, it is very likely that more of the
JMV will be formally classified.

The potential pathogenicity of the arbo-JMV for humans has been
demonstrated by antibodies and by isolation of viable JIMTV and ALSV
from patients with a history of tick bite****”. To date, there are no reports of
vertebrate mortality associated with arbo-JMV infection; however, available
data suggest that humans experience unique clinical symptoms. In JMTV
and ALSV infection, the most common clinical symptoms in the patients
include headache and fever***”. In vitro experimental infections demon-
strate that arbo-JMV can infect diverse mammalian cells’*’', however,
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Fig. 1 | Phylogenetic tree for jingmenviruses (JMV) in the orthoflaviviruses group
inferred by maximum-likelihood analysis in PhyML v. 2.2.4 and assessed over
1000 bootstraps. The phylogenetic tree based on JMV Segment 1 comprises arbo-

O Guaico Culex virus KM461666

Tick-borne orthoflavivirus

JMV group infecting both arthropods and vertebrates, arthropod-restricted group,
Histiostoma jingmenvirus (HIMV) group and tick-borne orthoflaviviruses.

pathogenicity for animals other than human and mice remains unde-
termined. Although reverse zoonosis transmission is still unclear, arbo-JMV
zoonotic potential has been established by the detection of viral RNA and
antibodies in animals as well as parasitizing ticks™ . Furthermore, evidence
of circulation within communities has been shown by the existence of JMTV
RNA in wastewater and environmental samples™”’. Importantly, there is as
yet no report of direct spread between humans. Actual isolations of the virus
are rare, but arbo-JMV viral nucleic acids have been detected in a variety of
animals in close proximity to humans. These include arthropods, reptiles
and mammals, including cattle, sheep, goats and horses, all of which
accentuate concerns about the public health significance and host range of
arbO_Ile,l7,28,32,38‘

Considering the diverse potential hosts, it is likely that many arbo-JMV
remain undiscovered in various ecologies. Therefore, this review sum-
marizes existing information on the arbo-JMV discovery and genome
organization. Further, to provide insight into arbo-JMV transmission
dynamics, the review seeks to address questions such as what is the host
range of arbo-JMV? Do arbo-JMV have specific animal host reservoirs? Is
there an optimal cell line for isolation and stable growth of arbo-JMV? In
addition, is there evidence of arbo-JMV onward spillover?

Because of the concerns about host range and public health sig-
nificance, we review investigations focusing on JMTV and ALSV, both of
which have been associated with human illness. In addition, we propose the

development of arbo-JMV animal models to improve understanding of
transmission dynamics. Our key message is the need to investigate newly
emerging arboviruses and evaluate their potential public health threats.

Isolation and geographic distribution of arbo-JMV

The first evidence of JMV was RNA of Jingmen tick virus (JMTV) identified
in Rhipicephalus microplus ticks collected in the Jingmen region of China in
2010". JMTV was later isolated from Amblyomma javanense ticks collected
from pangolins in China and from R. bursa ticks collected from sheep in
Turkey *’. Alongshan virus (ALSV) was isolated from Ixodes persulcatus
ticks collected in Russia®*’. Another arbo-JMV, YGTV, was isolated from
Dermacentor reticulatus, D. marginatus, I persulcatus and D. nuttalli ticks
collected in Russia®**"*>. Current evidence indicates that arbo-JMV are
present world-wide as depicted in Fig. 2 and detailed in Supplementary
Table 1, the geographic distribution of arbo-JMV isolates is also summar-
ized in Table 1. In parts of Asia and Europe arbo-JMV distribution overlaps
with that of other tick-borne orthoflaviviruses such as tick-borne ence-
phalitis virus (TBEV) complex***. In these regions, I. ricinus and I. per-
sulcatus are known vectors of TBEV. In areas without Ixodid ticks, TBEV
transmission relies on ticks of Haemaphysalis and Dermacentor species™",
potentially sharing vector species with arbo-JMV (Supplementary Table 1).
Similarly, both arbo-JMV and TBEV are capable of infecting the same
vertebrate host, as shown by the detection of viral RNA and antibodies in
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Fig. 2 | Geographic distribution of arthropod - and vertebrate-associated jingmenviruses. The arbo-JMV viruses have been detected worldwide; more genetically diverse
strains have been observed in China and Russia than in any other geographic region. The map was created in https://mapchart.net/world.html and modified by authors.

livestock and deer*. The distribution overlap of arbo-JMV and other tick-
borne orthoflaviviruses and the association with the same vector species and
vertebrate host implies that arbo-JMV origin and the segmented genomic
structure may be a result of genetic recombination and reassortment during
co-infection with other tick-borne orthoflaviviruses"*’. However, the exact
genetic recombination events and evolutionary patterns remain
undetermined.

Genome structure and function

Advanced nucleic acid sequencing and analytical techniques have enabled
the characterization of the arbo-JMV genome structure and organization,
sometimes even in the absence of actual virus isolates"******, Thus, full
genome sequences of several arbo-JMV have been obtained and others such
as Newport tick virus (NTV) are partially characterized"”. The genomes of
the arbo-JMV resemble those of orthoflaviviruses. In every case, the results
indicate a multipartite genome with four segments, arbitrarily denoted as
$1-54*"7*%* Based on the available data, the complete genome is most likely
single-stranded, positive-sense RNA (ss (+) RNA) encoding both structural
and non-structural (NS) proteins'. Because the length of each segment
ranges from 2800 bp to 3700 nucleotides, the full genome size exceeds the
11 kb size of a typical orthoflavivirus (Fig. 3A).

Each segment has a putative coding region for at least one protein and
is flanked by both 5" and 3’ untranslated regions (UTRs), findings that
support a bonafide segmented genome. There is sequence conservation at
the 5- and 3’-UTRs among the segments'*"’. There is a conserved 5'-
CAAGUG-3’ 3-UTR sequence in all the segments of ALSV and JMTV'*".
As with typical orthoflaviviruses, these conserved sequences are likely
involved in the RNA structure formation and virus replication. In contrast,
sequence differences in the 5° UTRs across members of the JMV group
might reflect differences in the replication processes or host tropism'®.

Nonstructural protein similarities

The open reading frames (ORF) of 2 segments have homology to ortho-
flavivirus NS proteins. The orthoflavivirus NS3 has protease and helicase
activities crucial in virus replication, RNA polyprotein processing, and viral
cap formation, respectively*. Segment 3 (S3) ORF codes for non-structural
protein 2 (NSP2) homologous to the orthoflavivirus NS3-NS2B complex
both in the N-terminal helicase portion and the C-terminal protease'. NS3-

NS2B complex structure and function are well studied in orthoflaviviruses
but, with the exception of ALSV remain less investigated in arbo-JMV.
Biochemical and biophysical experiments show that ALSV NS3-like heli-
case ATPase activity and overall folding are comparable to those of
orthoflaviviruses®. These findings are further illustrated by the similarity of
folding among structure models of JMTV, generated by the artificial
intelligence-based algorithm AlphaFold™, and crystal structure compar-
isons of ALSV (root mean square deviation, RMSD 1.002 A) and tick-borne
encephalitis virus (TBEV, RMSD 1.137 A) (Fig. 3B)**". However, in spite of
these shared topological features, arbo-JMV and orthoflaviviruses NS3
helicase have low sequence similarities, 15-28%, between themselves®.

Arbo-JMV segment 1 (S1) ORF shows homology to the orthoflavivirus
NS5, which contains the RNA-dependent RNA polymerase (RdRp) and
methyltransferase (MTase) activities"”. The RdRp of arbo-JMV and the
more typical orthoflaviviruses have topological similarity and superimpose
well on each other, indicating similar functions in virus replication®.
Crystal structures of ALSV MTases show great structural similarity with its
Orthoflavivirus homologues™, but the MTase gene structure and activity are
uninvestigated for other arbo-JMV. Nevertheless, although a comparison of
arbo-JMV MTases shows very low amino acid sequence identity with closely
related orthoflaviruses, 15-28% (Supplementary Fig. 1), similarities are
further supported by AlphaFold generated models of JMTV and crystal
structure comparisons of ALSV (RMSD 0.671 A) and dengue virus (DENV,
RMSD 1.133 A) (Fig. 3C)™.

The comparability of these 2 arbo-JMV and orthoflavivirus NS protein
structures (RMSD 1.133 and 1.137 A) in the face of low sequence similarity
suggests that promising antiviral compounds targeting orthoflaviviruses NS
proteins may not show comparable activity against arbo-JMV NS proteins.
Therefore, arbo-JMV structures should be included when modelling new
drug compounds against orthoflaviviruses and related emerging infectious
diseases.

Structural proteins divergence

The coding sequences for arbo-JMV S2 and S$4 show no similarity to known
orthoflaviviruses in protein sequence databases'. Computational analysis of
arbo-JMV S2 amino acid sequences predicts that protein is a capsid and
membrane protein®. However, in spite of the fact that the S2 arbo-JMV
proteins have substantial amino acid similarities to membrane proteins with
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Fig. 3 | Genomic organization and function of arthropod- and vertebrate-
associated members (arbo-JMV). A Genomic organization of arbo-JMV. The
coding region and translational direction are indicated by means of a different colour
for each segment. The virus strain is indicated in the bracket. Segments 1 and 3 in all
arbo-JMV code one protein, while segments 2 and 4 code for either one or two
proteins depending on the virus strain. B Jingmen tick virus (JMTV), Alongshan
virus (ALSV) and Tick-borne encephalitis virus (TBEV) NS3 helicase structural
models. i JMTV NS3 helicase structure predicted by Alphafold. ii JMTV NS3 heli-
case structure superimposed onto experimentally determined ALSV NS3 helicase
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structure (PDB code: 6M40)™. iii IMTV NS3 helicase structure superimposed onto
experimentally determined TBEV NS3 helicase (PDB code: 70J4)’". The functional
domains are shown in ii and iii. CJMTV, ALSV and dengue virus methyltransferase
(MTase) structural models. i JMTV MTase structure predicted by Alphafold. ii
JMTV MTase structure superimpositioned onto experimentally determined ALSV
MTase structure (PDB code: 8GY9)™. iii JMTV MTase structure superimpositioned
onto experimentally determined Dengue virus MTase structure (PDB code: 3P97)".
The position of S-adenosyl-L-methionine (SAM) methyl donor during viral cap
formation is shown in ii and iii.

Protein evolution and time-direct molecular clock analysis comple-
ment each other. Beyond evolution details, protein evolutionary analysis
provides additional information such as protein function. Several arbo-JMV
genome sequences are available through public databases and recent studies
have reconstructed time-trees demonstrating arbo-JMV evolutionary rela-
tionships and potential genetic recombination during virus transmission”.
However, arbo-JMV protein structures and functions are less studied. To
track the evolutionary lineage of arbo-JMV, Alphafold was used to predict
structural models of JMTV proteins, including until now S2 and
S4 structural models (Fig. 4A)*. The predicted protein structures were
comparable to those obtained using EMSFold and showed well-predicted
domains comprising a-helices, p-sheets and unstructured tails™. There were
more than 200 sequences in the AlphaFold multiple sequence alignment
(MSA) generated for S1 and S3. Maximum likelihood (ML) analysis of MSA
files revealed a close relationship of arbo-JMV S1 to NS5 from a clade
comprising diverse strains of bovine viral diarrhoea viruses (BVDVs),
whereas arbo-JMV S3 was closely related to NS3 clade comprising Tamana
bat virus (TBV) (Fig. 4B). These observations support earlier findings

demonstrating homology of S1 and S3 with the orthoflavivirus NS5 and
NS3-NS2B complex, respectively"".

Notably, there were only 16-30 sequences in the MSA generated for S2
and $4, so, in contrast to the clear relationships to other orthoflaviviruses for
S1 and S3, the presumed proteins from S2 and S4 have no virus proteins
homologues from protein databases (Fig. 4B). This is a puzzling and very
interesting finding, because although the arbo-JMV are phylogenetically
related to orthoflaviviruses by several measures, the structural and non-
structural proteins come from completely different virus lineages.

Arbo-JMV maintenance cycle in ticks and

vertebrate hosts

All of the available information suggests that arbo-JMV is maintained in a
natural cycle featuring alternating replication in competent arthropod
vectors and susceptible vertebrate hosts. The candidate vectors include hard
ticks of genera Rhipicephalus, Amblyomma and Ixodes. While arbo-JMV has
also been detected in mosquitoes, transmission has not been demonstrated
in this arthropod”. Moreover, despite arbo-JMV being associated with
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vertebrate hosts, such as humans, livestock and wildlife, the precise animal
host or reservoir for these viruses remains speculative but the actual cycle
likely involves hard ticks and vertebrate hosts.

Several examples confirm this idea, including the detection of repli-
cating JMTV by fluorescence in-situ hybridisation (FISH) in Amblyomma
javanense midgut and salivary glands’. In A. javanense, JIMTV infection is
established in the salivary gland, indicating the virus spreads from the
midgut to the salivary gland after blood feeding’. In addition, JMTV RNA
has been identified in nymphs and unfed larvae of A. testudinarium
implying that ticks can get infected vertically through eggs from an infected
adult female (transovarial transmission) as well as by feeding on infected

hosts®. Transovarial transmission has also been shown by JMTV infection in
newly hatched Haemaphysalis longicornis larvae™. Together, the findings
showing arbo-JMV infection in animals as well as parasitizing ticks point to
A. javanense as a potential JIMTV reservoir and vector. However, insufficient
data on vertical transmission efficiency and other potential tick species
vectors hinders the implication of ticks as amplifying hosts.

Arbo-JMTV infection during tick blood feeding has been demon-
strated by the detection of JIMTV RNA and IgG antibodies against JMTV in
humans and I persulcatus collected from humans’. Sequencing of human-
associated JMTV and tick-associated JMTV revealed up to 99.9% genome
sequence homology, reinforcing this revelation®. Similarity in vector and
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Fig. 5 | An illustration of arbo-jingmenviruses maintenance cycle in ticks and vertebrate hosts. Vertebrate hosts can get infected through a tick bite during an infectious
blood-meal while ticks can get infected vertically through eggs from an infected adult female.

host JMTV genome sequence has also been observed in rodents and
parasitizing ticks. Further, the majority of JMTV has been described in
engorged tick species from known animal hosts. JMTV RNA has also been
detected in non-human primates, rodents, reptiles, cattle and bats'”*.

A similar transmission dynamic has been established for ALSV fol-
lowing virus detection in I persulcatus and humans with a history of tick
bite?, ALSV viral RNA and anti-ALSV antibodies have also been reported in
deer and parasitizing I. ricinus™. ALSV reports in livestock include viral IgG
antibodies and RNA detection in cattle and sheep by enzyme-linked
immunosorbent assay (ELISA), viral neutralization test (VNT) and qRT-
PCR™. As demonstrated for JMTV, sequencing of animal-associated ALSV
and tick-associated ALSV show very high genome sequence homology
suggesting tick transmission™**.

Generally, the definition of the host range and susceptibility of arbo-
JMV is so far limited to a few viruses, including JMTV and ALSV. Some
arbo-JMYV represented by Sichuan tick virus (SCTV) and Mogiana tick virus
(MGTYV) have been reported only in ticks. Together, although sampling bias
has not yet been excluded, these findings clearly infer that variants of arbo-
JMV can be maintained in nature by diverse tick species and vertebrate hosts
and that arbo-JMV may represent an emerging tick-borne zoonosis. The
most likely arbo-JMV maintenance cycle in ticks and vertebrate hosts is
illustrated in Fig. 5.

Non-viraemic transmission in ticks during co-feeding with infected
ticks observed in other orthoflaviviruses such as POWV/DTV, TBEV and
LIV, or transmission in vertebrates through contact with infected ver-
tebrates or their products such as blood and unpasteurized milk remains
unestablished in arbo-JMV ***'. These observations suggest that specific tick
species and vertebrate hosts are key component in the maintenance system

of these viruses in nature, however, transmission characteristics remain
poorly investigated.

In vitro tick and vertebrate host range

Experimental infection studies with tick and vertebrate cells show mixed
outcomes but suggest a restricted in vitro host range for the arbo-JMV.
JMTV isolated from A. javanense and R. microplus stably replicates in BME/
CTVM23 (R. microplus) with the isolate showing no obvious cytopathic
effects (CPE); however, virus is only detectable up to the second passage in
BME26 (R. microplus), DH82 (Canis familiaris), Vero (Cercopithecus
sabaeus) and BHK-21 (Mesocricetus auratus) cells”****, ALSV isolated from
humans and livestock stably replicates in Vero cells™". Stable replication of
I persulcatus-associated ALSV in HAE/CTVMS (Hyalomma anatolicum
anatolicum) and IRE/CTVM19 (I. ricinus) cells does not show obvious
CPE". In addition, ALSV proteins have been successfully expressed in
human embryonic kidney (HEK293T) and liver cancer (HepG2) cells using
expression vectors™”’'. Experimental infection studies of other arbo-JMV
variants, such as KITV, Takachi virus (TAKV) and MGTV have been
sparse.

These findings indicate that in vitro arbo-JMV are likely to infect cells
derived from hosts from which they were detected, however, the determi-
nants of cellular tropism mechanism are not well defined. Furthermore,
ideal cell lines for virus isolation and stable growth remain to be fully
characterized.

Evidence of arbo-JMV onward spillover
Phylogenetic analyses revealed greater genetic divergence of reptile-
associated JMTV than livestock-associated JMTV. This would be
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consistent with JMTV in tortoise populations being subjected to relaxed
selection or existing for a longer time than in livestock™. If JIMTV existed in
reptiles previous to mammals then JMTV might have spread from reptiles to
mammals. Even so, evidence for and implications of onward transmission
or spillover are uncertain. While blood and tissues from infected vertebrates
in a population might also serve as a potential direct transmission route
through contact with infected vertebrates or their products, there is no
experimental data supporting this possibility. In addition, the isolated
reports of JMTV RNA in wastewater and environmental samples remain
difficult to evaluate®™”’, although these findings have been taken to infer
infection patterns within human and animal populations. Future studies will
doubtless clarify this important area.

Concluding remarks and future perspective

Arbo-JMV are significant new emerging tick-borne viruses. Considering
the diverse potential arthropods and vertebrate hosts, it seems probable
that many arbo-JMV variants exist in various geographical locations.
This review article outlines the relationship between arbo-JMV and
orthoflaviviruses, illustrates a potential transmission system and pre-
sents several unresolved questions. Virus identification in humans, ticks
and vertebrate hosts in proximity clearly suggests public health impor-
tance. Risk may be highest among humans with close contact with
livestock and animals, however, reservoir host and sources of variant
emergence remains unconfirmed. Another issue is the lack of studies
characterizing arbo-JMV genotypes associated with spillover. Future
arbo-JMV studies designed to determine animal disease models would
greatly enhance our perspective of arbo-JMV transmission and inform
the development of countermeasures against these and other enigmatic
arboviruses.

Data availability
The analysed data in the current study are available within the article,
Supplementary file, or public databases.
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