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Strange relatives: the enigmatic arbo-
jingmenviruses and orthoflaviviruses

Check for updates

Edwin O. Ogola1 , Amitava Roy2,3, Kurt Wollenberg3, Missiani Ochwoto1 & Marshall E. Bloom1

Arthropod - and vertebrate-associated jingmenviruses (arbo-JMV) have segmented positive-strand
RNA genomes and are provisional members of the genus Orthoflavivirus (family Flaviviridae). Current
investigations have described arbo-JMV infection in vertebrate hosts in proximity to humans. This
raises concerns about the virus host range and public health implications. This review explores the
genomic and evolutionary relationship between arbo-JMV and orthoflaviviruses and evaluates the
potential of arbo-JMV to pose a public health threat.

Jingmenviruses (JMV) are a group of rapidly emerging viruses. They were
first described in Rhipicephalus microplus ticks collected in 2010 near
Jingmen City, China, during a survey for Huaiyangshan virus1. Currently,
JMVhas been identified in continentalAsia,Africa,Oceania, Europe,North
andSouthAmerica2–10. The JMVare regarded asprovisionalmembers of the
genus Orthoflavivirus (family Flaviviridae)11,12, largely because of their
segmented genome structure and protein function1,13. Other ortho-
flaviviruses like West Nile virus (WNV), dengue virus (DENV) and
Powassan virus/deer tick virus (POWV/DTV) are able to infect a wide
variety of animal hosts and are associated with serious health consequences
in human14,15.

The JMVgenome is comprised of single-stranded, positive-senseRNA
(ss (+) RNA) encoding structural and non-structural proteins (NS), similar
to the orthoflaviviruses genome. However, unlike other orthoflaviviruses,
the genome is in 4 or 5 segments; each containing at least one open reading
frame and each flanked by 5’ and 3’untranslated regions (UTRs)16–19. Seg-
ments 1 and 3 contain sequences, respectively, homologous to ortho-
flavivirusNS5 andNS3-NS2B complex,while segments S2 andS4 are highly
divergent and bear no obvious sequence similarity to known viral proteins1.
Segment 5 is non-essential during virus replication and has so far been
associated with only insect-restricted JMV, including Guaico Culex virus
(GCXV) and Mole Culex virus (MoCV)17,20,21. The description of GCXV
genomic segments represent the multipartitism nature of JMV genome,
however, the mechanism and impact of this genome architecture on viral
replication remains undetermined17,20–22. Nevertheless, the characteristic
genome organization pattern provides an important insight into possible
relationships with other orthoflaviviruses23, highlighting our limited
understanding of the prevalence and evolution of these pervasive viral
agents.

Another similarity between JMV and more typical orthoflaviviruses is
the host range. By host preference range, the orthoflaviviruses are clustered

into three broad phylogenetic groups (a) the no-known-vector flaviviruses
(NKV) with no established vector involved in their transmission, (b) the
vertebrate pathogenic group containing the mosquito- and tick-borne
orthoflaviviruses, and (c) the arthropod-specific group which reproduces
exclusively in arthropods and lacks any defined ability to infect
vertebrates24–26. At present, the JMV can be broadly categorized into three
broad phylogenetic groups (Fig. 1): (a) an arbo-JMV group that infects both
arthropods and vertebrates represented by Jingmen tick virus (JMTV),
Alongshan virus (ALSV), Mogiana tick virus (MGTV), Kindia tick virus
(KITV) andYanggou tick virus (YGTV)20, (b) an arthropod restricted group
such as GCXV,MoCV,Carajing virus (CaJV), Inopus flavus jingmenvirus 1
(IFJV1) among others20 and (c) the Histiostoma jingmenvirus (HJMV)
group, which clusters between arbo- and arthropod-associated JMV. This
latter group has been identified inmites collected from home environments
but has so far not been detected in an established vector or vertebrate27.

Theproper containment level of newviruses is determinedby standard
processes at most institutions and many orthoflaviviruses, such as POWV,
Japanese encephalitis virus (JEV) and Louping ill virus (LIV), are classified
as biosafety level 3 (BSL-3). However, the majority of the JMVs remain
unclassified apart from theBSL-2GCXV (https://www.cdc.gov/labs/BMBL.
html). As additional information is acquired on the potential for these
viruses to cause human and animal disease, it is very likely that more of the
JMV will be formally classified.

The potential pathogenicity of the arbo-JMV for humans has been
demonstrated by antibodies and by isolation of viable JMTV and ALSV
from patients with a history of tick bite2,28,29. To date, there are no reports of
vertebratemortality associated with arbo-JMV infection; however, available
data suggest that humans experience unique clinical symptoms. In JMTV
and ALSV infection, the most common clinical symptoms in the patients
include headache and fever2,28,29. In vitro experimental infections demon-
strate that arbo-JMV can infect diverse mammalian cells30,31, however,
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pathogenicity for animals other than human and mice remains unde-
termined.Although reverse zoonosis transmission is still unclear, arbo-JMV
zoonotic potential has been established by the detection of viral RNA and
antibodies in animals aswell as parasitizing ticks32–35. Furthermore, evidence
of circulationwithin communities has been shownby the existence of JMTV
RNA in wastewater and environmental samples36,37. Importantly, there is as
yet no report of direct spread between humans. Actual isolations of the virus
are rare, but arbo-JMV viral nucleic acids have been detected in a variety of
animals in close proximity to humans. These include arthropods, reptiles
and mammals, including cattle, sheep, goats and horses, all of which
accentuate concerns about the public health significance and host range of
arbo-JMV2,17,28,32,38.

Considering the diverse potential hosts, it is likely thatmany arbo-JMV
remain undiscovered in various ecologies. Therefore, this review sum-
marizes existing information on the arbo-JMV discovery and genome
organization. Further, to provide insight into arbo-JMV transmission
dynamics, the review seeks to address questions such as what is the host
range of arbo-JMV? Do arbo-JMV have specific animal host reservoirs? Is
there an optimal cell line for isolation and stable growth of arbo-JMV? In
addition, is there evidence of arbo-JMV onward spillover?

Because of the concerns about host range and public health sig-
nificance, we review investigations focusing on JMTV and ALSV, both of
which have been associated with human illness. In addition, we propose the

development of arbo-JMV animal models to improve understanding of
transmission dynamics. Our key message is the need to investigate newly
emerging arboviruses and evaluate their potential public health threats.

Isolation and geographic distribution of arbo-JMV
Thefirst evidence of JMVwasRNAof Jingmen tick virus (JMTV) identified
in Rhipicephalus microplus ticks collected in the Jingmen region of China in
20101. JMTV was later isolated from Amblyomma javanense ticks collected
from pangolins in China and from R. bursa ticks collected from sheep in
Turkey 2,3. Alongshan virus (ALSV) was isolated from Ixodes persulcatus
ticks collected in Russia39,40. Another arbo-JMV, YGTV, was isolated from
Dermacentor reticulatus, D. marginatus, I. persulcatus and D. nuttalli ticks
collected in Russia39,41,42. Current evidence indicates that arbo-JMV are
present world-wide as depicted in Fig. 2 and detailed in Supplementary
Table 1, the geographic distribution of arbo-JMV isolates is also summar-
ized in Table 1. In parts of Asia and Europe arbo-JMVdistribution overlaps
with that of other tick-borne orthoflaviviruses such as tick-borne ence-
phalitis virus (TBEV) complex43,44. In these regions, I. ricinus and I. per-
sulcatus are known vectors of TBEV. In areas without Ixodid ticks, TBEV
transmission relies on ticks ofHaemaphysalis andDermacentor species43,44,
potentially sharing vector species with arbo-JMV (Supplementary Table 1).
Similarly, both arbo-JMV and TBEV are capable of infecting the same
vertebrate host, as shown by the detection of viral RNA and antibodies in

Fig. 1 | Phylogenetic tree for jingmenviruses (JMV) in the orthoflaviviruses group
inferred by maximum-likelihood analysis in PhyML v. 2.2.4 and assessed over
1000 bootstraps. The phylogenetic tree based on JMV Segment 1 comprises arbo-

JMV group infecting both arthropods and vertebrates, arthropod-restricted group,
Histiostoma jingmenvirus (HJMV) group and tick-borne orthoflaviviruses.
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livestock and deer43. The distribution overlap of arbo-JMV and other tick-
borne orthoflaviviruses and the associationwith the same vector species and
vertebrate host implies that arbo-JMV origin and the segmented genomic
structuremay be a result of genetic recombination and reassortment during
co-infection with other tick-borne orthoflaviviruses1,45. However, the exact
genetic recombination events and evolutionary patterns remain
undetermined.

Genome structure and function
Advanced nucleic acid sequencing and analytical techniques have enabled
the characterization of the arbo-JMV genome structure and organization,
sometimes even in the absence of actual virus isolates1,2,28,29,46. Thus, full
genome sequences of several arbo-JMVhave been obtained and others such
as Newport tick virus (NTV) are partially characterized47. The genomes of
the arbo-JMV resemble those of orthoflaviviruses. In every case, the results
indicate a multipartite genome with four segments, arbitrarily denoted as
S1–S42,17,28,29. Basedon the available data, the complete genome ismost likely
single-stranded, positive-sense RNA (ss (+) RNA) encoding both structural
and non-structural (NS) proteins1. Because the length of each segment
ranges from 2800 bp to 3700 nucleotides, the full genome size exceeds the
11 kb size of a typical orthoflavivirus (Fig. 3A).

Each segment has a putative coding region for at least one protein and
is flanked by both 5’ and 3’ untranslated regions (UTRs), findings that
support a bonafide segmented genome. There is sequence conservation at
the 5’- and 3’-UTRs among the segments16–19. There is a conserved 5’-
CAAGUG-3’ 3’-UTR sequence in all the segments of ALSV and JMTV16–18.
As with typical orthoflaviviruses, these conserved sequences are likely
involved in the RNA structure formation and virus replication. In contrast,
sequence differences in the 5’ UTRs across members of the JMV group
might reflect differences in the replication processes or host tropism18.

Nonstructural protein similarities
The open reading frames (ORF) of 2 segments have homology to ortho-
flavivirus NS proteins. The orthoflavivirus NS3 has protease and helicase
activities crucial in virus replication, RNA polyprotein processing, and viral
cap formation, respectively48. Segment 3 (S3) ORF codes for non-structural
protein 2 (NSP2) homologous to the orthoflavivirus NS3-NS2B complex
both in the N-terminal helicase portion and the C-terminal protease1. NS3-

NS2B complex structure and function are well studied in orthoflaviviruses
but, with the exception of ALSV remain less investigated in arbo-JMV.
Biochemical and biophysical experiments show that ALSV NS3-like heli-
case ATPase activity and overall folding are comparable to those of
orthoflaviviruses49. These findings are further illustrated by the similarity of
folding among structure models of JMTV, generated by the artificial
intelligence-based algorithm AlphaFold50, and crystal structure compar-
isons of ALSV (rootmean square deviation, RMSD1.002 Å) and tick-borne
encephalitis virus (TBEV, RMSD1.137 Å) (Fig. 3B)49,51. However, in spite of
these shared topological features, arbo-JMV and orthoflaviviruses NS3
helicase have low sequence similarities, 15–28%, between themselves49.

Arbo-JMVsegment 1 (S1)ORF shows homology to the orthoflavivirus
NS5, which contains the RNA-dependent RNA polymerase (RdRp) and
methyltransferase (MTase) activities1,52. The RdRp of arbo-JMV and the
more typical orthoflaviviruses have topological similarity and superimpose
well on each other, indicating similar functions in virus replication53,54.
Crystal structures of ALSVMTases show great structural similarity with its
Orthoflavivirus homologues55, but theMTase gene structure and activity are
uninvestigated for other arbo-JMV.Nevertheless, although a comparison of
arbo-JMVMTases showsvery lowaminoacid sequence identitywith closely
related orthoflaviruses, 15–28% (Supplementary Fig. 1), similarities are
further supported by AlphaFold generated models of JMTV and crystal
structure comparisons ofALSV (RMSD0.671 Å) and dengue virus (DENV,
RMSD 1.133 Å) (Fig. 3C)50,55.

The comparability of these 2 arbo-JMVand orthoflavivirusNSprotein
structures (RMSD 1.133 and 1.137 Å) in the face of low sequence similarity
suggests that promising antiviral compounds targeting orthoflavivirusesNS
proteins may not show comparable activity against arbo-JMVNS proteins.
Therefore, arbo-JMV structures should be included when modelling new
drug compounds against orthoflaviviruses and related emerging infectious
diseases.

Structural proteins divergence
The coding sequences for arbo-JMVS2 and S4 showno similarity to known
orthoflaviviruses in protein sequence databases1. Computational analysis of
arbo-JMV S2 amino acid sequences predicts that protein is a capsid and
membrane protein56. However, in spite of the fact that the S2 arbo-JMV
proteins have substantial amino acid similarities tomembrane proteinswith

Fig. 2 | Geographic distribution of arthropod - and vertebrate-associated jingmenviruses. The arbo-JMV viruses have been detected worldwide; more genetically diverse
strains have been observed in China and Russia than in any other geographic region. The map was created in https://mapchart.net/world.html and modified by authors.
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multiple transmembrane domains, there is no similarity to the structural
proteins of other orthoflaviviruses56.

Similarly, S4 is suspected to encode envelope glycoproteins referred to
as VP2 and VP31. Once again, arbo-JMV glycoproteins share substantial
amino acid similarities among themselves but lack similarity to the glyco-
proteins of other orthoflaviviruses. Nevertheless, prediction suggests that
arbo-JMV glycoproteins have traits associated with class II viral fusion
proteins important for virus entry into host cells56. Although S2 and S4 have
been shown to be related to Toxocara canis larval cDNA library transcripts,
it is intriguing that S2 and S4 have definite features of viral structural
proteins but fail to resemble other viruses1. Clearly, much study is needed.

5’ and 3’untranslated regions (UTRs) sequence con-
servation similarities
All the four genome segments have 5’ and 3’ UTRs and there is sequence
conservation in 5’ and 3’ among the segments (Fig. 3A)1,18. In the 3’ UTR,
ALSV and JMTV have conserved 5’-CAAGUG-3’ sequences in all the
segments18,19. By analogy with typical orthoflaviviruses, the conserved
sequences are likely involved in theRNAstructure formation and regulation
of virus replication57. In contrast, there are differences in the 5’ UTR con-
served sequences across members of the JMV group, perhaps reflecting
differences in the replication processes and host tropism18. In addition, in
other arbo-JMV such as KITV, 5’ and 3’ UTRs modelling and functional
annotation revealed the presence of viral replication and translation reg-
ulatory elements such as multiple UAG sites and 5’/3’ downstream AUG
region (DAR), which have also been described in orthoflaviviruses19,58,59. In
contrast to orthoflaviviruses where 3′ UTR structure facilitates the forma-
tion of subgenomic flavivirus RNA (sfRNA) attributed to host immune
evasion and pathogenicity, the structuring and function of sfRNA in arbo-
JMV remain uninvestigated18,60–62.

Polymerase gene integration similarities
Another similarity between arbo-JMV and orthoflaviviruses is the
integration of the RdRp gene into the invertebrate host genome. For
example, the study of Morozkin et al. demonstrate the integration of
JMTV and ALV RdRp gene into I. ricinus genome63. The observed
virus-derived DNA integration in the host genome is so far limited to
vectors and has also been demonstrated by the presence of
orthoflaviviruses-like sequences of Cell Fusing Agent virus (CFAV)
and Kamiti River virus (KRV) in Aedes mosquitoes64–66. While in
mosquitoes, the significance of orthoflaviviruses-derived gene inte-
gration in the host genome has been associated with improved toler-
ance to viral infection and survival67, the importance of arbo-JMV gene
integration is undetermined in ticks.

Evolutionary lineage
Evolutionary virology analyses have identified endogenous viral elements
(EVES) homologous to arbo-JMV suggesting that orthoflaviviruses are
ancient by hundreds of years and that arbo-JMTV originated several years
ago68. The identification of arbo-JMTV genome organization and the
ancestral relationship with unsegmented orthoflaviviruses represent a rare
occurrence in virus emergence and evolution1. Although the exact
mechanism remains undescribed, it is suspected that arbo-JMV emerged
from unsegmented orthoflavivirus and an unrelated virus coinfecting the
same host, which resulted in recombination and reassortment of structural
and nonstructural proteins as observed in RNA-DNA hybrid virus1,69. The
impact of this genomic structuring is poorly described. Computational
analyses suggest that arbo-JMVgenome organization into shorter segments
might improve virion stability70,71. Further, the genomicpackaging enhances
arbo-JMV genetic recombination and reassortment, leading to the emer-
gence of new viral strains72. However, genomic components of segmented
genomesmight have different infection rates during host invasion lowering
successful infection73. These findings may be supported by arbo-JMV
maintenance in diverse hosts and the challenge of stably growing arbo-JMV
in cell culture.T
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Protein evolution and time-direct molecular clock analysis comple-
ment each other. Beyond evolution details, protein evolutionary analysis
provides additional information such as protein function. Several arbo-JMV
genome sequences are available through public databases and recent studies
have reconstructed time-trees demonstrating arbo-JMV evolutionary rela-
tionships and potential genetic recombination during virus transmission45.
However, arbo-JMV protein structures and functions are less studied. To
track the evolutionary lineage of arbo-JMV, Alphafold was used to predict
structural models of JMTV proteins, including until now S2 and
S4 structural models (Fig. 4A)50. The predicted protein structures were
comparable to those obtained using EMSFold and showed well-predicted
domains comprisingα-helices,β-sheets andunstructured tails74. Therewere
more than 200 sequences in the AlphaFold multiple sequence alignment
(MSA) generated for S1 and S3.Maximum likelihood (ML) analysis ofMSA
files revealed a close relationship of arbo-JMV S1 to NS5 from a clade
comprising diverse strains of bovine viral diarrhoea viruses (BVDVs),
whereas arbo-JMV S3 was closely related to NS3 clade comprising Tamana
bat virus (TBV) (Fig. 4B). These observations support earlier findings

demonstrating homology of S1 and S3 with the orthoflavivirus NS5 and
NS3-NS2B complex, respectively1,17.

Notably, there were only 16–30 sequences in theMSAgenerated for S2
and S4, so, in contrast to the clear relationships to other orthoflaviviruses for
S1 and S3, the presumed proteins from S2 and S4 have no virus proteins
homologues from protein databases (Fig. 4B). This is a puzzling and very
interesting finding, because although the arbo-JMV are phylogenetically
related to orthoflaviviruses by several measures, the structural and non-
structural proteins come from completely different virus lineages.

Arbo-JMVmaintenance cycle in ticks and
vertebrate hosts
All of the available information suggests that arbo-JMV is maintained in a
natural cycle featuring alternating replication in competent arthropod
vectors and susceptible vertebrate hosts. The candidate vectors include hard
ticks of generaRhipicephalus,Amblyomma and Ixodes.While arbo-JMVhas
also been detected in mosquitoes, transmission has not been demonstrated
in this arthropod75. Moreover, despite arbo-JMV being associated with

Fig. 3 | Genomic organization and function of arthropod- and vertebrate-
associated members (arbo-JMV). A Genomic organization of arbo-JMV. The
coding region and translational direction are indicated bymeans of a different colour
for each segment. The virus strain is indicated in the bracket. Segments 1 and 3 in all
arbo-JMV code one protein, while segments 2 and 4 code for either one or two
proteins depending on the virus strain. B Jingmen tick virus (JMTV), Alongshan
virus (ALSV) and Tick-borne encephalitis virus (TBEV) NS3 helicase structural
models. i JMTV NS3 helicase structure predicted by Alphafold. ii JMTV NS3 heli-
case structure superimposed onto experimentally determined ALSV NS3 helicase

structure (PDB code: 6M40)49. iii JMTV NS3 helicase structure superimposed onto
experimentally determined TBEV NS3 helicase (PDB code: 7OJ4)51. The functional
domains are shown in ii and iii.C JMTV, ALSV and dengue virus methyltransferase
(MTase) structural models. i JMTV MTase structure predicted by Alphafold. ii
JMTV MTase structure superimpositioned onto experimentally determined ALSV
MTase structure (PDB code: 8GY9)55. iii JMTVMTase structure superimpositioned
onto experimentally determined Dengue virusMTase structure (PDB code: 3P97)83.
The position of S-adenosyl-L-methionine (SAM) methyl donor during viral cap
formation is shown in ii and iii.
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vertebrate hosts, such as humans, livestock and wildlife, the precise animal
host or reservoir for these viruses remains speculative but the actual cycle
likely involves hard ticks and vertebrate hosts.

Several examples confirm this idea, including the detection of repli-
cating JMTV by fluorescence in-situ hybridisation (FISH) in Amblyomma
javanense midgut and salivary glands2. In A. javanense, JMTV infection is
established in the salivary gland, indicating the virus spreads from the
midgut to the salivary gland after blood feeding2. In addition, JMTV RNA
has been identified in nymphs and unfed larvae of A. testudinarium
implying that ticks can get infected vertically through eggs from an infected
adult female (transovarial transmission) as well as by feeding on infected

hosts8. Transovarial transmissionhas also been shownby JMTV infection in
newly hatched Haemaphysalis longicornis larvae76. Together, the findings
showing arbo-JMV infection in animals as well as parasitizing ticks point to
A. javanense as apotential JMTVreservoir andvector.However, insufficient
data on vertical transmission efficiency and other potential tick species
vectors hinders the implication of ticks as amplifying hosts.

Arbo-JMTV infection during tick blood feeding has been demon-
strated by the detection of JMTVRNA and IgG antibodies against JMTV in
humans and I. persulcatus collected from humans2. Sequencing of human-
associated JMTV and tick-associated JMTV revealed up to 99.9% genome
sequence homology, reinforcing this revelation2. Similarity in vector and
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host JMTV genome sequence has also been observed in rodents and
parasitizing ticks. Further, the majority of JMTV has been described in
engorged tick species from known animal hosts. JMTV RNA has also been
detected in non-human primates, rodents, reptiles, cattle and bats17,38.

A similar transmission dynamic has been established for ALSV fol-
lowing virus detection in I. persulcatus and humans with a history of tick
bite28.ALSVviralRNAandanti-ALSVantibodieshave alsobeen reported in
deer and parasitizing I. ricinus34. ALSV reports in livestock include viral IgG
antibodies and RNA detection in cattle and sheep by enzyme-linked
immunosorbent assay (ELISA), viral neutralization test (VNT) and qRT-
PCR32. As demonstrated for JMTV, sequencing of animal-associated ALSV
and tick-associated ALSV show very high genome sequence homology
suggesting tick transmission32,34.

Generally, the definition of the host range and susceptibility of arbo-
JMV is so far limited to a few viruses, including JMTV and ALSV. Some
arbo-JMVrepresentedby Sichuan tickvirus (SCTV) andMogiana tick virus
(MGTV)have been reported only in ticks. Together, although sampling bias
has not yet been excluded, these findings clearly infer that variants of arbo-
JMVcanbemaintained innaturebydiverse tick species and vertebrate hosts
and that arbo-JMV may represent an emerging tick-borne zoonosis. The
most likely arbo-JMV maintenance cycle in ticks and vertebrate hosts is
illustrated in Fig. 5.

Non-viraemic transmission in ticks during co-feeding with infected
ticks observed in other orthoflaviviruses such as POWV/DTV, TBEV and
LIV77–79, or transmission in vertebrates through contact with infected ver-
tebrates or their products such as blood and unpasteurized milk remains
unestablished in arbo-JMV 80,81. These observations suggest that specific tick
species and vertebrate hosts are key component in the maintenance system

of these viruses in nature, however, transmission characteristics remain
poorly investigated.

In vitro tick and vertebrate host range
Experimental infection studies with tick and vertebrate cells show mixed
outcomes but suggest a restricted in vitro host range for the arbo-JMV.
JMTV isolated fromA. javanense andR.microplus stably replicates in BME/
CTVM23 (R. microplus) with the isolate showing no obvious cytopathic
effects (CPE); however, virus is only detectable up to the second passage in
BME26 (R. microplus), DH82 (Canis familiaris), Vero (Cercopithecus
sabaeus) and BHK-21 (Mesocricetus auratus) cells2,38,82. ALSV isolated from
humans and livestock stably replicates in Vero cells28,32. Stable replication of
I. persulcatus-associated ALSV in HAE/CTVM8 (Hyalomma anatolicum
anatolicum) and IRE/CTVM19 (I. ricinus) cells does not show obvious
CPE42. In addition, ALSV proteins have been successfully expressed in
human embryonic kidney (HEK293T) and liver cancer (HepG2) cells using
expression vectors30,31. Experimental infection studies of other arbo-JMV
variants, such as KITV, Takachi virus (TAKV) and MGTV have been
sparse.

These findings indicate that in vitro arbo-JMV are likely to infect cells
derived from hosts from which they were detected, however, the determi-
nants of cellular tropism mechanism are not well defined. Furthermore,
ideal cell lines for virus isolation and stable growth remain to be fully
characterized.

Evidence of arbo-JMV onward spillover
Phylogenetic analyses revealed greater genetic divergence of reptile-
associated JMTV than livestock-associated JMTV. This would be

Fig. 5 | An illustration of arbo-jingmenviruses maintenance cycle in ticks and vertebrate hosts.Vertebrate hosts can get infected through a tick bite during an infectious
blood-meal while ticks can get infected vertically through eggs from an infected adult female.
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consistent with JMTV in tortoise populations being subjected to relaxed
selection or existing for a longer time than in livestock38. If JMTV existed in
reptiles previous tomammals thenJMTVmighthave spread fromreptiles to
mammals. Even so, evidence for and implications of onward transmission
or spillover are uncertain.While blood and tissues from infected vertebrates
in a population might also serve as a potential direct transmission route
through contact with infected vertebrates or their products, there is no
experimental data supporting this possibility. In addition, the isolated
reports of JMTV RNA in wastewater and environmental samples remain
difficult to evaluate36,37, although these findings have been taken to infer
infectionpatternswithinhumanandanimalpopulations. Future studieswill
doubtless clarify this important area.

Concluding remarks and future perspective
Arbo-JMV are significant new emerging tick-borne viruses. Considering
the diverse potential arthropods and vertebrate hosts, it seems probable
that many arbo-JMV variants exist in various geographical locations.
This review article outlines the relationship between arbo-JMV and
orthoflaviviruses, illustrates a potential transmission system and pre-
sents several unresolved questions. Virus identification in humans, ticks
and vertebrate hosts in proximity clearly suggests public health impor-
tance. Risk may be highest among humans with close contact with
livestock and animals, however, reservoir host and sources of variant
emergence remains unconfirmed. Another issue is the lack of studies
characterizing arbo-JMV genotypes associated with spillover. Future
arbo-JMV studies designed to determine animal disease models would
greatly enhance our perspective of arbo-JMV transmission and inform
the development of countermeasures against these and other enigmatic
arboviruses.

Data availability
The analysed data in the current study are available within the article,
Supplementary file, or public databases.
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