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Using surrogatemodeling to predict storm
surge on evolving landscapes under
climate change
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Planners managing coastal flood risk under a constrained computational budget face a tradeoff.
Simulating many time periods or scenarios limits how many storm simulations can be run on each
landscape. In this analysis, we present a deep learning model to predict storm surge as a function of
storm parameters but also landscape features and boundary conditions (e.g., sea level). It is trained on
peak surge elevations from Advanced Circulation (ADCIRC) hydrodynamic simulations of coastal
Louisiana in a 2020 baseline and decadal periods from 2030 to 2070 under two morphological and
climate scenarios. Leave-one-landscape-out cross-validation yielded a 0.086-m RMSE and 0.050-m
MAE over 90 storms per landscape and 94,013 geospatial locations. A two-sided Kolmogorov-
Smirnov test comparing annual exceedance probability (AEP) estimates from themodel predictions to
ADCIRC simulations rejected the null hypothesis that the predicted and ADCIRC AEP values were
drawn from the same distribution only 1.1% of the time.

Storm surge, the temporary increase in sea level caused by severe storms, is
one of the most destructive components of tropical cyclones (TC), moti-
vating the development of accurate tools andmodels for its prediction1,2. In
recent decades, high-fidelity numerical models have been produced that are
able to estimate storm surge generated by tropical cyclone wind fields with
high accuracy. However, these hydrodynamic simulations typically are
computationally intense, requiringhigh-performance computing resources,
and still there can be considerable biases in their outcome3,4.

Because physically-based models (i.e., solving fluid dynamics equa-
tions) like the ADvanced CIRCulation (ADCIRC)model5 can be expensive
in terms of computational cost, surrogate models have been developed to
predict storm surge without incurring the same high computational cost6.
The use of surrogate models or meta-models has increased rapidly in the
field of coastal flood hazard research7. Surrogate models are useful tools in
different fields because of their ability to emulate the behavior of complex
models in their quest to approximate complex systems. Moreover, their
computational efficiency makes them a convenient approach for tasks like
optimization or modeling large ensembles of events and scenarios8,9.

Risk assessments, using techniques like joint probability methods to
estimate a hazard curve, require simulation of a large number of synthetic
storm events (i.e., thousands or tens of thousands). Computational limita-
tionsmotivated advances such as the joint probabilitymethodwith optimal
sampling (JPM-OS)10–13 and the use of heuristic algorithms to further reduce
the number of simulations required for probabilistic flood risk4,14.

However, these approaches have limits, and consequently,
planning studies still face meaningful constraints imposed by com-
putational budgets. When evaluating the benefits of risk reduction
infrastructure with long useful life spans, it is indeed important to
consider risk and risk reduction over long planning horizons. Pro-
tection systems (e.g., levees, dikes, seawalls, pumping stations) must
be designed to withstand and mitigate the effects of extreme events
over many decades. This increases the necessity to consider uncer-
tainties in factors that, over time, reshape the coastal landscape (e.g.,
land subsidence, land-use change, impacts of saltwater intrusion on
vegetation) and boundary conditions (e.g., sea level rise (SLR)) that
determine risk to coastal communities; scenario analyses examine
multiple future states of the world with different realizations of
uncertain parameters. Integrated coastal management plans like
Louisiana’s Comprehensive Master Plan for a Sustainable Coast
(Coastal Master Plan) evaluate the performance of a range of flood
protection and coastal restoration projects implemented in different
sequences, necessitating the modeling of multiple future time
periods15. Mokrech et al. (2011)16 stresses the importance of devel-
oping an integrated framework to assess long-term coastal impacts
and thus make rational management decisions16. Wamsley et al.
(2009)17 investigated the storm surge and wave reduction benefits of
different environmental restoration features (e.g., marsh restoration
and barrier island changes), as well as the impact of future wetland
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degradation on local conditions, concluding that “consideration of
natural features is required” to properly assess flood risk17.

Studies that include multiple future time periods, states of the world,
and project portfolios must evaluate risk on a large number of landscapes,
and simplemath dictates that under afixed computational budget, themore
landscapes planners want to model, the fewer events can be simulated per
landscape. Using a lower-resolution mesh or a model simulating fewer
physical processes may be an undesirable solution if it would introduce
unacceptable biases and/or uncertainty in storm surge estimates or com-
promise the ability of the model to resolve the impact of protection features
like levees.

In this paper, we introduce a surrogate model using artificial neural
networks (ANN) that can be used to resolve this computational constraint.
We train the model on synthetic storms simulated on multiple landscapes
using the ADCIRC model, including not only the storm parameters as
features, but also landscape features (e.g., topographic/bathymetric eleva-
tions, canopy) and boundary conditions (e.g., mean sea level). We evaluate
the accuracy topredict peak stormsurge elevations, aswell as the accuracyof
annual exceedance probability (AEP) distributions estimated using the
predicted surge values, finding that themodel is sufficiently accurate for use
as a scenario generator in planning studies.

Previous studies have taken various approaches to applying surrogate
models for prediction of storm surge and waves. Commonly, this means
predicting peak storm surge elevations and peak significant wave heights at
many points on a spatial grid as a function of the storm’s characteristics at
landfall. Studies vary in their choice of geography and TC characteristics,
with the latter typically including parameters such as landfall location, angle
of landfall, central pressure, forward velocity, radius of maximum wind-
speed, Holland-B parameter and/or tide level. Techniques for the surrogate
models include kriging4,18, kriging combined with principle component
analysis19,20, support vector regression21, and ANN22. Al Kajbaf and Bensi
(2020)21 provides a comparative assessment of the performance of these
techniques21.

Many other studies have focused on the use of surrogate models for
forecasting future water surface elevations over the course of a storm23–29.
Recentworks have incorporated SLR into predictions on a static landscape6,
but landscape morphology plays a significant role in modeling flood
inundation and flood risk accurately30,31. In areas exhibiting substantial land
subsidence, erosion, barrier island migration, and other phenomena
impacting morphology, incorporating SLR is necessary but insufficient for
projecting future storm surges and inundation risks. Canopy and vegetation
impact wind attenuation and surface friction, as shown in studies of man-
grove forests and coastal wetlands on the Gulf coast of South Florida32.
Mangrove forests reduced storm inundation areas and restricted surge
inundation within a Category 3 hurricane zone, according to the study,
finding that the width of the mangrove zone had a nonlinear effect on
reducing surge amplitudes.

Although these previous studies investigated storm surge surrogate
modeling from other perspectives, the impact of the combination of SLR,
landscape and TC parameters on storm surge has not been thoroughly
investigated. In this study, we aim to fill that gap by developing a surrogate
model using deep neural networks for the prediction of peak storm surge
elevations from syntheticTCs as a function of their characteristics at landfall
in coastal Louisiana, four landscape parameters impacting storm surge, and
mean sea level.

The synthetic TCs used in this study are characterized by their overall
tracks and five parameters at landfall: forward velocity, radius of maximum
windspeed, central pressure, landfall coordinates, and heading. The corpus
of 645 synthetic storms was developed by the US Army Corps of Engineers
for use in flood risk assessments based on the JPM-OSmethodology33; each
synthetic storm’s landfall parameters serve as input data for the predictive
model and are provided in Supplementary Information Table S1.We utilize
only the landfall parameters because of the synthetic (i.e., idealized) nature
of the storm tracks and parameters; synthetic TCs follow their heading at
landfall and exhibit similar patterns of decay in intensity as they move

inland, so the variability in synthetic storm behavior and potential to gen-
erate storm surge is reasonably captured by their characteristics at landfall.
Note that this means our approach would likely yield lower accuracy if the
trainedmodelswere asked to infer peak storm surge elevations fromhistoric
or more realistic TCs.

Hydrodynamic simulations from a coupled ADCIRC+ SWANmodel
were available fromLouisiana’s 2023CoastalMaster Plan for all 645 synthetic
storms, simulatedon theplan’s “ExistingConditions” landscape (i.e., 2020).A
subset of 90 synthetic storms was simulated on each of 10 future landscapes
representing decadal snapshots (i.e., 2030, 2040, 2050, 2060, 2070) under two
different scenarios, a Lower and Higher Scenario, that vary in their
assumptions about the rate of SLR, land subsidence, andother environmental
factors15,34. For each synthetic storm and landscape, peak storm surge ele-
vations were extracted from the ADCIRC+ SWAN simulations at 94,013
locations representing grid points from the Coastal Louisiana Risk Assess-
ment model (CLARA) not located within fully-enclosed protection systems;
suchpointswere excluded fromanalysis because of the additional complexity
of flood dynamics in enclosed polders (e.g., overtopping, levee fragility/
breaches, pumping, rainfall). The points form a mixed-resolution grid con-
sisting of a regular 1-kmresolution grid,withmore points added so that every
2010U.S. Census block contains at least one grid point35. This has the effect of
adding higher resolution in densely populated areas. Grid cell polygons are
associated with each grid point as Thiessen polygons formed within each
census block (i.e., polygons consistingof all pixels in the census block closer to
a given grid point than any other in the same block).

Each landscape is characterized by a digital elevation model
defining the topography and bathymetry of the study region, as well as
rasters defining other inputs to the ADCIRCmodel (with a resolution of
30 meters): the Manning’s n value (i.e., bottom roughness coefficient),
free surface roughness z0, and a surface canopy coefficient that captures
the reduction in wind stress on water surfaces produced by local vege-
tation. All landscape characteristics were represented as GeoTIFFs with
values extracted at each of the 94,013 grid point locations for use in the
surrogate model. Full details regarding the Integrated Compartment
Model used to develop the landscape representations are found inWhite
et al. (2019)36 and Reed and White (2023)37, and details regarding the
ADCIRC+ SWAN model and Louisiana mesh are found in Cobell and
Roberts (2021)34 and Roberts and Cobell (2017)38. Mean sea level
(NAVD88 m) assumed for each scenario as a boundary condition is
provided in Table 1.

Methods
This study used feed-forward ANN models with multilayers and multiple
outputs to predict storm surge at each location under current and future
landscape conditions. A range of models varying from 128 neurons to 256
neurons was evaluated before selecting the models described here, as spe-
cifying too few neurons could impede the learning process while using too
many neurons could result in overtraining/overfitting39. Moreover, for all
hidden layers, the RELU activation functionwas chosenwith a learning rate
of 0.001, and for the last layer, a linear activation function was selected to
predict surge values.

Firstly, we examined the value of including landscape parameters in a
predictive model of storm surge for a single landscape only. ANN models
were trained for current conditions on 645 synthetic storms: amulti-layered
feed-forward architecture with four hidden layers and an output layer of 1
dimension was used for predicting peak storm surge elevations at different
locations.A “storm-onlymodel” at each locationonly included the synthetic
storm parameters at landfall as inputs. The “full model” included the syn-
thetic storm parameters but also all grid points’ landscape parameters from
the current landscape (latitudinal and longitudinal coordinates, topo/bathy
NAVD88 elevation, surface canopy, z0, and Manning’s n). Sea level was
excluded from the fullmodel in this test because the localmean sea level was
assumed constant throughout the study region, and thus only has variation
whenmultiple landscapes are taken in as input data. For the storm-only and
fullmodels, predicted accuracy is reported for 15%of storms randomly held
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out in a cross-validation procedure with the remaining 85% of storms used
for training and validation.

Next, to investigate the impacts of climate change and the slowly
evolving landscape,we trained the fullmodel using the 645 synthetic storms
from the 2020 landscape condition, as well as the 10 future landscapes, each
with the same 90 synthetic storms. Predictive accuracy of the full model was
evaluated utilizing leave-one-landscape-out cross-validation (LOOCV) on
the future landscapes; in other words, for each fold of the CVprocedure, the
model was trained on the 2020 landscape and 9 of the 10 future landscapes
(n ¼ 1455 storms), with predictions made on the tenth future landscape
(n ¼ 90 storms).Wedid this to reflect a real-world use case inwhich the full
model could serve as a scenario generator, training on a set of landscapes run
through ADCIRC and then predicting outcomes in novel landscapes. The
current conditions landscape’s 645 storms were included to represent a
realistic case inwhich a larger suite of synthetic TCs could be run on a single
landscape as an input to a storm selection process that would identify the
subset of 90 storms to runonother landscapes.Using100 epochs to train the
model, the entire process was executed on an AMD Epyc 7662 CPU at
2.0 GHz, taking less than 7 h for training to be completed in preparation for
making predictions on a new landscape. For all folds in the cross-validation
process, it took 70 h. Once trained, less than 4min is needed to generate
predictions for a novel landscape.

Finally, we alsowanted to knowhowerrors in the predictedpeak storm
surge from each synthetic storm propagate to differences in the estimated
annual probability distribution of experiencing storm surge of varying
elevations. This is ultimately what planners may care about when making
decisions about flood protection projects. For this task, we employed the
Coastal Louisiana Risk Assessment (CLARA)model, an implementation of
JPM-OS which is the model used to estimate flood hazard for Louisiana’s
Coastal Master Plan35,40. Full details on the CLARA model’s methodology
are in Johnson et al. (2023)35; in this analysis, we compared peak surge
elevation exceedance curves (i.e., surge elevations as a function of AEP)
generated from the simulated surge elevations fromADCIRC to exceedance
curves generated from the predicted surge elevations from the LOOCV
procedure. The resulting empirical distributions were compared using a
two-sample Kolmogorov-Smirnov (K-S) test, which calculates the max-
imum difference between two empirical samples’ cumulative distribution
functions to test a null hypothesis that they have been drawn from the same
underlying probability distribution function41. CLARA produces estimates
of surge exceedances at 23 return periods ranging from a 50% AEP to
0.005%AEP (i.e., the 2-year event to the2000-year event), so the two-sample
KS test dictates that the null hypothesis be rejected at significance level α if
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where sup is the supremum over x, FADCIRCðxÞ and FANN ðxÞ are the sample
CDFs associated with the ADCIRC simulations and ANN predictions,
respectively.

Results
The ANN model that includes landscape parameters performs markedly
better than the model with only storm parameters when predicting surge
from relatively intense storms, as shown for two illustrative storms in Fig. 1.
Each pane plots ADCIRC-simulated values against the ANN-predicted
values at ~3500 points on a west-to-east transect at 29.8° N, a latitude
selected for its nearly continuous series of grid points uninterrupted by
major water bodies or enclosed polders. It is worth to mention that the
sudden decrease in points with simulated surge below 0.36 NAVD88 m is
due to this being the mean sea level assumed for the current conditions
landscape.Grid points overwater are initialized at this level, leaving very few
points along the chosen transect with lower topographic elevation, typically
due to being pumped and drained. Blue points represent the Full Model
which includes landscape parameters, and red points represent the Storm-
Only Model which excludes them. The left-hand pane shows Storm 495, a
weaker TCwith central pressure of 975mb at landfall, while the right-hand
pane shows the much stronger storm 11 with a landfalling central pressure
of 905mb (landfall parameters for all 645 synthetic storms are provided as
Supplementary Table 1).

Across all 645 synthetic storms and grid points in the current condi-
tions landscape, the Storm-onlyModel reached an overall RMSE of 0.31m,
while the FullModel achieved anRMSEof 0.28m (Table 1).While this does
represent an improvement of over 10 percent, primarily the result of greater
accuracy for larger surge elevations, we expected the difference between
these models to be minimal when trained only on the current conditions
landscape. This is because of the lack of variation in landscape parameters
over the synthetic storms at eachpoint and contrastingly greater variation in
TC parameters.

Examining the spatial pattern of the Full Model when trained on
current and future scenarios, we see that points with higher RMSE over all
storms and landscapes are generally further inland (Fig. 2). This is expected,
given that such points generally have fewer storms in the corpus that pro-
duce wetting, and we did not employ any dry-node correction techniques
like those used in ref. 42 or ref. 18; instead, non-wetting observations were
simply removed from the training set. The model also performed less
accurately in areas with more complex topography and hydrodynamics,
such as in unpopulated wetlands in the Atchafalaya River Basin (between
91° and 92° W longitude on the northern portion of the model domain),
where the ADCIRC model also has greater uncertainty and bias when
validated against historic TCs34.

Considering the RMSE of the Full Model averaged over all landscapes
and synthetic storms, the RMSE at 90% of grid points is less than 0.18m, at

Table 1 | Summary of mean sea level assumptions and statistical outcomes for all cases evaluated

Scenario Year Mean Sea Level (NAVD88 m) RMSE (m) MAE (m) Correlation Rejected %

Storm-only Model 2020 0.36 0.314 0.172 0.912 -

Full Model 2020 0.36 0.277 0.077 0.965 -

Higher Scenario 2030 0.46 0.063 0.036 0.998 0.76%

2040 0.58 0.069 0.037 0.998 0.69%

2050 0.73 0.076 0.041 0.997 0.56%

2060 0.92 0.082 0.047 0.997 0.40%

2070 1.13 0.206 0.134 0.983 4.84%

Lower Scenario 2030 0.44 0.057 0.035 0.998 0.74%

2040 0.52 0.089 0.044 0.996 1.43%

2050 0.62 0.064 0.037 0.998 0.46%

2060 0.73 0.073 0.04 0.997 0.53%

2070 0.86 0.081 0.045 0.997 0.81%
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99% of grid points less than 0.38m, and at 99.9% of grid points less than
0.79m(Fig. 3).Over the ten future scenarios used in the LOOCVprocedure,
the Full Model produced a grand RMSE of 0.086m and grand mean
absolute error (MAE) of 0.050m (Table 1). These results compare favorably
to the calibration and validation results from theADCIRC+ SWANmodel
used to generate the hydrodynamic simulations, which reported a standard
error in simulated high-watermarks of ~0.46mover seven historical storms
(hurricanes Katrina, Rita, Gustav, Ike, Isaac, Nate, and Harvey)34. Further
analysis incorporated into the 2023 Coastal Master Plan estimated an
average standard error of 0.15m in peak surge elevations over the grid cells
included in this analysis (authors’ own calculations).

Figure 4 further disaggregates the model predictions to show the
frequency distribution of predicted versus simulated surge elevations
in each of the future landscapes over the synthetic storms and grid
points. The overall distributions appear nearly indistinguishable
except in the Higher scenario’s 2070 landscape, the most extreme
scenario with respect to its assumptions about mean sea level and
cumulative land subsidence. That this scenario would be an outlier
compared to the others is intuitive, given itsmore extreme assumptions
about environmental conditions; in this sense, the 2070 Higher sce-
nario landscape is subject to the common difficulty of extrapolating
beyond training data in the leave-one-landscape-out experimental
design. That said, the directionality of the difference is somewhat
counterintuitive. In this scenario, the predicted storm surge is on
average, greater than the simulated values, though the primary non-
linear difference in the scenario is an accelerating rate of SLR. Despite

this acceleration, it appears that the Full Model overestimates the
gradient in storm surge associated with changes in mean sea levels.

To fully understand the RMSE error over a range of storm surge levels
with respect to a fixed datum and relative to prevailing ground, Fig. 5 and
Fig. 6 are provided. They show the RMSE over all grid points by surge
elevation relative to NAVD88 and above prevailing ground, respectively.
Prevailing ground elevations are calculated as the median topographic
elevation of land pixels in each grid cell polygon. In grid cells containing
open water, such as over Lake Pontchartrain, the prevailing elevations used
are the mean sea level associated with the specific landscape, representing
the prevailing water surface elevation storm surge would build upon.
Simulated ADCIRC observations are binned into 0.1-m intervals with
respect to their surge elevations or depths, and RMSE of predictions for the
locations and storms in eachbin are shownon the vertical axis. BasedonFig.
5, it can be seen that all scenarios show approximately similar performance,
except for 2070 of the Higher scenario, which has slightly larger RMSE
values. Additionally, it can be observed that larger surge elevation values do
not necessarily correspond to larger RMSE values. Moreover, the overall
performance of all scenarios in the lower scenarios was similar, with a
maximum RMSE of 0.4 m and a mean RMSE of less than 0.1 m. Further-
more, in the higher scenario, except for Scenario 2070, the rest have a similar
mean RMSE of less than 0.1m. Generally, the model is least accurate for
smaller surge elevations, meaning that extremes which would cause more
damage are still captured relatively well.

This is further confirmedbyFig. 6,which is similar toFig. 5butwith the
bins on the horizontal axis representing surge elevation relative to prevailing

Fig. 1 | Simulated versus predicted storm surge for
representative synthetic storms. Simulated versus
predicted storm surge for storm 495 (left pane) and
storm 11 (right pane) in the cases where the ANN
model input includes only storm parameters (red)
and both storm and landscape parameters (blue)
grid points along a transect at 29.8° N. Note: Axis
ranges vary between left and right panes.

Fig. 2 | RMSE values across all landscapes and
synthetic storms for all grid points in the study
domain.Darker colors indicate lower RMSE values,
i.e., locations of greater agreement between simu-
lated and predicted storm surge.
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ground elevation (i.e., surge depth instead of surge elevation relative to a
fixed datum). We see in these results that most scenarios exhibit an RMSE
below 0.1m consistently for surge elevations above prevailing ground. In
general, the model predictions are actually less accurate for storm surge
values below prevailing ground, likely due to a relatively smaller set of
observations in the training data. Based on Fig. 5 and Fig. 6, it can be
concluded that for most scenarios, the performance of the model is accep-
table across a range of surge elevations, including extreme values which
would cause more damage.

Examining the hazard aggregated over multiple TCs, the errors asso-
ciated with surge predictions do not appear to meaningfully compound
once aggregated to AEP curves, in the sense that the RMSEs over all grid
points at a range of return periods are in a similar range to the RMSEs over
all grid points and synthetic storms (between 0.05 and 0.1m for all land-
scapes but the most extreme, as shown in Fig. 7). The RMSE generally is
larger at lower AEPs, consistent with an intuition that prediction is more
challenging for extreme events associated with storm surge values near the
upper bounds of observations in the simulated training sets.

Fig. 4 | Frequency distribution of peak storm surge
elevation for all future landscapes. Red indicates
the distribution of predicted values, while blue
indicates the distribution of simulated values.

Fig. 3 | Exceedance percentage of RMSE values by
grid point. Each point represents the RMSE for a
particular spatial grid point, averaged across all
landscapes and synthetic storms.
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Considering the full AEP distribution of storm surge at each point and
in each landscape, the two-sample K-S tests further indicate that the surge
predictions are accurate enough to usefully informprobabilistic risk studies.
In eight of the ten future landscapes, the null hypothesis, that the empirical
distributions generated with the ADCIRC simulations and the ANN

predictions are drawn from the same underlying probability distribution, is
rejected at level α ¼ 0:05 for less than one percent of the grid points (Table
1). This table also reports a MAE over the grid points below 0.05m and
correlation between simulated and predicted values over 0.99 for all land-
scapes but the 2070 Higher Scenario.

FromTable 1, it is evident that by incorporating landscape parameters
into theANNmodel, storm surge can be predicted accurately for a varietyof
different scenarios.

Figure 8 highlights the spatial pattern of points that rejected the null
hypothesis of the two-sidedK-S test for an illustrative landscape, theHigher
scenario in 2060. Red points indicate the locations where the test rejects the
null hypothesis at α ¼ 0:05, while the blue points indicate locations where
the evidence fails to rule out the possibility of the hazard estimates coming
from the same underlying AEP distribution.

Discussion
We have presented a machine learning-based surrogate model of peak
storm surge elevations that yields predictions of comparable or greater
accuracy, when compared to ADCIRC simulations, than the ADCIRC
model relative to historic observations used for model calibration and
validation. The addition of future landscapes with variation in landscape
parameters and mean sea level conditions provides more features and
heterogeneity in training data to improve the model’s accuracy. In a

Fig. 5 | RMSE over all grid points and storms, as a function of surge elevation.
Each line represents a different year (varying by color) of the Lower (left pane) and
Higher (right pane) scenarios.

Fig. 6 | RMSE over all grid points and storms, as a
function of surge depth relative to prevailing
ground. Each line represents a different year
(varying by color) of the Lower (left pane) and
Higher (right pane) scenarios.

Fig. 7 | RMSE over all grid points, by annual
exceedance probability and landscape. Each line
represents a different year (varying by color) of the
Lower (left pane) and Higher (right pane) scenarios.
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LOOCV exercise, the model produced aMAE of ~0.04m in nine out of ten
of the future landscapes, with the exception being the year 2070 of the
Higher scenario, the most extreme landscape with respect to having the
greatest SLR and land subsidence. A two-sided K-S test failed to reject the
null hypothesis, that points on hazard curves generated by the ADCIRC
simulations and ANN predictions are drawn from the same underlying
distribution, at less than 1% of grid points in eight out of ten of the future
landscapes. It is worthmentioning that, in addition to the capabilities of the
developed surrogatemodels, part of the residual sensitivity is attributable to
variability in the training dataset being used; as such, the accuracy of sur-
rogate models trained on simulation data from ADCIRC will be limited by
the accuracy of the calibrated and validated simulations.

This highlights an important caveat: this analysis utilized ADCIRC
simulations that were readily available from Louisiana’s 2023 CoastalMaster
Plan, meaning that the scenarios and time periods were not chosen with the
idea of usingADCIRC to train a surrogatemodel already inmind. This work
therefore represents a proof of concept where the ANN model produced
predictions suitable for planning studies froma training set of convenience. If
planners are interested in estimating risk over a 50-year planning horizon
ending in 2070, it may be that accuracy could be improved for the same
computational cost by replacing one of the “intermediate” landscapes with a
landscape corresponding to the year 2080 instead, to mitigate the challenges
of ML models in extrapolating beyond data in their training set.

This alsohas implications for the stormselectionprocess, given that the
90 storms simulated in each future landscape were chosen by comparing
hazard curves to the curve associated with the full 645-storm suite in the
current conditions landscape43. Prior research has suggested a difficulty in
using ML methods to predict extreme storm surge elevations44,45. While
accurate reproduction of extreme individual events is important in con-
trolling the overall RMSE andMAE of themodel, extreme storms (i.e., with
lower central pressures at landfall) are relatively more rare in occurrence,
thus having smaller probability masses when contributing to AEP dis-
tributions and making smaller contributions to expected annual damage
calculations.

Consequently, adoption of surrogate models as scenario generators
would also benefit from a rigorous consideration of how optimal sampling
techniques could be extended to include heterogeneity in landscape para-
meters and boundary conditions. When planning an analysis that will span
a range of future states of the world, it is likely that greater computational
efficiency could be achieved by sampling different synthetic storm events on
each landscape, rather than simulating the same 90 storms as was done for
the Coastal Master Plan. We note that in this analysis, the surrogate model
does benefit from predicting storm surge on the same 90 storms in the left-
out landscape that were present in the training data from other landscapes
during the LOOCV procedure. Accuracy would almost certainly be lower if
called upon to predict storm surge in both novel landscapes and for storms
with novel landfall parameters.

All the future landscapes used for training our ANN came from the
Coastal Master Plan’s Future Without Action scenarios (i.e., no additional

projects implemented on the landscape). This means we have restricted our
predictions to analyzing a slowly evolving landscape without major coastal
management interventions. As such, developing a surrogate modeling fra-
mework to capture the impacts of projects such as constructing or upgrading
levees and floodwalls is a more challenging problem and subject for future
research. However, the surrogate model developed in this study would also
have utility in evaluating the flood risk impacts of coastal restoration projects
that affect landscape morphology over time scales ranging from the
immediate (e.g., beach nourishment) to decadal (e.g., river diversions).

This study enables bettermodeling of future climate and environmental
conditions by policy makers and water resource managers. Moreover, the
developed model makes it possible to evaluate risk under a greater number
and range of future scenarios and time periods, opening the door to the use of
computationally expensive models like ADCIRC for planning studies uti-
lizing techniques for decision-making under deep uncertainty (DMDU) that
require or benefit from the use of large ensembles of future states of the
world46. We note, though, that not all institutions have the resources and
planning capacity to adopt DMDU approaches or to generate the same
number of landscapes used for training data in this study. Even with a more
limited set of future scenarios, the concept introduced here, of incorporating
landscape and boundary condition features to train a surrogate model over
multiple futures, could be applied to improve risk assessments that currently
employ simplifying assumptions such as linearly interpolating storm surge or
hazard over time or applying a bathtub model of SLR.

Data availability
Data for this project are available at DesignSafe-CI, https://doi.org/10.
17603/ds2-0ksb-yy40.

Code availability
Model source code, written in Python 3 and R, is available at https://github.
com/mohammadahmadi1995/Storm_Surge.
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