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Urban subsidence zones prone to
flooding: mitigated deformation trends
post-2024 Guilin megaflood
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Climate change intensifies urban flood hazards, yet existing research often overlooks the complex
dynamic relationships between surface deformation, soil properties, and flooding. This study uses the
2024 Guilin flood event as a case study, integrating SBAS-InSAR, DInSAR techniques, and various
machine learning methods to explore the complex interactions between surface deformation, soil
characteristics, and flooding. The results show that the flood caused significant water expansion, with
ground subsidence mainly concentrated in the southern and eastern parts of Guilin, highly coinciding
with the severely flooded areas. The flood-inundated areas exhibited opposite deformation trends
before and after the flood, shifting from subsidence to uplift, while road subsidence also showed a
dynamic process. Different machine learning methods showed varying performance in predicting
surface deformation, with the ERT model performing relatively well. Soil thickness was positively
correlated with surface subsidence within a certain range, and this relationship exhibited noticeable
nonlinear characteristics post-flood. The findings of this study have important practical implications
for urban flood mitigation, aiding urban planners in more accurately identifying flood-prone areas,
especially those experiencing subsidence.

Flooding severely threatens urban areas worldwide, causing substantial
economic losses and social disruptions1–3. As climate change intensifies, the
frequencyandmagnitudeof extremeweather events are escalating, elevating
urban flood risks4,5. However, flood risk is intricately interwoven with
multiple factors, including surface deformation, land-use alterations, and
urbanization6–8.

Recent studies have illuminated the complex, bidirectional relationship
between surface subsidence and flooding9–11. Surface deformation, parti-
cularly subsidence, has become a critical factor influencing urban flood risk
by altering topography and intensifying flood vulnerability6,12,13. Advanced
remote sensing technologies, particularly Interferometric Synthetic Aper-
ture Radar (InSAR), have revolutionized our ability to monitor surface
deformation at large scales with high precision14–16. However, remote sen-
sing data alone cannot fully comprehend and predict the complex rela-
tionship between surface deformation and flood risk.

Incorporatingmachine learning techniques in geosciences has opened
new avenues for processing and analyzing vast, multi-source datasets,
enhancing the accuracy of surface deformation predictions17–19. Soil char-
acteristics, particularly thickness, role are crucial in surface deformation and
flood risk dynamics20–22. Despite these advances, critical research gaps
persist. Most studies focus on long-term deformation trends, neglecting
short-term dynamic changes before and after flood events11. The dynamic
evolution of the relationship between soil properties and surface deforma-
tion during flood events remains poorly understood21.

Here we present a comprehensive analysis of the complex interactions
between surface deformation, soil properties, and flooding, using the 2024
Guilin flood event as a case study. By integrating SBAS-InSARandDInSAR
techniques with various machine learning methods, we aim to quantify
surfacedeformation characteristics before andafter theflood, investigate the
spatiotemporal impact of flooding on road infrastructure subsidence,
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analyze the nonlinear relationship between soil thickness and surface sub-
sidence, and evaluate the potential of machine learning methods in pre-
dicting surface deformation.

Results
The study focused on Guilin City in northeastern Guangxi, spanning
109°36'50” to 111°29'30” East longitude and 24°15'23” to 26°23'30” North
latitude (Fig. 1). With an area of 27,800 km² (11.74% of Guangxi) and a
population of nearly 5 million, Guilin features a ‘high on three sides, low in
the center’ topography and 1–3 km thick sediment layers with abundant
karst groundwater23. Its complex geological structures and active karst
processes make it prone to subsidence and collapse24. Guilin has a sub-
tropical monsoon climate, with an average annual temperature of 19.1 °C
and precipitation of 1887.6mm over 166 days. As a major tourist destina-
tion, it has a developed transportation network (19,141 km of roads,
including 833 km of highways). Frequent floods, including the largest since

1998 in June 2024, and ongoing urbanization make Guilin an ideal case
study for analyzing surface deformation.

On June 19, 2024, Guilin City experienced its most severe flooding
since 1998. The water level at the Guilin hydrological station peaked at
148.88m at 00:55 on June 20, 2.88m above the warning level (https://www.
chinadaily.com.cn/). Satellite imagery analysis revealed significant hydro-
logical changes, with extensive new water coverage in low-lying areas and
regions proximal to major waterways (Supplementary Fig. 1). Using HEC-
RAS, we simulated the flooding in Guilin City and generated a water depth
map for 01:00 on June 20, 2024. Results indicated a maximum water depth
of 49.33m and an average depth of 9.48m during the flood event (Sup-
plementary Fig. 2). Water depths were lower in the western and northern
parts of Guilin City, while the southern and eastern regions experienced
greater depths. The relationship between simulated flood water depths and
deformation rates for the two areas showed thatwater depths inArea 1were
primarily concentrated between 10 and 15m, while Area 2 showed water

Fig. 1 | Map of the study area. a Location of the study area in China. bDistribution of roads within the study area. c Surface land cover of the study area. d Soil and sediment
thickness in the study area. This map is generated using ArcGIS 10.7 with geographic information data.
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depths mainly distributed between 13 and 18m (Fig. 2). Both areas
exhibited a significant downward trend in deformation rates within their
most common water depth ranges.

Our deformation rate analysis revealed significant spatial variations in
ground subsidence rates across Guilin from June 2023 to June 2024 (Fig. 3).
Severe subsidence areas were primarily concentrated in the southern and
eastern parts of Guilin’s urban area, while evident uplift was noted in the
northwestern part. The maximum and minimum deformation rates were
151.62mm/yr and −116.78mm/yr respectively, with an average defor-
mation rate of −1.18mm/yr. Comparison of deformation rates between
Areas 1–3 and the entire study area (Supplementary Table 1) showed that
Areas 1 and 2 had significantly lower maximum rates than the study area,
while Area 3 experienced an overall uplift trend. Cumulative deformation
analysis from June 2023 to June 2024 (Supplementary Fig. 3) showed a
consistent pattern with the subsidence rate distribution.

Analysis of two post-flood periods (May 27 to July 14, 2024, and May
27 to July 26, 2024) revealed significant spatial variations in subsidence,with
severe subsidence in eastern Lingui District, northwestern Lingchuan
County, and Xiufeng District (Fig. 4). Areas 1 and 2 exhibited post-flood
uplift, reversing pre-flood subsidence trends. All three inundated areas
showed uplift post-flooding (Supplementary Tables 2 and 3).

SBAS InSAR calculations within a 30m buffer zone along roads
revealed severe road subsidence in the southern region, coinciding with the
primary inundated areas (Fig. 5). During the first phase after the flood (May
27, 2024, to July 14, 2024), a significant overall surface uplift of
28.11 ± 19.24mmwas observed. The period fromMay 27, 2024, to July 26,
2024, showed a mitigated ground uplift, with a deformation magnitude of
19.64 ± 31.36mm.

Surface deformation models using SVM, GBDT, RF, ERT, and LSTM
were trained on SBAS-InSAR results. The ERT model performed best in
Area 1 (RMSE = 5.39, R2 = 0.72) and achieved near-perfect predictions in
Area 2 (RMSE ≈ 0, R2 = 0.99) (Supplementary Figs. 4 and 5). Pre-flood
SBAS-InSAR and post-flood DInSAR data (Fig. 6) revealed a shift from
gradual subsidence to slight uplift in Areas 1 and 2 post-flood.

Analysis revealed a positive correlation between soil thickness and
surface subsidence rates, particularly in areas with soil thickness ranging
from 0 to 3m (Supplementary Fig. 6). After the flood, the relationship
between soil thickness and surface deformation showed significant differ-
ences in the two periods. In the first stage (May 27, 2024, to July 14, 2024),
therewas no significant correlation,while in the second stage (May27, 2024,
to July 26, 2024), soil thickness and surface deformation showed polarized
characteristics.

Discussions
This study revealed the significant impact of floods on surface deformation
through remote sensing monitoring and analysis of the 2024 Guilin flood
event. The flood caused significant water body expansion, particularly in
low-lying areas and regions close to major rivers (Supplementary Fig. 1).
Ground subsidence was mainly concentrated in the southern and eastern
regions of Guilin, highly coinciding with the most severely flooded areas
(Fig. 3). As the ground surface gradually sinks, it creates local depressions
that naturally collect and retain water during flood events. These
subsidence-induced basins effectively lower the flood threshold in affected
areas, making them more susceptible to inundation during rainfall events.
The discrepancy between the HEC-RAS simulated maximum water depth
(49.33m) and the peak water level recorded at the Guilin hydrological
station (148.88m) stems from different measurement references. While
temporal consistency infloodpeaks andprocesses supports the simulation’s
reliability, the differences highlight limitations in the model’s ability to
capture absolute water depths accurately. Future work should integrate
additional hydrological data to improve simulation accuracy. Future studies

Fig. 2 | Relationship between simulated water depth and deformation rate. a Frequency distribution of simulated water depths in two areas; (b) Relationship between
depth and deformation rate in Area 1. c Relationship between depth and deformation rate in Area 2. This map is generated using SPSS 20.

Fig. 3 | The deformation rate map was generated using Sentinel-1A data from
June 2, 2023, to May 27, 2024. The flood inundation areas on June 20, 2024, are
marked with red boxes, and urban buildings in Guilin are indicated by gray boxes.
This deformation map is generated using ENVI 5.6 with the SarScape 5.6.2 module
for data analysis and visualized using ArcGIS 10.7.
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should integrate hydrological station data to further refine flood simulation
models and enhance prediction accuracy. This finding aligns with previous
research identifying surface subsidence as a contributing factor to floods
with spatial heterogeneity in its impact25.

The flood-inundated areas exhibited a reversal in deformation trends
post-flood, shifting from subsidence to uplift (Fig. 4). This suggests that
flood events can temporarily alter local surface deformation patterns19,21.
However, the observed changes may be influenced by short-term factors
such as soil saturation and groundwater fluctuations, and longer-term
monitoring is needed to determine whether these trends persist. Before the
flood event, Areas 1 and 2 showed a subsidence trend, whichmay be due to
factors in the urbanization process such as excessive groundwater extrac-
tion, land use changes, and increased urban infrastructure load26. Similar
surface deformation patterns have been reported in other studies. For
instance, LeMouélic et al.27 observed ground uplift associated with changes
in groundwater levels in Paris. Additionally, flooding in abandoned coal
mining areas can lead to ground uplift28. The sudden trend reversal may be
due to multiple mechanisms, including soil saturation, increased buoyancy
due to rising groundwater levels, and soil reconsolidation during the sub-
sequentwater level decline and soil drainageprocess.We found thedynamic
process of road subsidence after the flood, with initial surface uplift followed
by gradual and intensifying subsidence (Fig. 5). This process may result
frommultiple factors, including changes in soil structure, groundwater level
fluctuations, and load redistribution. These findings are consistent with
observations of complex changes in road connectivity over time after flood
events22.

Various machine learning methods were employed to predict surface
deformation, reflecting the widespread application trend in earth science
research. The ERT model showed better prediction accuracy in both study
areas, potentially due to its introduction of greater randomness in the tree
construction process (Supplementary Figs. 4 and 5). However, the generally
low prediction accuracy of most models highlights the importance of long-
term InSAR data for improving surface deformation prediction
accuracy12,29.

The results highlighted the long-term impact of floods on road infra-
structure, providing a baseline for flood-induced subsidence (Fig. 6). This is

critical for infrastructure maintenance and disaster prevention strategies, as
noted in urban subway system studies30. The study revealed an approximate
positive correlationbetween soil thickness and surface subsidence, especially
in the 0–3m thickness range (Supplementary Fig. 6a). This finding is
consistent with observations of more significant subsidence in areas with
thicker soil layers31. The study also found that more than 60% of the soil
thickness in the study area is concentrated in the 0–5m range (Supple-
mentary Fig. 6d), emphasizing the importance of focusing on specific
thickness ranges in urban planning and flood risk assessment.

Within the main distribution interval of soil thickness (0–5m) (Sup-
plementary Fig. 6d), surface deformation after the flood showed obvious
nonlinear characteristics (Supplementary Fig. 6a–c). In the first stage after
the flood, there was no significant correlation between soil thickness and
surface deformation, possibly due to general soil saturation. In the second
stage, the relationship showed polarized characteristics, reflecting different
responses of soil layers of varying thicknesses to floods. These findings align
with recent research highlighting the complex nature of urban flood risk,
particularly the impacts of repeated, localized flooding events on long-term
economic outcomes32. The observed nonlinear relationship between soil
thickness and surface deformation is consistent with studies on mining
subsidence in areas with thick alluvium, where surface subsidence is influ-
enced by multiple factors including alluvium thickness, internal friction
angle, and cohesive force33. Similarly, research in coal mining areas with
thick alluvium has shown that surface subsidence is a complex process
involving interactions between bedrock, alluvium soil, groundwater, and
shallow soil compaction34. The observed nonlinear relationships underscore
the need for adaptive strategies in flood-prone urban areas, including
reconsidering development incentives in high-risk zones35. Future research
should explore the influence of other factors (such as soil type, and
groundwater dynamics) on this nonlinear relationship to build a more
comprehensive urban flood disaster impact assessment model.

The findings of this study have significant practical implications for
urban flood mitigation. By considering the complex relationships between
surface deformation, soil characteristics, and flooding, our multi-
dimensional assessment method helps urban planners more accurately
identify flood-prone areas, especially those experiencing subsidence.

Fig. 4 | Deformationmaps were generated using Sentinel-1A data. aDeformation fromMay 27, 2024, to July 14, 2024. bDeformation fromMay 27, 2024, to July 26, 2024.
The surface deformation map is created using ENVI 5.6 with the SarScape 5.6.2 module for data analysis and visualized using ArcGIS 10.7.
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However, the study’s reliance on a singleflood event and limited InSARdata
restricts the generalizability of the results. Future research should incor-
porate additional case studies and datasets to validate and refine these
findings. This studyhas limitations, including the restrictedperiodof InSAR
data and reliance on a single flood event in Guilin. Differences between
simulated and observed water levels highlight model limitations. Future
research should incorporate more hydrological data, explore additional
factors like groundwater dynamics and land use changes, and extend to
various urban environments for a comprehensive understanding of urban
flood impacts.

Methods
The study utilized high-resolution radar imagery data from Sentinel-1A
provided by the Alaska Satellite Facility, combinedwith various related data
from Guilin City, to systematically analyze ground subsidence in the study
area. Sentinel-1A satellite is an important Earth observation satellite in the
European Space Agency’s Copernicus program (GMES), with a 12-day
revisit cycle and an orbital height of 693 km. The study used 29 ascending
orbit images acquired from June 2023 to June 2024, using VV single
polarization mode and IW imaging mode, covering an area of approxi-
mately 3413 km2, encompassing most of Guilin’s urban area. During data
processing, ENVI software was used to analyze ground subsidence, and a
30m resolution digital elevation model (DEM) obtained from the Geos-
patialDataCloudwasused for removing interferencephases andgeocoding.
Additionally, precise orbit data from the European Space Agency was used
to improve processing accuracy. To further analyze the causes of ground

subsidence, related information about Guilin City was collected, including
rainfall data, road network data, land cover data, and soil and sediment
thickness data. These data were sourced from the GRIP road dataset (www.
globio.info/download-grip-dataset), Esri land cover data, sediment thick-
ness data producedbyNASADACC, urbanbuildingdata, andprecipitation
data from the Japan Aerospace Exploration Agency (JAXA) (https://
sharaku.eorc.jaxa.jp/GSMaP/). The comprehensive use of these multi-
source data provided important support for a comprehensive assessment of
the spatiotemporal characteristics of ground subsidence in Guilin City. The
study used SBAS-InSAR technology to process Sentinel-1A radar imagery
data before the flood to obtain surface deformation detection results, and
DInSAR technology to process imagery data before and after the flood to
obtain surface deformation results under flood impact. Then, machine
learning techniques were used to train models using the results obtained
from SBAS-InSAR to simulate surface deformation results without flood
impact, whichwere comparedwithDInSAR results (Supplementary Fig. 7).

Differential Interferometric Synthetic Aperture Radar (DInSAR)
technology was the key method used in this study to analyze surface
deformation inGuilin City before and after the flood. The two-passmethod
was adopted, selectingpre-flood imagery as themaster image andpost-flood
imagery as the slave image. First, residual phase maps were generated
through registration and multi-looking processing, followed by adaptive
filtering to reduce noise while generating coherence maps. After phase map
filtering, theminimum cost flow algorithmwas used for phase unwrapping,
with a coherence threshold set at 0.2. This threshold balances information
retention in flood-affected areas with reliable phase unwrapping. To

Fig. 5 | Deformation characteristics along roads within a 30m buffer zone in the
study area. a Deformation rate along roads within the 30 m buffer zone.
bDeformation fromMay 27, 2024, to July 14, 2024, after the flood. cAfter the flood,
the deformation from May 27, 2024, to July 26, 2024. d Deformation from May 27,

2024, to July 14, 2024, and fromMay 27, 2024, to July 26, 2024, after the flood. Road
deformation characteristics are generated using ENVI 5.6 with the SarScape 5.6.2
module for data analysis and visualized using ArcGIS 10.7.
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improve accuracy, 7 orbit refinement ground control points were manually
inserted in areas with little deformation and flat terrain for orbit refinement
and re-flattening processing. The principles for selecting control points
included choosing areas with minimal expected deformation, high coher-
ence (>0.8), uniformdistribution, and avoidingwater bodies and vegetation
areas. Some studies also evaluated the stability of control points within a 20-
m radius around candidate points to ensure the reference points remain
stable during the monitoring period36. Finally, referring to the digital ele-
vationmodel (DEM), phase information in the radar coordinate systemwas
converted to deformation information in the geographic coordinate system,
and codingwas completed.Through this series of steps, surface deformation
data forGuilin City underflood impact fromMay 27, 2024, to July 14, 2024,
and from May 27, 2024, to July 26, 2024, were successfully extracted, pro-
viding an important basis for flood impact assessment. We specifically
analyzed twopost-floodperiods to capture the dynamic evolution of surface
deformation in the short-term aftermath of the flood event. This dual-
period approach allows us to assess both the immediate impact of the flood
and any subsequent changes or stabilization in deformation patterns, pro-
viding insights into the area’s response and recovery process following
the flood.

For the pre-flood analysis, we chose to use SBAS-InSAR technology.
While Persistent Scatterer Interferometry (PSI) and SqueeSAR techniques
are often favored in urban areas, we selected SBAS-InSAR for its ability to
handle both distributed and point-like scatterers, which was crucial for our
mixed urban-rural study area37. SBAS-InSAR offered better coverage in
areas with lower coherence, such as those affected by floods, and could
capturenon-lineardeformationmore effectively38.However, thepresence of
atmospheric water vapor during flood events can exacerbate phase noise,
reducing coherence and complicating deformation analysis14,38. It also
provided a smoother displacement time series, which was essential for
analyzing complex surface changes before and after flood events. Using
ENVI’s Sarscape plugin, 29 SAR image data sets from June 2023 to June
2024 were processed. First, a connection graph was generated, selecting the
image from November 17, 2023, as the super master image, with a time
baseline threshold of 120 days and a spatial baseline threshold of 5% of the
total. Subsequently, comprehensive interference processing was performed,
including interferogram generation, flattening, adaptive filtering (using
Goldstein algorithm, with a multi-look ratio of 4:1), coherence coefficient
generation, phase unwrapping (coherence threshold of 0.15, using mini-
mum cost flow algorithm), and automatic orbit refinement and re-

Fig. 6 | Comparison of pre-flood SBAS-InSAR (June 14, 2023, to May 27, 2024),
two post-flood DInSAR periods (May 27 to July 14, 2024, and May 27 to July 26,
2024), and predicted deformation based on SBAS-InSAR for two areas (June 2,

2023, toNovember 23, 2024).Graphs (a) and (b) represent areas 1 and 2 respectively.
Thedot represents themedian, and the error bar represents the standarddeviation. The
rightY-axis shows theD InSARdata.Thedatavisualization is performedusing SPSS 20.
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flattening. This low threshold was chosen to retain more information in
Guilin’s diverse terrain. In the first inversion, the deformation rate and
residual terrainwere estimated, followed by secondary phase unwrapping to
optimize results. The second inversion focusedon calculatingdisplacements
in the time series and performing customized atmospheric filtering to
remove atmospheric phase interference. Finally, results were converted to
the geographic coordinate system concerning theDEM. Through this series
of complex processing steps, detailed surface deformation information for
Guilin City from June 2023 to June 2024 was successfully extracted, laying
the foundation for assessing the long-term impact of floods on surface
structures. The study used various machine learning techniques to build
surface deformation predictionmodels, including Support VectorMachine
(SVM), Gradient Boosting Decision Tree (GBDT), Random Forest (RF),
Extremely Randomized Tree (ERT), and Long Short-Term Memory
(LSTM)methods. In a specific implementation, the SVMsought an optimal
hyperplane for classification bymaximizing themargin between categories,
thereby improving classification accuracy and solving regression problems.
The GBDT gradually combined multiple decision tree models to correct
errors, progressively improving overall prediction performance. The RF
constructed multiple decision trees and performed voting or averaging,
reducing overfitting phenomena and improving model stability. The ERT
introduced greater randomness in the tree construction process, further
enhancing the model’s generalization ability. The LSTM is an improved
recurrent neural network the RNN that, compared to traditional RNNs,
solved the problems of gradient vanishing and gradient explosion in long
sequences by introducing gating mechanisms (input gate, forget gate, and
output gate), thereby effectively capturing long-term dependencies. In the
construction process of these models, cross-validation was performed to
ensure the reliability of results and the robustness of the models.

Additionally, the best-performingmachine learningmodelwas used to
conduct detailed deformation predictions for two significant deformation
areas (Area1 and Area2). Specifically, these two local areas were selected
fromtheflood-inundated areas,Weused SBAS-InSAR toobtain cumulative
subsidence data from 29 scenes between June 2, 2023, and May 27, 2024.
Seventy percent of this datawas used as a training set to train themodel, and
thirty percentwas used as a test set to evaluate themodel’s performance. The
trained model was then used to predict cumulative subsidence data from
15 scenes between June 8, 2024, and November 23, 2024. Through this
method, not only could the model’s prediction performance be evaluated,
but valuable insights could also be provided for future surface deformation
trends.

This study used the Google Earth Engine (GEE) platform to extract
changes in water bodies before and after the 2024 Guilin flood, analyzing
Sentinel-1A radar imagery. First, the study area was defined, which
delineated the flood risk area of Guilin City through latitude and long-
itude coordinates. Then, Sentinel-1A images before (May 27, 2024) and
after (June 20, 2024) the flood were obtained from GEE, filtering VV
polarization data, and averaging images within the selected time range to
reduce random errors in single images. By calculating pixel value dif-
ferences between the two periods of images, a different image was gen-
erated to identify flood areas. To ensure accurate extraction of flood
areas, a threshold of 1.25 was set, identifying possible flood areas through
high-value regions in the different images. Finally, pre- and post-flood
images and identified flood areas were visualized on the GEE platform,
and the newly added water body area caused by the flood was calculated.
This method achieved rapid identification and quantitative assessment
of flood disaster areas through efficient radar image analysis, providing
an important decision-making basis for post-disaster emergency
response. Additionally, to analyze the impact of floods on different areas
in depth, three typical flood-inundated areas (Area 1, Area 2, and Area 3)
were selected for detailed study. The deformation rates of these areas
were compared with those of the entire study area, including maximum
rate, minimum rate, and average rate. Through this comparison, the
degree of impact of floods on surface deformation under different geo-
graphical locations and geological conditions could be quantified.

Multiple InSAR techniques combined with machine learning predic-
tionmethodswere used to comprehensively analyze the impact of floods on
surface deformation and compare deformation before and after the flood.
First, SBAS-InSAR technology was used to process Sentinel-1A data from
June 2, 2023, toMay 27, 2024, obtaining a time series of surface deformation
before theflood. Subsequently,DInSARtechnologywasused toprocess data
fromMay27, 2024, to July 14, 2024, and fromMay27, 2024, to July 26, 2024,
respectively, obtaining surface deformation conditions for two periods after
the flood. At the same time, based on SBAS-InSAR results, the best-
performing machine learning model was used to predict surface deforma-
tion for two typical areas (Area1 and Area2) within the study area, with the
prediction period extending from June 2, 2023, to November 23, 2024. This
prediction result represented the theoretical deformation trend without
flood impact.

To further understand the impact of floods on surface deformation,
the HEC-RAS numerical simulation software was used to simulate
floods in the study area. We employed the HEC-RAS software, specifi-
cally its 2D Flow Model. Based on the Saint-Venant equations, this
model is particularly suitable for handling complex terrains and urban
flood management scenarios. We imported the Digital Elevation Model
(DEM) of the study area, selected a 2D flow area slightly larger than the
study area, divided it into 6778 grid cells, and applied a default Man-
ning’s roughness coefficient of 0.06. The simulation time range was from
0:00 on June 19, 2024, to 1:00 on June 20, 2024, which was also the
observed peak rainfall period. The simulation used an hourly time
resolution to capture the dynamic changes in rainfall intensity and flood
evolution. In this way, surface deformation data could be compared with
flood simulation results, leading to a more comprehensive under-
standing of the impact of flood events on surface deformation. To
visually compare the differences before and after the flood and predic-
tion results, SBAS-InSAR,DInSAR,machine learning prediction results,
and flood simulation results were integrated. By analyzing changes in the
median of deformation and the distribution of water depth from flood
simulation, the continuous subsidence trend before the flood, the pre-
dicted theoretical subsidence continuation, and the sudden change in
surface deformation after the flood could be observed, while also
assessing the differential impact of floods on surface deformation in
different areas. To analyze the relationship between flood inundation
depth and surface deformation, simulation and data analysis were
conducted for two flood-inundated areas (Area 1 and Area 2). First, a
hydrologicalmodelwas used to simulateflood inundation depth, and the
relative frequency distribution of water depth was calculated. This
allowed us to identify the most likely range of flood depths experienced
in each area. Second, by comparing the deformation in these two areas
with the simulated flood inundation depths, we paired flood depth data
with deformation rate data to explore potential associations between the
two. For each area, we paid particular attention to deformation char-
acteristics within the most common flood depth range.

To assess the impact of soil thickness on ground subsidence before and
after theflood, this study used results calculated frombothSBAS InSARand
DInSAR technologies for pre- and post-flood deformation monitoring.
First, based on SBAS InSAR technology, we calculated the surface defor-
mation rate before the flood occurred to explore the potential relationship
between soil thickness anddeformation rate. The time series of SBAS InSAR
covered a long period, allowing us to identify long-term trends of surface
deformation in soil layers of different thicknesses.Next, we appliedDInSAR
technology to calculate surface deformation before and after the flood,
specifically for the periods from May 27, 2024, to July 14, 2024, and from
May 27, 2024, to July 26, 2024. The DInSAR results allowed us to capture
surface deformation characteristics in the short time before and after the
flood event. Additionally, by analyzing the frequency distribution of soil
thickness and deformation rates, we further revealed the spatial distribution
characteristics of soil thickness at different deformation stages. Through the
combination of these methods, we were able to explore the role of soil
thickness in surface subsidence before and after the flood.
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Data availability
The SBAS InSAR-derived ground deformation time series (GeoTIFF format,
2020-2024), predicted subsidence models for subregions 1/2, and two-phase
D-InSAR-derivedpost-flooddeformationdata (27May - 26 July 2024 and27
May - 14 July 2024) are publicly available in the Zenodo repository (https://
sandbox.zenodo.org/records/165115?preview=1&token=eyJhbGciOiJIUzU
xMiJ9.eyJpZCI6IjQ5YmY0MTM4LTAyNmUtNDBlNC1hOTA1LTk4
MWE2MDk1Njc0MiIsImRhdGEiOnt9LCJyYW5kb20iOiI0YTdmNWFm
NDRmN2NiM2QwN2ZlYjczOWJhZjY1ZmYyYyJ9.SV9oQlGsj5l75_zXpar
wuO2Se8N3PlD-J9tM0VaxI4z-DMfsS2l2A_lwLaTp5XSK5qWyogz2hro2-
smHVyfmWA).
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