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Non-Hermitian Casimir effect of magnons
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Kouki Nakata,2 & Kei Suzuki,2

Therehasbeenagrowing interest in non-Hermitianquantummechanics. Thekeyconceptsof quantum
mechanics are quantum fluctuations. Quantum fluctuations of quantum fields confined in a finite-size
system induce the zero-point energy shift. This quantumphenomenon, theCasimir effect, is one of the
most striking phenomena of quantum mechanics in the sense that there are no classical analogs and
has been attracting much attention beyond the hierarchy of energy scales, ranging from elementary
particle physics to condensed matter physics, together with photonics. However, the non-Hermitian
extension of the Casimir effect and the application to spintronics have not yet been investigated
enough,althoughexploringenergysourcesanddevelopingenergy-efficientnanodevicesare its central
issues. Here we fill this gap. By developing amagnonic analog of the Casimir effect into non-Hermitian
systems, we show that this non-Hermitian Casimir effect of magnons is enhanced as the Gilbert
damping constant (i.e., the energy dissipation rate) increases. When the damping constant exceeds a
critical value, the non-Hermitian Casimir effect of magnons exhibits an oscillating behavior, including a
beating one, as a function of the film thickness and is characterized by the exceptional point. Our result
suggests that energy dissipation serves as a key ingredient of Casimir engineering.

Recently, non-Hermitian quantum mechanics has been drawing con-
siderable attention1. The important concepts of quantum mechanics are
quantum fluctuations. Quantum fluctuations of quantum fields under
spatial boundary conditions realize a zero-point energy shift. This quantum
effectwhich arises from the zero-point energy, theCasimir effect2–5, is one of
themost striking phenomena of quantummechanics in the sense that there
are no classical analogs. Although the original platform for the Casimir
effect2–5 is the photon field (See ref. 6, as an example, for an oscillating
behavior of the Casimir effect of photons as a function of distance between
two uncharged plates, where chiral material inserted between the two par-
allel plates plays a key role.), the concept can be extended to various fields
such as scalar, tensor, and spinorfields7–15. Thanks to this universal property,
the Casimir effects have been investigated in various research areas (As an
example, see refs. 16–22 for Casimir effects in magnets and ref. 23 for a
magnonic analog of the thermal Casimir effect in a Hermitian system. For
details of the distinction between the thermalCasimir effect and theCasimir
effect, refer to Supplemental Material. See also ref. 24 for an analog of the
dynamicalCasimir effectwithmagnonexcitations in a spinorBose–Einstein
condensate.) beyond the hierarchy of energy scales7–15, ranging from ele-
mentary particle physics to condensed matter physics, together with pho-
tonics. However, the non-Hermitian extension of the Casimir effect and the
application to spintronics remain missing ingredients, although exploring
energy sources and developing the potential for energy-efficient nanode-
vices are the central issues of spintronics25–29.

Here we fill this gap. The Casimir effects are characterized by the
energy dispersion relation. We therefore incorporate the effect of energy
dissipation on spins into the energy dispersion relation of magnons
through the Gilbert damping constant30 and thus develop a magnonic
analog of the Casimir effect31, called the magnonic Casimir effect (see
Fig. 1) (In ref. 31, we investigated the Casimir effect induced by quantum
fields for magnons (i.e., a magnonic analog of the Casimir effect) and
referred to it as the magnonic Casimir effect. See ref. 31 for details of the
magnonic Casimir effect in dissipationless systems.), into non-Hermitian
systems. We then show that this non-Hermitian extension of the mag-
nonic Casimir effect, which we call themagnonic non-Hermitian Casimir
effect, is enhanced as the Gilbert damping constant increases. When the
damping constant exceeds a critical value, the magnonic non-Hermitian
Casimir effect exhibits an oscillating behavior as a function of the film
thickness and is characterized by the exceptional point32 (EP).We refer to
this behavior as the magnonic EP-induced Casimir oscillation. We
emphasize that thismagnonic EP-induced Casimir oscillation is absent in
the dissipationless system of magnons. The magnonic EP-induced Casi-
mir oscillation exhibits a beating behavior in the antiferromagnets
(AFMs) where the degeneracy between two kinds of magnons is lifted.
Our result suggests that energy dissipation serves as a new handle on
Casimir engineering33 to control and manipulate the Casimir effect of
magnons. Thus, we pave the way for magnonic Casimir engineering
through the utilization of energy dissipation.
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Results
System
We consider the insulating AFMs of two-sublattice systems in three
dimensions described by the Hamiltonian,

H ¼ J
X
hi;ji

Si � Sj � Ke

X
i

ðSyi Þ
2 þ Kh

X
i

ðSxi Þ2; ð1Þ

where Si ¼ ðSxi ; Syi ; Szi Þ is the spin operator at the site i, J > 0 parametrizes the
antiferromagnetic exchange interaction between the nearest-neighbor spins
〈i, j〉,Kh > 0 is the hard-axis anisotropy, andKe > 0 is the easy-axis anisotropy.
These are generally Kh/J≪ 1 and Ke/J≪ 1. The AFMs have the Néel
magnetic order and there exists the zero-point energy34,35. Throughout this
study, we work under the assumption that the Néel phase remains stable in
the presence of energy dissipation. Elementary magnetic excitations are two
kinds ofmagnons σ = ±, acousticmode for σ =+ and opticalmode for σ=−.

By incorporating the effect of energy dissipation on spins into the
energy dispersion relation of magnons through the two-coupled
Landau–Lifshitz–Gilbert equation where the value of the Gilbert damping
constantα > 0 for each sublattice is identical to each other, we study the low-
energy magnon dynamics36 described by the energy dispersion relation
ϵσ;k;α 2 C of Re(ϵσ,k,α) ≥ 0 and the wavenumber k ¼ ðkx; ky; kzÞ 2 R (As
an example, ref. 37 assumes ϵσ;k;α 2 R and k 2 C, which describes a
spatially-decaying solution38.) in the long wavelength limit as37

ϵσ;k;α ¼
2S

1þ α2
�iαC þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEσ;k;αÞ2

q� �
ð2Þ

and

ðEσ;k;αÞ2 :¼ Aσ;α
2ðakÞ2 þ δσ

2 �Dσ
2α2; ð3Þ

where k≔ ∣k∣, the length of a magnetic unit cell is a, the spin moment in a
magnetic unit cell is S, and the others are material-dependent parameters
which are independent of the wavenumber, 0 <Aσ;α 2 R, 0 < δσ 2 R,
0 <Dσ 2 R, and 0 <C 2 R: The parameters are given as37

Aσ;α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ α2Þ J2 þ σ

Kh

2
J

� �s
; ð4aÞ

δσ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Keð2J þ KeÞ þ KhðJ � σJ þ KeÞ

p
; ð4bÞ

Dσ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ σKhJ þ

Kh
2

4

r
; ð4cÞ

C ¼ J þ Ke þ
Kh

2
: ð4dÞ

In the absence of the hard-axis anisotropy Kh = 0, two kinds of magnons
σ = ± are in degenerate states, whereas the degeneracy is lifted by Kh > 0.
Note that, in general, the effect of dipolar interactions is negligibly small in
AFMs, and we neglect it throughout this study.

The Gilbert damping constant α is a dimensionless constant, and the
energy dissipation rate increases as the Gilbert damping constant grows. In
the dissipationless system31, the Gilbert damping constant is zero α = 0. The
dissipative system of α > 0 described by Eq. (2) can be regarded as a non-
Hermitian system formagnons in the sense that the energy dispersion takes
a complex value. Note that the constant term in Eq. (2), −iαC, is inde-
pendent of the wavenumber and just shifts the purely imaginary part of the
magnon energy dispersion ϵσ,k,α. For this reason [also see Eq. (10a)], the
constant term, −iαC, is not relevant to the magnonic Casimir effect. We
then define the magnon energy gap of Eq. (2) as Δσ,α≔Re(ϵσ,k=0,α), i.e.,

Δσ;α ¼
2S

1þ α2
Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEσ;k¼0;αÞ2

q� �
: ð5Þ

Magnonic exceptional point
When the damping constant α is small and ðEσ;k¼0;αÞ2 > 0, Eσ,k=0,α takes a
real value and decreases as α increases. This results in

dΔσ;α

dα
< 0: ð6Þ

Thus, themagnon energy gap decreases as the damping constant increases39

[compare the solid line with the dashed one in the left panel of Fig. 2(i)].
When the damping constant is large enough, the magnon energy gap
vanishes Δσ,α = 0 at α ¼ αcriσ ,

αcriσ :¼ δσ
Dσ

; ð7Þ

where there exists the gaplessmagnonmodewhich behaves like a relativistic
particle with the linear energy dispersion. From the property of Eq. (6), we
call (i) α≤ αcriσ the gap-melting regime.

When the damping constant exceeds the critical value αcriσ , i.e., α > αcriσ ,
Eσ,k=0,α takes a purely imaginary value as ðEσ;k¼0;αÞ2 < 0. In this regime, the
real part of themagnon energy dispersion remains zeroRe(ϵσ,k,α) = 0 for the
region 0≤ k≤ kcriσ;α,

kcriσ;α :¼
1
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dσ

2α2 � δσ
2

Aσ;α
2

s
; ð8Þ

whereas Re(ϵσ,k,α) > 0 for k > kcriσ;α [see the highlighted in yellow in the left
panel of Fig. 2(ii) and (iii)]. The critical point kcriσ;α can be regardedas theEP

39

for the wavenumber k, andwe refer to it as themagnonic EP.As the value of
the damping constant becomes larger, that of the EP increases

dkcriσ;α
dα

> 0: ð9Þ

At the EP k ¼ kcriσ;α, the group velocity vσ,k,α≔Re[∂ϵσ,k,α/(∂ℏk)] becomes
discontinuous [see the solid lines in the left panel of Fig. 2(ii) and (iii)]. In the

Magnon for = +

Magnon for = −

Quantum vacuum fluctuations of magnon fields for = +

Quantum vacuum fluctuations of magnon fields for = −

Fig. 1 | Schematic ofmagnonicCasimir effect.Magnonic Casimir effect arises from
quantum vacuum fluctuations of magnon fields.
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vicinity of theEP, the groupvelocitybecomesmuch larger thanusual suchas
in the gap-melting regime (i) [compare the solid lines in the left panel of
Fig. 2(ii) and (iii) with the one of Fig. 2(i)].

Assuming αcriσ¼þ < αcriσ¼�, the non-Hermitian system for magnons
described by Eq. (2) of α > 0 can be divided into three regimes (i)-(iii) in
terms of the magnonic EPs as follows [see the left panel of Fig. 2(i), (ii),
and (iii)]:
(i) α≤ αcriσ¼þ < αcriσ¼�. No magnonic EPs.
(ii) αcriσ¼þ < α < αcriσ¼�. One EP, k

cri
σ¼þ;α.

(iii) αcriσ¼þ < αcriσ¼� ≤ α. Two EPs, kcriσ¼þ;α and kcriσ¼�;α.

Magnonic Casimir energy
The magnonic analog of the Casimir energy, called the magnonic Casimir
energy31, is characterized by the energy dispersion relation of magnons.
Therefore, by incorporating the effect of energy dissipation on spins into the
energydispersion relation ofmagnons through theGilbert damping constant
[Eq. (2)], a non-Hermitian extension of the magnonic Casimir effect can be
developed.We remark that theCasimir energy induced byquantumfields on
the lattice, such as themagnonicCasimir energy31, canbedefinedbyusing the
lattice regularization40–46. In this study,we focuson thinfilms confined in the z
direction (Fig. 1). In the two-sublattice systems, the wavenumber on the
lattice is replaced as ðakjÞ2 ! 2½1� cosðakjÞ� along the j axis for j= x, y, z.
Here by taking into account the Brillouin zone (BZ), we set the boundary
condition for the z direction in wavenumber space so that it is discretized as
kz→ πn/Lz, i.e., akz→ πn/Nz, where Lz≔ aNz is the film thickness,Nj 2 N
is the number of magnetic unit cells along the j axis, and n= 1, 2, . . . , 2Nz.
Thus, the magnonic Casimir energy ECas

31 per the number of magnetic unit
cells on the surface forNz is defined as the difference between the zero-point

energy Esum
0 for the discrete energy ϵσ,k,α,n due to discrete kz [Eq. (10b)] and

theoneEint
0 for the continuous energy ϵσ,k,α [Eqs. (10c) and (2)] as follows

40–46:

ECasðNzÞ :¼ Esum
0 ðNzÞ � Eint

0 ðNzÞ; ð10aÞ

Esum
0 ðNzÞ :¼

X
σ¼±

Z
BZ

d2ðak?Þ
ð2πÞ2

1
2

1
2

X2Nz

n¼1

ϵσ;k;α;n

 !" #
; ð10bÞ

Eint
0 ðNzÞ :¼

X
σ¼±

Z
BZ

d2ðak?Þ
ð2πÞ2

1
2
Nz

Z
BZ

dðakzÞ
2π

ϵσ;k;α

� �
; ð10cÞ

where k? :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kx

2 þ ky
2

q
, d2(ak⊥) = d(akx)d(aky), the integral is over the

first BZ, and the factor 1/2 in Eqs. (10b) and (10c) arises from the zero-point
energy of the scalar field.

We remark that36 assuming thin films ofNz≪Nx,Ny (Fig. 1), the zero-
point energy in the thin film of the thickness Nz is Esum

0 ðNzÞNxNy and
consists of two parts as Esum

0 ðNzÞ ¼ ECasðNzÞ þ Eint
0 ðNzÞ [Eq. (10a)], where

Eint
0 ðNzÞ exhibits the behavior ofEint

0 ðNzÞ / Nz [Eq. (10c)]. Then, to see the
film thickness dependence of ECas(Nz), we introduce the rescaled Casimir
energy C½b�

Cas in terms of Nz
b for b 2 R as

C½b�
CasðNzÞ :¼ ECas ×Nz

b ð11Þ

and call C½b�
Cas the magnonic Casimir coefficient in the sense

that ECas ¼ C½b�
CasNz

�b.
Note that the zero-point energy arises from quantum fluctuations

and does exist even at zero temperature. The zero-point energy defined

Fig. 2 | Plots of the magnon energy dispersion ϵσ,k,α, the real part of the magnonic Casimir energy Re(ECas), and the imaginary part Im(ECas) for NiO in (i) the gap-
melting regime, (ii) the oscillating regime, and (iii) the beating regime. Inset: Each magnonic Casimir coefficient C½b�

Cas.
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at zero temperature does not depend on the Bose-distribution function
[Eqs. (10b) and (10c)]. Throughout this work, we focus on zero
temperature36.

Magnonic non-Hermitian Casimir effect
Finally, we investigate the magnonic Casimir effect in the non-
Hermitian system α > 0, which we call the magnonic non-Hermitian
Casimir effect, for each regime (i)–(iii). As an example, we considerNiO,
an insulating AFM. From refs. 37,47,48, we roughly estimate the model
parameter values for NiO as follows [Eq. (2)]: J = 47.1 meV,
Kh = 0.039 5 meV,Ke = 0.001 72 meV, S = 1.21, and a = 0.417 nm.NiO is
a biaxial AFM of Kh > 0 and Ke > 0. Due to the hard-axis anisotropy
Kh > 0, the degeneracy between two kinds of magnons σ = ± is lifted in
NiO. These parameters provide αcriσ¼þ ∼ 0:008 54 < αcriσ¼� ∼ 0:041 9. Fig-
ure 2 shows the magnon energy dispersion [Eq. (2)] and the magnonic
Casimir energy [Eq. (10a)] with its Casimir coefficient [Eq. (11)] for each
regime (i)-(iii).

Gap-melting regime. (i) Gap-melting regime α≤ αcriσ¼þ < αcriσ¼�. The
magnonic Casimir energy takes a real value as shown in the middle and
right panels of Fig. 2(i), see also Eq. (11), and there are no magnonic EPs
[see the left panel of Fig. 2(i)].

Whenα < αcriσ¼þ, themagnonenergy gap forbothσ = ± is nonzeroΔσ=

±,α > 0 and both magnons σ = ± are the gapped modes. For each gapped
mode, the absolute value of the magnonic Casimir coefficient C½3�

Cas
decreases and approaches asymptotically to zero as the film thickness
increases. We emphasize that the magnon energy gap decreases as the
damping constant α increases [Eq. (6)]. Then, the magnitude of the
magnonic Casimir energy and its coefficient increase as the value of the
damping constant becomes larger and approaches to the critical value
α ! αcriσ¼þ [see the middle panel of Fig. 2(i)].

When α ¼ αcriσ¼þ, the magnon σ =− remains the gapped mode,
whereas the magnon energy gap for σ =+ vanishes Δσ=+,α = 0 and the
magnon σ =+ becomes the gapless mode which behaves like a relativistic
particlewith the linear energydispersion. In the gaplessmode, themagnonic
Casimir coefficientC½3�

Cas approaches asymptotically to a nonzero constant as
the film thickness increases. The behavior of the gapless magnon mode is
analogous to the conventional Casimir effect of a massless scalar field in
continuous space49 except for a-dependent lattice effects, whereas that of the
gapped magnon modes is similar to the Casimir effect known for massive
degrees of freedom49,50.

Oscillating regime. (ii) Oscillating regime αcriσ¼þ < α < αcriσ¼�. The
magnonic Casimir energy takes a complex value as shown in the
middle and right panels of Fig. 2(ii), see also Eq. (11). There is one EP,
e.g., akcriσ¼þ;α¼0:04 ∼ 0:039 1 for α = 0.04 [see the left panel of Fig. 2(ii)].
Then, the magnonic non-Hermitian Casimir effect exhibits an
oscillating behavior as a function of Nz for the film thick-
ness Lz ≔ aNz.

An intuitive explanation for the oscillation of the magnonic non-
Hermitian Casimir effect and its relation to the EP is given as follows:
Through the lattice regularization, the magnonic Casimir energy is defined
as the difference [Eq. (10a)] between the zero-point energy with the discrete
wavenumber kz [Eq. (10b)] and the one with the continuous wavenumber
[Eq. (10c)].On the lattice, thewavenumberkzunder theboundary condition
is discretized in units of π/aNz as kz→ (π/aNz)n. As the film thickness Nz

increases, the unit becomes smaller, and finally, it matches the EP as
π=aNz ¼ kcriσ;α, i.e., Nz ¼ π=akcriσ;α, where the magnonic non-Hermitian
Casimir effect is enhanced due to the EP. Then, the magnonic non-
Hermitian Casimir effect is periodically enhanced where the film thickness
Nz is multiples of π=akcriσ;α. Thus, the oscillating behavior of the magnonic
non-Hermitian Casimir effect stems from the EP, kcriσ;α, and the oscillation is
characterized in units of π=akcriσ;α.We refer to this oscillating behavior as the
magnonic EP-induced Casimir oscillation. The period of this Casimir

oscillation is

ΛCas
σ;α :¼ π

akcriσ;α
: ð12Þ

As an example, the period is ΛCas
σ¼þ;α¼0:04 ∼ 80:4 for α = 0.04. This agrees

with the numerical result in the middle and right panels of Fig. 2(ii), see the
highlighted in red. We call (ii) αcriσ¼þ < α < αcriσ¼� the oscillating regime. The
middle and right panels of Fig. 2(ii) show that the magnonic EP-induced
Casimir oscillation is characterized by its Casimir coefficientC½b�

Cas of b = 1.5.

Beating regime. (iii) Beating regime αcriσ¼þ < αcriσ¼� ≤ α. The magnonic
Casimir energy takes a complex value as shown in the middle and right
panels of Fig. 2(iii), see also Eq. (11). There are two EPs, kcriσ¼þ;α and
kcriσ¼�;α, which induce two types of the Casimir oscillations characterized
by ΛCas

σ¼þ;α and ΛCas
σ¼�;α, respectively. As an example,

akcriσ¼þ;α¼0:05 ∼ 0:049 2 and akcriσ¼�;α¼0:05 ∼ 0:027 3 provide
ΛCas
σ¼þ;α¼0:05 ∼ 63:8 and ΛCas

σ¼�;α¼0:05 ∼ 115, respectively, for α = 0.05 [see
the left panel of Fig. 2(iii)]. Due to the interference between the two
Casimir oscillations, the magnonic non-Hermitian Casimir effect exhi-
bits a beating behavior as a function ofNz for the film thickness Lz≔ aNz

with a period of

1

j1=ΛCas
σ¼þ;α � 1=ΛCas

σ¼�;αj
: ð13Þ

As an example, the period is j1=ΛCas
σ¼þ;α¼0:05 � 1=ΛCas

σ¼�;α¼0:05j�1 ∼ 143 for
α = 0.05. This agreeswith thenumerical result in themiddle and right panels
of Fig. 2(iii), see the highlighted in blue. We call (iii) αcriσ¼þ < αcriσ¼� ≤ α the
beating regime. The middle and right panels of Fig. 2(iii) show that the
beating behavior of the magnonic EP-induced Casimir oscillation is
characterized by its Casimir coefficient C½b�

Cas of b = 1.5. We remark that the
beating behavior is absent in the uniaxial AFMs of Kh = 0 and Ke > 0 where
two kinds of magnons σ = ± are in degenerate states36.

Imaginary part of the Casimir energy. Here, we discuss the meaning of
the imaginary part of the Casimir energy. The (complex) Casimir energy
is defined by the zero-point energy, which is the sum of all the possible
(complex) eigenvalues. The real part of the zero-point energy originates
from the sum of the real parts of the eigenvalues, whereas the imaginary
part of the zero-point energy is defined as the sum of imaginary parts of
eigenvalues. Since the imaginary parts of eigenvalues are formally
regarded as the decay width (or the inverse of a lifetime) of an unstable
particle, the imaginary part of the zero-point energy is the sum of all the
possible decay widths. Hence, if the decay width of an unstable particle
depends on the wavenumber, and the width in the thin film and that in
the bulk are different from each other, then the imaginary part of the
Casimir energy can be nonzero. In this work, since we focus on magnons
in the geometry of Fig. 1, the imaginary part of magnonic Casimir energy
represents the Lz-dependence of the sum of magnon decay widths.

Discussion
Magnonic Casimir engineering
The Gilbert damping can be enhanced and controlled by the established
experimental techniques of spintronics such as spin pumping36. In
addition,microfabrication technology can control thefilm thickness and
manipulate the magnonic non-Hermitian Casimir effect. The Casimir
pressure of magnons, which stems from the real part of its Casimir
energy, contributes to the internal pressure of thin films. We find from
the middle panel of Fig. 2(ii) and (iii) that depending on the film
thickness, the sign of the real part of the magnonic Casimir coefficient
changes. This means that by tuning the film thickness, we can control
and manipulate the direction of the magnonic Casimir pressure as well
as the magnitude thanks to the EP-induced Casimir oscillation. Thus,
our study utilizing energy dissipation, the magnonic non-Hermitian
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Casimir effect, provides the new principles of nanoscale devices, such as
highly sensitive pressure sensors and magnon transistors51, and paves
the way for magnonic Casimir engineering.

Conclusion
We have shown that as the Gilbert damping constant increases, the non-
Hermitian Casimir effect of magnons in antiferromagnets is enhanced and
exhibits the oscillating behavior which stems from the exceptional point.
This exceptional point-induced Casimir oscillation also exhibits the beating
behavior when the degeneracy between two kinds of magnons is lifted.
ThesemagnonicCasimir oscillations are absent in thedissipationless system
of magnons. Thus, we have shown that energy dissipation serves as a new
handle on Casimir engineering.

Outlook
In this paper, following ref. 37, the effect of dissipation is incorpo-
rated into the energy dispersion relation of magnons through the
Landau–Lifshitz–Gilbert equation. It will be intriguing to find the
quantum effect of dissipation on the magnonic non-Hermitian
Casimir effect, beyond the Landau–Lifshitz–Gilbert equation, by
using quantum master equation29,52–54. We also remark that dipolar
interactions contribute to the form of the dispersion relation55 and
play a crucial role in the magnonic Casimir effect in ferrimagnets31.
Hence, taking dipolar interactions into account, it will be interesting
to develop this study, magnonic non-Hermitian Casimir effect in
antiferromagnets, into ferrimagnets. We leave these advanced studies
for future works.

Methods
Numerical calculation was performed by using the software Wolfram
Mathematica.

Data availability
No datasets were generated or analysed during the current study.
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