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Non-Hermitian Casimir effect of magnons
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There has been a growing interest in non-Hermitian quantum mechanics. The key concepts of quantum
mechanics are quantum fluctuations. Quantum fluctuations of quantum fields confined in a finite-size
system induce the zero-point energy shift. This quantum phenomenon, the Casimir effect, is one of the
most striking phenomena of quantum mechanics in the sense that there are no classical analogs and
has been attracting much attention beyond the hierarchy of energy scales, ranging from elementary
particle physics to condensed matter physics, together with photonics. However, the non-Hermitian
extension of the Casimir effect and the application to spintronics have not yet been investigated
enough, although exploring energy sources and developing energy-efficient nanodevices are its central
issues. Here we fill this gap. By developing a magnonic analog of the Casimir effect into non-Hermitian
systems, we show that this non-Hermitian Casimir effect of magnons is enhanced as the Gilbert
damping constant (i.e., the energy dissipation rate) increases. When the damping constant exceeds a
critical value, the non-Hermitian Casimir effect of magnons exhibits an oscillating behavior, including a
beating one, as a function of the film thickness and is characterized by the exceptional point. Our result

suggests that energy dissipation serves as a key ingredient of Casimir engineering.

Recently, non-Hermitian quantum mechanics has been drawing con-
siderable attention'. The important concepts of quantum mechanics are
quantum fluctuations. Quantum fluctuations of quantum fields under
spatial boundary conditions realize a zero-point energy shift. This quantum
effect which arises from the zero-point energy, the Casimir effect”, is one of
the most striking phenomena of quantum mechanics in the sense that there
are no classical analogs. Although the original platform for the Casimir
effect’”™ is the photon field (See ref. 6, as an example, for an oscillating
behavior of the Casimir effect of photons as a function of distance between
two uncharged plates, where chiral material inserted between the two par-
allel plates plays a key role.), the concept can be extended to various fields
such as scalar, tensor, and spinor fields’™"*. Thanks to this universal property,
the Casimir effects have been investigated in various research areas (As an
example, see refs. 16-22 for Casimir effects in magnets and ref. 23 for a
magnonic analog of the thermal Casimir effect in a Hermitian system. For
details of the distinction between the thermal Casimir effect and the Casimir
effect, refer to Supplemental Material. See also ref. 24 for an analog of the
dynamical Casimir effect with magnon excitations in a spinor Bose-Einstein
condensate.) beyond the hierarchy of energy scales™", ranging from ele-
mentary particle physics to condensed matter physics, together with pho-
tonics. However, the non-Hermitian extension of the Casimir effect and the
application to spintronics remain missing ingredients, although exploring
energy sources and developing the potential for energy-efficient nanode-
vices are the central issues of spintronics™ ™.
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Here we fill this gap. The Casimir effects are characterized by the
energy dispersion relation. We therefore incorporate the effect of energy
dissipation on spins into the energy dispersion relation of magnons
through the Gilbert damping constant™ and thus develop a magnonic
analog of the Casimir effect”, called the magnonic Casimir effect (see
Fig. 1) (In ref. 31, we investigated the Casimir effect induced by quantum
fields for magnons (i.e., a magnonic analog of the Casimir effect) and
referred to it as the magnonic Casimir effect. See ref. 31 for details of the
magnonic Casimir effect in dissipationless systems.), into non-Hermitian
systems. We then show that this non-Hermitian extension of the mag-
nonic Casimir effect, which we call the magnonic non-Hermitian Casimir
effect, is enhanced as the Gilbert damping constant increases. When the
damping constant exceeds a critical value, the magnonic non-Hermitian
Casimir effect exhibits an oscillating behavior as a function of the film
thickness and is characterized by the exceptional point™ (EP). We refer to
this behavior as the magnonic EP-induced Casimir oscillation. We
emphasize that this magnonic EP-induced Casimir oscillation is absent in
the dissipationless system of magnons. The magnonic EP-induced Casi-
mir oscillation exhibits a beating behavior in the antiferromagnets
(AFMs) where the degeneracy between two kinds of magnons is lifted.
Our result suggests that energy dissipation serves as a new handle on
Casimir engineering” to control and manipulate the Casimir effect of
magnons. Thus, we pave the way for magnonic Casimir engineering
through the utilization of energy dissipation.
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Fig. 1| Schematic of magnonic Casimir effect. Magnonic Casimir effect arises from
quantum vacuum fluctuations of magnon fields.

Results

System

We consider the insulating AFMs of two-sublattice systems in three
dimensions described by the Hamiltonian,

H =J%Si S, —Ker<s?)2 OB W

where S; = (5, 5!, 5) is the spin operator at the site 4, ] > 0 parametrizes the
antiferromagnetic exchange interaction between the nearest-neighbor spins
(i,7), Ky, > 0 is the hard-axis anisotropy, and K, > 0 is the easy-axis anisotropy.
These are generally K,/J<1 and K./J< 1. The AFMs have the Néel
magnetic order and there exists the zero-point energy’”. Throughout this
study, we work under the assumption that the Néel phase remains stable in
the presence of energy dissipation. Elementary magnetic excitations are two
kinds of magnons o = +, acoustic mode for o = + and optical mode for o= —.
By incorporating the effect of energy dissipation on spins into the
energy dispersion relation of magnons through the two-coupled
Landau-Lifshitz-Gilbert equation where the value of the Gilbert damping
constant & > 0 for each sublattice is identical to each other, we study the low-
energy magnon dynamics® described by the energy dispersion relation
€ska € C of Re(€sx,) 2 0 and the wavenumber k = (k,, k., k) € R (As
an example, ref. 37 assumes €, , € R and k € C, which describes a
spatially-decaying solution™.) in the long wavelength limit as”

28 . /
ea,k,a = m (—IOtC + (Ea,k,a)2> (2)

and

(Eu,k,a)z = Aa,az(ak)z + 802 - Duzazv (3)
where k := |k|, the length of a magnetic unit cell is g, the spin moment in a
magnetic unit cell is S, and the others are material-dependent parameters

which are independent of the wavenumber, 0<A,, € R, 0<J, € R,
0<D, € R,and 0< C € R: The parameters are given as”

Ay, = \/(1 + oc2)<]2 + a%]),

(42)

8, = VK. (2] +K,) + K,(J — o] + K,), (4b)
2

D, = \/]z—f—aKh]—i—KTh, (40)

C=J+Ke+%. (4d)

In the absence of the hard-axis anisotropy K, =0, two kinds of magnons
o=zare in degenerate states, whereas the degeneracy is lifted by Kj, > 0.
Note that, in general, the effect of dipolar interactions is negligibly small in
AFMs, and we neglect it throughout this study.

The Gilbert damping constant « is a dimensionless constant, and the
energy dissipation rate increases as the Gilbert damping constant grows. In
the dissipationless system®, the Gilbert damping constant is zero & = 0. The
dissipative system of a >0 described by Eq. (2) can be regarded as a non-
Hermitian system for magnons in the sense that the energy dispersion takes
a complex value. Note that the constant term in Eq. (2), —iaC, is inde-
pendent of the wavenumber and just shifts the purely imaginary part of the
magnon energy dispersion €,y ,. For this reason [also see Eq. (10a)], the
constant term, —iaC, is not relevant to the magnonic Casimir effect. We
then define the magnon energy gap of Eq. (2) as Ay, := Re(€x-0,4)> 1.€.»

28 .
g — 1+ o2 Re ( (Ea,k:O,a) ) (5)

Magnonic exceptional point
When the damping constant « is small and (Eo,k=0,oc)2 >0, Egj, takes a
real value and decreases as « increases. This results in

dA

0,0

da

<0. (6)

Thus, the magnon energy gap decreases as the damping constant increases™
[compare the solid line with the dashed one in the left panel of Fig. 2(i)].
When the damping constant is large enough, the magnon energy gap

H — — e
vanishes A, =0at o = af",

o = )

where there exists the gapless magnon mode which behaves like a relativistic
particle with the linear energy dispersion. From the property of Eq. (6), we
call (i) a < aS the gap-melting regime.

When the damping constant exceeds the critical value a7, i.e., o > af,
Egj-0, takes a purely imaginary value as (E,, k=07a)2 <0. In this regime, the
real part of the magnon energy dispersion remains zero Re(e,,) = 0 for the

region 0 < k < k™
. 1 D67
kfa:za UZ‘ 2 Ua (8)
0,0

0,0
whereas Re(€,yq) >0 for k> kf:u [see the highlighted in yellow in the left
panel of Fig. 2(ii) and (iii) . The critical point k7', can be regarded as the EP¥
for the wavenumber k, and we refer to it as the magnonic EP. As the value of

the damping constant becomes larger, that of the EP increases

k5

9
da >0. )

At the EP k = k;rfa, the group velocity v,y 3= Re[0€,y.4/(07k)] becomes

discontinuous [see the solid lines in the left panel of Fig. 2(ii) and (iii)]. In the
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Magnon energy dispersion &
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Fig. 2 | Plots of the magnon energy dispersion €, ,, the real part of the magnonic Casimir energy Re(Ec,;), and the imaginary part Im(Ec,,) for NiO in (i) the gap-
melting regime, (ii) the oscillating regime, and (iii) the beating regime. Inset: Each magnonic Casimir coefficient Cgs.

vicinity of the EP, the group velocity becomes much larger than usual such as
in the gap-melting regime (i) [compare the solid lines in the left panel of
Fig. 2(ii) and (iii) with the one of Fig. 2(i)].

Assuming all | <o, the non-Hermitian system for magnons
described by Eq. (2) of >0 can be divided into three regimes (i)-(iii) in
terms of the magnonic EPs as follows [see the left panel of Fig. 2(i), (ii),
and (iii)]:

(i) a< oc“i <a® . No magnonic EPs.
(i) agt, < (x < occ“ . One EP, k&% o
(ii) th“ <o <a TwoEPs, k&% o and k;’l_ "

Magnonic Casimir energy

The magnonic analog of the Casimir energy, called the magnonic Casimir
energy’, is characterized by the energy dispersion relation of magnons.
Therefore, by incorporating the effect of energy dissipation on spins into the
energy dispersion relation of magnons through the Gilbert damping constant
[Eq. (2)], a non-Hermitian extension of the magnonic Casimir effect can be
developed. We remark that the Casimir energy induced by quantum fields on
the lattice, such as the magnonic Casimir energy ", can be defined by using the
lattice regularization'’~*". In this study, we focus on thin films confined in the z
direction (Fig. 1). In the two-sublattice systems, the wavenumber on the
lattice is replaced as (akj)2 — 2[1 — cos(ak;)] along the j axis for j=x, y, z.
Here by taking into account the Brillouin zone (BZ), we set the boundary
condition for the z direction in wavenumber space so that it is discretized as
k., — nn/L, ie., ak, — mn/N,, where L, := aN, is the film thickness, N; € N
is the number of magnetic unit cells along the j axis, and n=1,2,...,2N,.
Thus, the magnonic Casimir energy Ec,,”' per the number of magnetic unit
cells on the surface for N, is defined as the difference between the zero-point

energy E'™ for the discrete energy €, ., due to discrete k, [Eq. (10b)] and
the one E" for the continuous energy €., [Egs. (10c) and (2)] as follows™™:

ECas(Nz) = E(S)um(Nz) - Egn(Nz)7 (loa)
d*(ak 15
ES™(N,) =) /B z(%)j) 5 Ezeavw , (10b)
== n=1
; d*(ak,) 1 d(ak
E:)m(Nz) = Z ‘/BZ(;LH_);—) {ENZAZ (zanZ) ea,k,(x:|7 (10C)

where k|, = kx2 + kyz, d(ak)) = d(ak,)d(ak,), the integral is over the
first BZ, and the factor 1/2 in Egs. (10b) and (10c) arises from the zero-point
energy of the scalar field.

We remark that™ assuming thin films of N, < N, N, (Fig. 1), the zero-
point energy in the thin film of the thickness N, is ES“'"(N JN,N, and
consists of two parts as E;"™(N,) = E¢,(N,) + EM(N,) [Eq. (10a)], where
EIMY(N,) exhibits the behavior of EM(N,) o¢ N, [Eq. (10c)]. Then, to see the
film thlckness dependence of Ec,s(N,), we 1ntroduce the rescaled Casimir
energy CCaS in terms of N,® for b € R as
%:]LS(N ) - ECas sz (11)
and call Y the magnonic Casimir coefficient in the sense
that E,, = C%‘LN[I’.

Note that the zero-point energy arises from quantum fluctuations
and does exist even at zero temperature. The zero-point energy defined
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at zero temperature does not depend on the Bose-distribution function
[Egs. (10b) and (10c)]. Throughout this work, we focus on zero
temperature™.

Magnonic non-Hermitian Casimir effect

Finally, we investigate the magnonic Casimir effect in the non-
Hermitian system « >0, which we call the magnonic non-Hermitian
Casimir effect, for each regime (i)-(iii). As an example, we consider NiO,
an insulating AFM. From refs. 37,47,48, we roughly estimate the model
parameter values for NiO as follows [Eq. (2)]: J=47.1 meV,
K, =0.039 5meV, K. =0.001 72 meV,S=1.21,and a = 0.417 nm. NiO is
a biaxial AFM of K, >0 and K, > 0. Due to the hard-axis anisotropy
K}, > 0, the degeneracy between two kinds of magnons o = = is lifted in
NiO. These parameters provide a | ~0.008 54 <aS" _ ~0.0419. Fig-
ure 2 shows the magnon energy dlspersion [Eq. (2)] and the magnonic
Casimir energy [Eq. (10a)] with its Casimir coefficient [Eq. (11)] for each
regime (i)-(iii).

Gap-melting regime. (i) Gap-melting regime a<aS®, <o . The
magnonic Casimir energy takes a real value as shown in the mlddle and
right panels of Fig. 2(i), see also Eq. (11), and there are no magnonic EPs
[see the left panel of Fig. 2(i)].

When a < a$ , the magnon energy gap for both o = + is nonzero A,
+4 >0 and both magnons o = + are the gapped modes. For each gapped
mode, the absolute value of the magnonic Casimir coefficient CCis
decreases and approaches asymptotically to zero as the film thickness
increases. We emphasize that the magnon energy gap decreases as the
damping constant « increases [Eq. (6)]. Then, the magnitude of the
magnonic Casimir energy and its coefficient increase as the value of the
damping constant becomes larger and approaches to the critical value

a— ot © _ [see the middle panel of Fig. 2(i)].
When o= af,“ o the magnon o= —remains the gapped mode,

whereas the magnon energy gap for o=~ vanishes A,—, ,=0 and the
magnon o = + becomes the gapless mode which behaves like a relativistic
particle with the hnear energy dispersion. In the gapless mode, the magnonic
Casimir coefficient CC approaches asymptotically to a nonzero constant as
the film thickness increases. The behavior of the gapless magnon mode is
analogous to the conventional Casimir effect of a massless scalar field in
continuous space® except for a-dependent lattice effects, whereas that of the
gapped magnon modes is similar to the Casimir effect known for massive
degrees of freedom™*.

Oscillating regime. (ii) Oscillating regime o, <a<al_. The
magnonic Casimir energy takes a complex Value as shown in the
middle and right panels of Fig. 2(ii), see also Eq. (11). There is one EP,
e.g, akil . 0 04~0.0391 for a=0.04 [see the left panel of Fig. 2(ii)].
Then, the magnonic non-Hermitian Casimir effect exhibits an
oscillating behavior as a function of N, for the film thick-
ness L, :=aN,.

An intuitive explanation for the oscillation of the magnonic non-
Hermitian Casimir effect and its relation to the EP is given as follows:
Through the lattice regularization, the magnonic Casimir energy is defined
as the difference [Eq. (10a)] between the zero-point energy with the discrete
wavenumber k, [Eq. (10b)] and the one with the continuous wavenumber
[Eq. (10¢)]. On thelattice, the wavenumber k, under the boundary condition
is discretized in units of 77/aN; as k, — (n/aN,)n. As the film thickness N,
increases, the unit becomes smaller, and finally, it matches the EP as
n/aN, = ki, ie, N, =/ akm , where the magnonic non-Hermitian
Casimir effect is enhanced due to the EP. Then, the magnonic non-
Hermitian Casimir effect is periodically enhanced where the film thickness
N, is multiples of 77/akS",. Thus, the oscillating behavior of the magnonic
non-Hermitian Casimir effect stems from the EP, kc" ,and the oscillation is
characterized in units of 77/ak",. We refer to this oscﬂlatlng behavior as the
magnonic EP-induced Ca51m1r oscillation. The period of this Casimir

oscillation is

7
Age =g (12)

o,
As an example, the period is AS® '+ a=004 ~ 80.4 for a=0.04. This agrees
with the numerical result in the middle and right panels of Fig. 2(ii), see the
highlighted in red. We call (ii) a5, <a <aS™ _ the oscillating regime. The
middle and right panels of Fig. 2(11) show that the magnonic EP-induced
Casimir oscillation is characterized by its Casimir coefficient C[c;]xs ofb=15.

Beating regime. (iii) Beating regime a5 | <aS _<«. The magnonic
Casimir energy takes a complex value as shown in the middle and right
panels of Fig. 2(iii), see also Eq. (11). There are two EPs, k{ 'i —t and
k;Z _ ,» which induce two types of the Casimir oscillations characterized
by Ag” ' o and AS® . respectively. As an  example,
ak, 005 ~0.0492 and akgL_ 4p05~0.0273 provide
AUC“+ w005~ 63.8 and AS* a=0.05 ~ 115, respectively, for a=0.05 [see
the left panel of Fig. 2(iii)]. Due to the interference between the two
Casimir oscillations, the magnonic non-Hermitian Casimir effect exhi-
bits a beating behavior as a function of N, for the film thickness L, := aN,

with a period of

1
_ I/ACas

0o=— (X

|1/ACas (13)

As an example, the period is |1/AG, o5 — 1/ASE 5| " ~ 143 for
o = 0.05. This agrees with the numerical result in the middle and right panels
of Fig. 2(iii), see the highlighted in blue. We call (iii) zxé'; <ol <athe
beating regime. The middle and right panels of Fig. 2(iii) show that the
beating behavior of the magnonic EP-induced Casimir oscillation is
characterized by its Casimir coefficient Cgs of b=1.5. We remark that the
beating behavior is absent in the uniaxial AFMs of K}, = 0 and K, > 0 where
two kinds of magnons o = + are in degenerate states™.

Imaginary part of the Casimir energy. Here, we discuss the meaning of
the imaginary part of the Casimir energy. The (complex) Casimir energy
is defined by the zero-point energy, which is the sum of all the possible
(complex) eigenvalues. The real part of the zero-point energy originates
from the sum of the real parts of the eigenvalues, whereas the imaginary
part of the zero-point energy is defined as the sum of imaginary parts of
eigenvalues. Since the imaginary parts of eigenvalues are formally
regarded as the decay width (or the inverse of a lifetime) of an unstable
particle, the imaginary part of the zero-point energy is the sum of all the
possible decay widths. Hence, if the decay width of an unstable particle
depends on the wavenumber, and the width in the thin film and that in
the bulk are different from each other, then the imaginary part of the
Casimir energy can be nonzero. In this work, since we focus on magnons
in the geometry of Fig. 1, the imaginary part of magnonic Casimir energy
represents the L,-dependence of the sum of magnon decay widths.

Discussion

Magnonic Casimir engineering

The Gilbert damping can be enhanced and controlled by the established
experimental techniques of spintronics such as spin pumping®. In
addition, microfabrication technology can control the film thickness and
manipulate the magnonic non-Hermitian Casimir effect. The Casimir
pressure of magnons, which stems from the real part of its Casimir
energy, contributes to the internal pressure of thin films. We find from
the middle panel of Fig. 2(ii) and (iii) that depending on the film
thickness, the sign of the real part of the magnonic Casimir coefficient
changes. This means that by tuning the film thickness, we can control
and manipulate the direction of the magnonic Casimir pressure as well
as the magnitude thanks to the EP-induced Casimir oscillation. Thus,
our study utilizing energy dissipation, the magnonic non-Hermitian
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Casimir effect, provides the new principles of nanoscale devices, such as
highly sensitive pressure sensors and magnon transistors’', and paves
the way for magnonic Casimir engineering.

Conclusion

We have shown that as the Gilbert damping constant increases, the non-
Hermitian Casimir effect of magnons in antiferromagnets is enhanced and
exhibits the oscillating behavior which stems from the exceptional point.
This exceptional point-induced Casimir oscillation also exhibits the beating
behavior when the degeneracy between two kinds of magnons is lifted.
These magnonic Casimir oscillations are absent in the dissipationless system
of magnons. Thus, we have shown that energy dissipation serves as a new
handle on Casimir engineering.

Outlook

In this paper, following ref. 37, the effect of dissipation is incorpo-
rated into the energy dispersion relation of magnons through the
Landau-Lifshitz-Gilbert equation. It will be intriguing to find the
quantum effect of dissipation on the magnonic non-Hermitian
Casimir effect, beyond the Landau-Lifshitz-Gilbert equation, by
using quantum master equation”***. We also remark that dipolar
interactions contribute to the form of the dispersion relation® and
play a crucial role in the magnonic Casimir effect in ferrimagnets’'.
Hence, taking dipolar interactions into account, it will be interesting
to develop this study, magnonic non-Hermitian Casimir effect in
antiferromagnets, into ferrimagnets. We leave these advanced studies
for future works.

Methods

Numerical calculation was performed by using the software Wolfram
Mathematica.

Data availability

No datasets were generated or analysed during the current study.
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