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Multiferroic kinks and spin-flop transition
in Ni2InSbO6 from first principles
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Magnetoelectric multiferroics are key materials for next-generation spintronic devices due to their
entangledmagnetic and ferroelectric properties. Spiral multiferroics possess ferroelectric polarization
andareparticularly promising for electric control ofmagnetismandmagnetic control of ferroelectricity.
In this work, we uncover long-period incommensurate states characterized by unique multiferroic
kinks in corundum nickelate Ni2InSbO6, a member of a promising family of polar magnets. Utilizing a
2-orbital S = 1 model, we derive formulas for Heisenberg and anisotropic magnetic exchanges and
magnetically-induced polarization, enabling their calculations from first principles. We use these
parameters in Monte Carlo and Landau theory-based calculations to reproduce experimentally
observed magnetic structures and polarization dependence on the magnetic field. We predict
magnetic phase transitions between flat spiral, conical spiral, canted antiferromagnetic and
ferromagnetic states under increasing magnetic fields. Kinks in the spiral phases repel each other
through aYukawa-like potential arising fromexchange ofmassivemagnons.We also find that suitably
directed electric fields can be used to stabilize the ferromagnetic and spiral states. The findings open a
new pathway to predictive first-principles modelling of multiferroics and will inspire experiments and
technological applications based on multiferroic kinks.

In magnetoelectric multiferroics, a magnetic order coexists and interacts
with a ferroelectric one. Several microscopic scenarios of why such coex-
istence may occur and how the magnetic order can affect the electric
polarization have been established1–5 and the work is rapidly progressing in
this direction. Understanding such interactions between the magnetic and
electric degrees of freedom is of great importance from both the funda-
mental and practical points of view. A special attention is paid to themutual
control of the magnetic structure and the electric polarization by applying
the magnetic or electric field. For instance, the external magnetic field can
control the magnetic structure, while also changing the ferroelectric
polarization. Conversely, the external electricfield can be used to control the
magnetic structure6.

There are two main types of multiferroic (MF) materials4. In type-I
multiferroics the crystal structure itself is ferroelectric, irrespectively of the
magnetism. However, the electric polarization can still be controlled by
changing the magnetic structure. In type-II MF the crystal structure is
centrosymmetric, but the inversion symmetry can still be broken by a
magnetic order, which leads to the ferroelectric polarization. An interesting
aspect of the type-I materials is that many of them develop chiral magnetic
structure, driven by antisymmetric Dzyaloshinskii-Moriya (DM)

interactions in the non-centrosymmetric crystal structure. This chirality can
be controlled by the magnetic field, presenting another interesting avenue
for magnetoelectric control in type-I materials. For instance, a very special
type of the chiral magnetic structure is the skyrmion lattice, which has been
intensively studied in the context of MF applications in Cu2OSeO3 and
GaV4S8

7,8.
Ni2InSbO6 (NISO) is one of such chiral MFs. Its low temperature

structure has a polar (non-centrosymmetric) rhombohedral R3 space
group9,10 similar to well known MF corundum derivative Ni3TeO6

11,12. A
number of polar corundum derivatives have recently been synthesized and
materials with above room temperature magnetism have been found13,14.
These are promising candidates formagnetoelectric applications, in someof
which polarization switching has been predicted 15. Previous studies16

revealed an incommensurate antiferromagnetic proper-screw spiral (helix)
within eachNi layer, with a long periodicity of 30 unit cells. The polarization
along the threefold rotation axis changes quadratically with the magnetic
field due to variations in the spiral order induced by the field16. In addition,
recent experiments have revealed a spin-flop (SF) transition upon applying
themagneticfield along the threefold rotationaxis17,18.However, thedetailed
microscopic analysis of these observations is lacking. The
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phenomenological mechanisms of the magneto-electric coupling con-
sidered so far19–21 are not universal and are influenced by system-dependent
factors. Therefore, it is important to construct realistic models of these
materials with interacting spins and magnetically-induced polarization,
starting from the modern theory of polarization in terms of Berry phases
and Wannier centers22–24 and using model parameters obtained from first-
principles calculations. According to such calculations in the generalized
gradient approximation (GGA), NISO can be regarded as an S = 1material.
In the corundum structure, each Ni2+ ion is located in a distorted octahe-
dron of O2− ions. Therefore, the Ni 3d states split into triply degenerate t2g
and double degenerate egmanifolds. The t2g states are fully occupied and do
not significantly contribute to magnetism. On the other hand, the eg states
are half-filled and form a group of narrow bands near the Fermi level, which
are mainly responsible for the S = 1 physics. Thus, we can greatly simplify
our analysis by constructing the 2-orbital model for these bands and
extracting all parameters of the model from the first principles calculations
in the Wannier basis.

Here we model the exchange interactions and magnetically-induced
polarization emerging from such realistic 2-orbital eg model at the half-
filling. After extracting the parameters of electronic Hubbard-like model
from the first principles calculations, we employ the superexchange theory,
which in our case is formulated as a first-order perturbation theory for the
Wannier functions with respect to the hopping parameters. For the
exchange interactions, the treatment is equivalent to the standard second-
order perturbation theory for the magnetic energy, which in the Wannier
basis results in the expression for the spin dependent electric polarization.
Our models highlight the emergence of intriguing cross-coupling phe-
nomena inNISO. Specifically, we explore the SF transitions and a crossover
to the multiferroic kink array state, both induced by the external magnetic
field along the threefold axis. The kinks contribute ferroelectric polarization
opposite to that of the collinear state and their energetics can be rationalized
in terms of repulsion through the Yukawa-like potential and the competi-
tion between the DM and magnetic field setting their chemical potential.

Additionally, using a continuous theory, we explore the possibility of cross-
control of magnetic (electric) order by an electric (magnetic) field.

Results
Basic electronic structure, electronic and spin model for NISO
Results of electronic structure calculations using the experimental crystal
structure, shown in Fig. 1a10, inGGA25,26 with the spin-orbit coupling (SOC)
for a nonmagnetic state are illustrated in Fig. 1e. These calculations clearly
reveal two groups of the Ni 3d bands: six t2g bands (per two Ni sites)
around− 1 eV and four eg bands around the Fermi level. In NISO, the t2g
bands are fully occupied and nonmagnetic, while the magnetic properties
are mainly associated with the eg bands. Therefore, we pick this group of
states to construct a realisticHubbard-typemodel, whichwould capture the
magnetic behavior of NISO. Such Hubbard model has the form:

Ĥ ¼P
ij

P
ab

P
σσ0

tabσσ
0

ij ĉyiaσ ĉjbσ 0 þ Hon�site; ð1Þ

where a and b ( = 1 or 2) label the eg orbitals, andHon-site stands for the on-
site Coulomb interactions, which are specified by the intra-orbital
interaction U, Hund’s coupling JH and inter-orbital interaction
U 0 ¼ U � 2JH

27. ĉyiaσ (̂ciaσ) in Eq. (1) stands for the creation (annihilation)
of an electron on the Wannier orbital a of the Ni site i with the spin σ. The
parameters of the one-electron part, tabσσ

0
ij , are defined as the matrix

elements of GGA Hamiltonian in the Wannier basis. Since the basis is
complete for the eg bands, these parameters perfectly reproduce the original
band structure in GGA (see Fig. 1e). The main sources of the SOC in NISO
are the 5p states of the heavy In/Sb atoms. Therefore, it is important to
include the SOC before the wannierization, at the level of regular GGA
calculations. Then, although theWannier functions are formally associated
with theNi eg states, the SOCof the heavy In/Sb atomswill still contribute to
thematrix elements tabσσ

0
ij , which canbediagonal aswell as off-diagonalwith

respect to the spin indices.

Fig. 1 | Crystal structure and electronic structure
of NISO. aHexagonal cell of NISO. bNi ions in the
hexagonal cell. Only the closest neighbors coupled
with exchange constants J1 and J2 are shown with
yellow and gray lines, respectively. c J1 and J2 bonds
from side view and top view around a Ni ion.
d Definition of DM vector parameters. This figure
explicitly depicts parameters for α = 1 bond type.
e Electronic structure of a rhombohedral unit cell of
NISO around Fermi level calculated within GGA
(solid black line) and 2-orbital model constructed by
MLWFmethod (cyan dashed line). The inset shows
a schematic of the k-path in the Brillouin zone for
the rhombohedral unit cell.
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Next, we map this low energy electronic model onto the spin model
employing for these purposes the superexchange theory. In the atomic limit,
the ground state corresponding to the high-spin S = 1 state at half-filling is
described by the single Slater determinant. The same holds for the one-
electron and one-hole eg states emerging in the superexchange theory in the
process of virtual excitations. Therefore, here we essentially deal with the
one-electron theory. This results in the spin Hamiltoninan:

Hs ¼
X
<ij>

�Jij~ei �~ej þ ~Dij � ð~ei ×~ejÞ þ~ei � ⃡Γij~ej
� �

; ð2Þ

where~ei stands for the classical spin vector at site i, the first term is the
isotropic interaction, the second term is the anisotropic Dzyaloshinskii-
Moriya interaction and the last term is the (traceless) symmetric exchange
anisotropy28.

Similarly, the expression for the magnetically-induced polarization is
given by

~Ps ¼
X
<ij>

~Pij~ei �~ej þP⃡ij � ð~ei ×~ejÞ þ~ei � Π⃡ij~ej
� �

; ð3Þ

where the first term describes isotropic exchange striction, while the fol-
lowing terms originate form the antisymmetric and the (traceless) sym-
metric anisotropy29–31. This model is derived in the framework of the
modern theory of polarization in solids22–24, using perturbation expansion of
the Wannier functions.

Since the R3 group has only one three-fold rotation axis (along z in the
chosen coordinates), all bonds with the same distance should be trans-
formed into each other by the Ĉ

z
3 rotation. To illustrate this, consider the

bonds surrounding aNi ion labeledas 0 in Fig. 1c.We index itsNi neighbors
in the layer above as j = 1, 2, 3, which are classified as bond type α = 1.
Conversely, the Ni ions in the layer below, indexed as j = 4, 5, 6 and cate-
gorized as bond type α = 2, are at a slightly longer distance. The vectors
connecting ion 0 with ions j = 1, 2, 3 are expressed as
~ϵ0j ¼ ðϵk0j cosð2πj=3Þ; ϵk0j sinð2πj=3Þ; ϵ?0jÞ, where ϵk0j and ϵ?0j are the lengths
of the vector components parallel and perpendicular to the Ni layer,
respectively (see Fig. 1d). For j = 4, 5, 6, similar formula applies, with the
same ϵk0j, but a slightly different ϵ

?
0j and with the arguments of sin and cos

incremented by π. Then, the DM vectors are as follows:

~D
α

0j ¼ dkα cos θ
0
j;α; d

k
α sin θ

0
j;α; d

?
α

� �
; ð4Þ

where θ0j;α ¼ 2πj=3þ θα, d
?
α and dkα are bond-dependent parameters. The

DM vectors are antisymmetric: ~D
α

j0 ¼ �~D
α

0j. Similarly, contributions from
the isotropic (Heisenberg) exchange to the magnetically-induced polariza-
tion (first term of Eq. (3)) are as follows:

~P
α

0j ¼ pkα cos θ
0
j;α; p

k
α sin θ

0
j;α; p

?
α

� �
; ð5Þ

with symmetric~P
α

j0:~P
α

j0 ¼~P
α

0j.
An additional single-ion term is allowed in systems S > 1/2. However,

in the subsequent discussion, we neglect this term, expecting its effect to be
minor since theorbital angularmomentummatrix elements vanishbetween
eg orbitals, making SOC inactive. Indeed, in our 2-orbital model, the energy
splitting due to SOC inside S = 1 triplet results in very tiny ΔE ≈ 7 μeV (see
Supplementary Note 2). Turning to the magnetically-induced polarization,
we calculate the single-ion termby the formula given in ref. 32.However, we
also neglect this term as it is spin-independent in this 2-orbital model.

We derive analytical formulas for the symmetric and antisymmetric
exchange constants in (2) and magnetically-induced electronic component
of the polarization in (3) from the 2-orbital model following the strategy
used in refs. 30,31 (see “Methods” for the derivation). For exchange

interactions we have:

Jij ¼ 1
3ΔE

P1;2
αβ

�3 t0αβij

� �2
þ Trðtαβij � tαβij Þ

� �
;

~Dij ¼ 2
ΔE

P1;2
α;β

t0αβij tαβij ;

⃡Γij ¼ 2
ΔE

P1;2
α;β

tαβij � tαβij � 1
3 Trðt

αβ
ij � tαβij Þ1⃡

h i
;

ð6Þ

while the parameters formagnetically-induced electronic component of the
polarization have the form:

~Pij ¼ � 2e
3VΔE

P1;2
α;β

3~r0αβij t0αβij � Tr ~rαβij � tαβij
� �� �

;

~Pij ¼ � 2e
VΔE

P1;2
α;β

t0αβij ~rαβij þ~r0αβij tαβij
� �

;

Π⃡ij ¼ � 2e
VΔE

P1;2
α;β

~rαβij � tαβij þ tαβij �~rαβij � 2
3 Tr ~rαβij � tαβij
� �

1⃡
� �

;

ð7Þ

whereΔE =U+ JH, t
αβ
ij and~rαβij are the spindependentmatrix elements of the

hopping and position operator, correspondingly, expanded in Pauli matrices

as t̂ij ¼ t̂
0
ij � σ̂0 þ

Px;y;z
γ ît

γ
ij � σ̂γ, ~̂rij ¼ ~̂R 0

ij � σ0 þ
P

γ0 i~̂R
γ0

ij � σ̂γ0 , 1⃡ is a

3 × 3 identity matrix. Jij and ~Pij are the symmetric isotropic (Heisenberg)
exchange (scalar) andexchange striction (vector),while the consecutive terms
describe antisymmetric (Dzyaloshinskii-Moriya) exchange and symmetric
anisotropic (Ising-like) interactions, respectively. The exchange parameters
obtainedwith thismethodare summarized inTables1and2.Wefind that the
significant exchange interactions in NISO predominantly originate from the
bonds between Ni2 and its Ni neighbors in the layer above (ions 1,2,3,
exchange constant J1) and below (ions 4,5,6, exchange constant J2), as shown
in Fig. 1c. The obtained parameters obey J2 < J1, which can be understood
considering geometric Ni-O-Ni angles, ∠(Ni-O-Ni, J1) = 129.38∘ and ∠(Ni-
O-Ni, J2) = 136.75

∘. Typically, the half-filled 2-orbital model predominantly
yields AFM interactions, with FM contributions manifesting as effective
suppressions in the AFM iteraction constants. According to the
Goodenough-Kanamori rule33, the bond angle ∠(Ni-O-Ni, J1) being close
to 90∘ compared to∠(Ni-O-Ni, J2), leads to J1 receiving compensations by the
ferromagnetic contributions. Consequently, this results in a smaller
magnitude of J1 compared to J2.

We note that the 2-orbital model parameters also provide insight into
importance of different terms in Eq. (2) and Eq. (3). As for the magnetic

Table 1 | Values of isotropic exchanges and DMparameters in
NISO [meV]

Bond α Dist. Jα dk
α d?

α
θα [Deg.]

1 3.821 −6.872 1.255 1.046 138

2 3.912 −13.095 1.833 −1.053 64

Table 2 | Values of isotropic term for polarization and
corresponding parameters in NISO [μC/m2]

Bond α Dist. pk
α p?

α θα [Deg.]

1 3.821 449 −138 75

2 3.912 613 242 180
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energy, isotropic and antisymmetric exchange contributions are found to be
non-negligible (see Supplementary Note 1 for the values of the symmetric
anisotropy tensor components). Actually, the relativemagnitudes of isotropic
and DM interactions indicate that the symmetric anisotropic exchange is
inherently small. This fact aligns with Moriya’s paper28 and our analytical
formulas (6). These state that the DM interaction is first-order in SOC,
whereas the symmetric anisotropy is second-order in SOC. Among the
contributions to the polarization, only the isotropic term is found non-
negligible. Therefore, in the following we focus mainly on these terms. The
actual valuesof theanisotropic termsof themagnetically-inducedpolarization
and their small effects are detailed in SupplementaryNote 3. Consequently, in
the followingwe primarily focus on the isotropic exchange, theDMexchange
and the isotropic term of the magnetically-induced polarization.

We note that the antiferromagnetic contribution overestimates the
exchange parameters as the 2-orbital model does not take into account
ferromagnetic contributions from t2gorbitals andHund’s couplings onnon-
magnetic ions accurately. Additionally, the relatively small value of the
denominator in superexchange theory, specifically ΔE = 2.9 eV, further
contributes to potential overestimations in the overall exchange parameters.
Using these parameters in the Monte-Carlo simulations in a 30 × 30 × 1
simulation box with periodic boundary conditions, we obtain the transition
temperature, overestimating the experimental one by approximately a
factor of two. The transition temperature was identified by the peak in the
heat capacity in Monte-Carlo simulations using the calculated parameters
(Supplementary Note 5). Nevertheless, we emphasize that themain physics
discussed in the following is purely originating from the relative strength
between isotropic and anisotropic exchanges.

Magnetic structures in NISO
Wenowdiscuss themagnetic ground state obtained from the single-q spiral
Ansatz analysis inNISO. The 2-orbial parameters show that the J1 and J2 are
very strong andAFM.Thus,we can expect spins in the neighboring layers to
be opposite. Since there are four Ni layers in the hexagonal cell, Fig. 1a, the
period of the AFM order coincides with the length of the hexagonal c-axis,
thus, we have ~qC ¼ ð0; 0; 0Þ. DM interactions modify q-vector from a
commensurate phase to an incommensurate one by δ~q. The 2-orbitalmodel
parameters show that those bonds fulfill a relation dkα > d

?
α . This stabilizes

spin-spiral states with the propagation vector within the layer. Namely, the
q-vector is modified as ~qIC ¼~qC þ δ~q ¼ ðδqx; δqy; 0Þ. Then, we can

consider the situation given in Fig. 2a, where the spin spiral propagates
within a Ni layer.

Magnetic energy contributions from isotropic (Eiso) and DM (EDM)
interactions are

Es ¼ Eiso þ EDM

¼ 1
4 ðJ1 þ J2Þ 12� δq2x � δq2y

� �n
� 2

ffiffiffi
3

p
δqx dk1 sinðθ1 � ϕÞ þ dk2 sinðθ2 � ϕÞ� �

� 2
ffiffiffi
3

p
δqy dk1 cosðθ1 � ϕÞ þ dk2 cosðθ2 � ϕÞ� �o

:

ð8Þ

Then, we take derivative of the energy with respect to δqx and δqy, and
find the energy minimum at δ~q,

δqx ¼
ffiffiffi
3

p �dk1 sinðθ1 � ϕÞ � dk2 sinðθ2 � ϕÞ� �
=ðJ1 þ J2Þ

δqy ¼
ffiffiffi
3

p �dk1 cosðθ1 � ϕÞ � dk2 cosðθ2 � ϕÞ� �
=ðJ1 þ J2Þ:

(
ð9Þ

Thewavevector components are plotted inFig. 2ausing theparameters
from the 2-orbital model. We see that, approximately,
ðcos ϕ; sin ϕ; 0Þ ? n̂?, thus, a cycloidal spiral state (Fig. 2b), while the
experiment reported a proper-screw spiral state. However, the wave vector
and the spiral period, δqAns ≈ 0.034 (29 unit cells) are in a good agreement
with reported experimental values δq ≈ 0.029 (30 unit cells)9. Additionally,
the symmetric anisotropic interactions tilt the spin-spiral plane. The cal-
culated parameter actually give a small rotation ≈ π/8 (see Supplementary
Note 1). Another parameter set, calculated fromGreen’s functionmethod34,
gives a proper-screw type spiralwith a very longwave length of 142unit cells
(δqGF ≈ 0.007; see Supplementary Note 4). Since the spin spiral type is not
important for the following discussion of magnetic kink generation and
magnetically-induced polarization, we use a cycloidal spiral as the ground
state of NISO.We note that in this mean-field analysis, the energy does not
depend on the rotation of the spiral plane ϕ. This can be straightforwardly
confirmed by substituting the analytical formula for the spiral wave vector
Eq. (9) into the energy Eq. (8). The resulting formula yields
Es ¼ 3ððdk1Þ

2 þ ðdk2Þ
2 þ 2dk1d

k
2 cosðθ1 � θ2Þ þ 4ðJ1 þ J2Þ2Þ=ð4ðJ1 þ J2ÞÞ,

thus, independent of ϕ.

Fig. 2 | Magnetic ground state as obtained from
the single-q spiral Ansatz. a Definition of the spin-
spiral parameters. b The components of δqmini-
mizing the energy as a function of the spin rotation
plane orientation (given by a polar angle ϕ, where the
rotation plane normal is n̂? ¼ ð� sinϕ; cosϕ; 0Þ).
The energy is minimized by δq∼ ðcosϕ; sinϕ; 0Þ
which is perpendicular to n̂?, giving rise to a
cycloidal spiral. The horizontal axis indicates the
rotation of the spin-spiral plane. c The cycloidal
spiral ground state for the Hamiltonian, with mag-
netic exchange constants derived from our super-
exchange theory. Black lines connecting the sites and
spins of neighbors are drawn as a guide.
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In order to understand the magnetic ground state and the response to
the externalmagneticfields inNISO,we also perform classicalMonte-Carlo
simulations (MCS) of the spin model Eq. (2) with the 2-orbital parameters.
Incorporating the Zeeman term�PiHze

z
i , simulations are carried out on a

30 × 30 × 1 supercell with periodic boundary conditions.
OurMCS reveal the emergence of an anticipated spiral ground state, see

Fig. 3a. This result validates the applicability of our single-q spiral Ansatz.
Upon the application of an externalmagnetic field perpendicular to the layer,
a SF transition is found. This supports the observations reported in
refs. 16–18. Remarkably, before the SF transition, we observe the solitons,
favored by DM interaction, shrinking, while the regions between them, with
spins along the magnetic field, experiencing a notable increase (Fig. 3b). In
comparison to the experimentally determined transition field of approxi-
mately 20 T, our calculations yield an overestimated field of approximately
100 T. This discrepancy is attributed to the overestimated exchange para-
meters andfinite size effects in theMCS.Despite the successof theMCS,finite
size effects significantly influence important spiral deformations by forcing
the spiral to be commensurate with the simulation box. Therefore, in the
followingwe derive and employ a continuousGinzburg-Landau-type theory.

1D continuous model
Application of the externalmagneticfield canmodify the spiral period. Such
a phenomenon, often elusive inMCSdue tofinite size limitations, can result

in overlooking of interesting physics like spiral period changes. For instance,
De Gennes investigated modifications of the solitonic lattice period by an
external magnetic field in liquid crystals35 and concluded that the spiral
period follows the analytical expression:

LðHz Þ
Lð0Þ ¼ 2

π

� �2
KðkÞEðkÞ; ð10Þ

where L(0) is the original period of the perfect spiral at zero field, and K(k),
E(k) are elliptic integrals of the first and second kind, respectively. Here, we
formulate a continuous theory to capture such period changes and resulting
magnetically-inducedpolarizationwithout any restrictionof theperiodicity.
As we see from MCS, the obtained magnetic structures are quasi-1D,
therefore we can effectively model NISO as a 1D-chain. This is due to the
following reasons. First, the spiral lies in the xy-plane. Second, important

exchanges are only J1 and J2 bonds. They involve the group of bonds

connected by the Ĉ
z
3 operation. Those give rise to the energy expression

identical to that of a 1D chain.

Figure 4 shows the spin-spiral ground state and the states it deforms into
under an external magnetic field perpendicular to the layer, as obtained by
minimizing 1D AFM continuous chain energy in Eq. (37). First, application
of an externalmagneticfield generates a kink array state (Fig. 4c, g, k): instead
of rotating in space with the constant wave vector, antiferromagnetic order
parameter now rotates in a non-uniform fashion. Indeed, when~A is pointing
perpendicular to the magnetic field ~H, sublattices cant along the field, which
leads to a gain ofZeeman energy, linear in the canting angle (at the expense of
the quadratic loss in the antiferromagnetic exchange energy between the
sublattices). Thus, the regions with ~A ? ~H expand, forming plateaus in Ax

(Fig. 4c), which increases the gain of the Zeeman energy on canting. In
contrast, between theplateaus, kinks inAx (or solitons)occurwhere~A quickly
rotates through the field direction. At these points, one sublattice aligns with
thefield andanother–opposite to it, and therefore the gain ofZeemanenergy
on the canting is not possible. The shape of these kinks is analogous to the
solitons in nonlinear dynamics because they are solutions of the Sine-Gordon
equation. The continuousmodel reveals thatwith further increase of the field
strength, the kinks are pushed apart. At a higherfield, theflat spiral turns into
a conical one and its plane flops perpendicular to thefield (Fig. 4b, f, j), which
enables a higher gain ofZeemanenergy fromspin canting along thefield. The
kinks, present both in the flat and conical spiral phases, can be viewed as
particles interacting with each other via exchange of magnons. Further
increase of the magnetic field strength drives the transition into SF phase.
These transitions are very similar to the one found in our MC simulations
(Fig. 3b). However, in this continuous theory, the transition is much
smoother due to unrestricted simulation box size.

Fig. 3 | Magnetic structures as obtained from the Monte-Carlo simulations.
aMagnetic ground state of NISO as obtained from classical Monte-Carlo simula-
tions. The red rectangle indicates the area, for which we show the spin texture in
Panel (b). bMagnetic structure inside the area, indicated by the red box in Panel (a)
for different values of an external magnetic field, perpendicular to the spiral plane
(three-fold rotation axis).

Fig. 4 | Spin-spiral evolution by an external mag-
netic field as obtained from our continuous
spin model. a–d Continuous spin, e–h real space
continuous spin textures and (i–l) sphere area cov-
ered by each spin array as calculated using the
continuous model Eq. (37) at several external mag-
neticfield strengthsHz. a, e, i SF state; (b, f, j): conical
spiral; (c, g, k): kink state; (d, h, l): flat spiral state.
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In the kink array phase, fast change of the angle θ near the kink at
position X results in a delta function-like change of the gradient
∂θ
∂x / δðx � XÞ. In this case, the interactions between kinks are found by
solving Euler-Lagrange equation for the magnetic structure deformation,
inducedby the soliton, and result in the following interactionbetweenkinks,

VðrÞ ¼ D
4βJ

	 

e�βr; ð11Þ

where β ¼
ffiffiffiffiffiffiffiffiffiffi
Hz=J

p
, and r is the distance between the kinks. This Yukawa-

like interaction can be understood as a long-range repulsion caused by
exchanging virtual massive magnons (similar to how Coulomb interaction
is caused by exchanges of virtual massless photons). High magnetic field
results in the enlargementof the areawith~A ? ~H becauseof the exponential
dependence on Hz in Eq. (11). This is reminiscent of physics found in
multiferroic TbFeO3

36.
Figure 5 illustrates the relationship between spiral period and the

polarization change. Our continuous theory predicts a period change that
closely matches De Gennes’s analytical formula Eq. (10). Then, the differ-
ence in the polarization (computed as a dipolemoment of the cluster in Fig.
1c divided by the volume) between spiral and SF states is given as:

ΔPiso
z ¼ Piso

SF;z � Piso
spiral;z ≈ π2δq2ðp?1 þ p?2 Þ: ð12Þ

Themodel parameters result in a very small change due to the isotropic
exchange, ΔPiso

z ¼ 0:923 μC/m2. Such a minor polarization change is likely
to be imperceptible in experiments. In the first step (flat spiral phase), a
change in polarization is induced by a change in the spiral period (kink
distance). In the second step (conical phase, above 16 T, indicated by a
dotted line in Fig. 5), the curve shows a sharp increase of polarization
resulting from a ferromagnetic component developing in xy-plane due to
the SF contribution.

Figure 6 illustrates the phase diagram in the (Hz, Ez) plane. Here we
account for the electric field perturbatively by introducing the lowest order
energydensity correction− EzPz.Wefind that a small electricfield along the
ferroelectric polarization stabilizes SF state while an oppositefield favors the
flat spiral. Asymmetry with respect to the sign of Ez is caused by the non-
centrosymmetric structure ofNISO,with thepyroelectric polarization set by
a specific cation ordering. The Pz contributions from the spiral and FM
states are opposite, therefore they are stabilized by opposite electric fields.
We note that the largemagneticfield continuously deforms the SF state into
the FM state.

Polarization change during spin flop-to-FM transition
OurMCS results indicate the transition from SF phase to the FM state as we
apply an external magnetic field (Fig. 7a). Notably, the experimental data
reveals a much greater polarization change during this transition when
compared to the change between the spiral and the SF phases. During this
process, we can express the isotropic exchange contribution to the polar-
ization as follows:

Piso
z ¼ 3 cosð2θÞðp?1 þ p?2 Þ; ð13Þ

where θ is the angle between the spin and the xy-plane. In our MCS this
angle exhibits a linear dependence on the externalmagneticfield strength, as
depicted in Fig. 7b. This linear dependence is also found in the experiment16.
Consequently, we anticipate that themagnetically-induced polarizationwill
resemble the behavior shown in Fig. 7c.

Importantly, themagnitude of this polarization change far exceeds that
observed during the spiral→ SF phase transition. The polarization change
across the sequence of phase transitions, spiral→ conical spiral→ SF→
FM, reproduces well the experimental data16.

Discussion
Our study of the complex interplay of magnetic and electric fields, mag-
netic exchanges and DM interactions in corundum nickelate derivative
NISO has uncovered intriguing properties of multiferroic kinks and their
implications for the field of MFs. The methodological advancements
allowed a quantitative modelling of key magnetoelectric phenomena
in NISO.

We have derived analytical formulas for magnetic exchanges and
magnetically-induced polarization, starting from a minimal 2-orbital
model, suitable for computing these parameters from first principles.
These formulas can be applied to other S = 1 MFs (e.g. Ni3TeO6,
Ni2ScSbO6). Additionally, we have developed a continuous theory to
address complex changes in the spin-spiral structures, which extends
our understanding of spiral MFs. This theory should be applicable to a
wide class of materials where spiral state is stabilized by
Dzyaloshinskii-Moriya interactions, for example BiFeO3. Our analysis
starts from the ground state with spiral ordering within the layers. We
find that a spiral structure deforms into an array of multiferroic kinks
upon the application of an external magnetic field in the plane of the
spiral. These kinks play a crucial role in determining the period of the
spiral, leading to a small polarization that is opposite to the FM

Flat Spiral Conical

Fig. 5 | The response to an externalmagneticfieldHz, applied along the three-fold
axis in NISO. (Upper panel) Spin spiral period calculated from the continuous
model (red line) and using the analytical formula in ref. 35 (blue line). (Lower panel)
magnetically-induced polarization resulting from the isotropic exchange striction.
The dotted line indicates phase transition between the flat spiral state and the conical
state shown in Fig. 6.

Fig. 6 | Phase diagram of NISO as obtained by minimization of the continuous
model, Eq. (37), with a small electric field Ez. Yellow, green, and red areas are
indicating flat spiral phase, conical phase, and SF phase, respectively. The tendency
towards FM state is indicated with white in color gradients.
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contribution. Importantly, externalmagnetic fields can directly control
the distances between these kinks. When a greater magnetic field is
applied parallel to the three-fold axis, it induces the SF transition,
consistent with experimental observations.

Using analytical and numerical models with parameters calcu-
lated from first principles, we have identified a three-step phase
transition (spiral→ conical spiral→ SF→ FM) under an applied
magnetic field. Our ab-initio model shows that the most important
mechanism of the magnetically-induced polarization in NISO is the
isotropic exchange striction. During the first phase transition, the
polarization undergoes a small change, closely related to the mag-
netic kink distance (spiral period). The kink density produces a
contribution to the polarization that opposes the ferromagnetic
contribution, resulting in polarization change similar to the spiral
period change. In the second step, the polarization curve shows a
sharp increase related to the FM component development in the xy-
plane due to SF contribution. In the third step, the polarization
changes significantly, simultaneously with the linear change of the
canting angle θ with the magnetic field. These polarization changes
imply the possibility of switching between these magnetic structures
by an external electric field, enabling the electric control of mag-
netism. The proposed scenario is supported by the excellent agree-
ment with the experimental data on the field dependence of the
polarization.

In summary, the work advances the understanding of magnetoelectric
effect in spiral multiferroics. NISO shows a rich phase diagram with flat
spiral ground state, magnetic kink arrays, conical kink phase and SF phase.
We reveal their connection to the magnetically-induced polarization, and
the possibility of electric switching betweenmagnetic phases via an external
electric field. Given the importance of themanipulation of the spiralMFs by
external fields, we expect that our findings will motivate new experiments
and facilitate the applications of spiral MFs in the next-generationmemory
and spintronic devices.

Methods
First principles calculations
Density functional theory calculations have been performed for the
experimental crystal structure10 (see Fig. 1a for the hexagonal cell) using a
rhombohedral cell. These calculations employed norm-conserving pseu-
dopotentials within the Quantum ESPRESSO package37. The plane wave
cutoff was set to 1088 eV, the Brillouin zone was sampled by a 7 × 7 × 7
Monkhorst-Pack k-point mesh.

The hopping parameters of Eq. (1) is calculated using the Maximally
Localized Wannier Fucntion (MLWF) technique38 as implemented in the
Wannier90 code39–41.

The screened Coulomb and exchange interactions of Eq. (1) are cal-
culated using constrained RPA technique42, which yields U = 2.3 eV and
JH = 0.6 eV.

The crystal structures were visualised with VESTA43.

Analytical formula for the parameters of spin models
The second order perturbation energy with respect to electron hopping in
the 2-orbital model is formulated as:

Eð2Þ ¼ � 1
ΔE

P1;2
α;β

j α�; ih ∣̂tij∣βþ; j
�j2 þ j α�; j

�
∣̂tji∣βþ; i

�j2� �
; ð14Þ

where ∣αþ ð�Þ; ii indicates occupied (unoccupied) spin-orbital at site i and
ΔE =U+ JH. Now, we assumeHamiltonianmatrix elements t̂ij are ordered
as ∣1i∣2i (pairs of Kramers’ states). Consequently, the corresponding orbital
ket vectors are straightforwardly defined as: ∣1i ¼ 1

0

� �
and ∣2i ¼ 0

1

� �
.

Furthermore, when considering the occupied and unoccupied spin states,
we assume them to have general spinor functions:

∣�i ¼ � sin θ
2 e

�iϕ

cos θ2

 !
ð15Þ

and

∣þi ¼ cos θ2
sin θ

2 e
iϕ

 !
: ð16Þ

These states have the maximal spin projection in the direction of an
associated classical spin~e ¼ þh ∣~̂σ∣þi ¼ ðsin θ cos ϕ; sin θ sin ϕ; cos θÞ.

Next, we decompose general 4 × 4 hopping matrices (with the proper
phase) into their orbital and spin components, as described by the following
equations:

t̂ij ¼ T̂
0
ij � σ̂0 þ

Xx;y;z
γ

iT̂
γ

ij � σ̂γ; ð17Þ

with the orbital part

T̂
η

ij ¼
tη11ij tη12ij

tη21ij tη22ij

 !
; ðη ¼ 0; x; y; zÞ ð18Þ

where σ̂0 is the 2 × 2 identity matrix and σ̂γ; γ ¼ x; y; z are the spin Pauli
matrices. Here, we choose the phases such that non-SOC related terms are
represented solely bypure real coefficients, while SOC terms are represented
solely by pure imaginary coefficients. Then, taking energy difference for
different spin orientations and mapping, it is straightforward to find
analytical formual Eq. (6).

Fig. 7 | Schematics for the SF transition and the
resulting magnetically-induced polarization.
a Schematic representation of the SF phase. The
arrows indicate spins in each layer. b Evolution of
the angle θ after SF transition under the external
magnetic field as obtained from the MCS.
c Polarization change during the transition from SF
phase to FM state.
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The spin model can also be derived with respect to spin operators
acting on S = 1 multiplets. The procedure is simply finding the correspon-
dence between a general spin Hamiltonian:

Hs ¼ Ŝi �J⃡ij � Ŝj; ð19Þ

and the second order perturbation energy:

Heff ¼ �
X
jM

1
ΔEjM

T̂ ij ∣jM
�

jM
�

∣T̂ ji: ð20Þ

Here,J⃡ij is a 3 × 3 tensor, T̂ ij is a hopping integral defined as: T̂ ij ¼P
αβ

P
σσ 0 t

αβσσ 0

ij ĉyiασ ĉjβσ 0 and ∣jM
�

represents the intermediate states

∣1=2;m1

�� ∣1=2;m2

�� ∣1=2;m3

� 2 S ¼ 1=2 at site j. For instance,
0; 1h ∣Heff ∣1; 1i ¼ 1ffiffi

2
p ðJxzij þ iJyzij Þ. This approach results in the following

expressions:

Jxxij ¼ þ 1
2

1
ΔE

X1;2
α;β

þtαβ"#ij tαβ#"ij

� ��
þ tαβ""ij tαβ##ij

� ��
þ tαβ##ij tαβ""ij

� ��
þ tαβ#"ij tαβ"#ij

� ��� �

ð21Þ

Jxyij ¼ � i
2

1
ΔE

X1;2
α;β

�tαβ"#ij tαβ#"ij

� ��
þ tαβ""ij tαβ##ij

� ��
� tαβ##ij tαβ""ij

� ��
þ tαβ#"ij tαβ"#ij

� ��� �

ð22Þ

Jxzij ¼ � 1
2

1
ΔE

X1;2
α;β

þtαβ##ij tαβ"#ij

� ��
� tαβ#"ij tαβ""ij

� ��
þ tαβ"#ij tαβ##ij

� ��
� tαβ""ij tαβ#"ij

� ��� �

ð23Þ

Jyxij ¼ � i
2

1
ΔE

X1;2
α;β

�tαβ"#ij tαβ#"ij

� ��
� tαβ""ij tαβ##ij

� ��
þ tαβ##ij tαβ""ij

� ��
þ tαβ#"ij tαβ"#ij

� ��� �

ð24Þ

Jyyij ¼ þ 1
2

1
ΔE

X1;2
α;β

�tαβ"#ij tαβ#"ij

� ��
þ tαβ""ij tαβ##ij

� ��
þ tαβ##ij tαβ""ij

� ��
� tαβ#"ij tαβ"#ij

� ��� �

ð25Þ

Jyzij ¼ þ i
2

1
ΔE

X1;2
α;β

þtαβ##ij tαβ"#ij

� ��
� tαβ#"ij tαβ""ij

� ��
� tαβ"#ij tαβ##ij

� ��
þ tαβ""ij tαβ#"ij

� ��� �

ð26Þ

Jzxij ¼ � 1
2

1
ΔE

X1;2
α;β

�tαβ""ij tαβ"#ij

� ��
þ tαβ#"ij tαβ##ij

� ��
� tαβ"#ij tαβ""ij

� ��
þ tαβ##ij tαβ#"ij

� ��� �

ð27Þ

Jzyij ¼ þ i
2

1
ΔE

X1;2
α;β

�tαβ""ij tαβ"#ij

� ��
þ tαβ#"ij tαβ##ij

� ��
þ tαβ"#ij tαβ""ij

� ��
� tαβ##ij tαβ#"ij

� ��� �

ð28Þ

Jzzij ¼ þ 1
2

1
ΔE

X1;2
α;β

�jtαβ"#ij j2 � jtαβ#"ij j2 þ jtαβ""ij j2 þ jtαβ##ij j2
� �

; ð29Þ

where the difference in signs between the second-order energies
arises from particle exchanges. This tensor can generally be

decomposed into isotropic interaction: Jij ¼ � 1
3 TrJ⃡ij;

Dzhaloshinskii-Moriya vectors:~Dij ¼ 1
2

Jyzij � Jzyij
Jzxij � Jxzij
Jxyij � Jyxij

0
B@

1
CA, and symmetric

anisotropy: ⃡Γij ¼ 1
2 J⃡ij þJ⃡

t

ij

� �
� Jij1⃡. However, this approach results in

the exactly same result as the classical vector approach Eq. (6). The
equivalence of the two approaches can be easily demonstrated by
considering the relationship between the hopping integrals For
example,

tαβ""ij ¼ t0αβij þ itzαβij :

Substituting this definition into Eq. (9–17) yields the same formula as
Eq. (6).Here, we provide an explicit notation for the diagonal elements as an
example:

Jxxij ¼ þ 1
2

1
ΔE

P1;2
α;β

þtαβ"#ij tαβ#"ij

� ��
þ tαβ""ij tαβ##ij

� ��
þ tαβ##ij tαβ""ij

� ��
þ tαβ#"ij tαβ"#ij

� ��� �

¼ 1
ΔE

P1;2
α;β

t0αβij

� �2
þ txαβij

� �2
� tyαβij

� �2
� tzαβij

� �2	 

;

Jyyij ¼ þ 1
2

1
ΔE

P1;2
α;β

�tαβ"#ij tαβ#"ij

� ��
þ tαβ""ij tαβ##ij

� ��
þ tαβ##ij tαβ""ij

� ��
� tαβ#"ij tαβ"#ij

� ��� �

¼ 1
ΔE

P1;2
α;β

t0αβij

� �2
þ tyαβij

� �2
� txαβij

� �2
� tzαβij

� �2	 

;

Jzzij ¼ þ 1
2

1
ΔE

P1;2
α;β

� tαβ"#ij




 


2� tαβ#"ij




 


2þ tαβ""ij




 


2þ tαβ##ij




 


2	 


¼ 1
ΔE

P1;2
α;β

t0αβij

� �2
þ tzαβij

� �2
� txαβij

� �2
� tyαβij

� �2	 

:

Therefore, the isotropic interaction is given as

Jij ¼ � 1
3 TrJ⃡ij ¼ 1

3ΔE

P1;2
αβ

�3 t0αβij

� �2
þ Trðtαβij � tαβij Þ

� �
:

All the other expression can be restored following the same procedure.
A similar theory can be developed for magnetically induced electronic

polarization. Themain idea is to expand theWannier functionswith respect
to first-order of the hopping and apply the general theory of electronic
polarization in solids. This expansion corresponds to spin-dependent
modulations of the Wannier density, resulting in changes in the Wannier
centers. Starting point of the theory is the general theory for polarization in
solids23:

~P ¼ � e
V

Xocc
i

wi ĵrjwi

� �
; ð30Þ

wherehwi ĵr∣wii represents the position operator’s diagonal elements in
the Wannier basis, and V is the cell volume. Next, the first-order
perturbation expansion of the Wannier function with respect to
electron hopping is:

∣wi

�
≈∣αþ; ii � 1

ΔE

X
j

X1;2
β

∣β�; j
�
β�; j
�

∣̂tji∣αþ; ii: ð31Þ

By substituting Eq. (31) into Eq. (30), we obtain pair and single-ion
terms as~P ¼Pi

~Pi þ
P

<ij >
~Pij. The pair interaction terms are as follows:

~Pij ¼ e
VΔE

P1;2
αβ

αþ; ih ∣~̂rij∣β�; j
�
β�; j
�

∣̂tji∣αþ; ii þ αþ; ih ∣̂tij∣β�; j
�
β�; j
�

∣~̂rji∣αþ; ii
h

þ αþ; j
�

∣~̂rji∣β�; i
�
β�; i
�

∣̂tji∣αþ; j
�þ αþ; j

�
∣̂tji∣β�; i

�
β�; i
�

∣~̂rij∣αþ; j
�i
:

ð32Þ

Similar to thehoppingmatrix, thepositionmatrix canbedecomposed into a
linear combination of the Pauli matrices as:

~̂rij ¼ ~̂R 0
ij
� σ0 þ

X
γ0

i~̂R
γ0

ij � σ̂γ0 : ð33Þ
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Then, it is straightforward to find the pair interaction formula Eq. (3)
and the corresponding analytical formula Eq. (7).

Single-q spiral ansatz
In the simplest approximation, a spin-spiral state can be characterized by a
single q-vector,

~ei ¼ n̂1 cosð~q �~RiÞ þ n̂2 sinð~q �~RiÞ; ð34Þ

where n̂1 and n̂2 are orthogonal vectorswithin the plane of the spiral,~q is the
propagation vector and ~Ri is the vector pointing to the site i. This is an
Ansatz of a single-q spiral state. The spiral plane can be characterized by its
normal vector,

n̂? ¼ ð� sin ϕ; cos ϕ; 0Þ; ð35Þ

where ϕ indicates the rotation of the spin-spiral plane. In this case, the
relative orientation between δ~q and n̂? defines the spiral type. For instance,
δ~q k n̂? is a proper-screw spiral state.

Layer AFM chain continuous model
We express magnetization and AFM order parameter at position x as
~MðxÞ ¼~S1ðxÞ þ~S2ðxÞ and~AðxÞ ¼~S1ðxÞ �~S2ðxÞ, respectively. In this for-
mulas,~S1ðxÞ and~S2ðxÞ are spins at neighboring layer L1 and L2 and these
satisfy ~AðxÞ � ~MðxÞ ¼ 0. Then, energy density of the chain at position x is
expressed as

δEðxÞ ¼ � J 0
4 ð∇~AðxÞÞ

2 þ ~D � ~AðxÞ× ∇~AðxÞ� �� �� ~H � ~MðxÞ þ J:

ð36Þ
In this equation, the first term is the effective isotropic ferromagnetic

exchange, J 0 < 0, the second one is the antisymmetric DM interaction, the
third termcorresponds to theZeemanenergy due to an externalfield~H, and
the last term is the energy of a ferromagnetic state. The alternating inter-
layer AFM exchange coupling in NISO can be considered as intra-layer FM
exchanges.Considering inter-layerAFMexchange J, the effective intra-layer
FM exchange would be J 0 ¼ �2J . By employing the Fourier expansion of
the spin, ~AðxÞ ¼ 1ffiffiffi

N
p
PN

n¼�N
~An eiQnx , we obtain a simplified energy

expression that has to be minimized:

Erec ¼
PN

n¼�N
� J 0

4 Q
2n2~An �~A�n þ i~DQn � ~A�n ×~An

� �� �� ~H �~A0

� �2

þ λ
P

l0m0n0p0
eiQðl

0þm0þn0þp0Þx~Al0
~Am0~An0

~Ap0 � 2~An
~A�n

 !
;

ð37Þ

where the last term is the energy penalty with coefficient λ≫ 1 enforcing a
constraint on the spin length. Similarly, the change of the spin-isotropic part
of the polarization per spin can be evaluated as:

Piso
z / �1þ

XN
n¼�N

Q2n2~An �~A�n: ð38Þ

Data availability
The datasets used and/or analyzed during the current study are available
from the corresponding author upon reasonable request.

Received: 17 November 2023; Accepted: 7 March 2024;
Published online: 03 June 2024

References
1. Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature

426, 55–58 (2003).

2. Tokura, Y. & Seki, S. Multiferroics with spiral spin orders. Adv. Mater.
22, 1554–1565 (2010).

3. Tokura, Y., Seki, S. & Nagaosa, N. Multiferroics of spin origin. Rep.
Progr. Phys. 77, 076501 (2014).

4. Khomskii, D. Classifying multiferroics: mechanisms and effects.
Physics 2, 20 (2009).

5. Cheong, S.-W. & Mostovoy, M. Multiferroics: a magnetic twist for
ferroelectricity. Nat. Mater. 6, 13–20 (2007).

6. Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of
multiferroics. Nat. Rev. Mater. 1, 16046 (2016).

7. Seki, S., Ishiwata, S.&Tokura,Y.Magnetoelectric natureof skyrmions
in a chiral magnetic insulator Cu2OSeO3. Phys. Rev. B 86, 060403
(2012).

8. Ruff, E. et al. Multiferroicity and skyrmions carrying electric
polarization in GaV4S8. Sci. Adv. 1, e1500916 (2015).

9. Ivanov, S. A. et al. Spin and dipole ordering in Ni2InSbO6 and
Ni2ScSbO6 with corundum-related structure. Chem. Mater. 25,
935–945 (2013).

10. Weil, M., Mathieu, R., Nordblad, P. & Ivanov, S. Crystal growth
experiments in the systems Ni2MSbO6 (M = Sc, In) using chemical
vapour transport reactions: Ni2InSbO6 and NiSb2O6 crystals in the
millimetre range. Crystal Res. Technol. 49, 142–151 (2014).

11. Kim, J. W. et al. Successive magnetic-field-induced transitions and
colossal magnetoelectric effect in Ni3TeO6. Phys. Rev. Lett. 115,
137201 (2015).

12. Yokosuk, M. O. et al. Magnetoelectric coupling through the spin flop
transition in Ni3TeO6. Phys. Rev. Lett. 117, 147402 (2016).

13. Cai, G.-H., Greenblatt, M. & Li, M.-R. Polar magnets in double
corundum oxides. Chem. Mater. 29, 5447–5457 (2017).

14. Frank, C. E. et al. Fe3–xInSnxO6 (x = 0, 0.25, or 0.5): a family of
corundum derivatives with sn-induced polarization and above room
temperature antiferromagnetic ordering. Chem. Mater. 34,
5020–5029 (2022).

15. Ye, M. & Vanderbilt, D. Ferroelectricity in corundumderivatives.Phys.
Rev. B 93, 134303 (2016).

16. Araki, Y. et al. Metamagnetic transitions and magnetoelectric
responses in the chiral polar helimagnet Ni2InSbO6.Phys. Rev. B 102,
054409 (2020).

17. Liu, Z. et al. Spin excitation in the coupled honeycomb lattice
compound Ni2InSbO6. Phys. Rev. B 107, 064428 (2023).

18. Ihara, Y. et al. Field-induced magnetic structures in the chiral polar
antiferromagnet Ni2InSbO6. Phys. Rev. B 108, 024417 (2023).

19. Choi, Y. J. et al. Ferroelectricity in an ising chain magnet. Phys. Rev.
Lett. 100, 047601 (2008).

20. Katsura, H., Nagaosa, N. & Balatsky, A. V. Spin current and
magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95,
057205 (2005).

21. Arima, T. Ferroelectricity induced by proper-screw type magnetic
order. J. Phys. Soc. Japan 76, 073702 (2007).

22. King-Smith, R. D. & Vanderbilt, D. Theory of polarization of crystalline
solids. Phys. Rev. B 47, 1651–1654 (1993).

23. Vanderbilt, D. & King-Smith, R. D. Electric polarization as a bulk
quantity and its relation to surface charge. Phys. Rev. B 48,
4442–4455 (1993).

24. Resta, R. Electrical polarization andorbitalmagnetization: themodern
theories. J. Phys. Condensed Matter 22, 123201 (2010).

25. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient
approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

26. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient
approximation made simple. Phys. Rev. Lett. 78, 1396–1396 (1997).

27. Kanamori, J. Electron correlation and ferromagnetism of transition
metals. Progr. Theor. Phys. 30, 275–289 (1963).

28. Moriya, T. Anisotropic superexchange interaction and weak
ferromagnetism. Phys. Rev. 120, 91–98 (1960).

https://doi.org/10.1038/s44306-024-00020-9 Article

npj Spintronics | (2024)2:17 9

www.nature.com/npjspintronics


29. Nikolaev, S. A. & Solovyev, I. V. Microscopic theory of electric
polarization induced by skyrmionic order in GaV4S8. Phys. Rev. B 99,
100401 (2019).

30. Ono, R., Nikolaev, S. & Solovyev, I. Fingerprints of spin-current
physics on magnetoelectric response in the spin-12 magnet
Ba2CuGe2O7. Phys. Rev. B 102, 064422 (2020).

31. Solovyev, I., Ono, R. & Nikolaev, S. Magnetically induced polarization
in centrosymmetric bonds. Phys. Rev. Lett. 127, 187601 (2021).

32. Solovyev, I. V. Magnetization-induced local electric dipoles and
multiferroic properties of Ba2CoGe2O7. Phys. Rev. B 91, 224423
(2015).

33. Goodenough, J. B. Theory of the role of covalence in the perovskite-
type manganites [La,M(II)]MnO3. Phys. Rev. 100, 564–573 (1955).

34. Liechtenstein, A., Katsnelson, M., Antropov, V. & Gubanov, V. Local
spin density functional approach to the theory of exchange
interactions in ferromagneticmetals andalloys.J.Magn.Magn.Mater.
67, 65–74 (1987).

35. De Gennes, P. Calcul de la distorsion d’une structure cholesterique
par un champ magnetique. Solid State Commun. 6, 163–165 (1968).

36. Artyukhin, S. et al. Solitonic lattice and yukawa forces in the rare-earth
orthoferrite TbFeO3. Nat. Mater. 11, 694–699 (2012).

37. Giannozzi, P. et al. Quantum espresso: a modular and open-source
software project for quantum simulations of materials. J. Phys.
Condens. Matter 21, 395502 (2009).

38. Marzari, N. & Vanderbilt, D. Maximally localized generalized wannier
functions for composite energy bands.Phys. Rev. B 56, 12847–12865
(1997).

39. Pizzi, G. et al. Wannier90 as a community code: new features and
applications. J. Phys. Condens. Matter 32, 165902 (2020).

40. Mostofi, A. A. et al. An updated version of wannier90: a tool for
obtaining maximally-localised wannier functions. Comput. Phys.
Commun. 185, 2309–2310 (2014).

41. Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. & Vanderbilt, D.
Maximally localized wannier functions: theory and applications. Rev.
Mod. Phys. 84, 1419–1475 (2012).

42. Aryasetiawan, F. et al. Frequency-dependent local interactions and
low-energy effective models from electronic structure calculations.
Phys. Rev. B 70, 195104 (2004).

43. Momma, K. & Izumi, F. VESTA: a three-dimensional visualization
system for electronic and structural analysis. J. Appl. Crystallogr. 41,
653–658 (2008).

Acknowledgements
We thankM.Mostovoy and S. A. Nikolaev for fruitful discussions. R.O., was
supported by JSPS KAKENHI Grant Numbers JP23KJ2165. MANA is

supported by World Premier International Research Center Initiative (WPI),
MEXT, Japan. The computations in this study were performed on the
Numerical Materials Simulator at the NIMS and the Supercomputer Center,
the Institute for Solid State Physics, the University of Tokyo.

Author contributions
R.O. performed first-principles calculations, analytical formula derivations,
MCS simulations, and 1D continuous model simulations. R.O. and I.S.
performed derivation of the multiplet energy in the superexchange theory.
R.O. and S.A. performed derivation of the 1D continuous model and the
Yukawa-like potential. All authors participated in analyzing the data and
discussions. R.O. wrote themainmanuscript text with contributions from all
authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s44306-024-00020-9.

Correspondence and requests for materials should be addressed to
Ryota Ono.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024, corrected publication 2025

https://doi.org/10.1038/s44306-024-00020-9 Article

npj Spintronics | (2024)2:17 10

https://doi.org/10.1038/s44306-024-00020-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/npjspintronics

	Multiferroic kinks and spin-flop transition in Ni2InSbO6 from first principles
	Results
	Basic electronic structure, electronic and spin model for NISO
	Magnetic structures in NISO
	1D continuous model
	Polarization change during spin flop-to-FM transition

	Discussion
	Methods
	First principles calculations
	Analytical formula for the parameters of spin models
	Single-q spiral ansatz
	Layer AFM chain continuous model

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




