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Multiferroic kinks and spin-flop transition
in Ni>.InSbOg from first principles
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Magnetoelectric multiferroics are key materials for next-generation spintronic devices due to their
entangled magnetic and ferroelectric properties. Spiral multiferroics possess ferroelectric polarization
and are particularly promising for electric control of magnetism and magnetic control of ferroelectricity.
In this work, we uncover long-period incommensurate states characterized by unique multiferroic
kinks in corundum nickelate Ni>InSbOg, 2 member of a promising family of polar magnets. Utilizing a
2-orbital S =1 model, we derive formulas for Heisenberg and anisotropic magnetic exchanges and
magnetically-induced polarization, enabling their calculations from first principles. We use these
parameters in Monte Carlo and Landau theory-based calculations to reproduce experimentally
observed magnetic structures and polarization dependence on the magnetic field. We predict
magnetic phase transitions between flat spiral, conical spiral, canted antiferromagnetic and
ferromagnetic states under increasing magnetic fields. Kinks in the spiral phases repel each other
through a Yukawa-like potential arising from exchange of massive magnons. We also find that suitably
directed electric fields can be used to stabilize the ferromagnetic and spiral states. The findings open a
new pathway to predictive first-principles modelling of multiferroics and will inspire experiments and

technological applications based on multiferroic kinks.

In magnetoelectric multiferroics, a magnetic order coexists and interacts
with a ferroelectric one. Several microscopic scenarios of why such coex-
istence may occur and how the magnetic order can affect the electric
polarization have been established'~ and the work is rapidly progressing in
this direction. Understanding such interactions between the magnetic and
electric degrees of freedom is of great importance from both the funda-
mental and practical points of view. A special attention is paid to the mutual
control of the magnetic structure and the electric polarization by applying
the magnetic or electric field. For instance, the external magnetic field can
control the magnetic structure, while also changing the ferroelectric
polarization. Conversely, the external electric field can be used to control the
magnetic structure’.

There are two main types of multiferroic (MF) materials*. In type-I
multiferroics the crystal structure itself is ferroelectric, irrespectively of the
magnetism. However, the electric polarization can still be controlled by
changing the magnetic structure. In type-II MF the crystal structure is
centrosymmetric, but the inversion symmetry can still be broken by a
magnetic order, which leads to the ferroelectric polarization. An interesting
aspect of the type-I materials is that many of them develop chiral magnetic
structure, driven by antisymmetric Dzyaloshinskii-Moriya (DM)

interactions in the non-centrosymmetric crystal structure. This chirality can
be controlled by the magnetic field, presenting another interesting avenue
for magnetoelectric control in type-I materials. For instance, a very special
type of the chiral magnetic structure is the skyrmion lattice, which has been
intensively studied in the context of MF applications in Cu,OSeO; and
GaV,Sg™.

Ni,InSbOg (NISO) is one of such chiral MFs. Its low temperature
structure has a polar (non-centrosymmetric) rhombohedral R3 space
group™"’ similar to well known MF corundum derivative Ni;TeOg'"">. A
number of polar corundum derivatives have recently been synthesized and
materials with above room temperature magnetism have been found"".
These are promising candidates for magnetoelectric applications, in some of
which polarization switching has been predicted . Previous studies'®
revealed an incommensurate antiferromagnetic proper-screw spiral (helix)
within each Nilayer, with a long periodicity of 30 unit cells. The polarization
along the threefold rotation axis changes quadratically with the magnetic
field due to variations in the spiral order induced by the field"®. In addition,
recent experiments have revealed a spin-flop (SF) transition upon applying
the magnetic field along the threefold rotation axis'"'*. However, the detailed
microscopic  analysis of these observations is lacking. The
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phenomenological mechanisms of the magneto-electric coupling con-
sidered so far'**' are not universal and are influenced by system-dependent
factors. Therefore, it is important to construct realistic models of these
materials with interacting spins and magnetically-induced polarization,
starting from the modern theory of polarization in terms of Berry phases
and Wannier centers”* and using model parameters obtained from first-
principles calculations. According to such calculations in the generalized
gradient approximation (GGA), NISO can be regarded as an S = 1 material.
In the corundum structure, each Ni*" ion is located in a distorted octahe-
dron of O*~ jons. Therefore, the Ni 3 states split into triply degenerate t,,
and double degenerate e, manifolds. The #,, states are fully occupied and do
not significantly contribute to magnetism. On the other hand, the e, states
are half-filled and form a group of narrow bands near the Fermi level, which
are mainly responsible for the S =1 physics. Thus, we can greatly simplify
our analysis by constructing the 2-orbital model for these bands and
extracting all parameters of the model from the first principles calculations
in the Wannier basis.

Here we model the exchange interactions and magnetically-induced
polarization emerging from such realistic 2-orbital e, model at the half-
filling. After extracting the parameters of electronic Hubbard-like model
from the first principles calculations, we employ the superexchange theory,
which in our case is formulated as a first-order perturbation theory for the
Wannier functions with respect to the hopping parameters. For the
exchange interactions, the treatment is equivalent to the standard second-
order perturbation theory for the magnetic energy, which in the Wannier
basis results in the expression for the spin dependent electric polarization.
Our models highlight the emergence of intriguing cross-coupling phe-
nomena in NISO. Specifically, we explore the SF transitions and a crossover
to the multiferroic kink array state, both induced by the external magnetic
field along the threefold axis. The kinks contribute ferroelectric polarization
opposite to that of the collinear state and their energetics can be rationalized
in terms of repulsion through the Yukawa-like potential and the competi-
tion between the DM and magnetic field setting their chemical potential.

Additionally, using a continuous theory, we explore the possibility of cross-
control of magnetic (electric) order by an electric (magnetic) field.

Results

Basic electronic structure, electronic and spin model for NISO
Results of electronic structure calculations using the experimental crystal
structure, shown in Fig. 1a'’, in GGA**® with the spin-orbit coupling (SOC)
for a nonmagnetic state are illustrated in Fig. le. These calculations clearly
reveal two groups of the Ni 3d bands: six t,, bands (per two Ni sites)
around — 1 eV and four e bands around the Fermi level. In NISO, the tre
bands are fully occupied and nonmagnetic, while the magnetic properties
are mainly associated with the e, bands. Therefore, we pick this group of
states to construct a realistic Hubbard-type model, which would capture the
magnetic behavior of NISO. Such Hubbard model has the form:

H = Z Z Z tz}ma’ ‘A:itwejba’ + Honfsite7 (1)

ij ab oo

where a and b (=1 or 2) label the e, orbitals, and Hy,gte stands for the on-
site Coulomb interactions, which are specified by the intra-orbital
interaction U, Hund’s coupling Jy and inter-orbital interaction
U =U—2J”. ¢ (€4 in Eq. (1) stands for the creation (annihilation)
of an electron on the Wannier orbital a of the Ni site i with the spin ¢. The
parameters of the one-electron part, tﬁ}b""', are defined as the matrix
elements of GGA Hamiltonian in the Wannier basis. Since the basis is
complete for the e, bands, these parameters perfectly reproduce the original
band structure in GGA (see Fig. 1e). The main sources of the SOC in NISO
are the 5p states of the heavy In/Sb atoms. Therefore, it is important to
include the SOC before the wannierization, at the level of regular GGA
calculations. Then, although the Wannier functions are formally associated
with the Ni e, states, the SOC of the heavy In/Sb atoms will still contribute to
the matrix elements ¢4, which can be diagonal as well as off-diagonal with
respect to the spin indices.

Fig. 1 | Crystal structure and electronic structure
of NISO. a Hexagonal cell of NISO. b Ni ions in the
hexagonal cell. Only the closest neighbors coupled
with exchange constants J; and J, are shown with
yellow and gray lines, respectively. ¢ J; and J, bonds
from side view and top view around a Ni ion.

d Definition of DM vector parameters. This figure
explicitly depicts parameters for & = 1 bond type.

e Electronic structure of a rhombohedral unit cell of
NISO around Fermi level calculated within GGA
(solid black line) and 2-orbital model constructed by
MLWEF method (cyan dashed line). The inset shows
a schematic of the k-path in the Brillouin zone for
the rhombohedral unit cell.
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Next, we map this low energy electronic model onto the spin model
employing for these purposes the superexchange theory. In the atomic limit,
the ground state corresponding to the high-spin S =1 state at half-filling is
described by the single Slater determinant. The same holds for the one-
electron and one-hole e states emerging in the superexchange theory in the
process of virtual excitations. Therefore, here we essentially deal with the
one-electron theory. This results in the spin Hamiltoninan:

H, = ( +D; -

<ij>

@xg)+e Tg)

where € stands for the classical spin vector at site i, the first term is the
isotropic interaction, the second term is the anisotropic Dzyaloshinskii-
Moriya interaction and the last term is the (traceless) symmetric exchange
anisotropy”*.

Similarly, the expression for the magnetically-induced polarization is
given by

Bo=Y (P -+

<ij>

Pp@xg+i-fig).

where the first term describes isotropic exchange striction, while the fol-
lowing terms originate form the antisymmetric and the (traceless) sym-
metric anisotropy””". This model is derived in the framework of the
modern theory of polarization in solids™**, using perturbation expansion of
the Wannier functions.

Since the R3 group has only one three-fold rotation axis (along z in the
chosen coordinates), all bonds with the same distance should be trans-
formed into each other by the C§ rotation. To illustrate this, consider the
bonds surrounding a Niion labeled as 0 in Fig. 1c. We index its Ni neighbors
in the layer above as j=1,2, 3, which are classified as bond type a=1.
Conversely, the Ni ions in the layer below, indexed as j=4, 5,6 and cate-
gorized as bond type a =2, are at a slightly longer distance. The vectors
connectmg ion 0 with ions j=1,2,3 are expressed as
on = (e cos(27j/3), 60] sin(27j/3), eéj), where €gj and eg; are the lengths
of the Vector components parallel and perpendicular to the Ni layer,
respectwely (see Fig. 1d). For j=4,5, 6, similar formula applies, with the
same 60], but a slightly different Soj and with the arguments of sin and cos
incremented by 7. Then, the DM vectors are as follows:

- (di cos ., d! sin6],, dj) )

06’ o

where 91/'@ = 271j/3 + 0, d+ and d” are bond dependent parameters. The
DM vectors are antisymmetric: D]0 = _D()] Similarly, contributions from
the isotropic (Heisenberg) exchange to the magnetically-induced polariza-
tion (first term of Eq. (3)) are as follows:

ﬁg‘j:( cos 6, p”sm9MPi>7 ®)

with symmetric P B, 0 = PoJ

An additional smgle ion term is allowed in systems S > 1/2. However,
in the subsequent discussion, we neglect this term, expecting its effect to be
minor since the orbital angular momentum matrix elements vanish between
e, orbitals, making SOC inactive. Indeed, in our 2-orbital model, the energy
splitting due to SOC inside S = 1 triplet results in very tiny AE = 7 yeV (see
Supplementary Note 2). Turning to the magnetically-induced polarization,
we calculate the single-ion term by the formula given in ref. 32. However, we
also neglect this term as it is spin-independent in this 2-orbital model.

We derive analytical formulas for the symmetric and antisymmetric
exchange constants in (2) and magnetically-induced electronic component
of the polarization in (3) from the 2-orbital model following the strategy
used in refs. 30,31 (see “Methods” for the derivation). For exchange

interactions we have:
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while the parameters for magnetically-induced electronic component of the
polarization have the form:
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where AE= U+ Jp, t;ﬁ and Fg.'g are the spin dependent matrix elements of the
hopping and position operator, correspondingly, expanded in Pauli matrices
as t; = fg ® Gy + 3., if?} ®G), T = ﬁg@ o+ Zyzfé: ® &y,,i isa
3 x 3 identity matrix. J; and 13,-]- are the symmetric isotropic (Heisenberg)
exchange (scalar) and exchange striction (vector), while the consecutive terms
describe antisymmetric (Dzyaloshinskii-Moriya) exchange and symmetric
anisotropic (Ising-like) interactions, respectively. The exchange parameters
obtained with this method are summarized in Tables 1 and 2. We find that the
significant exchange interactions in NISO predominantly originate from the
bonds between Ni2 and its Ni neighbors in the layer above (ions 1,2,3,
exchange constant J;) and below (ions 4,5,6, exchange constant /), as shown
in Fig. lc. The obtained parameters obey /, < J;, which can be understood
considering geometric Ni-O-Ni angles, Z(Ni-O-Nj, J;) = 129.38" and £(Ni-
O-Nj, /) = 136.75". Typically, the half-filled 2-orbital model predominantly
yields AFM interactions, with FM contributions manifesting as effective
suppressions in the AFM iteraction constants. According to the
Goodenough-Kanamori rule”, the bond angle £(Ni-O-Nj, ;) being close
t0 90° compared to £(Ni-O-Ni, J,), leads to J; receiving compensations by the
ferromagnetic contributions. Consequently, this results in a smaller
magnitude of J; compared to /.

We note that the 2-orbital model parameters also provide insight into
importance of different terms in Eq. (2) and Eq. (3). As for the magnetic

Table 1 | Values of isotropic exchanges and DM parameters in
NISO [meV]

Bond a Dist. Ja d! dr 6, [Deg.]
1 3.821 ~6.872 1.255 1.046 138
2 3.912 —13.095 1.833 ~1.053 64

Table 2 | Values of isotropic term for polarization and
corresponding parameters in NISO [uC/m?]
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energy, isotropic and antisymmetric exchange contributions are found to be
non-negligible (see Supplementary Note 1 for the values of the symmetric
anisotropy tensor components). Actually, the relative magnitudes of isotropic
and DM interactions indicate that the symmetric anisotropic exchange is
inherently small. This fact aligns with Moriya’s paper” and our analytical
formulas (6). These state that the DM interaction is first-order in SOC,
whereas the symmetric anisotropy is second-order in SOC. Among the
contributions to the polarization, only the isotropic term is found non-
negligible. Therefore, in the following we focus mainly on these terms. The
actual values of the anisotropic terms of the magnetically-induced polarization
and their small effects are detailed in Supplementary Note 3. Consequently, in
the following we primarily focus on the isotropic exchange, the DM exchange
and the isotropic term of the magnetically-induced polarization.

We note that the antiferromagnetic contribution overestimates the
exchange parameters as the 2-orbital model does not take into account
ferromagnetic contributions from £, orbitals and Hund’s couplings on non-
magnetic ions accurately. Additionally, the relatively small value of the
denominator in superexchange theory, specifically AE=2.9 eV, further
contributes to potential overestimations in the overall exchange parameters.
Using these parameters in the Monte-Carlo simulations in a 30 x 30 x 1
simulation box with periodic boundary conditions, we obtain the transition
temperature, overestimating the experimental one by approximately a
factor of two. The transition temperature was identified by the peak in the
heat capacity in Monte-Carlo simulations using the calculated parameters
(Supplementary Note 5). Nevertheless, we emphasize that the main physics
discussed in the following is purely originating from the relative strength
between isotropic and anisotropic exchanges.

Magnetic structures in NISO

We now discuss the magnetic ground state obtained from the single-q spiral
Ansatz analysis in NISO. The 2-orbial parameters show that the J; and J, are
very strong and AFM. Thus, we can expect spins in the neighboring layers to
be opposite. Since there are four Ni layers in the hexagonal cell, Fig. 1a, the
period of the AFM order coincides with the length of the hexagonal c-axis,
thus, we have g = (0,0,0). DM interactions modify g-vector from a
commensurate phase to an incommensurate one by 84. The 2-orbital model
parameters show that those bonds fulfill a relation d!l > d.-. This stabilizes
spin-spiral states with the propagation vector within the layer. Namely, the
q-vector is modified as i = 4 + 64 = (8q,,8q,,0). Then, we can

consider the situation given in Fig. 2a, where the spin spiral propagates
within a Ni layer.

Magnetic energy contributions from isotropic (E;s,) and DM (Epy)
interactions are

E, = E,, + Epy
= +Iz)<12 — oq2 — oq?)
—24/38q, (d} sin(0; — ¢) + d} sin(6, — ¢))

~ 2/354, (d} cos(6, — ¢) + d cos(9, — 9)) }.

®)

Then, we take derivative of the energy with respect to dg, and dq,, and
find the energy minimum at 84,

{ 8q, = v/3(—d sin(6, — ¢) — d} sin(0, — ¢)) /U, +],) ©

3q, = v/3(~d} cos(6, — ¢) — dl cos(8, — ¢)) /U, + ).

The wavevector components are plotted in Fig. 2a using the parameters
from the 2-orbital model. We see that, approximately,
(cos ¢, sin ¢,0) L i, thus, a cycloidal spiral state (Fig. 2b), while the
experiment reported a proper-screw spiral state. However, the wave vector
and the spiral period, §gans = 0.034 (29 unit cells) are in a good agreement
with reported experimental values 8q = 0.029 (30 unit cells)’. Additionally,
the symmetric anisotropic interactions tilt the spin-spiral plane. The cal-
culated parameter actually give a small rotation ~ 71/8 (see Supplementary
Note 1). Another parameter set, calculated from Green’s function method*,
gives a proper-screw type spiral with a very long wave length of 142 unit cells
(6gGr = 0.007; see Supplementary Note 4). Since the spin spiral type is not
important for the following discussion of magnetic kink generation and
magnetically-induced polarization, we use a cycloidal spiral as the ground
state of NISO. We note that in this mean-field analysis, the energy does not
depend on the rotation of the spiral plane ¢. This can be straightforwardly
confirmed by substituting the analytical formula for the spiral wave vector
Eq. 9) into the ,energy  Eq. (8). The resulting formula vyields
E, = 3((d))’ +(d)’ + 2d\d} cos(8, — 6,) + 407, + [,)/(40, + 1),
thus, independent of ¢.

Fig. 2 | Magnetic ground state as obtained from a
the single-q spiral Ansatz. a Definition of the spin-

spiral parameters. b The components of g mini-

mizing the energy as a function of the spin rotation

plane orientation (given by a polar angle ¢, where the

rotation plane normal is it = (—sin ¢, cos ¢, 0)).

The energy is minimized by 8g ~ (cos ¢, sin ¢, 0)

which is perpendicular to 7%, giving rise to a
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In order to understand the magnetic ground state and the response to
the external magnetic fields in NISO, we also perform classical Monte-Carlo
simulations (MCS) of the spin model Eq. (2) with the 2-orbital parameters.
Incorporating the Zeeman term — . H ¢?, simulations are carried out on a
30 x 30 x 1 supercell with periodic boundary conditions.

Our MCS reveal the emergence of an anticipated spiral ground state, see
Fig. 3a. This result validates the applicability of our single-q spiral Ansatz.
Upon the application of an external magnetic field perpendicular to the layer,
a SF transition is found. This supports the observations reported in
refs. 16-18. Remarkably, before the SF transition, we observe the solitons,
favored by DM interaction, shrinking, while the regions between them, with
spins along the magnetic field, experiencing a notable increase (Fig. 3b). In
comparison to the experimentally determined transition field of approxi-
mately 20 T, our calculations yield an overestimated field of approximately
100 T. This discrepancy is attributed to the overestimated exchange para-
meters and finite size effects in the MCS. Despite the success of the MCS, finite
size effects significantly influence important spiral deformations by forcing
the spiral to be commensurate with the simulation box. Therefore, in the
following we derive and employ a continuous Ginzburg-Landau-type theory.

1D continuous model
Application of the external magnetic field can modify the spiral period. Such
a phenomenon, often elusive in MCS due to finite size limitations, can result

b 4 L2

L1

. L{sycr 2(L2)

100
L2
90 L1

=00
Layer 1 (L1)
l ) L2
i 704 L1
L2
B N 1 Y % = S An=d

04 S R L

Fig. 3 | Magnetic structures as obtained from the Monte-Carlo simulations.

a Magnetic ground state of NISO as obtained from classical Monte-Carlo simula-
tions. The red rectangle indicates the area, for which we show the spin texture in
Panel (b). b Magnetic structure inside the area, indicated by the red box in Panel (a)
for different values of an external magnetic field, perpendicular to the spiral plane
(three-fold rotation axis).

in overlooking of interesting physics like spiral period changes. For instance,
De Gennes investigated modifications of the solitonic lattice period by an
external magnetic field in liquid crystals™ and concluded that the spiral
period follows the analytical expression:

(2 KHE®),

LH,) _
10) —

(10)

where L(0) is the original period of the perfect spiral at zero field, and K(k),
E(k) are elliptic integrals of the first and second kind, respectively. Here, we
formulate a continuous theory to capture such period changes and resulting
magnetically-induced polarization without any restriction of the periodicity.
As we see from MCS, the obtained magnetic structures are quasi-1D,
therefore we can effectively model NISO as a 1D-chain. This is due to the
following reasons. First, the spiral lies in the xy-plane. Second, important

exchanges are only J; and ], bonds. They involve the group of bonds
connected by the C§ operation. Those give rise to the energy expression
identical to that of a 1D chain.

Figure 4 shows the spin-spiral ground state and the states it deforms into
under an external magnetic field perpendicular to the layer, as obtained by
minimizing 1D AFM continuous chain energy in Eq. (37). First, application
of an external magnetic field generates a kink array state (Fig. 4c, g, k): instead
of rotating in space with the constant wave vector, antiferromagnetic order
parameter now rotates in a non-uniform fashion. Indeed, when A is pointing
perpendicular to the magnetic field H, sublattices cant along the field, which
leads to a gain of Zeeman energy, linear in the canting angle (at the expense of
the quadratic loss in the antiferromagnetic exchange energy between the
sublattices). Thus, the regions with A 1 H expand, forming plateaus in A,
(Fig. 4c), which increases the gain of the Zeeman energy on canting. In
contrast, between the plateaus, kinks in A, (or solitons) occur where A quickly
rotates through the field direction. At these points, one sublattice aligns with
the field and another — opposite to it, and therefore the gain of Zeeman energy
on the canting is not possible. The shape of these kinks is analogous to the
solitons in nonlinear dynamics because they are solutions of the Sine-Gordon
equation. The continuous model reveals that with further increase of the field
strength, the kinks are pushed apart. At a higher field, the flat spiral turns into
a conical one and its plane flops perpendicular to the field (Fig. 4b, f, j), which
enables a higher gain of Zeeman energy from spin canting along the field. The
kinks, present both in the flat and conical spiral phases, can be viewed as
particles interacting with each other via exchange of magnons. Further
increase of the magnetic field strength drives the transition into SF phase.
These transitions are very similar to the one found in our MC simulations
(Fig. 3b). However, in this continuous theory, the transition is much
smoother due to unrestricted simulation box size.

Fig. 4 | Spin-spiral evolution by an external mag-

ANH.[T]

netic field as obtained from our continuous
spin model. a-d Continuous spin, e-h real space

1.0| a
0.5

0.0]

continuous spin textures and (i-1) sphere area cov- 25
ered by each spin array as calculated using the
continuous model Eq. (37) at several external mag-

-0.5
-1.0

1.0|

netic field strengths H.. a, e, i SF state; (b, £, j): conical s

spiral; (¢, g, k): kink state; (d, h, 1): flat spiral state.

0.0]

20

-0.5
-1.0

1.0|
0.5

10 + oo

-0.5
-1.0

1.0
0.5
0.0

-0.5
-1.0

npj Spintronics | (2024)2:17


www.nature.com/npjspintronics

https://doi.org/10.1038/s44306-024-00020-9

Article

16F — L(H)L(0)
14 —— (2Im)PK(K)E(K)

1.2F

1_0:.. I e N PR B
Flat Spiral { Conical

0.8

Eo06
o
204
o
<02

10 15 20
H, [T]

OO
(&3]

Fig. 5| The response to an external magnetic field H,, applied along the three-fold
axis in NISO. (Upper panel) Spin spiral period calculated from the continuous
model (red line) and using the analytical formula in ref. 35 (blue line). (Lower panel)
magnetically-induced polarization resulting from the isotropic exchange striction.
The dotted line indicates phase transition between the flat spiral state and the conical
state shown in Fig. 6.

In the kink array phase, fast change of the angle 6 near the kink at
position X results in a delta function-like change of the gradient
% o 8(x — X). In this case, the interactions between kinks are found by
solving Euler-Lagrange equation for the magnetic structure deformation,
induced by the soliton, and result in the following interaction between kinks,

Vin = (4—1;]) e,

where § = /H_/J, and r is the distance between the kinks. This Yukawa-
like interaction can be understood as a long-range repulsion caused by
exchanging virtual massive magnons (similar to how Coulomb interaction
is caused by exchanges of virtual massless photons). High magnetic field
results in the enlargement of the areawith A | H because of the exponential
dependence on H, in Eq. (11). This is reminiscent of physics found in
multiferroic TbFeO5*.

Figure 5 illustrates the relationship between spiral period and the
polarization change. Our continuous theory predicts a period change that
closely matches De Gennes’s analytical formula Eq. (10). Then, the differ-
ence in the polarization (computed as a dipole moment of the cluster in Fig.
1c divided by the volume) between spiral and SF states is given as:

(11)

AP = Pg, — P, = 0 (py +p3)- (12)

The model parameters result in a very small change due to the isotropic
exchange, AP = 0.923 uC/m’. Such a minor polarization change is likely
to be imperceptible in experiments. In the first step (flat spiral phase), a
change in polarization is induced by a change in the spiral period (kink
distance). In the second step (conical phase, above 16 T, indicated by a
dotted line in Fig. 5), the curve shows a sharp increase of polarization
resulting from a ferromagnetic component developing in xy-plane due to
the SF contribution.

Figure 6 illustrates the phase diagram in the (H,, E,) plane. Here we
account for the electric field perturbatively by introducing the lowest order
energy density correction — E,P,. We find that a small electric field along the
ferroelectric polarization stabilizes SF state while an opposite field favors the
flat spiral. Asymmetry with respect to the sign of E, is caused by the non-
centrosymmetric structure of NISO, with the pyroelectric polarization set by
a specific cation ordering. The P, contributions from the spiral and FM
states are opposite, therefore they are stabilized by opposite electric fields.
We note that the large magnetic field continuously deforms the SF state into
the FM state.

30} A
o5t A SF
4
E 20' Q ~
IN 15t Conical

\.
10t @ ]
5¢| Flat spiral @

(0]3
-1.0

205 00 05

E,[a.u]

Fig. 6 | Phase diagram of NISO as obtained by minimization of the continuous
model, Eq. (37), with a small electric field E.. Yellow, green, and red areas are
indicating flat spiral phase, conical phase, and SF phase, respectively. The tendency
towards FM state is indicated with white in color gradients.

1.0

Polarization change during spin flop-to-FM transition

Our MCS results indicate the transition from SF phase to the FM state as we
apply an external magnetic field (Fig. 7a). Notably, the experimental data
reveals a much greater polarization change during this transition when
compared to the change between the spiral and the SF phases. During this
process, we can express the isotropic exchange contribution to the polar-
ization as follows:

PiZSo =3 cos(29)(plL +p§), (13)
where 0 is the angle between the spin and the xy-plane. In our MCS this
angle exhibits a linear dependence on the external magnetic field strength, as
depicted in Fig. 7b. This linear dependence is also found in the experiment'’.
Consequently, we anticipate that the magnetically-induced polarization will
resemble the behavior shown in Fig. 7c.

Importantly, the magnitude of this polarization change far exceeds that
observed during the spiral — SF phase transition. The polarization change
across the sequence of phase transitions, spiral — conical spiral — SF —
FM, reproduces well the experimental data'.

Discussion

Our study of the complex interplay of magnetic and electric fields, mag-
netic exchanges and DM interactions in corundum nickelate derivative
NISO has uncovered intriguing properties of multiferroic kinks and their
implications for the field of MFs. The methodological advancements
allowed a quantitative modelling of key magnetoelectric phenomena
in NISO.

We have derived analytical formulas for magnetic exchanges and
magnetically-induced polarization, starting from a minimal 2-orbital
model, suitable for computing these parameters from first principles.
These formulas can be applied to other S=1 MFs (e.g. Ni;TeOs,
Ni,ScSbOg). Additionally, we have developed a continuous theory to
address complex changes in the spin-spiral structures, which extends
our understanding of spiral MFs. This theory should be applicable to a
wide class of materials where spiral state is stabilized by
Dzyaloshinskii-Moriya interactions, for example BiFeO;. Our analysis
starts from the ground state with spiral ordering within the layers. We
find that a spiral structure deforms into an array of multiferroic kinks
upon the application of an external magnetic field in the plane of the
spiral. These kinks play a crucial role in determining the period of the
spiral, leading to a small polarization that is opposite to the FM
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Fig. 7 | Schematics for the SF transition and the a b c H. 15T
resulting magnetically-induced polarization. 2 [5T]
a Schematic representation of the SF phase. The H: (2) 0 69 190 140
arrows indicate spins in each layer. b Evolution of L2 T T T 50
the angle 0 after SF transition under the external L1 T T T _ __ —50¢
magnetic field as obtained from the MCS. 3 a RS —100t
¢ Polarization change during the transition from SF § g
phase to FM state. L2 LN NN = ——150¢
S - o o
L1 a Y a6 3. < _ooot
2t : : : : -250¢
L2 00 120 140 160 180 200 : : :
L1 H, [T] 10 20 30 40
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contribution. Importantly, external magnetic fields can directly control
the distances between these kinks. When a greater magnetic field is
applied parallel to the three-fold axis, it induces the SF transition,
consistent with experimental observations.

Using analytical and numerical models with parameters calcu-
lated from first principles, we have identified a three-step phase
transition (spiral — conical spiral — SF — FM) under an applied
magnetic field. Our ab-initio model shows that the most important
mechanism of the magnetically-induced polarization in NISO is the
isotropic exchange striction. During the first phase transition, the
polarization undergoes a small change, closely related to the mag-
netic kink distance (spiral period). The kink density produces a
contribution to the polarization that opposes the ferromagnetic
contribution, resulting in polarization change similar to the spiral
period change. In the second step, the polarization curve shows a
sharp increase related to the FM component development in the xy-
plane due to SF contribution. In the third step, the polarization
changes significantly, simultaneously with the linear change of the
canting angle 8 with the magnetic field. These polarization changes
imply the possibility of switching between these magnetic structures
by an external electric field, enabling the electric control of mag-
netism. The proposed scenario is supported by the excellent agree-
ment with the experimental data on the field dependence of the
polarization.

In summary, the work advances the understanding of magnetoelectric
effect in spiral multiferroics. NISO shows a rich phase diagram with flat
spiral ground state, magnetic kink arrays, conical kink phase and SF phase.
We reveal their connection to the magnetically-induced polarization, and
the possibility of electric switching between magnetic phases via an external
electric field. Given the importance of the manipulation of the spiral MFs by
external fields, we expect that our findings will motivate new experiments
and facilitate the applications of spiral MFs in the next-generation memory
and spintronic devices.

Methods

First principles calculations

Density functional theory calculations have been performed for the
experimental crystal structure' (see Fig. 1a for the hexagonal cell) using a
rhombohedral cell. These calculations employed norm-conserving pseu-
dopotentials within the Quantum ESPRESSO package”. The plane wave
cutoff was set to 1088 eV, the Brillouin zone was sampled by a 7 x 7 x 7
Monkhorst-Pack k-point mesh.

The hopping parameters of Eq. (1) is calculated using the Maximally
Localized Wannier Fucntion (MLWF) technique® as implemented in the
Wannier90 code™ ™.

The screened Coulomb and exchange interactions of Eq. (1) are cal-
culated using constrained RPA technique®, which yields U=2.3 eV and
] H= 0.6eV.

The crystal structures were visualised with VESTA™.

Analytical formula for the parameters of spin models
The second order perturbation energy with respect to electron hopping in
the 2-orbital model is formulated as:

12 . .
B9 =~ 3 (Hom i) + Ko B+ )E). (19

where |a 4 (—), i) indicates occupied (unoccupied) spin-orbital at site i and
AE = U + J. Now, we assume Hamiltonian matrix elements ii. are ordered
as |1)]2) (pairs of Kramers’ states). Consequently, the corresponding orbital
ket vectors are straightforwardly defined as: |1) = ((1)) and [2) = ((l))
Furthermore, when considering the occupied and unoccupied spin states,
we assume them to have general spinor functions:

- —singe_"“5
N cosg
" cos%7
- singei“’ '

These states have the maximal spin projection in the direction of an
associated classical spin € = (4|d|+) = (sin 6 cos ¢, sin Osin ¢, cos 6).

Next, we decompose general 4 x 4 hopping matrices (with the proper
phase) into their orbital and spin components, as described by the following
equations:

(15)

and

(16)

xXy,z
. ~0 S
b =T; ® 6+ Z iT; ®0d,, (17)
y
with the orbital part
tnll tr[lZ
Al i ij
Ty= <tn21 p2 >’(’7 =0,x,y,2) (18)
ij ij

where 6, is the 2 x 2 identity matrix and 6,; y = x, y, z are the spin Pauli
matrices. Here, we choose the phases such that non-SOC related terms are
represented solely by pure real coefficients, while SOC terms are represented
solely by pure imaginary coefficients. Then, taking energy difference for
different spin orientations and mapping, it is straightforward to find
analytical formual Eq. (6).
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The spin model can also be derived with respect to spin operators
acting on S =1 multiplets. The procedure is simply finding the correspon-
dence between a general spin Hamiltonian:

H,=S8;-J;-8;, (19)
and the second order perturbation energy:
1 . . S
Heg =— Z A Li [iM)(iMIT ; (20)
M M

Here,j is a 3% 3 tensor, 7 ij is a hopping integral defined as: 72,.]» =
> ap ooty t“ﬁ 7 A:rm,f:jﬁa, and |jM) represents the intermediate states

|1/2,m1>®|1/2,m2>®|1/2,m3> €S8=1/2 at site j. For instance,

(0, 1|Hgl1,1) = %(];Z + i]f;-z). This approach results in the following
expressions:

oo LU (BLt aftt (LI L eBLL (et L aBlt (Bt *

J5 =+ (+f ( ) +t (tij ) + 1 (’ij ) i (tu' ))

@1

*
7t;ﬁw(tgﬁﬁ) +taﬁu<gpw) )

i1 0N
7= 7552(7t$ﬂw (tﬁ}"“) + taw( ;m )
ap

(22)
12
JE= ;AIEZI;(‘HW% wﬂu) t;ﬁw(tgﬂﬁ)* 4 tgﬁu(t;ﬁu)* _ tgﬁM (t;ﬁm)*)
p
(23)
. 1.2 *
= _%é ﬁ ( gﬂw( Z/M)* gt (tgﬁw)* " t;ﬁ“(tgﬁm) " t;ﬁw(tgﬁw)*)
«
(24)
11 &2 * « « *
7= +Eﬁzﬁ:( Zﬁu( Zﬁw) . t:ﬁw@wu) + e (t;ﬁﬁ) — g (z;“‘”) )
o
(25)
i1 * * * *
]?:Jr%ﬁzﬂ(“am(gm) _t;{ﬂlT(tf;MT) —tﬁ}"”(tﬁ"”) +tgﬁm (tz_m) )
Py
(26)
11 & *
= ~35F ) (_tgﬁﬂ (t;m) + tgm (tff”) _ t;ﬁw (t;/m)* . tzﬁw (tj;ﬁ“)*)
o
(27)
. 1,2
]Zy:+%ézﬁ(7%ﬁﬂ(tgﬁw)*+tgﬁu(t;ﬁw)*+tgﬁw(tgﬁﬁ)* g (ﬁ;““)*)
)
(28)
11 ¢ 1 41 11 I
]g:+iﬁgx_@ﬁﬁ—u?|kH$ P+@ﬁf) (29)

ap

where the difference in signs between the second-order energies
arises from particle exchanges. This tensor can generally be

the exactly same result as the classical vector approach Eq. (6). The
equivalence of the two approaches can be easily demonstrated by
considering the relationship between the hopping integrals For
example,

Mo 0af
(P = 0% it
Substituting this definition into Eq. (9-17) yields the same formula as

Eq. (6). Here, we provide an explicit notation for the diagonal elements as an
example:

5= ;ﬁé(ﬂ"ﬁ”(ww) Hzﬁﬁ(tgﬂu)*Hjﬁu(tgw)*H;m(t;ﬁw)*)
ﬂl(( Y () ) - ()
é( aﬁw(aﬁw) +t,“j"”(tfj‘m)*+tgﬂ”(r‘,j"”)*
= (4 () - () - (57))
«p
=+ (- )

ap
= G S () + (@) - (5 - (7))

_ zgﬂ“ (t:z]z/m)‘)

2 2
t;{ﬁﬁ‘ +t§“”‘ +

aptl
-

Therefore, the isotropic interaction is given as

J=—1 TrJ =37 Z{ (tg“ﬁ) + Tr(t“ﬂ ® t"‘ﬁ)}.

All the other expression can be restored following the same procedure.

A similar theory can be developed for magnetically induced electronic
polarization. The main idea is to expand the Wannier functions with respect
to first-order of the hopping and apply the general theory of electronic
polarization in solids. This expansion corresponds to spin-dependent
modulations of the Wannier density, resulting in changes in the Wannier
centers. Starting point of the theory is the general theory for polarization in
solids™:

0occ

Z<wi|?|wi>,

i

P=— (30)

<=

where(w;|F|w;) represents the position operator’s diagonal elements in
the Wannier basis, and V is the cell volume. Next, the first-order
perturbation expansion of the Wannier function with respect to
electron hopping is:

lw; Y=o+, i) — AEZZW B, jlEla+, ).

(31

By substituting Eq. (31) into Eq. (30), we obtain pair and single-ion
terms as P = >_,P, + > s P The pair interaction terms are as follows:
= 1,2
Py=vip2
ap

(a7, 18— B lEglart ) + (et il B, ) (B iF o+ )

+<(x+ ]| ilB—, ><ﬁ*a ilzj[|“+~,j> + <a+1j|ijilﬁ77 i><ﬁ*7 "|7:[j|”‘+vj>]

(32)

decomposed  into  isotropic  interaction: J; = — %Tr:]Jij,
P Similar to the hopping matrix, the position matrix can be decomposed into a
o i P . & ~ linear combination of the Pauli matrices as:
Dzhaloshinskii-Moriya vectors: D; = 5 | Jii —Jii" |, and symmetric
7y =P L 3 EV
s e ety e o F=R)®a,+ > iR @0, (33)
anisotropy:l;; = i (J,-]- +Jij> — J;jl. However, this approach results in v Y
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Then, it is straightforward to find the pair interaction formula Eq. (3)
and the corresponding analytical formula Eq. (7).

Single-q spiral ansatz
In the simplest approximation, a spin-spiral state can be characterized by a
single g-vector,

& = iy cos(q - R) + i, sin(G - Ry), (34)
where #1, and 71, are orthogonal vectors within the plane of the spiral, 4 is the
propagation vector and R; is the vector pointing to the site i. This is an
Ansatz of a single-q spiral state. The spiral plane can be characterized by its
normal vector,

at = (—sin ¢, cos ¢, 0), (35)
where ¢ indicates the rotation of the spin-spiral plane. In this case, the

relative orientation between 85 and 71 defines the spiral type. For instance,
84 || ™ is a proper-screw spiral state.

Layer AFM chain continuous model

We express magnetization and AFM order parameter at position x as
M(x) =, §1 (x) + %(x) and A(x) = §1 (x) — §2(x), respectively. In this for-
mulas, S;(x) and S,(x) are spins at neighboring layer L1 and L2 and these
satisfy A(x) - M(x) = 0. Then, energy density of the chain at position x is
expressed as

SE() = —L(VA®) + D [A)x (VA())] — H- M) +J.
(36)

In this equation, the first term is the effective isotropic ferromagnetic
exchange, J' <0, the second one is the antisymmetric DM interaction, the
third term corresponds to the Zeeman energy due to an external field H, and
the last term is the energy of a ferromagnetic state. The alternating inter-
layer AFM exchange coupling in NISO can be considered as intra-layer FM
exchanges. Considering inter-layer AFM exchange ], the effective intra-layer
FM exchange would be ' = —2J. By employing the Fourier expansion of
the spin, K(x) = \/Lﬁ 25:7 N Kn e we obtain a simplified energy

expression that has to be minimized:

E. =

- [-LQA, - A_, +iDQn- (A_,xA,)] — (H-4,)

n=—N

(37)
+)(< Z eiQ(l'+m/+nf+pf)xAZ,A’m/;&n’gp, _ 2A‘ﬂxﬂ> ,
I'm'n'p'

where the last term is the energy penalty with coefficient A >> 1 enforcing a
constraint on the spin length. Similarly, the change of the spin-isotropic part
of the polarization per spin can be evaluated as:

N
P o —1 4 Z QA A, (38)
n=—N

Data availability
The datasets used and/or analyzed during the current study are available
from the corresponding author upon reasonable request.
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