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Recent progress on controlling spin-orbit
torques by materials design
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Spin-orbit torques (SOTSs) provide an energy-efficient approach for the electrical manipulation of
magnetization, pivotal for next-generation information storage and processing devices. SOTs can be
generated via various mechanisms, such as spin Hall effect, Rashba-Edelstein effect, orbital Hall
effect, magnons, and spin swapping. SOTs-based devices hold potential advantages over spin-
transfer torque (STT) devices, including low power consumption, enhanced durability, and a broader
selection of applicable materials for both SOT generation and excitation. Despite the discovery of
numerous materials capable of generating significant SOTs, achieving efficient and deterministic field-
free switching of perpendicular magnetization remains a critical challenge, which is essential for the
practical deployment of SOT in high-density magnetic memories. This review highlights recent
progress in controlling SOTs through innovative materials design, encompassing strategies such as
strain engineering of the spin Hall angle, interfacial engineering of the spin transmissivity and
topological surface states, and symmetry engineering to achieve deterministic field-free switching of
perpendicular magnetization. By exploring these effective methods for manipulating SOTs, this review
aims to lay the groundwork for the development of optimized spintronics devices and applications.

The manipulation of magnetization is a critical aspect of spintronic
research'™, driving development of spintronic devices for information
storage’”,sensing’ and processing applications’™', such as magnetic
random-access memory (MRAM)"*™**, nano-oscillators'**, neuromorphic
computing devices™ ™, magnetic sensors**"*, and so on. Previously, Oer-
sted field generated by charge current and current-induced spin transfer
torque (STT)* were employed to manipulate magnetization. In recent
years, current-induced spin-orbit torques (SOTs)* "' emerged as a more
effective approach for manipulating magnetization. SOTs can be generated
via various mechanisms, such as spin Hall effect (SHE)*™,
Rashba-Edelstein effect” ™, orbital Hall effect” ™, magnons™* and spin
swapping” . In the case of spin Hall effect, an in-plane transverse charge
current in the spin source materials generates a longitudinal pure spin
current, which transports spin angular momentum with polarization ¢ into
adjacent ferromagnetic(FM) layer, exerting torques on the magnet. As for
Rashba-Edelstein effect, spin accumulation is created by a charge current in
a two-dimensional electron gas with SOC and magnetic exchange, exerting
torque on adjacent magnetization. The produced spin-orbit torque could be
decomposed into two components that are perpendicular to each other, a
anti-damping torque 7,, m X (m X ¢) and a field-like torque 7,; m X g,
where m is the unit vector of the magnet®**, To evaluate the charge-to-spin
efficiency of a spin source material, the merits of figure, spin Hall angle

(SHA) 0, is defined as®"™**

2ej
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where j. is the charge current density in the spin source material, j, is the
generated spin current, e is the electron charge, and 7 is the reduced Planck
constant. Considering that spin scattering and spin loss during the trans-
portation could reduce the amount of spin angular momentum that arrives
the adjacent ferromagnetic layer, another index SOT efficiency 6, is used,
which is defined as

Osor = TinOsn 2)

where 8 is the SHA, and T, is the spin transparency’' .

SOTs offer several advantages on manipulating magnetization com-
pared to STT®™. Firstly, benchmark SOT materials show higher charge-to-
spin conversion efficiency, which results in lower power consumption in the
SOTs-based devices*”*. Secondly, the configuration of SOT devices are three-
terminal structures with separate paths for writing and reading, giving arise
to longer duration'. Thirdly, SOT materials are not limited to
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Fig. 1 | Methods of controlling SOTs in spin
source/FM structures. a Strain engineering.
Application of strain from the piezo substrate onto
the film enhances the spin current. b Interface
engineering. Inserting an oxide layer into the spin
source/FM structure increases the transparency of
the spin current. ¢ Symmetry engineering. Spin
current with z-polarization is prohibited by the
mirror symmetry (left), and allowed when no mirror
plane appears (right).

Engineering SOT of spin source materials/ferromagnet structure

a Strain engineering

b Interface engineering

ferromagnet(FM),  they also include ferrimagnets””®  and
antiferromagnets”™ opening up new possibilities for novel spintronic
devices.

To date, plenty of materials are identifed as capable of generating
significant SOTs, including heavy metals(HM)****"*”7, oxides**",
topological semimetals(TSM)***® and topological insulators(TI)*"~".
However, acquirng SOT materials with larger SOT efficiency and
electronic conductivity for energy-effiecient application is still
challenging”™ . In addition, since out-of-plane magnetization is
preferred in application due to its good miniaturization, deterministic
switching of the out-of-plane magnetization is essential, which can be
realized through SOT generated by z-polarized spin current™***~'",
However, this unconventional SOT is generally prohibited by mirror
symmetry in common spin source materials, and symmetry breaking
is required for generating SOT. To address these two challenges,
researchers have developed strategies for controlling both the mag-
nitude and polarization of SOTs through materials engineering. These
strategies include: (1) Strain engineering of the spin Hall angle, (2)
Interfacial engineering of the spin transmissivity and topological
surface states, and (3) Symmetry engineering to achieve deterministic
field-free switching of out-of-plane magnetization (see Fig. 1). In this
review we aim to focus on recent research works that control SOT's by
the above methods.

Strain engineering

Strain engineering has emerged as a potent tool for modulating material
properties that are coupled with crystal structure, such as magnetic
anisotropy'”""'*, electronic transportation'”, optical properties'” and spin
Hall angleltmflll.

The approaches for applying strain could be catogarized into
static strain and reconfigurable strain. Static strain is typically
implemented in single crystalline thin films through hetero-epitaxy on
single crystal substrates. The resulting strain originates from the lat-
tice mismatch between the film and the substrate, profoundly affecting
the film's properties. Importantly, epitaxial strain from the substrate
can not only alter the lattice constant of the film but also its crystalline
symmetry. Reconfigurable strain can be achieved using piezoelectric
substrates or flexible substrates. In this approach, deformation of
substrates induces stress on the films, allowing for dynamic adjust-
ments to the strain effects on the material properties. Additionally,
this also offers a versatile platform to investigate the strain effect on
the spin-Hall effect.

Static strain engineering

Static strain engineering leverages the lattice mismatch between the film and
the substrate, typically kept below 5%''*'", to prevent excessive strain
accumulation at the interface that could lead to hetero-epitaxy failure'**'".

One of the model system to study the strain effect is the transition metal
oxides (TMOs). In TMOs, the intricate interplay between spin-orbit cou-
pling and the electron correlation generates substantial Berry curvature.
This, in turn, gives rise to notable intrinsic spin Hall effect®’. Notable
enhancements in SOT have been observed under strain engineering within
these materials.

For instance, SrIrO3, a 5d transition-metal oxide, is found to have an
enhanced SHA under strain engineering. In the NiFe/SrIrO; hetero-
structures grown on SrTiOs substrates™ (Fig. 2a—c), an increase in SHA
from 0.2 to 0.5 was observed via spin-torque ferromagnetic resonance (ST-
FMR) measurement as the SrIrO3 thickness increased from 10 to 15 unit
cells (Fig. 2¢)*, correlating with a crystal symmetry transition from tetra-
gonal to orthorhombic. This change is evidenced by the enhanced orthor-
hombicity a,/b, (ratio of the lattice parameters) (Fig. 2b). Symmetry analysis
and density functional theory (DFT) calculation have shown that SHA
varies with crystal phase of SrIrOs; the orthorhombic phase exhibits narrow
to bands with extensive band crossing, resulting in a higher SHA, while the
strained tetragonal phase shows wide t,; bands with less band crossing and a
reduced SHA.

The influence of crystal symmetry on spin Hall conductivity o5y (SHC,
defined as the product of SHA 85 and charge conductivity o, 0sy=0s-0.) is
also evident in SrRuO5 """, SrRuO; film, epitaxially grown on KTaO5(KTO)
substrates with large tensile strain (Fig. 2d), developed orthorhombic phase
and had SHA as large as 0.154 (Fig. 2e)""°, whereas compressively strained
SrRuO; thin film on NdGaO;(NGO) substrates present tetrahedral phase
with a reduced SHA of ~0.015, ----an order of magnitude smaller (Fig. 2¢)"'°.
Similar trends were also confirmed by a different research group, which
reported that the altering the strain from compressive to tensile via epitaxial
growth could enhance the SOT efficiency of SrRuO3 thin films from 0.04 to
0.89, where the crystal structure was tuned from tetrahedral to orthorhombic
(Fig. 2g). Although the trend of SHA changes in StRuOj; due to epitaxial
strain is consistent across the above mentioned two works, the measured
value of the SHA vary significantly. This discrepancy could be attributed to
several factors, including difference in thickness of the heterostructures,
sample quality or disparities in interfacial spin transmission. It's a commonly
known that epitaxial strain in thin film would decrease with growing film
thickness due to strain relaxation. This effect has been extensively studied'”’
and demonstrates a significant thickness dependence of spin and electronic
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Fig. 2 | Static strain engineering via hetero-epitaxy. a-c SrIrO;*: a Schematic of
thickness dependence of octahedral rotation in SrIrOs. b Thickness dependence of
orthorhombicity a,/b,. ¢ Thickness dependence of SHA in Py/SrIrOs. d-f SrRuO;"'*'"*:
d Schematic illustration of the effects of epitaxial strain on the lattice parameters of
SrRuO;'". e SOT efficiency of SrRrO; on KTaO5(KTO), SrTiO5(STO), and
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properties in tensile-strained SrRuOj; thin films. Additionally, the type of
single crystal oxide substrate used can induce different artifact signals in SOT
measurements, particularly in ST-FMR experiments. These artifacts can
substantially influence the interpretations of strain effects on the spin-Hall
effect, highlighting the need for careful consideration of experimental con-
ditions and substrate choice in SOT research'”".

Reconfigurable strain

Under epitaxial strain, which is discrete and limited by the mismatch con-
dition of hetero-epitaxy, reconfigurable strain allows for the application of
strain in a larger scale and/or in a continuous manner'**'”.This method
utilizes piezoelectric substrates or flexible substrates that can be mechanically
deformed by compressing, stretching or bending. Consequently, thin films
grown on these substrates adapt to the deformation, resulting in dynamically
adjustable strain. Recent studies have demonstrated significant enhance-
ments of SOT in heavy metals using reconfigurable strain engineering.

For example, in a CoFeB/Pt/PMN-PT(011) hybrid structure'”, as
shown in Fig. 3a, piezoelectric strain has shown to not only modulate SOT
efficiency (Fig. 3b), but also to induce an effective magnetic anisotropy and
rotate the easy axis (Fig. 3c). This modification facilitates the in-plane
magnetization switching and can significantly reduce the switching time by a
factor of 3.

In Pt/Co bilayers, applying tensile strain along the current axis
enhanced the spin Hall efficiency from 0.07 to 0.1, as shown in Fig. 3d-{'*,
with 78% of the enhancement retained even after removing the strain. A
linear relationship was observed between tensile strain and spin Hall effi-
ciency, attributed to increased spin-dependent collision between the con-
duction electrons and ions.

Further in W/CoFeB/MgO multilayers (Fig. 3g, h)'"*’, both compressive
and tensile strains modulated the anti-damping torque in W, enhancing it by
a factor of 2 under 0.03% tensile strain, as shown in (Fig. 3g). First principle
calculation revealed a strain-induced crystal symmetry transformation from
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Fig. 3 | Reconfigurable strain engineering. a—c Pt/piezoelectric'**: a Geometry of
CoFeB/Pt/PMN-PT(011) device. b Resonance field Hgyppg as a function of in-plane
magnetic field angle for different applied electric (c) spin Hall angle of CoFeB/Pt/
PMN-PT device. d—f Pt/Co bilayer system'*’: d Schematic illustration of a Pt/Co
bilayer for the ST-FMR measurement. e Schematic of strain application onto the

sample. f Spin Hall efficiency as a function of in situ tensile strain. g, h W/
piezoelectric'*: g Schematic of the Ta/MgO/CoFeB/W/PMN-PT(011) Hall bar (h)
FL and DL SOT effective fields under compressive (left) or tensile (right) strain.

fourfold C,, to twofold C,,, resulting in a redistribution of the d-states of the
conduction electrons and leading to enhanced intrinsic spin Hall effect.

Reconfigurable strain is not limited by the constraints of hetero-epi-
taxy, allowing for strain modulation even in polycrystalline SOT materials.
This capability has been exploited to enhance the spin Hall angle (SHA) in
polycrystalline heavy metals with strong spin-orbit coupling (SOC), further
demonstrating the utility of reconfigurable strain engineering in advancing
SOT technologies'*"*".

Interface engineering

Interface engineering represents a pivotal approach in enhancing the
effective SOT efficiency in the heterostructures. Firstly, it improves spin
transparency within the spin source/ferromagnet (FM) layer interfaces,
crucial for efficient spin current transmission and effective manipulation of
magnetization. Secondly, interface engineering serves to protect and stabi-
lize topological surface states in the topological materials/FM hetero-
structure, which are essential for leveraging the unique properties of
topological materials in spintronic devices.

Enhancement of spin transparency

Interface engineering plays a crucial role in improving SOT efficiency by
enhancing spin transparency in heavy metal (HM)/ferromagnet (FM) het-
erostructures. In these heterostructures, a pure spin current, generated via
SHE, transports across the interface to apply torques onto the adjacent
magnetic layers. The transmittivity of this spin current transport across an
interface is evaluated by the interfacial spin transparency, which includes
contributions from spin backflow (SBF) TisrﬁF and spin memory loss (SML)
TML7L71221%8 The SBE refers to the back diffusion of the spin current due to

spin scattering at the interface, and the SML involves the flipping of spins
when the spin current crosses the interface due to the interfacial spin-orbit
coupling, The total spin transparency T5o' | TSME and the SML TSME could be
expressed as,

T = Tit % it ®)
G4
T;SftF _ HM/FM (4)
1 G
GHM/FM +5
. Gt !

Tiil\t/f = 1 + % = Gum (5)

HM/FM +=5"

where G}JM Jryr 18 the bare spin-mixing conductance of the HM/FM
interface’"'”", Gy, is the effective spin memory loss (SML) conductance of
the interface, and Gy, = 1/p,. A, is spin conductance of the HM, p, _ is the
resistivity of the HM and A, is the spin diffusion length of the HM. Improving
the spin transparency T;,, would lead to an enhanced SOT efficiency. And
engineering the HM/FM interface, such as oxidizing the interface or incerting
an oxide layer to the interface, is found to effectively improve the spin
transparency. For instance, increasing the oxygen concentration in the W
layer of the SiO,/W(O)/CoFeB/TaN structure'”, led to a substantial rise in
SOT efficiency, peaking at an oxygen concentration of 12.1%. The
enhancement of SOT efficiency was considered to originate from the oxygen
interface regulation. In another work, the SOT efficiency of the CuO,/Py
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bilayers was improved by changing the oxygen concentration'*’, which was
also attributed to the interfacial regulation of oxygen.

Insertion of an oxide layer into the HM/FM structure is also found to
influence the SOT efficiency. For instance, incerting an antiferromagnetic
NiO layer into the Pt/YIG interface increases the spin current, which is
generated via spin Seebeck effec and measured via inverse spin Hall effect,
up to an order of magnitude (Fig. 4a-c)'"*". This enhancement is attributed to
the presence of the spin fluctuation in the NiO layer, which amplifies the
spin current transmission, especailly at temperature that is near Néel tem-
perature. In the Pt/NiO/FeCoB structure, the insertion of approximately 1
nm thick NiO layer markedly enhanced spin transparency (Fig. 4e~f)'*.
However, when the NiO layer's thickness exceeded 1 nm, a decline in SOT
efficiency was observed, likely due to the limited spin diffusion length of
NiO. Contrastingly, in the Bi,Ses/NiO/NiFe, there is an enhancement of the
SOT efficiency at NiO thickness of ~20 nm, which can be attributed to the
presence of the magnon-mediated spin torque®.

Engineering of topological surface states

Engineering the surface states of spin source materials, especially in topo-
logical materials, is a crucial strategy for enhancing SOTs. The significant
SOTs in these materials predominantly originate from the spin-momentum
locking due to the presence of their surface states'”. However, challenges
arise in maintaining the integrity of these states when interfaced with fer-
romagnetic layers (FM). For instance, in the heterostructure of Bi,Ses/
Ni(Co)", the intrinsic topological surface state of Bi,Se; was disrupted.
Detailed band structure analysis using density functional theory calculation
and tight binding model showed discrepancies in work functions led to the
shifting of topological states below the Fermi level, merging with the metallic
bands of Ni(Co) and thus degrading the spin-helical structure. This phe-
nomenon was corroborated in studies with an elemental topological Dirac

semi-metal o-Sn, where angle-resolved photoelectron spectroscopy
(ARPES) indicated the destruction of topological surface states upon
deposition of a thin Fe layer of 0.9 A (Fig. 5a)"*’. To preserve these critical
states, several strategies have been implemented. In a-Sn structures, inser-
tion a thin layer of Ag on the a-Sn film not only protected the Dirac cone
from disruption (Fig. 5a), but also enhanced spin current absorption cap-
abilities, evidenced by significantly increased Gilbert damping (Fig. 5b)"*.
Further, this Ag layer insertion in an a-Sn/CoFeB structure facilitated
effective magnetization switching by maintaining the topological states
(Fig. 5¢)™.

Substituting the ferromagnetic metallic layer with a ferromagnetic
insulating layer has also shown promise in preserving topological states. In
Bi,Ses/BaFe;,0, structure”, where BaFe;,0 4 is a ferrimagnetic insulator,
the topological surface states of Bi,Se; remained intact and effectively
generated polarized spin currents for magnetization switching, demon-
strating high SOT efficiency (Fig. 5d).

Symmetry engineering

Perpendicular magnetization is highly valued in low-power high-density
magnetic memory and logic devices, making deterministic switching of
perpendicular magnets essential®””'"**. Anti-damping torque 7.,
m X (m X ¢) generated by spin current with polarization ¢ can switch
magnetic moments effectively and deterministically when the easy axis
aligns with the direction of the polarization ¢. Consequently, a perpendi-
cular magnet can be switched deterministically via a z-polarized anti-
damping torque 75, .. Yet, most spin source materials are found to generate
spin-orbit torque corresponding to y-polarization due to symmetry
restrictions. Because the spin angular momentum is an axial vector (or
pseudovector), a spin current with z-polarization would change its sign
under mirror reflection in xz plane My : (x,y,2) = (x,—y,2), which
contradicts the translational symmetry present in the materials. This

npj Spintronics | (2024)2:56



https://doi.org/10.1038/s44306-024-00054-z

Review

d

a-Sn| Ag 4.3 A
2101 2 2-10 1 2
K100 (nm-?) K1 107 (nm-?)

71.08

71.06

71.04

71.02f 74.20

Kerr rotation voltage (uV)

71.00 . L L
8 4 0 4 8
J(x108 A/cm?)

7418 e
12 6 0 6 1c
J(x108 A/cm?)

Fig. 5 | Topological surface state affected by the adjacent magnetic layer.

a Comparison of ARPES results among a-Sn, a-Sn/Fe, and a-Sn/Ag structures'”.

136

b Comparison of magnetic damping in different structures'”. ¢ Current-induced

«e"
\ P%\w o

- - 0. 014-\—0 002
\nSb/Ag/N\Fe »
InSb/NiFe: et = o.oossxo.o

0 3 6 9 12
Frequency (GHz)

15

~0.04 |
220 -10 0
H (kOe)

magnetization switching via topological surface states a-Sn protected by the inser-
tion Ag layer®. d Loop shift in Bi,Ses/BaFe,,03 structure with different currents™.

restriction prohibits the generation of z-polarized spin current (see
Fig.1c)”*. An external magnetic field along the current direction is typically
required to break the symmetry and facilitate the deterministic switching,
which is, however, unpractical for applications.To realize the field-free
deterministic switching of perpendicular magnets, various strategies of
mirror symmetry breaking have been developed and can be classified into
the following three categories:

(1) Asymmetric device design: This approach involves breaking mirror
symmetry by introducing asymmetric design features at the device level,
such as non-uniform distribution of film thickness and composition
variations.

(2) Crystalline symmetry breaking: This approach involves mirror
symmetry broken due to the inherently low symmetry of the lattice
structure.

(3) Magnetic symmetry breaking: This approach involves mirror
symmetry breaking by the introduction of long-range magnetic ordering in
the spin source layer, such as a cluster magnetic octupole moment in non-
collinear antiferromagnets (AFM), a Néel vector in collinear antiferro-
magnets, and a magnetic moment from a FM layer.

In this section, we review recent research progress on current-induced,
deterministic, field-free switching of perpendicular magnetization through
symmetry engineering in spin source/FM structures.

Asymmetric device design

Asymmetric device design introduces structural asymmetry at the device
level to break mirror symmetry, achievable through non-uniform dis-
tributions of film thickness™'** and composition'**~'*,

For instance, in the Ta/CoFeB/TaO,(wedge) heterostructure®, where
the TaOy layer has a wedge shape with a linearly changing thickness across
the lateral direction (Fig. 6a), current-induced field-free switching of per-
pendicular magnets was observed. This switching was attributed to a new
field-like effective field in the z-direction HET, arising from the lateral
thickness-gradient, which facilitated the switching of the perpendicular
magnetization. Reversing the current direction to oppose the thickness
gradient resulted in an opposite switching polarity, as shown in the current-
induced switching measurements (Fig. 6b, c)”’. This further demonstrated
that the effective field H is dependent on the thickness-gradient. A similar
wedge structure in a Ta/CoFeB(wedge)/MgO multilayer also enabled field-
free switching of the perpendicular magnetization (Fig. 6d)"**. The trape-
zoidal shape of the edges in these structures breaks the symmetry and
provide an intrinsic bias magnetic field, enabling field-free switching of
perpendicular magnetization (Fig. 6e, f)'*.

In addition to lateral thickness-gradient, lateral gradient of composi-
tion in the spin source layer or magnetic layer have been also reported to
break mirror symmetry and realize field-free switching of perpendicular
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magnetization'“’. The lateral composition gradient in Cu-Pt spin source

layer, as depicted in Fig. 6], generated a lateral gradient of SOT and broke
mirror symmetry'*’. Composition gradient in magnetic layer modulated the
saturation magnetization M; (Fig. 6g) or magnetic anisotropy field Hy (Fig.
6h), generating non-collinear spin texture with in-plane components. The
Dzyaloshinskii-Moriya interaction (DMI) which broke chiral symmetry,
resulted in deterministic switching without an external field (Fig. 6i).

Introduction of vertical asymmetrical structures has also been
reported to contribute to field-free switching of perpendicular magne-
tization. In a ferrimagnetic Co;4Tby thin film with perpendicular
magnetic anisotropy(PMA), where the components of Co and Tb con-
tinuously changed in the vertical direction and formed a composition
gradient (Fig. 6d)"”, researchers observed current-induced field-free
switching of the perpendicular magnet in Co; ,Tby film. This was
attributed to the presence of a composition gradient-driven DMI, which
broke the xz mirror symmetry and allow generation of a z-polarized
torque.

The advantages of using the asymmetric device design lies in its ver-
satility; it can be applied to various types of spin source materials, including
the simple heavy metals which are compatible semiconductor technology.
However, adaptation of these designs for use in SOT-MT]J devices and
scaling them up for industrial mass production still requires experimental
demonstrations. These developments are crucial for validating the designs'
compatibility and feasibility in practical applications.

Crystalline symmetry breaking

Asymmetric device design represents an “extrinsic” approach for achieving
symmetry breaking. In contrast, symmetry breaking arising from the
inherent material structure such as crystalline structure is “intrinsic”.

Crystalline symmetry breaking can be realized in spin source materials
with intrinsic low crystalline symmetry”>'*~'*, Transition-metal dichalco-
genides, for example, are particular notable for their for their strong SOC
and low crystalline symmetry, making them prime candidates for this
approach. Significant z-polarized SOT has been observed in materials like
tungsten ditelluride WTe, which possesses a layered orthorhombic struc-
ture with the space group Pmn2,"**'¥~"*°. In a WTe,/Py bilayer, an out-of-
plane anti-damping torque with corresponding SOT efficiency of 0.016 and
SOT conductivity of (3.6+0.8)x 10° (#2e) Q'cm™" is reported (Fig.
7a-c)'"". Besides, it is found that this unconventional torque is crystalline
orientation dependent. Angle-dependent asymmetry components V , from
Lorentzian fitting of ST-FMR spectra reveals the presence of an out-of-plane
anti-damping torque when charge current is in ag-axis direction (Fig.
7b).When current is along b-axis with mirror symmetry the out-of-plane
anti-damping torque vanishes (Fig. 7c). In addition, thickness dependence
study reveales a decreased trend of this z-polarized SOT with increasing
WTe, film thickness, indicating its interfacial origin in the WTe,/FM
heterostructure'”’. Field-free switching of two-dimensional(2D) PMA
magnets via the z-polarized SOT was also demonstrated in WTe,/PMA
structure™’. Other transition-metal dichalcogenides with similar crystalline
structure as WTe, are also found to show SOT with z polarization. In
MoTe,/Py structure, a small out-of-plane anti-damping torque efficiency of
0.005 was reported, as well as the same crystalline-dependent trend"*". While
in NbSe,, unconventional torque was not observed, which was attributed to
crystalline change under strain during device processing'* .

Apart from transition-metal dichalcogenides, recent study on ternary
2D material, Weyl semimetal TalrTe,, also reports observation of a large
out-of-plane SOT with similar crystalline orientation-dependent (Fig.
7d-f)"*. Loop shift measurement in the absence of an in-plane magnetic

npj Spintronics | (2024)2:56



https://doi.org/10.1038/s44306-024-00054-z Review
d |
WTez _ TalrTes 9.9 I 9.9 :Ie CuPt/CoPt [11-2]
7% %9 a
, 5
S i PCAAKAS o,
8 » CoPt \ »V*
3 Te 9 \ ‘ 9 PN M*
00000000 [111], z [1-10]
| b
v v - v
oo b b
b
Cc
b 0 6,=0°
ol IMa] 1of
X
L =
20+ - 0.5 £
~ =
ERY A SRR WY S S oo g o
< N I
> 1S <o
20} 05| * 08
—a0l — Asin.(2¢—2¢0)cos(¢- 00)
+Bsin(2¢ - 2¢,) -1.01 16 | | ! 1
%0 0 90 180 270 400 50 0 50 100 j ¢ 8 . 1t0/ ( 1:; &l
5 urrent, f,ee (M
c () f — 6
i bl 1ot s huso = 18 MA
£ 9
I =
=
i { E of
877
I | =
0l — ASin(26 - 26,) cos(9 - 6) 10 , . , I'b : , ) ‘ ; ‘
50 (‘) 9‘0 12;0 270 -200 -100 0 100 200 30 60 90 120 150 180
60 H (Oe) Current angle, ¢, (deg)

Fig. 7 | Crystalline symmetry breaking. a-c WTe,/Py structure'*: a Schematic of
the crystalline structure(left) and device(right). Angle-dependent asymmetry

components V from ST-FMR spectra when current ran (b) along a-axis (c) along b-
axis. d—f TalrTe,/Py structure'*: d Schematic of the crystalline structure. Hysteresis

loop shift measurement when current ran e along a-axis (f) along b-axis. g, h CuPt/

CoPt structure™: g Schematic of the device(left) and crystalline structure at the

interface(right), h current-induced out-of-plane effective field from loop-shift
measurement, and i crystalline orientation dependence of the out-of-plane effective
field per current density.

field shows shift and an out-of-plane effective field when charge current
aligns with a-axis (Fig. 7d). And the shift disappears in the anomalous Hall
loop when current is along b-axis where a mirror present (Fig. 7f). The SOT
efficiency of this unconventional torque is estimated to be 0.043 +0.003
from ST-FMR measurement, with SHC of (2.065+0.014) x 10*
(72e) Q' ecm™, which is around 1/3 of its conventional y-polarized SOT
efficiency. The same trend of the out-of-plane anti-damping torque on the
TalrTe, thickness is also found.

In addition to 2D materials/FM bilayers, investigation on hetero-
structures based on CoPt have led to several interesting findings.

In the L1;-ordered CuPt/CoPt heterostructure™, the low crystal-
lilne symmetry at the interface leads to generation of an unconventional
SOT with maximum effective field of 0.03 mT per 10° A/cm” (Fig. 7g-i).
Loop shfit measurements reveals that an out-of-plane effective field
HoAHoop exists when charge current is at the low crystalline symemtry
direction, for instance, when the current angle 6; is 0° or 60° (Fig. 7h).
The presence of the threhold current indicats an out-of-plane anti-
damping torque. More detailed experiments shows this out-of-plane
effective field has a threefold rotation symmetry with respect to the
current angle (Fig. 7i). The corrsponding torque is denoted as “3m”
torque due to the symmetry. Similar result is also reported in single
magnetic layer, an A;-disordered CosoPt;o alloy thin film, where the
same trend of the SOT effecitve field on current direction is observed”.
In this case, the presence of the SOT and the free-field switching of the
same layer is attributed to the cooperation of two structural mechanisms:

the low crystal symmetry at the Co platelets/Pt interfaces which gave rise
to the “3m” torque, and the composition gradient along the thickness
direction which broke the mirror symmetry along the z-plane. However,
in another study a field-like torque corresponding to the x-polarization
instead of z-polariztion is reported in a [Pt/Co]s/CoFeB multilayer,
where the Co films is ultrathin (¢ < 0.260 nm) and presents paramagnetic
state'”’. In this structure, symmetry breaking is considered to be obtained
through a weak in-plane magnetization of Co, acquired from the stray
field of the adjacent in-plane magnetized CoFeB film via magnetic
proximity effect.

In brief, out-of-plane SOT's can be generated from a spin source layer
with low crystalline symmetry and with mirror symemmtry breaking. The
magnitude of the out-of-plane SOTs hence depend strongly on the crys-
talline orientation.

Magnetic symmetry breaking

Magnetic ordering in magnetic SOT materials offers an alternative
“intrinsic” approach to break mirror symmetry. The presence of long-range
magnetic ordering has been proven to effectively break mirror symmetry
and lead to generation of unconventional SOTs. For instance, investigation
on non-collinear AFM materials reports the presence of unconventional
SOT due to the presence of chiral spin texture in real space and its resulting
band splitting in k-space, which is denoted as the magnetic spin Hall effect
(MSHE)#!%1**1% These non-collinear AFM materials include Mn;GaN,
Mn;SnN, Mn;Sn, Mn;Ga, MnPd3, and so on.
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Fig. 8 | Magnetic symmetry breaking on non-collinear AFM materials.

a, b Mn;GaN structure'®": a Anti-perovskite crystalline structure and the non-
collinear spins(left), the (001) projection with (middle) and without (right) non-
collinear spins. b Symmetry and asymmetry component from ST-FMR spectra
indicating the presence of unconventional SOTs when current run along [100]
direction. ¢, d Mn;SnN structure'™: ¢ spin texture(left) and the cluster magnetic
octupole moment T. d field-free switching of PMA via an out-of-plane torque.

e-h Mn;Sn structure'”: e Crystalline structure(left) and the cluster magnetic

octupole moment T(right) along the (0001) direction. f Schematic of the device.
g Field-free switching of PMA via z-polarized torques and h switching polar(-
clockwise or anticlockwise) reversed with changing spin texture. i, j Mn;Ga
structure'*: i Schematic of the device and j crystalline orientation-dependent
switching ratio on the (0001) plane.

Table 1 | Comparison of SHA of different spin source materials with symmetry breaking t

Materials p (uQ2cm) 0, 0, 0./6, Methods Temperature References
WTe, 380 0.013 0.03 43% ST-FMR 300K 144
TalrTe, 80 0.043 0.113 38% ST-FMR 300K 146
Mn;GaN 220 0.019 0.025 76% ST-FMR 300K 154
Mn3Sn 367 0.067 0.22 31% Loop-shift 300K 159
MnPdg 60 0.011 0.41 2.7% SHH 4K 155

Mn;GaN is a metallic manganese nitride of anti-perovskite crystalline
structure, and belongs to the space group Pm3m. The spins of the Mn atoms
form Kagome structure in the (111) plane due to magnetic frustration,
reducing the mirror planes to only one in (110) (Fig. 8a)'”'**. Unconven-
tional torques corresponding to z-polarization and x-polarization were
reported by ST-FMR measurement (Fig. 8b)'**. Temperature dependent ST-
FMR study shows that these unconventional torque vanish when the sample
temperature is larger than the Néel temperature of Mn;GaN, confirming the
important role of the magnetic structure in generating unconventional
torques. Out-of-plane SOT also is also found in Mn;SnN thin film with the
similar crystalline and magnetic structure (Fig. 8c)", and field-free
switching of perpendicular magnetization is also demonstrated (Fig. 8d).

Mn;Sn is hexagonal structure belonging to the P6;/mmc space group
and a non-collinear AFM with Kagome plane on the (0001) plane (Fig. 8e).
Out-of-plane and conventional anti-damping torques were reported in the
Mn;Sn/Cu/FM structure (Fig. 8f)'”. In loopshift measurement where charge
current was in the Kagome plane and aligns with the cluster magnetic
octupole moment T, the corresponding SHA of out-of-plane torque and
conventional torque were evaluted to be 0.067 and 0.22, respectively. Field-
free switching in the Mn;Sn/Cu/PMA structure showed efficiency switching

at 20 mA with critical current density of 5x10° A/cm” (Fig. 8g). The switching
polarity(clockwise or anticlockwise) and switching ratio is not symemtric
with respect to the magnetic fields due to a preferred AFM domain orien-
tation in Mn;Sn during the deposition process (Fig. 8h). And in the field-free
switching experiment in the Mn3Ga(0001)/PtCo heterostructure'’, the
switching polarity and switching ratio present a sinusoidal relation with
respect to the current direction (Fig. 8i, j). It is also worth mentioned that
when the non-collinear AFM works as a detected layer instead of a spin
source layer, the octupole moment in the Mn;Sn layer rotates in an opposite
direction with the individual moments under SOT switching, resulting in a
distinct SOT switching polarity from ferromagnets'”.

A summary of electric resistivity, SHA of the out-of-plane torque 0,
SHA of the conventional torque 8y, the ratio 6z/6y of spin source materials
with intrinsic symmetry breaking is listed in Table 1.

The generation of an in-plane component of magnetization or effective
magnetic field is another way for magnetic symmetry breaking. In PtMn/
CoNi structure, where Néel vector of the AFM film PtMn is lying in-plane,
investigation showed that deterministic switching of the perpendicular
magnetization in CoNi via current-induced spin-orbit torque was realized
without the aid of an external magnetic field (Fig. 9a-c)'®’. Because the spins
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Fig. 9 | Symmetry breaking via generation of an in-plane effective field or mag-
netization. Mirror symmetry breaking via (a-c) AFM-FM exchange field in PtMn/
CoNi structure'*: a Schematic of the spin orientation, b Hall resistance showing the
presence of an exchange field, and ¢ current-induced magnetization switching.
d-f Tilted magnetic moment in Pt/Co/Pt/NiO structure™: d Schematic of the dis-
location leading to tilted crystalline planes. e The tilted magnetic moment varied

with the thickness of insertion Pt layer and f current-induced magnetization
switching. g-i In-plane magnetic moment with strong IMA in Co(epi)/NM/FM
structure'®: g Schematic of the trilayer. h Schematic of the Hall bar measurement
setup with magnetic moment of Co(epi) lying in the current direction and i current-
induced field-free magnetization switching.

in ferromagnetic CoNi layer near the interface were pinned at the Néel
vector direction due to exchange coupling, an in-plane exchange field
appeared and broke the mirror symmetry, allowing generation of out-of-
plane SOTs. In other AFM/FM systems, such field-free switching of per-
pendicular magnets were also demonstrated, such as in the IrMn/CoFeB'",
PtMn/CoFeB'” stack structures.

A tilted magnetic moment is also an effective approach to offer in-plane
symmetry breaking. In an epitaxial grown Pt/Co heterostructure, disloca-
tions generates crystal lattice tilting with respect to the substrate plane,
leading to a tilted magnetic easy axis deviated from the perpendicular
direction (Fig. 9d)’. The in-plane component of this tilted magnetic
moment breaks the mirror symmetry (Fig. 9¢). And field-free switching of
the tilted magnetic moment in Pt/Co heterostructure was also demonstrated
(Fig. 9f). Tilted magnetic anisotropy axis and field-free switching is also
achieved in ferrimagnetic Gd/Co multilayers'®. In an epitaxial collinear
antiferromagnetic ruthenium dioxide RuO,(101) film, where the Néel
vector in [001] direction was tilted relative the sample plane, an out-of-plane
anti-damping torque was also found via ST-FMR measurement'*”

An in-plane magnetic moment from an extra magnetic layer could also
help to break mirror symmetry. In epitaxial-Co/HM/FM trilayers (Fig. 9g)'”,
it is reported that the large in-plane magnetocrystalline anisotropy(IMA) in
epitaxial Co film ensures a magnetic moment component in the current

direction (1p;.c, || %) (Fig. 9h), which breaks the mirror symmetry and leads
to field-free switching of perpendicular magnetization (Fig. 9i).

Summary and outlooks

Optimizing spin source materials through material design is a promising
pathway toward power-efficient spintronic application. This includes strain
engineering, interface engineering and symmetry engineering. Strain engi-
neering has led to enhanced SOT efficiency in complex oxides, heavy metals
and alloys. Interface engineering led to protected topological surface states
and improved spin transparency. Symmetry engineering enabled determi-
nistic, field-free switching of perpendicular magnets via symmetry breaking
approaches, such as asymmetric device design, crystalline symmetry
breaking and magnetic symmetry breaking.

Despite these advancements, significant challenges remain in fully
harnessing the potential of SOTs through material design: (1) Strain Engi-
neering: A comprehensive understanding of how crystalline structure
influences electronic properties and spin-Hall conductivity, especially in
complex oxides, is still lacking. This is important for the design of artificial
materials optimized for maximized spin-orbit torque (SOT) efficiency.
Addressing this gap requires a multidisciplinary approach involving theo-
retical studies, advanced materials characterization techniques, and artifact-
free spin torque measurements. Furthermore, the development of new
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experimental methods capable of applying larger and more tunable strains to
single-crystalline SOT materials is crucial. Innovations such as free-standing
single crystalline films on flexible substrates could enable more profound
modulation of the strain effects on SOT, leading to significant enhancements
in SOT efficiency. (2) Interface Engineering: The mechanisms by which the
insertion of antiferromagnetic oxide layers at interfaces enhances spin
transparency remain ambiguous, particularly regarding the potential roles of
magnon-mediated currents, which is still a subject of active debate. Despite
these uncertainties, integrating antiferromagnetic or multiferroic materials at
the interface provides substantial benefits. These materials introduce addi-
tional functionalities and enable voltage tunability in spin-orbitronic devices,
offering new ways to manipulate spin currents and magnetic states effectively.
(3) Symmetry Engineering: The precision required in asymmetric device
design and the handling of materials with low crystalline symmetry or long-
range magnetic ordering pose significant challenges, particularly in terms of
scalability and manufacturing consistency. Addressing these issues is crucial
for the transition from laboratory settings to industrial-scale production.

In conclusion, while the field of spintronics has seen considerable
progress due to innovative material engineering strategies, ongoing research
is essential to address the remaining technical challenges. Future work will
need to focus on refining these engineering approaches and developing new
methodologies to fully realize the potential of spin-orbitronics devices for
next-generation beyond-CMOS technologies.
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