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Classifying topology in photonic crystal
slabs with radiative environments
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In the recent years, photonic Chern materials have attracted substantial interest as they feature
topological edge states that are robust against disorder, promising to realize defect-agnostic
integrated photonic crystal slab devices. However, the out-of-plane radiative losses in those photonic
Chern slabs has been previously neglected, yielding limited accuracy for predictions of these systems’
topological protection. Here, we develop a general framework for measuring the topological
protection in photonic systems, such as in photonic crystal slabs, while accounting for in-plane and
out-of-plane radiative losses. Our approach relies on the spectral localizer that combines the position
and Hamiltonian matrices of the system to draw a real-picture of the system’s topology. This operator-
based approach to topology allows us to use an effective Hamiltonian directly derived from the full-
wave Maxwell equations after discretization via finite-elements method (FEM), resulting in the full
account of all the system’s physical processes. As the spectral FEM-localizer is constructed solely
from FEM discretization of the system’s master equation, the proposed framework is applicable to any
physical system and is compatible with commonly used FEM software. Moving forward, we anticipate
the generality of the method to aid in the topological classification of a broad range of complex physical

systems.

Originally discovered in the context of electronic systems, the concept
of topological insulators has been generalized to photonic structures
thanks to the platform-independent framework of topological band
theory used to classify such systems. Subsequently, over the past decade,
there has been substantial interest in photonic topological insulators
due to their potential to yield next-generation optical devices based on
their topologically protected edge states'. For example, non-reciprocal
waveguiding modes can be achieved in photonic crystals exhibiting
non-trivial topology from broken time-reversal symmetry, which can
be realized using gyro-electric or gyro-magnetic materials™ as well as in
driven nonlinear systems®. Similar waveguiding modes can also be
found in a variety of metamaterials, such as those based on shifted ring-
resonator arrays™’, helical waveguide arrays’, or that use synthetic
dimensions®™'. Moreover, using solely the crystalline symmetries of the
photonic crystal, different classes of non-trivial topology can also be
attained, leading to robust waveguiding states along bends that preserve
the crystalline symmetry'>'° or robust cavity-like states for enhanced
light-matter interactions' ™.

Material topology in electronic systems is identified through the
system’s band structure and Bloch eigenstates using invariants defined
on the system’s Brillouin zone; similarly, topological robustness is

defined in terms of the system’s bulk band gap***'. Traditionally, these
same invariants have been used to classify topology in photonic systems
as well. However, the analogy between topological insulators in elec-
tronic systems and in photonic systems is not always exact. For reali-
zations of photonic topological insulators operating at longer
wavelengths>***, the system can be bounded by materials that provide
excellent approximations of perfect electric conductors™, yielding
similar open boundary conditions to those that appear in electronic
systems. In contrast, photonic topological insulators operating at
technologically relevant wavelengths and length-scales are generally
based on photonic crystal slab motifs, and border-free space on at least
one surface, which is gapless above the light cone [Fig. 1]. This gapless
radiative environment has two relevant consequences for the classifi-
cation of photonic topology: (1) For those wavevectors above the light-
cone, the photonic crystal slab does not possess a true band structure
consisting entirely of bound state solutions with real frequencies and
instead only exhibits a resonance band structure characterized by
complex frequencies. As such, it is not known whether standard
topological invariants, defined by integrating over a system’s occupied
bands, can be meaningfully applied to the resonances of such photonic
slab systems. (2) Similarly, the full system of photonic crystal slab plus
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Fig. 1 | Gapless environment for photonic crystal slabs. a Schematic of a free-
standing photonic crystal slab in a three-dimensional (3D) geometry. Photonic
structures are inherently 3D and are usually surrounded by an homogeneous
material that features a light cone. As such, out-of-plane radiative losses, depicted by
the red arrows, are inherent to such structures. The photonic crystal is a triangular
lattice with lattice constant a composed of dielectric rods, € = 14 forj=x,y,z of
radius = 0.37a and height t = 0.5a embedded in a gyro-electric material slab, €;; = 1
and é,, = —0.4i, of thickness = 0.54. b Band structure of the photonic crystal slab
in (a) over the first Brillouin zone, for a transverse magnetic-like polarization. The
photonic band gap at around w = 0.42[27¢/a] is the “topological band gap” known
from extrapolation from the two-dimensional photonic crystal approximation. The
shaded region depicts those frequencies and wavevectors that are at, or above, the
light line of the surrounding air. The red line depicts the light line, w = ¢|k|. Above the
light line, photonic crystal slabs generally exhibit resonances, not bound states.

surrounding environment is gapless above the light-cone, meaning that
according to band theory the system’s topological protection is not well-
defined. Thus, as already noted by Raghu and Haldane”, the radiative
environment has traditionally limited the notion of topological pro-
tection—as defined by topological band theory—in photonic topolo-
gical insulators. Therefore, although topological band theory can be
applied to photonic systems to yield some insight into their topological
properties, this cannot be viewed as a complete picture as the setting
goes beyond the scope of band theoretic approaches; any complete
picture of topological photonic crystal slabs must account for their
inherent out-of-plane radiative losses, and provide a definition of
topological protection despite these losses.

Here, we present a general framework for classifying topology in
realistic three-dimensional (3D) photonic systems that directly
accounts for both in-plane and out-of-plane radiative losses. To do so,
we solve two interconnected challenges, demonstrating how to perform
dimensional reduction to calculate invariants of 2D systems, such as
Chern numbers, for photonic crystal slab systems that are inherently
3D, and showing how this generalizes to non-Hermitian systems so that
radiative losses can be properly accounted for. The framework we
develop is rooted in the spectral localizer, which combines the position
matrices and the Hamiltonian matrix of the system to draw a local
picture of a system’s topology™. Using the operator-based approach of
the spectral localizer, we construct a spectral FEM-localizer built on an
effective Hamiltonian directly derived from the full-wave Maxwell
equations via finite-element method (FEM). We demonstrate the utility
of the FEM-localizer framework through two fundamental examples in
topological photonics: a 2D photonic Chern insulator and a 2D pho-
tonic Chern quasicrystal, proving that the spectral FEM-localizer
approach is applicable to aperiodic structures that lie beyond the scope
of topological band theory. Finally, we apply the spectral FEM-localizer
to study the topology of a photonic Chern slab, showing how to generate
alocal strong 2D invariant for the 3D system while directly accounting
for the out-of-plane radiative losses. As a significant portion of photonic
topological insulators are metasurfaces, the proposed classification
method will benefit to the characterization of topological metasurfaces
where topological boundary modes are used to control radiation,
scattering, and emission”’*". Given the wide variety of systems that can
be faithfully approximated by FEMs, we anticipate that our framework
has broad applicability both within photonics and beyond, and will be
useful for the study of the topology in complex physical systems where a
band theoretic picture is not available.

Results

Overview of the spectral localizer

Despite being a real-space approach to topology, the spectral localizer shares
some conceptual similarities with topological band theory. A modern
understanding of traditional band theoretic approaches to topology can be
built from the concept of atomic limits—the limit in which the couplings
between adjacent atoms, molecules, or structural decorations are turned off,
and the system’s band structure becomes completely flat. Atomic limits are
topologically trivial as they always possess a complete symmetry-preserving
localized Wannier basis™*. Moreover, different systems are topologically
equivalent if one system can be smoothly deformed (i.e., path continued)
into the other system without closing the relevant bulk band gap (i.e., the
band gap at the frequency of interest) or breaking any necessary symmetry.
Thus, from this perspective, the question of material topology becomes one
of whether a system can be path continued to an atomic limit; if so, it is
trivial. Band theoretic approaches offer a few different methods for making
this determination, either using standard topological invariants™, or by
comparing a system’s band structure against the possible elementary band
representations™.

In contrast, the spectral localizer framework has emerged as a
method to diagnose a system’s topology from the real-space perspective
of the atomic limit. The key idea is that just as the wavevector-space
description of atomic limits is as a material with completely flat bands™,
a real-space description of atomic limits can be understood in terms of
the system’s position matrices X; and Hamiltonian H via the commu-
tation relations

[X;AL)7H(AL):| =0, j=1,....,d, 1)

with d the dimension of the system. In other words, in an atomic limit, HAY
is block diagonal, with each block corresponding to each decoupled atom,
molecule, or structural element. Likewise, the position of each such interior
degree of freedom is condensed into a single location. Hence, X](-AL) and HAV
commute for atomic limits.

From this real-space perspective, the question of topology then
becomes one of understanding whether a system’s non-commuting H and
Xj matrices are nevertheless path continuable to commuting matrices, while
preserving any necessary symmetry and maintaining the relevant bulk
spectral gap. To perform this assessment directly in real-space for a
d-dimensional Hermitian system in any of the ten Altland-Zirnbauer
symmetry classes™ ™, one first forms the system’s spectral localizer by
combining X; and H using a Clifford representation’,

L(x, ..... xd7E)(X17 cee ade H) =
- ©)
;K(Xj —x)®L;+(H—-E)®T,y,.
=

Here, Ty, ..., [z, are (d + 1)-dimensional Clifford representation satisfying
F]-T = Fj, l"j2 =I,and IT=—T7; for j # I, while I is the identity matrix. The
spectral localizer is an inherently local approach to material topology; in
Eq. (2), (x1, ..., x4 E) = A is the spatial coordinate (x;, ..., x,) and energy E
where the system’s topology is being probed. Finally, « is a hyperparameter
chosen to make the units consistent between the position and Hamiltonian
matrices, and to additionally balance the emphasis on the system’s position
information relative to its Hamiltonian. Typically, for gapped systems, it
suffices to choose « ~ 2g/L***' where g is the width of the bulk band gap and
L is the length of the finite system considered. Extensive studies have
demonstrated the spectral localizer’s versatile applicability across a broad
range of topological systems, even beyond the traditional topological band
theoryzﬁﬁ‘)%;}.

Using results from the study of C*-algebras™**, the spectrum of the
spectral localizer has been proven to be connected to local topological

markers for every discrete symmetry class (i.e., Altland-Zirnbauer class™™)
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for every physical dimension. For a 2D Hermitian system in class A, namely
a system lacking any discrete symmetries, the appropriate local topological
invariant is the local Chern number, defined as

1.
C%x,yﬁE)(Xa Y, H) = ESIg [L(x‘y‘E)(X7 Y, H) > (3)

where sig denotes the matrix’s signature, the difference between its total
number of positive and negative eigenvalues. A non-zero local Chern
number at (x, y, E) indicates that the re-centered position (X — xI),
(Y — yI), and Hamiltonian (H — EI) matrices cannot be path continued
to be commuting, meaning that the system cannot be deformed to the
atomic limit. In other words, a non-zero local Chern number, C(Lxﬁy,E) £0
tells us that the system is topologically distinct from the atomic limit,
and is locally topologically non-trivial at the spatial and energy
coordinate (x, y, E).

Separate from its ability to identify material topology, the spectral
localizer can be seen as a tool to identify localized states by looking at an
approximate state ¥ of both the position and Hamiltonian matrices of the
system

Xjy~=xy and Hy=Ey, (€))

In particular, the localizer gap, defined as the smallest singular value of the
spectral localizer

[’l((jcl,,“.xd,E)(le s X H) =

mln{ ‘U(L(xl,.,4,xd¢E)(X17 e aXd7 H)) )}7

with o(L) being the set of eigenvalues of L, gives a measure about large of a
modification of the system is needed to realize such state y. As such, a
localizer gap closing P‘Ex, ..x,p = 0 indicates that there exists such an
approximate state y at energy E that is localized at spatial posi-
tion (xy, ..., Xz).

Altogether, the local topological markers and the localizer gap give a
consistent picture of the topology locally in space and energy. The local
topological markers are used to probe the topology locally at space-energy
coordinate (xy, ..., X4 E), and cannot change as long as the localizer gap does
not close (yal ‘‘‘‘ x5 7 0). When the local markers change across some
spatial or energy path from one topological phase to another topological
phase, the localizer gap must close, resulting in a localized state [Eq. (4)] at
the interface between the two topological distinct phases: this is precisely
bulk-edge correspondence.

The spectral localizer is not the only real-space theory of material
topology that provides local topological markers™**. However, it is the only
currently known theory of topology that preserves system sparsity, i.e., if H is
sparse, L, .. p) is sparse. Thus, unlike other local markers that typically
require projecting into an occupied subspace, yielding still-relatively-large
dense matrices, the calculation of local markers using the spectral localizer
can leverage advances in sparse matrix algorithms to realize substantial
numerical speedups. For example, finding a sparse matrix’s signature does
not require finding any of its eigenvalues, and can instead be found using

Sylvester’s law of inertia®**’.

Building the spectral FEM-localizer

The spectral localizer is used to study a system’s topology directly from its
equations of motion, i.e., its master equation. For example, it is straight-
forward to apply the spectral localizer framework to tight-binding
models®*******>* where the position operators are diagonal matrices with
entries being the spatial position (x;, ..., x,;) of the model’s sites, and H the
tight-binding Hamiltonian. However, the spectral localizer is not limited to
such approximate descriptions of physical system. Instead, so long as a
system admits a discretization of some form (or some other method for
generating a bounded matrix description of the system), the matrix of its

discretized master equation can be inserted into the spectral localizer
[Eq. (2)], where practical parameters and geometry can be used. With such a
choice of discretization, the entries of the position matrices Xj can then be
chosen as the grid mesh positions from discretization of the master equation
and the Hamiltonian matrix H can be chosen as being any matrix whose
eigenvector is a solution of the master equation, namely a matrix whose
eigenproblem is physically meaningful in order to have a relevant joint-
spectrum problem. As such, for the study of the topology in physical system
within the spectral localizer framework, no further approximation is
required beyond the discretization of the master equation, yielding a
potentially more accurate description of a system’s topology.

The photonic master equation. The master equations for photonic
systems are given by Maxwell’s equations. Assuming that the materials
used are linear and time-independent, the electromagnetic fields can be
written in a time-harmonic form e such that a photonic system can be
described by the source-free Maxwell’s equations

V X E(x) = iwf(x)H(x), ®)
V X H(x) = —iwe(x)E(x), (7)
V - [e)E@)] =0, ®
V- [E®)H@)] =0, ©

where w is the angular frequency, E(x) and H(x) are the electric and mag-
netic fields, and €(x) and pi(x) are the permittivity and permeability tensors.
Previously, the spectral localizer framework has been applied to describe the
topology of 2D photonic crystals*>*"**. These prior studies took advantage of
finite-difference discretizations of Maxwell equations [Eqs. (6) and (7)] to
automatically satisfy the divergence-free condition [Egs. (8) and (9)].
However, this approach is not easily scalable, as it requires a uniform mesh
and therefore requires very large matrices for the simulation of realistic
designs of 3D systems.

Instead, here, we use the finite-element method (FEM) for a more
general approach to any physical system described by a master equa-
tion. The key advantage of FEM-localizer framework is that it allows for
a much coarser meshing and therefore reduces the size of the matrices
involved. Moreover, the method easily incorporates physical processes
with different characteristic length scales, where additional equations of
motion can be included to described the relevant processes and their
couplings. For example, dispersion can be described by introducing
auxiliary equations for the material’s internal degrees of freedom
responsible for this effect” that are then coupled to Maxwell’s equations
[Egs. (6)-(9)]. To best make use of the FEM approach for photonic
systems, here we use the Helmholtz equation for the electric field E(x),
derived from Egs. (6)-(9)

V x (;Tl(x)V X E(x)) - wzé(x)E(x) =0, (10)

as the master equation to probe the topology in photonic systems.

Overview of the finite-element method. In this section, we briefly
outline FEM discretizations, with a focus on the relevant information for
then incorporating the resultant equations of motion into the spectral
localizer framework. A more detailed description of FEM can be found in
FEM textbooks™.

The FEM discretization starts by reformulating the master
equation into its weak form, where the differential equation is no
longer satisfied exactly at every point of the mesh. The weak form of
the master equation consists in turning the differential equation into
an integral equation, via the method of integration by parts, to
improve numerical stability. Indeed, the differentiation of the
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Fig. 2 | Position coordinate of the degrees of freedom used for constructing the
position matrices within the finite-element method discretization. a Schematic of
the discretization into finite elements of the two-dimensional (2D) simulation
domain composed of a single dielectric rod (red shaded region) at the center of a
triangular unit cell. b Zoom-in of (a) where the mesh nodes and extended mesh
nodes are depicted using blue and green markers, respectively. In this context, the 2D
structure is solved for transverse magnetic polarization (H, # 0) and the shape
function used are the curl elements. The position of the extended mesh nodes
corresponding to the unknown weighting coefficient E,, are located at (x,, y,,).

solutions of the master equation may be limited at the boundaries of
the simulation domain or at some material interfaces, where a jump in
their values can be observed. The weak form is therefore obtained by
multiplying the master equation with a weight function a(x) and by
evaluating the overlap integral over the simulation region Q. The weak
form for the master equation Eq. (10) is then

Jo (@ ®)V X E(x)) - (V X a(x))dx

—w* [(E®)E(x) - a(x)dx = 0. (1)

The solution vector, E(x) for Eq. (10), is decomposed in terms of the
shape functions w,

Ex) =) E,w,(x), (12)

with unknown weights E,, located along the extended mesh nodes [see for
example the green crosses in Fig. 2]. Importantly, these shape functions are
chosen to satisfy the desired properties of the system’s equation. For
instance, when considering Maxwell’s equations, it is imperative to fulfill
both the divergence-free conditions and interface conditions. In this
context, the so-called curl elements® can be chosen as shape functions.
These curl elements inherently satisfy the divergence condition [Egs. (9) and
(8)] as they are divergence-free functions. Furthermore, the curl elements
enforce the criterion that the tangential component of the electric field must
be continuous while the normal component can be discontinuous across
interfaces, in accordance with the interface conditions set by the Maxwell’s
equations.

Altogether, the solution to the master equation is obtained by solving
the FEM-discretized master equation after performing numerical integra-
tion, which can be written as a system of linear equations in the matrix-form

H(w)¥ =0, (13)
where ¥ = (...,E,, .. )T is the solution vector, the electric field E(x), at
frequency w. The magnetic field H(x) can then be derived using Eq. (6).
Notably, Hg(w) is a good candidate to be an effective Hamiltonian for
insertion into the spectral localizer as the eigenvector with zero eigenvalue is
a solution to the master equation.

Incorporating boundary conditions. Although there are many available
implementations of FEM, here we describe the methodology based on the
FEM discretization from the commercial software COMSOL
MULTIPHYSICS® as this is a widely used software across many different
physical platforms. Using details from this specific FEM implementation,
we then show how to develop a Hamiltonian that incorporates the sys-
tem’s boundary conditions.

Using the Eigenvalue Solver algorithm in COMSOL, the FEM dis-
cretization leads to solving the following set of equations for the solution
vector in the extended mesh P,

Hi(0)¥ 4 NpA = 0, (14)

NY =0, (15)
where Nrand Nare respectively the constraint force Jacobian matrix and the
constraint Jacobian matrix, and A is a vector made of the Lagrange multi-
pliers for the boundary conditions and fictitious degrees of freedom. In
Egs. (14) and (15), He is a matrix-valued function

Hy: o — (—iw)*M — (—iw)C + K, (16)

where w € C, M is the mass matrix, C is the damping matrix, and K is the
stiffness matrix. The real part of w corresponds to the solution’s angular
frequency while its imaginary part s its decay rate. In sum, Egs. (14) and (15)
contain the discretized weak form of the master equation [see the term
He(w)¥ in Eq. (14)], as well as additional terms that account for the
boundary conditions.

In order to remove the additional terms that incorporate the boundary
conditions and solve an equation that resembles Eq. (13), the constraint
equation is first solved. Namely, Eq. (15) is solved as

N¥,=0 (17)

with ¥;=0. Then

VY= (¥,+Nulv,) (18)

is a solution of Egs. (14) and (15). Equations (14) and (15) are therefore
reduced to find ¥, the solution of the eliminated matrix equation

Heff,c(w)ll’c =0 (19)
where Hg, is the matrix-valued function defined as
Hg (w) = Nullf" H 4 (w) Null (20)

with Null and Nullf being composed of basis vectors spanning the null space
of Nand N ;, respectively,

NNull = o0, @1)

Nullf’ N, = 0. (22)

Physically, the eliminated matrix equation [Eq. (19)] considers the elimi-
nated effective Hamiltonian Heg (w) where all the degrees of freedom
involved in the boundary conditions have been accounted for and removed.
Consequently, Hegr(w) is the effective Hamiltonian compatible with the
spectral localizer framework, and not Heg(w).

The spectral localizer via finite-element method. As the eigenvector
of Heg(w) with eigenvalue zero is physically meaningful because it
corresponds to a solution of eliminated Maxwell’s equations, Heg ()
can be chosen to be the effective Hamiltonian matrix in the spectral
localizer framework. Accordingly, the position matrices X; . need to be
constructed in the same vector space as Hegr .(w). In the non-eliminated
vector space, the position matrices X; are diagonal matrices with entries
corresponding to the j-th coordinate position of the n-th FEM degrees
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of freedom x; ,,, i.e., the positions of the extended mesh nodes [see for
example the green crosses in Fig. 2],

(23)

The position matrices in the eliminated space X; . are therefore obtained by
projecting X; onto the eliminated space via Null and Nullf as

_ T
X;, = Nullf"X;Null . (24)

Given the unique mathematical and computational complexities asso-
ciated with using a FEM, there are several modifications that must be
made to the spectral localizer framework [Eq. (2)] to probe the systems
local topology. First, to probe the topology at spatial position coordinate
(.. xp ...), x;needs to be expressed in the eliminated space in accordance
to the position matrix X;.. This can be implemented by directly pro-
jecting (X; — x;I), appearing in Eq. (2), onto the eliminated space,
(X; — x;I) = Nullf T(Xj — x;I)Null, and by probing at spatial position
zero namely A = (0, ..., 0, E). Second, as only the zero eigenvalue of Hg,
corresponds to a physically meaningful solution of the Maxwell’s equa-
tions, the localizer has to be probed at A =(..., 0), namely the effective
Hamiltonian Hg(w) itself carries the information about the frequency w
at which the system’s topology is being classified. Thus, for shorthand
notation, the topology at location (x, ..., x4 w) is probed using the
spectral FEM-localizer defined as
Z’(x,.. Xy le‘UHeff,c) =
L, 00X — %1

..... 14cs -

Xy ,@) (25)
*Xd,u - dec= Heff,u(w))v

with

I, = Nullf"'Null . (26)

For example, for a 2D Hermitian system, the spectral FEM-localizer can be
written using the Pauli spin matrices as the choice of Clifford representation,
yielding

L(XAy,w)(XU YU Heffic) =

( Heff,c(w)

K(Xc - XIC) - iK(Yc - yIc) (27)
K(Xc - xIc) + iK(Yc - ylc) 7

_Heﬁﬂc(w)

and the local topological marker, for class A systems, at position (x, y) and
angular frequency w is obtained from

C}x,y,w)(Xcv Ya Heff.c) =
1. . (28)
[l 8 Ve )]

Altogether, the effective Hamiltonian Heg;, (w) solves the system’s
master equation rigorously with the only approximation being the
discretization, taking into account all the possible processes in the
physical system. The retained information in the effective Hamilto-
nian therefore gives us a more rigorous description of the topology in
the physical system. For instance, in photonic systems, this approach
can directly incorporate the radiative processes overlooked in the
literature by using the non-Hermitian line-gap extension of the
spectral localizer”. Instead of using the Hermitian localizer [Eq. (27)],

the non-Hermitian spectral localizer for classifying 2D non-
Hermitian (lossy) systems is now written as

+(NH)
L(x‘y,w)(Xm Y, Heff,c) =

Heg ()

®(X, — xI,) — ix(Y, — yI) (29
w(X, — xI,) + ix(Y, — yI,.) ’

—Hegi (@)

and the local topological marker at position (x, y) and angular frequency w is
obtained from

L(NH)

Coey)

(Xc7 YU Heff‘c) =
(30)

N )
ESlgR [L(x‘y,w)(Xu Yu Heff,c)} .

where sigp, denotes the matrix’s difference between its number of positive
and negative eigenvalues with respect to their real part. Additionally, the
localizer gap becomes

C,(NH
#(k,(/\/,w))(Xc7 Ym Heff’c) =
. ~(NH) (31)
mln{ ‘Re |:U (L(Xa)’s“))(Xf’ Yc7 Heff,c)>:| ’ }

Notably, w can be complex in the lossy system and can include the damping
term for calculating the local markers. However, by using the line-gap
extension of the spectral localizer for 2D class A systems, the imaginary part
of w should not matter in the calculation of the topology™.

Finally, it is emphasized here that the matrices for constructing the
spectral localizer can be readily obtained from COMSOL once the Eigen-
value Solver study has been run, regardless of the module used: the matrices
M, C, K, Null, and Nullf for determining H.g, and the spatial position
[ Xp ...) of the extended mesh nodes can be directly accessed from the
COMSOL functions in MATLAB”. The spectral FEM-localizer framework
can therefore be immediately applied to the wealth of examples and designs
considered by the COMSOL community.

Example of 2D photonic Chern structures

As an initial demonstration of the versatility of the spectral FEM-localizer
framework, we consider two fundamental examples in topological photo-
nics: a 2D Haldane photonic crystal heterostructure™ that is the canonical
photonic Chern insulator [Fig. 3], and a 2D photonic quasicrystal”' thatis an
aperiodic system where topological band theory cannot be applied [Fig. 4].
In both cases, the photonic system is first described by the full-wave
Helmboltz equation (using the Wave Optics module) and then discretized
using FEM via COMSOL MULTIPHYSICS. Finally, the spectral FEM-
localizer is constructed from the Eigenvalue Solver study and used to classify
the systems’ topology.

2D Photonic Chern crystal. For a first example, we focus on the 2D
Haldane photonic heterostructure® shown in Fig. 3a. Here, the Haldane
heterostructure is made of two triangular lattices of lattice constant a with
perfect electric conductor (PEC) boundary conditions, and we are con-
sidering the topology of the transverse magnetic modes (H, # 0). The
inner lattice is a topologically non-trivial insulator composed of dielectric
rods, €; = 14 for j=x, y, z, with radius r=0.37a embedded in a gyro-

Ji
electric background, €; = 1,€,, = —0.4i, to break time-reversal sym-

YExy T

metry. The outer latticg isa top(y)logical trivial insulator composed of air
rods, €= 1, of radius r = 0.35a in a dielectric background with €= 5.5.
The interface between the two topological distinct lattices yields a
topological edge state that can be seen in the ribbon band structure [Fig.
3b] and from the local density of states at wy = 0.37[27c/a] [Fig. 3d].

The spectral FEM-localizer and local Chern marker in Eq. (27) and Eq.
(28), respectively, can be used to diagnose the topology of this lossless 2D
system. However, one should note that the eliminated effective Hamiltonian

Heg, is non-Hermitian due to the projection onto the eliminated space.
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Fig. 3 | Probing of the local topology in a two-dimensional photonic Chern crystal
system. a Design of the 2D photonic Chern heterostructure. The inner parallelogram
is a non-trivial topological lattice with lattice constant a made of dielectric rods,
€; = l4forj=x, y, z, with radius r = 0.37a embedded in a gyro-electric background,
€; = 1,€, = —0.4i, that breaks time-reversal symmetry. The outer lattice is a
topologically trivial lattice with the same lattice constant a composed of air rods,
€; = 1, with radius r = 0.354 in a dielectric background with €; = 5.5. b Ribbon
band structure along the I'-K direction for the transverse magnetic modes (H, # 0),
with a topological edge mode present around w, = 0.37[27¢c/a]. ¢ Spectrum of the
FEM-localizer U([A,A:(X% «w,)) normalized by 10™*|| Hefr (wo)|| and the local Chern

number Ck:(x,yo-, @) along the green line in (a) at y, = 0 and frequency w, = 0.37[27c/
al,withk =1.5 [10’4 | He (wp) Il / 1 X, II|. d Local density of states (LDOS) for
the H, component of the field at w, = 0.37[27¢/a].

Nevertheless, the non-Hermitian part is found to be negligible and only the
Hermitian part is kept in Hg, as Hermitian materials and lossless boundary
conditions have been used. The spectrum of the spectral FEM-localizer
a(f,(xA yo.0,)) and thelocal Chern number C{“x‘ y,.0) long the path depicted by
the green line in Fig. 3a at y, = 0 and frequency w, = 0.37[271¢/a] are shown
in Fig. 3¢, demonstrating the local topological picture of the heterostructure.
As expected from topological band theory, inside the topological band gap at
around w, = 0.37[27c/al, the inner lattice is topological with C" = 1 while the
outer lattice is trivial with C*=0. Therefore, the spectral FEM-localizer
correctly captures the change of topology as demonstrated by the eigenvalue
crossing with respect to zero of the spectrum of L near the heterostructure’s
interface.

2D Photonic Chern quasicrystal. As a second example, we investigate
the topology of a magnetooptic 2D photonic quasicrystal surrounded by a
homogeneous material, again for transverse magnetic modes (H, # 0).
Notably, this example cannot be classified using topological band theory
as the system is not periodic and therefore does not possess a band
structure. Moreover, the quasicrystal is surrounded by a homogeneous
material that is gapless rather than gapped (or insulating), yielding an ill-
defined notion of bulk topological invariant and topological robustness.
The topological quasicrystal is constructed from a Penrose tiling”?, with
the rhombuses having sides of length a and where the dielectric rods are
positioned on the vertices of the tiling”', as shown in Fig. 4a. The photonic
quasicrystal is composed of dielectric rods with permittivity €; = 14 and
radius r = 0.184, embedded in a gyro-electric background, €; = 1,€,, =
—0.4i to break time-reversal symmetry, and PEC boundary conditions
are used. In this quasicrystal heterostructure [Fig. 4a], the identification
of any edge state resonances via the local density of states [Fig. 4f] is
obscured by the presence of the bulk states present in the homogeneous
material surrounding the quasicrystal. Instead, the edge states can be
identified from the local density of states only when the surrounding
homogeneous material is truncated, as shown Fig. 4c and d. The edge and
bulk spectra of the photonic quasicrystal [Fig. 4b] can also be obtained
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Fig. 4 | Probing of the local topology in a two-dimensional photonic Chern
quasicrystal system. a Design of the photonic Chern quasicrystal based on a Penrose
tiling. The rhombuses composing the Penrose tiling have sides of length a, and the
dielectric rods are located at the vertices of the Penrose tiling in a gyro-electric
background, €; = 1, €,, = —0.4i, with radius r = 0.18a. b Spectra of the photonic
system along the real axis, with continuous periodic (PBC) and with perfect electric
conductor (PEC) boundary conditions to simulate the system without and with
edges, respectively. ¢ Truncated design of the photonic Chern quasicrystal in (a) with
perfect electric conductors (PEC) boundary conditions. d Local density of states
(LDOS) for the H, component of the field at wy = 0.37[277c/a] with the geometry in
panel (c). e Spectrum of the FEM-localizer o i’\:(x-)’ov“’u) normalized by

10| Hege(wo) || and the local Chern number ﬁ:(x‘ ) Along the greenlinein (a) at
¥o=0and frequency w, = 0.37[27rc/al, with k = 1|107* || Heg (w,) | / |1 X, H]
fLocal density of states (LDOS) for the H, component of the field at wy = 0.37[27¢/a]
with the geometry in panel (a).

using, respectively, PEC and (continuous) periodic boundary conditions
in a polygonal geometry to simulate the photonic system both with and
without boundaries (see Supplemental Material).

Similar to the crystalline example, the spectral FEM-localizer and local
marker in Eq. (27) and Eq. (28) are used to probe the topology of this
photonic system once the non-Hermitian part is removed from the elimi-
nated effective Hamiltonian H.g,. Figure 4e shows the spectrum of the
FEM-localizer CI(I:(WW0 )) and the local Chern number C(nyvo, w,) as the
probe location is varied, revealing the topology despite the system’s aper-
iodicity and the lack of a surrounding insulator. In particular, there is a
crossing of the spectrum of the localizer near the boundary of the structural
interface, and thus a change of the local Chern number as the probe coor-
dinate is moved from the trivial homogeneous material to the center of the
quasicrystal along the green line depicted in Fig. 4a, and at w, = 0.37[271c/a].
The location where the local index changes, associated to a vanishing
localizer gap, is also an indication of the location of the topological edge state
[Eq. 4], which cannot be resolved from the system’s local density of states
[Fig. 4f]. A similar plot for the spectrum of the spectral localizer and the local
Chern number can be realized along the frequency axis, as shown in the
Supplemental Material, demonstrating some range of frequencies w for
which the quasicrystal is topologically non-trivial. As such, this example
highlights how the spectral FEM-localizer is capable to identify the topology
of the system without the need of a band structure or a bulk band gap, and
how the location of the topological edge states can be explicitly determined
from the vanishing of the localizer gap.
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Fig. 5 | Probing of the local topology in a photonic Chern slab system. a Design of
the photonic Chern slab. The inner parallelogram is a non-trivial topological lattice
with lattice constant a made of dielectric rods, €; = 14 for j =x, y, z, with radius
r=0.37a and height ¢ = 0.52 embedded in a gyro-electric slab, €; = 1, €,, = —0.4i,
with thickness t = 0.5a. The outer lattice is a topologically trivial lattice with the same
lattice constant a, composed of air rods, €; = 1, with radius r = 0.35a and height
t=0.5ain a dielectric slab, €; = 5.5, with thickness t. b Ribbon band structure along
the I'-K direction for the transverse magnetic modes (H, # 0), with the topological
mode present around wg = 0.42[27¢/a]. The shaded region depicts those frequencies
and wavevectors that are at, or above, the light line of the surrounding air. The red
line depicts the light line, w = c|k|. ¢ Spectrum of the FEM-localizer Uzi;m(l’z«yo- @)
normalized by 10™*|| Heg ()| along the green line in (a)_at y, = 0 and frequency
wo = 0.42[27c/a), withx = 1.5[107* || H g (wg) || / 11X, |I|.dLocal density of states
(LDOS) for the H, component of the field at z= 0 and at w, = 0.42[27¢/a].

Photonic Chern slab
Photonic structures are inherently 3D, and as such the 2D photonic designs
extensively studied in the literature and described in the previous section are
only approximations to actual photonic slabs realized experimentally. While
there are standard methods for developing 3D photonic crystal slabs whose
resonance band structures are quantitatively similar to the band structures of
2D photonic crystals”, these methods only approximate the Hermitian
portion of the band structure, not the radiative portion. Moreover, approx-
imating radiative losses due to a system’s environment as material absorption
within the system is uncontrolled, as this is fundamentally relocating degrees
of freedom that were outside of a structure to be inside of it. Indeed, this is a
particularly problematic approximation for topological systems, whose pri-
mary features are boundary-localized states—relocating degrees of freedom
changes what it means for a state or resonance to be localized. Therefore, out-
of-plane radiative losses, an inherent aspect of photonic slabs, have been
neglected in previous theoretical treatments of topological photonics, as the
radiative loss cannot be accounted for using a band theoretic approach.
Nevertheless, as we have already seen in the case of the quasicrystal, the
spectral FEM-localizer allows to diagnose the topology beyond the scope of
topological band theory. Here, we show that the spectral FEM-localizer can
be used to classify the topology of photonic crystal slabs and directly incor-
porate out-of-plane radiative losses using radiative boundary conditions.
As an example illustrating the probing of the topology in photonic slab
while accounting for the out-of-plane radiative loss, we consider a free-
standing photonic crystal slab embedded in air, as shown in Fig. 5a. This is
the 3D slab version of the Haldane photonic heterostructure studied in Fig.
3a, with PEC on the x- and y-boundaries and a radiative boundary condition
implemented through perfectly matched layers (PML) on the z-boundaries.
The parameters used are the same as in the Chern heterostructure example
[Fig. 3a] except that now the background is a slab of thickness ¢=0.5a
embedded in air, and the rods have the same finite height ¢=0.54. The
topological edge state can be seen in the ribbon band structure [Fig. 5b] and
from the local density of states at z=0 and at w, = 0.42[27¢/a] [Fig. 5d].

As the system is 3D and in class A in the Altland-Zirnbauer
classification™*, the topology for the 2D topological edge state in the slab
can be classified using an integer invariant such as the Chern number.
Within the spectral localizer framework, the topology is diagnosed by dis-
regarding the z-direction (i.e., all mesh vertices are retained, but their
coordinates is reduced (x, y, z) — (x, y)), performing a version of dimen-
sional reduction to enable the calculation of a strong 2D invariant of a 3D
system. Physically, this is equivalent as looking at the change of topology as
we move in the (x, y)-plane, irrespective of the z-coordinate. Despite the
removal of the z-direction, all the information from the 3D geometry,
including the out-of-plane radiative loss, is retained for the assessment of the
topology as the effective Hamiltonian Heg, is derived from the full 3D
geometry. In other words, even though the system is 3D, Egs. (29) and (30)
can still be used— the X,, Y, and H.g. matrices all contain information
about the full 3D system, and the Chern number does not depend on the
position matrix Z or the z-coordinates. This is because the 2D Chern
number is still a strong topological invariant in a 3D system; and calculating
it using X, and Y, means we are looking at edge states around the boundary
in the (x, y)-plane. Thus, the 2D non-Hermitian FEM-localizer in Eq. (29)
can be used to identify the topology in the slab with radiative boundary
conditions, giving an accurate probing of the topology in the photonic slab
where all the possible processes are accounted for.

The topology is studied by looking at the spectrum of the spectral FEM-
localizer o(I:ExNZ),%)) along the green path in Fig. 5a at y, =0, and at the
(incomplete) band gap around wy = 0.42[271¢/a], as shown in Fig. 5b. The
plot demonstrates a net crossing in the spectrum with respect to zero [see red
arrow in Fig. 5b], indicating a change of the signature of the spectral FEM-
localizer [Eq. (30)], hence a change of topology, near the boundary between
the outer and inner lattices, similar to what is observed in Fig. 3c. However,
the topological protection given by the localizer gap now takes into account
the radiative losses of the topological edge slab state, and as such the pro-
tection is weaker than would be predicted from the 2D band structure.

Discussion

Using the operator-based approach of the spectral localizer, we have
developed a general framework for studying the topology in realistic
photonic structures directly from the discretized master equations of the
system using finite-element methods (FEM). In particular, we studied the
topology in photonic systems derived directly from the full-wave Maxwell
equations. Using the photonic Chern insulators and the photonic Chern
quasicrystal, we have demonstrated the ability of the proposed spectral
FEM-localizer framework to correctly capture the local topology in pho-
tonic topological materials. Moreover, the framework have been applied to
a photonic Chern slab predicting genuine topological protection of the
topological edge slab state when taking into account possible radiative loss
of the slab state. As the radiative feature of optical systems play a significant
role for a broad range of photonics applications, we expect that the spectral
FEM-localizer’s ability to classify the topology of photonic systems will be
useful for developing next-generation devices, including topological
metasurfaces which uses topological boundary modes to control radiation,
scattering and emission””"". Looking forward, we anticipate the generality
of the framework to be of practical use for systems in any of the ten Altland-
Zirnbauer symmetry classes™ ™ as well as in topological crystalline
insulators*, and for tackling topological problems in other complex
physical platforms such as in acoustic systems’*, plasmonic systems®””>"°,

and in polaritonic systems’” .

Data availability
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