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The ability of mitochondria to transform the energy we obtain from food into cell phosphorylation
potential has long been appreciated. However, recent decades have seen an evolution in our
understanding of mitochondria, highlighting their significance as key signal-transducing organelles
with essential roles in immunity that extend beyond their bioenergetic function. Importantly,
mitochondria retain bacterial motifs as a remnant of their endosymbiotic origin that are recognised by
innate immune cells to trigger inflammation and participate in anti-microbial defence. This review aims
to explore how mitochondrial physiology, spanning from oxidative phosphorylation (OxPhos) to
signalling of mitochondrial nucleic acids, metabolites, and lipids, influences the effector functions of
phagocytes. These myriad effector functions include macrophage polarisation, efferocytosis, anti-
bactericidal activity, antigen presentation, immune signalling, and cytokine regulation. Strict
regulation of these processes is critical for organismal homeostasis that when disrupted may cause
injury or contribute to disease. Thus, the expanding body of literature, which continues to highlight the
central role of mitochondria in the innate immune system, may provide insights for the development of

the next generation of therapies for inflammatory diseases.

Mitochondria are double-membraned organelles found in the cytoplasm of
virtually all eukaryotic organisms. They contain their own genetic material, a
circular chromosome termed mitochondrial DNA (mtDNA)', differ-
entiating them from most other eukaryotic subcellular structures with the
exception of chloroplasts. It is proposed that mitochondria originated from
an endosymbiotic event between an a-proteobacterial ancestor and an
archaeal host of the Lokiarchaeota phylum over 2.5 billion years ago®, which
acted as a primary driving force in eukaryotic evolution’. These dynamic
and morphologically diverse organelles have captivated scientists for dec-
ades, inspiring several conceptual and theoretical advances across scientific
disciplines, from evolution to metabolism and medicine®. Perhaps the most
pervasive analogy for mitochondria is as the ‘powerhouse of the cell’, an
analogy derived from the chemiosmotic theory of oxidative phosphoryla-
tion (OxPhos) introduced by the paradigm-shifting work of Peter Mitchell
and Jennifer Moyle in the 1960s°. Structurally, mitochondria possess an
outer mitochondrial membrane (OMM) that encloses the organelle and an
inner mitochondrial membrane (IMM) that forms numerous folds called
cristae, which increase the surface area available for ATP synthesis by
chemiosmotic coupling. In fact, mitochondrial bioenergetics, the ability of
energy-transducing pathways in mitochondria to maintain cell phosphor-
ylation potential, is a leading theory of how endosymbiosis triggered the
explosion, diversification, and multi-cellularity associated with the
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eukaryotic domain of life*. Equally fascinating is the idea that a break in
mitochondrial endosymbiosis may even be a basis for inflammatory diseases
in the modern age’.

The use of the terms mitochondrial function and dysfunction in the
scientific literature often directly relates to mitochondrial OxPhos".
Although it has been proposed that this terminology is misleading and
should be avoided’, it is also argued that these terms represent appropriate
umbrella terms to describe overall mitochondrial health’. Despite these
debates on terminology, it is clear that the powerhouse analogy only tells one
part of a larger story. In the modern era, mitochondria are now known to act
as central organising hubs coordinating biosynthetic and signalling mod-
alities with the ability to influence fate and function decision-making across
cell and tissue types*'’. This inherent complexity in mitochondrial biology
has led to the proposition of mitochondria as processors of the cell and it has
been suggested we refer to it as the mitochondrial information processing
system (MIPs)*. While only time will tell if this newly suggested terminology
persists, mitochondrial signal transduction is emerging as a critically
important regulator of cellular and systemic physiology. This concept is
perfectly illustrated in cells of our innate immune system, a universal and
evolutionarily ancient form of host defence against infection and tissue
damage''. Key components of the innate immune system include physical
barriers like the skin and mucous membranes, as well as cellular and
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chemical defences such as phagocytes (e.g., dendritic cells (DCs), neu-
trophils, and macrophages), natural killer cells, and antimicrobial proteins
like complement and interferons. These components work together to
recognise and eliminate pathogens, initiate inflammation to recruit immune
cells, and activate the adaptive immune response if needed. Our objective in
this review article is to underscore the importance of mitochondrial signal
transduction during the innate immune response using clear examples and a
focus on phagocytes, rather than providing an exhaustive list of all studies
and signals in this growing field. The integrated nature of mitochondrial
physiology for the generation of these important signals will also be
highlighted.

Mitochondrial bioenergetics
OxPhos
The electron transport chain (ETC) is a crucial component of aerobic
respiration, occurring within the IMM of eukaryotic cells. The ETC consists
of a series of protein complexes (I, IL, IIT, IV) and electron carriers, including
flavoproteins, cytochromes, and ubiquinone. These complexes work toge-
ther to transfer electrons derived from the oxidation of redox equivalents,
NADH and FADH,, down a series of reactions, ultimately to molecular
oxygen (O,), the terminal electron acceptor. As electrons move along the
ETC, they release energy that is utilised to pump protons (H") across the
IMM, establishing an electrochemical gradient known as the proton motive
force (Ap). The electrochemical gradient then drives the synthesis of ATP
via FoF;-ATP synthase (also known as Complex V) in a process referred to
as chemiosmosis’. This method of maintaining cell phosphorylation
potential is far superior to the other major alternative energy-transducing
metabolic pathway, glycolysis'>. The oxidation of glucose to pyruvate yields
a net gain of 2 molecules of ATP per molecule of glucose, whereas the
complete oxidation of glucose by OxPhos yields ~32 molecules of ATP". If
pyruvate is reduced to lactate in the presence of O,, this is commonly
referred to as the Warburg effect or aerobic glycolysis, first observed in
carcinoma cells'*"*. However, it is now apparent that modulation of both
OxPhos and aerobic glycolysis is a critical feature of metabolic remodelling
in stimulated innate immune cells, such as macrophages and DCs.
Macrophages are phenotypically plastic phagocytic cells widely dis-
tributed throughout the body and can adopt a variety of polarisation states

depending on their environment'”. DCs on the other hand are primarily
found in tissues that interface with the external environment, such as the
skin, respiratory tract, and gastrointestinal tract'®. Here, they act as
important sentinels for the capture and processing of antigens to initiate
adaptive immune responses. Classically activated macrophages, defined
experimentally by stimulation with lipopolysaccharide (LPS) with or
without interferon-gamma (IFN-y) but can also include other microbial
products, are inflammatory in nature and required to counteract pathogenic
microorganisms'”. On the other hand, anti-inflammatory macrophages,
often generated experimentally using IL-4, IL-13, or IL-10 stimulation, are
associated with the resolution of inflammation, wound healing, and type II
immune responses”.

Classical activation of macrophages and stimulation of DCs by Toll-
like receptor (TLR) ligands (also known as pathogen-associated molecular
patterns (PAMPs)), results in the suppression of mitochondrial respiration
and an increase in aerobic glycolysis (Fig. 1A)"’. Mechanistically,
respiratory impairment has been linked to the inducible nitric oxide syn-
thase (iNOS), also known as NOS2, and increased nitric oxide (NO)
production'®*’. NO is a free radical that has long been known to inhibit ETC
complexes in macrophages’ ‘. More recently, NO has been shown to
reduce the protein levels of complexes I, I, III, and IV and impair the activity
of complexes I, II, and IV in macrophages co-stimulated with LPS and IFN-
v In contrast, IL-4-stimulated macrophages exhibit increased OxPhos, a
process dependent on PPARy-coactivator-1p (PGC1p)-mediated mito-
chondrial biogenesis, CD36-dependent lysosomal lipolysis, and fatty acid
oxidation (FAO) (Fig. 1B)". As such, FAO-driven mitochondrial
respiration is required for effective type II immune responses against
parasitic helminth infections™. Intriguingly, IL-4-stimulated macrophages
readily repolarise into classical inflammatory macrophages™. However,
NO-mediated inhibition of OxPhos prevents the repolarisation of inflam-
matory macrophages highlighting the importance of mitochondrial bioe-
nergetics for macrophage plasticity”. Similarly, the anti-inflammatory
cytokine IL-10 antagonises classical macrophage polarisation by suppres-
sing aerobic glycolysis and increasing OxPhos™. This positive impact of IL-
10 on mitochondrial respiratory function is linked to the restriction of iNOS
expression, increased arginase 2 levels, reduced NO production, and sup-
pression of mammalian targets of rapamycin (mTOR)***.
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In inflammatory macrophages or DCs, the precise reason behind the
shift away from mitochondrial respiration and toward aerobic glycolysis is
still unclear. This acute inflammatory response is generally short-lived when
compared to the more prolonged activities of alternatively activated mac-
rophages. Indeed, evidence suggests that inhibiting glycolysis limits the
activation and survival of DCs and impairs cytokine production in mac-
rophages, particularly the pro-inflammatory cytokine IL-13"*">"". Specifi-
cally, the rapid glycolytic burst downstream of TLR signalling in DCs
facilitates anabolic processes, such as de novo fatty acid synthesis, enabling
the expansion of membranes for protein secretion®. This suggests that the
observed metabolic switch is essential for function, perhaps by allowing for
the rapid synthesis of cytoplasmic ATP and reducing equivalents for these
energetic processes. However, one alternative hypothesis is that by sup-
pressing mitochondrial respiration this acts as an “off switch” for an acute
inflammatory response, thereby promoting tolerance. This notion is sup-
ported by kinetic analyses of metabolic reprogramming and cytokine levels
in classically activated macrophages with links to the mitohormetic impact
of mitochondrial-derived reactive oxygen species (mtROS) and reactive
electrophilic species (mtRES)***. In line with this concept, Garaude et al.”®
demonstrated a transient decrease in complex I-containing super complexes
and a switch to complex II-mediated mitochondrial respiration early after E.
coli infection, which was required for anti-bacterial immunity™’. However, at
later timepoints, complex IT activity had decreased relative to the uninfected
controls”. Additional support comes from IL-4/IL-13 training of macro-
phages, which enhances anti-mycobacterial killing and pro-inflammatory
cytokine production in a manner dependent on OxPhos™. Nevertheless, it
can also lead to a hyperinflammatory response following subsequent LPS
exposure that can potentially drive pathology”’. Therefore, this hyperin-
flammatory phenotype in the absence of respiratory chain suppression may
provide insights into the role of this metabolic remodelling process.

More recently, the mitochondrial ETC has also been shown to be
essential for activation of the NOD-, LRR- and pyrin domain-containing
protein 3 (NLRP3) inflammasome in macrophages™. NLRP3 serves as an
intracellular sensor capable of detecting a wide array of microbial motifs,
endogenous danger signals, and environmental irritants, leading to the
formation and activation of the inflammasome complex”. This complex
comprises a sensor component (NLRP3), an adaptor (ASC, also known as
PYCARD), and an effector (caspase 1)”. Structurally, NLRP3 is a tripartite
protein containing an amino-terminal pyrin domain (PYD), a central
NACHT domain, and a carboxy-terminal leucine-rich repeat domain (LRR
domain), with the NACHT domain exhibiting ATPase activity crucial for
NLRP3 self-association and function®. Upon activation, the effector caspase
1 cleaves pro-IL-1{, pro-IL-18 and gasdermin D (GSDMD) to their mature
forms, triggering pyroptosis and pro-inflammatory cytokine release”.
While the mechanism by which NLRP3 senses such diverse stimuli has been
extensively investigated and a direct link with mitochondria has long been
established, the precise signalling involved remains unclear”. Billingham
and colleagues utilised pharmacological inhibitors targeting complex [, II,
III, and V to investigate this link and confirmed impairments in NLRP3
inflammasome activation upon inhibition of OxPhos™. This effect was
reversed following functional complementation of complex I and complex
IIT utilising ectopic expression of Saccharomyces cerevisiae NADH dehy-
drogenase (NDI1) or Ciona intestinalis alternative oxidase (AOX)™.
Mechanistically, the authors found that mitochondrial ATP synthesis via
phosphocreatine (PCr) and cytosolic creatine kinase B (CKB), which gen-
erates cytosolic ATP from PCr, was necessary for NLRP3 activation (Fig.
1C)*. These findings underscore the intricate interplay between OxPhos
and innate immune responses.

While this study firmly connects mitochondrial bioenergetics to
NLRP3, it’s important to note some conflicting reports. NLRP3 inflam-
masome activation can occur in a K* efflux-dependent and K* efflux-
independent manner"*’. K" efflux-dependent activation is reportedly
unrelated to mitochondrial bioenergetics“, while Imiquimod and CL097
trigger K" efflux-independent NLRP3 activation by inhibiting mitochon-
drial complex I''. However, complex I inhibition or PCr depletion prior to

CL097 treatment still impaired IL-1B release, suggesting additional
mechanisms are involved during CL097 signalling™. Furthermore, treat-
ment of macrophages with the complex II inhibitor malonate increased
intracellular succinate levels but had a modest impact on IL-1p release™.
However, malonate is a negatively charged dicarboxylate with poor mem-
brane permeability*. It is unclear how malonate enters the cell at neutral pH,
what intracellular concentrations of malonate were achieved, or if it led to a
significant impairment in mitochondrial respiration. As such, the use of
multiple ETC inhibitors alongside measures of respiration by Billingham
et al.”® provides solid evidence for the involvement of mitochondrial
OxPhos. Despite this, important questions remain regarding why ATP
produced by glycolysis or direct ATP export to the cytosol via the adenine
nucleotide transporter (ANT) are insufficient to support NLRP3 activity.
The data also suggests that there is no role for mtROS in NLRP3 activation in
contrast to previous reports***>™. This highlights the importance of con-
ducting further research into this complex process in order to clarify
underlying mechanisms and to aid any potential therapeutic targeting in the
future.

mtROS

ROS are chemically reactive molecules containing oxygen, traditionally
thought of as agents of cellular damage. Indeed, cytosolic ROS produced by
NADPH oxidase 2 (NOX2) in innate immune cells are known to directly
damage pathogens through the oxidation of lipids and DNA*. Beyond
these NOX enzymes, which evolved as anti-microbicidal tools of
phagocytes™, a consequence of the use of mitochondrial OxPhos for energy
transduction is the generation of mtROS*>*. mtROS, notably superoxide
(0y7) and, following dismutation, hydrogen peroxide (H,O,), are pre-
dominantly formed at complex I or complex I of the ETC*”. The significant
contribution of mtROS to inflammatory redox signalling in innate immune
cells, as well as anti-microbial immunity, has become increasingly promi-
nent over the years” ™.

For instance, stimulation of Toll-like receptors (TLR) 1,2, and 4 on the
surface of innate immune cells and within their phagosome initiates various
signalling pathways within the cell”. Among others, it causes mitochondrial
migration towards the phagolysosome through the activation of the serine-
threonine kinases Mstl and Mst2”*"". Simultaneously, West et al.”’
observed mtROS production in macrophages following cell-surface TLR
stimulation (Fig. 1)”. Interestingly, the production of mtROS that was
induced by TLR binding is specific to antimicrobial defence, as it was not
observed after stimulation of endosomal TLRs that function primarily in
antiviral defence”. In response to a methicillin-resistant Staphylococcus
aureus infection, mtROS production is also stimulated, leading to the for-
mation of mitochondria-derived vesicles (MDVs)®’. These MDVs delivered
mitochondrial matrix enzyme manganese superoxide dismutase (SOD2) to
bacteria-filled phagosomes, enhancing bacterial clearance.

Beyond their direct antimicrobial effects, infection-induced mtROS
can trigger the production of pro-inflammatory cytokines. Herb et al.*®
demonstrated that Listeria monocytogenes infected murine macrophages
generate mtROS, which enter the cytosol and induce secretion of pro-
inflammatory cytokines®. Likewise, complex I-derived mtROS are impli-
cated in the stabilisation of hypoxia-inducible factor 1 alpha (HIF-1a) and
expression of IL-1p downstream of prolonged TLR4 activation™*. As
previously mentioned, mtROS have been repeatedly implicated in the
activation of the NLRP3 inflammasome and the subsequent maturation of
IL-1P and IL-18, through an indirect mechanism that will be discussed
further on***>*%*%% " Interestingly, a gain-of-function mutation in
leucine-rich repeat kinase 2 (Lrrk2%"'*), which is associated with familial
Parkinson’s disease, leads to increased mtROS and a functional switching of
cell death pathways in macrophages®. Specifically, mtROS redirects
GSDMD to mitochondrial membranes triggering a switch to necroptosis
and a hyperinflammatory response to Mycobacterium tuberculosis
infection”. In agreement, ROS-mediated oxidation of cysteine 192 in
GSDMD has also been shown to promote GSDMD oligomerisation and
pyroptotic cell death”. The idea that mtROS are pro-inflammatory in nature
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is further supported by the anti-inflammatory action of mitophagy. Mito-
phagy serves as a protective mechanism against excessive mtROS by
selectively degrading damaged mitochondria, as observed with IL-10
antagonism of LPS triggered inflammation™, while the absence of autop-
hagy also results in ROS-dependent amplification of retinoic acid-inducible
gene I (RIG-I)-like signalling” .

Despite the emerging importance of mtROS signalling, the relative
contribution of complex I versus complex III to mtROS generation in
inflammatory macrophages is currently a topic of debate’**”*. The role of
complex I in OxPhos is to harvest electrons from NADH and transfer them
to the ubiquinone (CoQ) pool while pumping protons across the IMM. This
forward electron transfer (FET) will occur if the difference in reduction
potential between the NAD*/NADH and the CoQ/CoQH2 couples (AEy,) is
sufficient to pump protons against Ap, which is composed of the mito-
chondrial membrane potential (AY,,) and pH gradient (i.e. 2AE;, > 4Ap)™.
When 4Ap > 2AE,, electrons can also be transferred in the reverse direction,
known as reverse electron transport (RET), from the CoQ pool through
complex I to flavin mononucleotide (FMN), and subsequently passed to O,
to generate 0, . Indeed, current evidence favours this model of activation

downstream of TLR4 activation, albeit from indirect measurements***>.

On the other hand, complex III transfers electrons from CoQH2 to cyto-
chrome ¢ (cyt ¢) via the Q-cycle and can generate O, at the Q, site™.
However, the physiological relevance of O, production at complex I is
thought to be higher than that of complex III***°. Despite this, complex III-
derived mtROS is reported to drive oxidative DNA damage in macrophages
enforcing reliance on NAD™ salvage pathways to sustain aerobic glycolysis
and pro-inflammatory cytokine production. The evidence for complex I1I
mtROS derives primarily from the use of Q, site inhibitor myxothiazol,
while showing no impact of rotenone’. However, since RET is dependent
on 4Ap > 2AE;, which will be impacted by complex III inhibition, the use of
this compound cannot exclude mtROS production at complex I*°.

Mitochondria in neutrophils, historically undervalued due to their
preference for glycolysis, have recently gained recognition for their invol-
vement in neutrophil extracellular traps (NETs), motility, degranulation,
and respiratory burst”. The production of ROS by neutrophils during the
respiratory burst is a key mechanism for regulating infection and
inflammation”. While mtROS do not directly contribute to intracellular
ROS stores, it is implicated in the oxidative burst caused by NOX2 activation
and degranulation”. Notably, production of mtROS regulates neutrophil
motility in vivo, as demonstrated by Zhou et al. using a zebrafish model”.

NETs are complex networks comprised of modified chromatin and
bactericidal proteins, which were initially associated with cell death in a
process termed NETosis. It is now recognised that NETosis exists in two
forms: the prolonged ‘suicidal’ NETosis and the rapid ‘vital' NETosis that
leaves neutrophils alive’™. Classically, NETosis was believed to be
dependent on ROS produced by cytosolic NOX2"'. However, Douda et al.**
and Reithofer et al.*’ elucidated the mechanisms behind a second NOX-
independent NETosis type, demonstrating that calcium (Ca*")-dependent
NETosis requires Ca*" influx from lysosomes or the extracellular space.
Mitochondria sense these elevated Ca’" levels, generating mtROS. Both
cytoplasmic Ca’*" and mtROS generated at complex III of the ETC are
required for activation of peptidyl arginine deiminase 4 (PAD4), crucial for
chromatin decondensation and NETosis**. However, the evidence for
complex ITI-derived O,"~ was determined from the use of the Q; site inhi-
bitor antimycin A*. There was no decrease observed with myxothiazol or
the complex ITI-specific O, suppressor, SSQEL**. As such, the source of
mtROS in neutrophils remains to be definitively determined. Finally, NETs
containing mtDNA oxidised by mtROS induce high levels of type I inter-
feron (IFN) signalling and are reported to contribute to systemic lupus
erythematosus (SLE)**"".

This emerging role for mtROS in inflammation and anti-microbial
activity highlights a critical repurposing of mitochondrial function away
from OxPhos toward redox signalling. However, many open questions
remain about how such signals propagate from mitochondria in the pre-
sence of abundant anti-oxidants to engage their reported targets in different

cellular compartments. One hypothesis posits that mtROS signalling to the
cytosol is achieved by localised redox relays involving peroxiredoxins and
glutathione peroxidases®"’, which remains to be explored in the context of
innate immune signalling. Alternatively, a second proposal is the floodgate
model, which involves the inactivation of scavenging enzymes, enabling the
oxidation of target proteins by H,0,"”. While redox signalling may be
important for cellular and organismal homeostasis, it can also contribute to
disease pathology under certain circumstances”” and so identifying the
source of mtROS will be a critical question to address in the future. To
elucidate the source of mtROS in innate immune cells, genetic models will
likely be required. One model, the ND6 G14600A mtDNA mutation, which
leads to a proline to leucine substitution at position 25 in the ND6 subunit of
complex I (ND6-P25L), may be used in the future’®”’. Importantly, the
mutant complex I is fully active for NADH oxidation and has little impact
on FET, but cannot generate ROS by RET”". It also protects the heart from
ischaemia-reperfusion (I/R) injury, a process driven by succinate oxidation
and O, production by RET*,

Mitochondrial membrane potential (A¥,,,) and Ca?*

In addition to its role in maintaining cell phosphorylation potential, A¥,,, is
indispensable for multiple aspects of mitochondrial physiology, including
mtROS production and the transport of many proteins, metabolites, and
ions™”". Mills et al. have highlighted that LPS stimulation augments A¥,,, in
macrophages, which together with the enhanced oxidation of succinate by
complex II, results in accumulation of mtROS and elevated Il1b gene
expression”. Conversely, alternatively activated IL-4-stimulated macro-
phages exhibit a dissipated A¥,,, when treated with the lipid immunomo-
dulator prostaglandin E2 (PGE2)”. Mechanistically, PGE2-induced
dissipation of AY,, was related to the malate-aspartate shuttle and led to
voltage-dependent changes in gene expression, partly regulated by the
transcription factor ETS variant 1 (ETV1)™. These studies are noteworthy as
they provide evidence that external stimuli, in this case LPS and PGE2, can
alter AV, thereby inducing mitochondria-to-nucleus retrograde commu-
nication and fine-tuning macrophage polarisation states.

Moreover, other roles for AY,, have recently emerged in different
innate immune subsets. Efferocytosis, the successful clearance of apoptotic
cells by phagocytes, effectively doubles the content of the engulfing cell,
thereby introducing many more metabolites™. Park and colleagues illu-
strated that the mitochondrial membrane protein uncoupling protein 2
(UCP2), which lowers AY,,, is essential for the functional clearance of
apoptotic target cells but not for the clearance of synthetic targets™. Simi-
larly, aged DCs that exhibited lower A¥,, and coupling efficiency were less
efficient at endocytosing irradiated cells and cross-presenting antigens to
T cells than their younger counterparts”. This effect of reduced AY,, on
antigen processing and presentation has also been observed as a result of
physiological carbon monoxide production™. Furthermore, inducing
mitochondrial dysfunction in younger DCs diminished their phagocytic
and cross-presenting capacity, whereas mtROS specifically affected cross-
presentation. This aligns with the work of Oberkampf and colleagues, who
demonstrated that mtROS regulate cross-presentation to cytotoxic T cells by
plasmacytoid DCs (pDCs)”.

Another important aspect of the AW, is its role as the driving force
behind the uptake of Ca*" into the mitochondrial matrix. Cytosolic Ca**
serves as a pivotal intracellular signalling messenger, implicated in processes
such as exocytosis, cell motility, and apoptosis'”. Regulation of cytosolic
Ca’" primarily occurs through Ca** uptake from the extracellular space and
release from organelles, such as the endoplasmic reticulum. Elevated levels
of cytosolic Ca™" trigger Ca’* influx into the mitochondrial matrix through
the mitochondrial calcium uniporter complex (MCU), thereby buffering
cytosolic Ca** and regulating mitochondrial respiration”. This complex
consists of the channel-forming subunit MCU and its regulators MICU1,
MICU, MCUb, EMRE, MCURI and miR-25"".

The MCU has been the subject of many studies investigating its role in
macrophage function. For instance, the MCU functions as a regulator of
phagocytosis-dependent NLRP3 inflammasome activation in response to
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bacterial challenges . Mechanistically, mitochondrial Ca’ uptake
inhibits endosomal sorting complex required for transport (ESCRT)-
mediated phagolysosomal membrane repair, which enables NLRP3
activation'®. Additionally, expression of MCU and MICUI inversely cor-
relate with age, resulting in reduced mitochondrial Ca®" uptake in aging
macrophages'”. This leads to an amplification of cytosolic Ca** oscillations,
a major driver of nuclear factor kappa B (NF-kB) activation and inflam-
mation. Interestingly, the abundance of the dominant-negative subunit
MCUD is associated with macrophage polarisation during skeletal muscle
regeneration, indicating that the composition of the MCU complex influ-
ences macrophage phenotypes'”. This was underscored by Lu et al.'”, who
investigated the role of the MCU in atherosclerosis-mediated efferocytosis
dysfunction. Using an MCU-specific inhibitor, they were able to attenuate
the upregulation of MCU and MCURI and the downregulation of MCUb
induced by oxidised low-density lipoprotein, which coincided with reduced
production of ROS and pro-inflammatory cytokine and improved
efferocytosis'®. In DCs, circadian changes in mitochondrial Ca®" have also
been found to regulate antigen processing and T cell activation'”. These
thythmic changes in mitochondrial Ca®" were driven by the circadian
control of key regulators of the mitochondrial calcium uniporter complex,
including MCUb and EMRE.

Finally, recent work by Monteith et al.""’ demonstrated that the MCU,
and the resulting Ca™* flux, steers neutrophils away from primary degra-
nulation and towards suicidal NETosis'"’. Murine neutrophils deficient in
MICU1 exhibited increased bactericidal activity, particularly in the presence
of macrophages or during systemic S. aureus infection'"”. Moreover, acti-
vation of the MCU and mitochondrial Ca** uptake promotes neutrophil
polarisation and chemotaxis, further emphasizing the critical importance of
mitochondrial Ca>" dynamics in innate immune cells'"'. All of these studies
on AY,, and Ca’* together illustrate how virtually all key effector functions
of innate immune cells are governed by mitochondrial physiology and
strongly illustrate the concept of mitochondria as an information processing
system.

Mitochondrial nucleic acid signalling
mtDNA
Mitochondrial nucleic acids encompass the entire genetic material found
within mitochondria, which includes mtDNA and mitochondrial RNA
(mtRNA). The primary component, mtDNA, exists in multiple copies
within each mitochondrion, with the number varying depending on the cell
type and energy demand'. In humans, mtDNA consists of a circular,
double-stranded molecule containing approximately 16,500 base pairs'.
Unlike nuclear DNA, mtDNA is only inherited matrilineally, reflecting its
unique evolutionary history and mode of transmission'. Within mtDNA,
there are 37 regions encoding essential genes critical for mitochondrial
function, including 13 subunits of the ETC involved in OxPhos, as well as
transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs) necessary for
mitochondrial translation'. However, this only represents a minor com-
ponent of the mitochondrial proteome, with the remaining 99% encoded by
the nuclear genome'”. The similarities between eukaryotic mtDNA and
bacterial DNA is a key piece of evidence for the endosymbiotic origin of
mitochondria. However, these properties also allow mitochondrial signals
to act as endogenous danger-associated molecular patterns (DAMPs) to
drive inflammation'"”™""".

mtDNA, akin to bacterial DNA, possesses a significant proportion of
hypomethylated CpG dinucleotides, which are motifs recognised by TLR9
to trigger an innate immune response'. Tissue injury resulting from
trauma can induce a systemic inflammatory response syndrome (SIRS),
which shares clinical similarities with sepsis'”. In SIRS, the release of
mitochondrial DAMPs, including N-formyl peptides and mtDNA, activate
polymorphonuclear neutrophils (PMNs)'. This activation leads to
degranulation and organ injury following TLR9 sensing of mtDNA (Fig.
2)'". Additionally, mtDNA and TLR9 activation drive NET formation and
lung injury during primary graft dysfunction after lung transplantation'"”.
Furthermore, previous research by Oka et al.""* demonstrated that mtDNA
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Fig. 2 | Mitochondrial nucleic acid signalling in innate immunity. Infection with
bacteria or viruses, as well as tissue injury, can lead to mitochondrial damage and the
release of mitochondrial nucleic acids, including mtDNA and mt-dsRNA.
mt-dsRNA can be sensed by RIG-I and MDA5, which signal via MAVS, to promote
the expression of type I IFN and pro-inflammatory cytokines. Ox-mtDNA is a
reported ligand for the NLRP3 inflammasome triggering pyroptosis and IL-1p
maturation. mtDNA also activates the AIM2 inflammasome, cGAS-STING path-
way, and TLR9 to drive type I IFN and NETosis. 25-HC can inhibit mtDNA release
and AIM2 activation arising from elevated cholesterol.

escape from autophagy in cardiomyocytes contributes to TLR9-mediated
inflammation and subsequent heart failure'"®. Collectively, these studies
suggest that TLR9 sensing of mtDNA is essential for driving pathological
sterile inflammation following injury.

In addition to TLR9, mtDNA can also be detected by other intracellular
sensors such as the absence in melanoma 2 (AIM2) inflammasome'"”, the
NLRP3 inflammasome**, and the cyclic GMP-AMP synthase (cGAS)-
stimulator of interferon response cGAMP interactor 1 (STING) pathway
(Fig. 2)'. AIM2, a cytosolic DNA sensor, triggers the maturation of IL-1p
and pyroptosis in response to mtDNA release''*'*'. Research by Dang et
al'” highlights the role of 25-hydroxycholesterol (25-HC) in limiting
cholesterol-dependent mtDNA release following bacterial infection or LPS
stimulation in macrophages'”. This suggests that macrophages employ
mechanisms to preserve mitochondrial integrity and prevent excessive
AIM2-mediated inflammation.

While AIM2 can sense mtDNA, newly synthesized and oxidised
mtDNA (ox-mtDNA) fragments are reported to activate the NLRP3
inflammasome, driving the processing of IL-1B*. Recent in vitro studies
propose that the pyrin domain of NLRP3 shares a protein fold with DNA
glycosylases, potentially enabling recognition of ox-mtDNA'*. However, an
unidentified mediator may also be involved. Zhu and colleagues identified
an orphan receptor, Nur77, which binds both intracellular LPS and
mtDNA, leading to non-canonical NLRP3 activation'”’. This mechanism
was found to be independent of canonical activation and unlikely to serve as
an ox-mtDNA receptor for canonical NLRP3 signalling. Recent findings
have also cast doubt on the role of mtROS production in canonical NLRP3
inflammasome activation™. As such, further research is required to
understand the precise role of mtROS and ox-mtDNA in this signalling axis.

cGAS functions as both a nuclear and cytosolic protein, responding to
cytosolic double-stranded DNA by catalysing the formation of cGAMP, a
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second messenger that initiates an inflammatory response via STING'**'*,
The activation of STING by cGAMP promotes type I TFN production via the
transcription factor interferon-regulatory factor 3 (IRF3), initiating an
antiviral immune response. The cGAS-STING pathway plays a crucial role
in sensing intracellular pathogens, including M. tuberculosis',
herpesvirus'”’, dengue virus'*’, norovirus'”, influenza A virus'*, encepha-
lomyocarditis virus'** and severe acute respiratory syndrome coronavirus 2
(SARS-CoV2)"”, which all promote the release of mtDNA to enhance
detection and antiviral signalling. Moreover, cGAS is also involved in
detecting extracellular bacteria including Pseudomonas aeruginosa, Kleb-
siella pneumoniae, and Staphylococcus aureus™. These findings indicate
that the surveillance of mitochondrial integrity cooperates with viral and
bacterial sensing mechanisms to fully engage the host innate immune
response. However, in the case of SARS-CoV2 and coronavirus disease
(COVID19), this can lead to severe lung inflammation and pathology,
primarily driven by macrophages'”.

mtRNA

The process of mtDNA transcription and translation occurs primarily within
the mitochondria, facilitated by the mtRNA machinery. mtRNA includes
precursor transcripts that undergo processing to produce mature mRNAs,
tRNAs, and rRNAs, which are essential for mitochondrial protein synthesis.
A consequence of the bacterial origin of circular mtDNA is that it is subject to
bidirectional transcription, which generates overlapping transcripts capable
of forming long double-stranded RNA (dsRNA) structures'”' ™.

Similar to mtDNA, mitochondrial dsRNA (mt-dsRNA) has been
found to trigger a type I IEN response mediated by the cytosolic viral RNA
sensors, RIG-I"* or melanoma differentiation-associated protein 5 (MDA5)
(Fig. 2)"**. Deletion of the autophagy protein IRGM1 in macrophages has
been shown to impair mitophagy and drive inflammation via
TLR7 signalling”S. TLR7, an endosomal TLR, senses viral and bacterial
single-stranded RNA (ssRNA)"*", suggesting it may also sense mtRNA
following mitochondrial damage. Supporting this notion, inhibition of the
TCA cycle enzyme fumarate hydratase (FH) in LPS-stimulated macro-
phages, which impairs mitochondrial respiration, is reported to drive IFNf
release via the combined action of RIG-I, MDA5 and TLR7"*. However,
further work is required to determine if this is the case. Suppression of
inflammatory mitochondrial RNA species also appears crucial to prevent
autoimmunity. Defects in RNA editing by ADAR1", essential to prevent

dsRNA/MDAS5-mediated inflammation, and TLR7 gain-of-function
mutations'”, are previously underappreciated mechanisms of common
inflammatory diseases, such as SLE.

Together, these studies provide compelling evidence that mitochon-
drial nucleic acid signalling regulates host innate immune responses to
resolve the infection. However, these signalling events must be tightly con-
trolled in order to prevent immunopathology. This dual role reinforces the
concept of mitochondria as sequestered processors within the cell, high-
lighting the importance of maintaining this endosymbiotic relationship’.

Mitochondrial metabolite and lipid signalling

TCA cycle remodelling, signalling and anti-microbial action

The tricarboxylic acid cycle (TCA cycle), also known as the citric acid cycle
or the Krebs cycle, is a fundamental aspect of cellular metabolism'*'. Con-
sisting of a series of enzymatic reactions, the TCA cycle plays a crucial role in
extracting energy from carbohydrates, fats, and proteins to produce NADH
and FADH,, which then fuel the ETC for ATP synthesis'*'~'*. Besides its
energy-generating function, the TCA cycle contributes to biosynthetic
processes by providing precursors for the synthesis of amino acids,
nucleotides, and other essential biomolecules'”’. Recent studies have also
revealed intricate connections between TCA cycle remodelling and innate
immunity, unveiling a novel dimension of immune regulation'**>" 714,
Importantly, metabolic intermediates generated from the TCA cycle, or
TCA cycle metabolites themselves, serve as signalling molecules that
modulate immune responses beyond their roles in bioenergetics or bio-
synthetic ~pathways, which have been extensively reviewed
elsewhere'**'*"*". Here, we will highlight several key findings in this area of
research focusing on the mechanisms and kinetics of TCA cycle remodel-
ling, and the anti-microbial and/or signalling roles of a-ketoglutarate, suc-
cinate, fumarate, and itaconate.

As discussed earlier, inflammatory macrophages and DCs suppress
OxPhos in a manner dependent on NO production'**. However, TCA cycle
remodelling downstream of TLR4 activation occurs in stages eventually
leading to the initial accumulation of succinate and itaconate, followed by
their decrease after prolonged stimulation (Fig. 3A)"*"**'****'. This process is
reported to occur in two stages”, but a case for three stages could also be
made'”. In the first stage, LPS stimulation transiently increases mitochon-
drial respiration'”. This stage is dependent on the mitochondrial glycerol
3-phosphate dehydrogenase (GPD2), a component of the glycerol

Fig. 3 | Mitochondrial metabolite signalling and A
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phosphate shuttle, which enhances glucose oxidation to fuel acetyl-CoA-
mediated histone acetylation of key inflammatory genes'. Importantly,
acetyl-CoA is synthesized by the ATP-citrate lyase in the cytosol from
mitochondrial-derived citrate'”'". After this first stage, two different
breakpoints of the TCA cycle have been proposed. The first metabolic
breakpoint occurs at isocitrate dehydrogenase (IDH), while the second
break point occurs at complex II, also known as succinate dehydrogenase
(SDH) (early)™*. The breakpoint at IDH has been attributed to the
decreased expression and activity downstream of autocrine type I IFN
signalling'>. Conversely, the breakpoint at complex IT has been attributed to
immunoresponsive gene 1 (IRG1), also known as cis-aconitate decarbox-
ylase (CAD), mediated itaconate synthesis. Itaconate acts as a weak com-
petitive inhibitor of complex II'**"**"*' and is also reported to inhibit
IDH2"*, linking itaconate to both TCA cycle breakpoints. The third stage of
TCA cycle reprogramming (late) is largely driven by the inhibition of
pyruvate dehydrogenase complex (PDHC) and the oxoglutarate dehy-
drogenase complex (OGDC)”. Mechanistically, this is controlled by
dynamic changes in the lipoylation state of both PDHC and OGDC
E2 subunits and phosphorylation of the PDHC E1 subunit™”. Additionally,
this may be linked to NO production, which inhibits the TCA cycle enzyme
aconitase 2 (ACO2) and PDHC™"". These two stages of metabolic repro-
gramming are crucial mechanisms to support acute phase inflammation
and restrict a hyperinflammatory response.

The accumulation and release of succinate has emerged as a crucial
signal influencing innate immune responses in both normal and patholo-
gical states. In macrophages, elevated levels of succinate are reportedly
exported from mitochondria to the cytosol during TCA cycle rewiring,
stabilising HIF-la and thereby promoting the synthesis of pro-
inflammatory cytokines such as IL-1p"**. HIF-1a stability is regulated by
prolyl hydroxylases (PHDs), which target it for degradation by the pro-
teasome, requiring a-KG as a substrate. Notably, a-KG has demonstrated
the ability to dampen the activation of pro-inflammatory macrophages,
supporting endotoxin tolerance post-activation (Fig. 3B)"**'*”. Mechan-
istically, a-KG suppresses IKKp and NF-«B in a PHD-dependent manner
and impedes the stabilisation of HIF-1a'**"’. Thus, a reduced a-KG:suc-
cinate ratio is associated with the pro-inflammatory phenotype. In contrast,
glutamine-derived a-KG is also required for alternative macrophage acti-
vation driving FAO and Jmjd3-dependent epigenetic reprogramming of IL-
4 target genes'”". Succinate oxidation at complex II within mitochondria is
also proposed to drive mtROS from complex I by RET, thereby stabilising
HIF-1a™. Given the reports of complex II inhibition by itaconate and
dimethyl malonate (DMM), which increase succinate levels, reduce HIF-1q,
and limit IL-1p***'*, succinate oxidation is likely a stronger driving force
for HIF-1a stabilisation than succinate accumulation per se and requires
further investigation. In DCs, succinate is associated with the mobilisation of
intracellular Ca**, leading to migratory responses and acting synergistically
with TLR ligand stimulation to produce pro-inflammatory cytokines'®. In
this instance, succinate drives this response via binding to its G-protein
coupled receptor succinate receptor 1 (SUCNRI), also known as GPR91, on
the cell surface. Strikingly, extracellular liver succinate can drive inflam-
mation and non-alcoholic fatty liver disease (NAFLD), which indicates
succinate can act as a mitochondrial DAMP'. However, succinate-
SUCNRI can also promote hyperpolarisation of anti-inflammatory
macrophages'® and decrease inflammatory markers in adipose tissue'”,
suggesting that succinate signalling is context specific.

Itaconate has emerged as a potent immunoregulatory metabolite pri-
marily synthesized by cells of the myeloid lineage'*’. In macrophages, ita-
conate plays dual roles as a potent anti-bactericidal metabolite and an
immunomodulator that restricts the production of pro-inflammatory
cytokines (Fig. 3C)"*>"***"'% Previously, the anti-bacterial properties of
itaconate were attributed to its interference with bacterial growth through
the inhibition of enzymes such as isocitrate lyase (ICL) in the glyoxylate
cycle™™'® or propionyl-CoA carboxylase (PCC) in the citramalate cycle'*.
More recently, itaconate was reported to undergo conversion into the CoA
derivative itaconyl-CoA'”, which limits M. tuberculosis growth by

inhibiting B,,-depencent methylmalonyl-CoA mutase (MUT)'®. As such,
itaconate can target multiple enzymes of pathogen propionate metabolism
to enforce nutrient stress. To combat intracellular bacteria such as
Legionella'®” and Salmonella'”’, mitochondrial-derived itaconate is delivered
to phagolysosomes. In the case of Salmonella infection, this host defence
mechanism relies on a scaffolding complex involving mitochondria, IRG1/
CAD, the GTPase Rab32, Lrrk2 and Salmonella-containing vacuoles
(SCVs)7*"!. This crosstalk between mitochondria and phagolysosomes is
dependent on the lysosomal biogenesis factor transcription factor EB
(TFEB)'””. Ttaconate, in turn, induces lysosome formation by disrupting
mTOR/14-3-3-mediated cytosolic retention of TFEB'”. Therefore, itaco-
nate is both a direct anti-bactericidal agent and co-ordinator of cellular
lysosomal signalling. However, many pathogens have evolved intricate
mechanisms in an attempt to evade the anti-bacterial action of itaconate. For
instance, Yersinia pestis and Pseudomonas aeruginosa encode the enzymes
itaconate CoA transferase, itaconyl-CoA hydratase, and (S)-citramalyl-CoA
lyase that metabolise itaconate to pyruvate and acetyl-CoA and promote
their survival in macrophages'”*. Conversely, M. tuberculosis encode the
bifunctional enzyme B-hydroxyacyl-CoA lyase required for itaconate and
leucine catabolism'”". This nicely highlights the evolutionary arms races that
occur between primary pathogens and host immune responses.

Beyond its anti-bacterial role, itaconate exhibits immunomodulatory
properties via several mechanisms, for an in-depth analysis this has been
nicely reviewed elsewhere™*"”. Initially recognised as an anti-
inflammatory metabolite for its ability to inhibit complex I1'*, itaconate
has since been identified as a mildly electrophilic compound capable of
alkylating protein cysteine thiols'”, a process termed 2,3-dicarbox-
ypropylation, and glutathione'”. In addition, itaconate has also been
identified as a competitive inhibitor of the TET family of a-KG-dependent
DNA dioxygenases”” and a ligand of the a-KG receptor OXGR1'”’. The
mild electrophilic nature of itaconate enables derivatives, such as dimethyl
itaconate (DMI) or 4-octyl itaconate (4-OI), to modify various metabolic
enzymes, redox regulators, and immune proteins'**'”*. Target modification
by itaconate derivatives leads to activation of the anti-oxidant and stress-
responsive transcription factors nuclear factor erythroid 2-related factor 2
(NRF2) and activating transcription factor 3 (ATF3), which in turn can limit
pro-inflammatory cytokines such as IL-18 and IL-6'**"”*, NRF2 stabilisation
is also decreased in IRG1-deficient macrophages and Kupffer cells under
certain contexts suggesting a role for endogenous itaconate in
NRE?2 stabilisation'”*'*"'®2, However, treatment with underivatised itaconate
has mixed results with regard to NREF2, increasing stability in some
instances'®, but not in others* for unclear reasons. Furthermore, itaconate
derivatives also alkylate key enzymes of glycolysis, including fructose-
bisphosphate aldolase A (ALDOA) and glyceraldehyde 3-phosphate
dehydrogenase (GAPDH), thereby curbing aerobic glycolysis associated
with pro-inflammatory macrophage activation'**'”. The list of targets
modified by itaconate derivatives continues to grow and current data
indicates they may represent a novel class of anti-inflammatory agents with
clinical potential during infection and inflammatory disease'’*'”’. Itaconate
accumulation, in combination with NO, is also an important mediator of
innate immune tolerance limiting NLRP3 inflammasome activation and
pyroptosis through mechanisms dependent on complex II inhibition or it’s
electrophilic properties'**"*. Furthermore, myeloid-derived IRG1 dampens
neutrophil-mediated lung inflammation following M. tuberculosis infection,
underscoring the importance of itaconate in vivo'”. However, following
trauma, itaconate-producing neutrophils play an important role in tissue
inflammation and the wound healing process following tendon injury'”. In
contrast, itaconate production in DCs impairs anti-parasitic immune
responses by promoting mtDNA-dependent PD-L1 expression following
Plasmodium chabaudi infection, which limits CD8" T cells'". This suggests
that the beneficial effects of itaconate synthesis may vary depending on the
pathogen involved. In summary, these studies highlight the importance of
the mitochondrial IRG1-itaconate axis in regulating the innate immune
response to pathogens, and for the most part, in restricting hyperin-
flammatory responses. However, the relative importance of endogenous
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Fig. 4 | Mitochondrial signalling platform in
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itaconate cysteine reactivity versus metabolic perturbations during an
immune response remains to be determined and requires further
investigation.

Similarly to itaconate, fumarate is a mildly electrophilic metabolite
that can modify protein cysteine thiols and glutathione, a process termed
succination'”. Fumarate levels increase following inflammatory mac-
rophage activation in a mechanism dependent on glutamine anaplerosis
and induction of aspartate-arginosuccinate shunt"**'*’. Inhibiting this
shunt limits arginine synthesis and leads to a reduction in pro-
inflammatory mediators, including NO and IL-6'*. Fumarate accu-
mulation can also enhance TNF-a production by inhibiting autocrine
IL-10 signalling in macrophages'*® and inhibiting lysine demethylase 5
(KDM5) histone demethylases in monocytes'”. Furthermore, fumarate
accumulation has also been implicated in anti-bacterial defence owing to
its cysteine reactivity”’, which can intoxicate pathogens including
Mycobacterium tuberculosis™”. The intricate interactions between the
TCA cycle and innate immunity underscore the significance of meta-
bolic reprogramming in shaping immune responses. Understanding the
regulatory roles of TCA cycle intermediates, such as succinate and ita-
conate, opens new avenues for therapeutic interventions using immu-
nomodulatory metabolite derivatives.

Cardiolipin signalling
Cardiolipin is a unique phospholipid found predominantly in the IMM of
eukaryotic cells and can be found in most bacterial species'*". Structurally, it
consists of two phosphatidyl groups linked by a glycerol backbone, resulting
in a dimeric structure. The presence of four acyl chains contributes to its
distinctive conical shape, which promotes curvature of the membrane and
cristae morphology'”. Approximately 10-15% of all mitochondrial phos-
pholipid content is cardiolipin'**. Cardiolipin stabilises the respiratory chain
complexes to support mitochondrial bioenergetics, whilst also being
implicated in protein import, mitophagy, apoptosis and mitochondrial
dynamics'”. In addition to these identified functions, cardiolipin is emer-
ging as a regulator of innate immune signalling and inflammatory cell death.
Cardiolipin found in human serum has been observed to have an
interesting role in immune regulation'”. It has been reported to promote the
surface expression of the non-polymorphic major histocompatibility
complex (MHC) class I-like molecule CD1d in DCs, a process that relies on
peroxisome proliferator-activated receptor (PPAR) nuclear hormone
receptors'”. Furthermore, CD1d is capable of binding to bacterial and
eukaryotic cardiolipin and when presented by DCs, can activate splenic and
hepatic y8 T cells in vivo'®. These findings suggest that DCs play a crucial
role in antigen presentation of bacterial cardiolipin following infection or

mitochondrial cardiolipin following tissue injury, which may represent a
key immunosurveillance mechanism.

In macrophages, cardiolipin has been implicated in supporting NLRP3
inflammasome activation (Fig. 4)'”. Research suggests that cardiolipin
interacts with NLRP3 after translocation to OMM, indicating that the outer
membrane is a critical site for co-ordinating NLRP3 signalling'”’. Notably,
NLRP3 activation was hindered when cardiolipin synthase (CSL) was
genetically silenced'”. Recent findings also indicate that GSDMD causes
mitochondrial damage by permeabilising both the IMM and OMM*'**'*”,
Mechanistically, impairing cardiolipin biosynthesis or the transfer of car-
diolipin to the OMM by the scramblase PLSCR3 prevented GSDMD
recruitment and subsequent pyroptosis'”. However, high-resolution
structures of NLRP3-activated ASC complexes using cryo-electron tomo-
graphy do not show co-localisation with mitochondria, despite supporting
GSDMD-mediated mitochondrial pore formation™”. This data suggests that
NLRP3 signalling at the OMM may not occur as previously suggested.
However, it’s important to note that an earlier interaction between NLRP3
and the OMM, which may not have been captured in the structure, cannot
be conclusively ruled out.

Furthermore, Reynolds et al. (2023) reported that loss of cardiolipin
biosynthesis, achieved by silencing CSL in macrophages, also impaired Il1b
expression via a complex II-dependent mechanism™. This indicates that a
loss of cardiolipin could more broadly impact the pro-inflammatory
response and limit NLRP3-mediated IL-p release by reducing pro-IL-1B
levels. Indeed, the importance of cardiolipin in mitochondrial respiration
and cristae architecture presents a challenge in distinguishing its role in
bioenergetics from its involvement in OMM signalling when its biosynthesis
is disrupted. Mitochondrial respiration relies on the proper functioning of
respiratory chain complexes embedded within the IMM, where cardiolipin
plays a crucial role in stabilising and optimising their activity. Disruption of
cardiolipin biosynthesis can impair mitochondrial respiration, affecting
cellular ATP production and potentially influencing NLRP3 inflammasome
activation, as bioenergetics status is a known regulator of this process™. As
such, the precise role of cardiolipin is unclear and will require sophisticated
experimental approaches to disentangle.

Mitochondria as a signalling platform

A key facet of mitochondrial signal transduction is found in the organelles
ability to function as a scaffold, thereby facilitating cellular signalling cas-
cades. Central to this paradigm is mitochondrial antiviral signalling protein
(MAVS), also known as IFN{ promoter stimulator 1 (IPS1), CARD adaptor
inducing IFNf (CARDIF) and virus-induced signalling adaptor (VISA), a
key mediator that interfaces with RIG-I-like receptors (RLRs)"”. As such,
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MAVS serves as a critical nexus for the integration of intracellular antiviral
signalling (Fig. 4)"'. Structurally, MAVS is a 540-amino acid protein
comprising three distinct functional domains: an N-terminal CARD
domain, a proline-rich region, and a C-terminal transmembrane domain.
The N-terminal CARD domain of MAVS facilitates interaction with the
CARD domains of RLRs, including RNA helicases RIG-I and MDA5"".
This interaction is pivotal for initiating signalling events leading to the
release of type I IFN and the activation of the NF-«B and IRF pathways***~".
The subcellular localisation of MAVS adds an additional layer of complexity
to its function. MAVS dynamically associates with the OMM, endoplasmic
reticulum, and peroxisomes, suggesting a versatile role in coordinating
antiviral responses across distinct cellular compartments™. Upon viral
infection, peroxisomal MAVS induces the rapid IFN-independent expres-
sion of defence factors that provide short-term protection, whereas mito-
chondrial MAVS activates a delayed IFN-dependent signalling pathway,
which amplifies and stabilises the antiviral response”.

Upon activation, MAVS undergoes oligomerisation, thereby forming
fibrils that induce membrane remodelling and signalling complex
assembly’”**, Independent of RLR sensing of RNA, mtROS can promote
MAVS oligomerisation and type I IFN production in SLE patients*”, which
suggest MAVS may act as a mitochondrial redox sensor. Like cardiolipin,
MAVS is also reported to recruit the NLRP3 inflammasome to mitochon-
dria, thereby triggering its activation®”*"°. This appears to occur when using
standard NLRP3 stimuli*” and in response to Sendai Virus, also known as
murine respirovirus, infection’’. Notably, while a structural study failed to
capture an interaction between NLRP3 and mitochondria using cryo-
electron ET', this study was not conducted in the context of viral infection.
Therefore, it remains possible that NLRP3 interacts with mitochondria
following viral sensing and MAVS oligomerisation, an aspect that warrants
further investigation.

The localisation of MAVS to the mitochondrial membrane suggests a
potential interplay with mitochondrial dynamics within macrophages.
Recent studies propose that MAVS may influence mitochondrial mor-
phology and function, thereby modulating the metabolic profile of mac-
rophages during the course of an antiviral response. Specifically, the fusion
mechanisms of the OMM are rigorously governed by Mitofusin 1 (Mfn1)
and Mitofusin 2 (Mfn2), exerting regulatory control over MAVS activity”"".
Surprisingly, while Mfnl positively regulates MAVS-mediated antiviral
responses, its close homolog Mfn2 directly inhibits MAVS, possibly unre-
lated to its function in mitochondrial dynamics***”. Thus, although Mfn1
and Mfn2 share the function of inducing mitochondrial fusion, they play
opposing roles in viral innate immunity. Mitochondrial dynamics, espe-
cially mitochondrial fusion, appears crucial for the innate immune response.
Conversely, promoting mitochondrial fission, via dynamin-related protein
1 (DRP1), inhibits MAVS activity during viral infection®"**".

Hexokinase 2 (HK2), a key enzyme in glucose metabolism has recently
been identified as a novel interactor with MAVS (Fig. 4)***"". When MAVS
is inactive, it forms a complex with HK2, inducing its localisation to the
mitochondria, where it associates with the OMM through its interaction
with the voltage-dependent anion channel (VDAC), and maintaining its
enzymatic activity’". RLR signalling disrupts glucose metabolism, leading to
the downregulation of glycolysis. Mechanistically, MAVS, in its active state,
binds to RIG-I, releasing HK2 into the cytoplasm, impairing its activity and
subsequent glucose metabolism. HK2 inactivation leads to the decrease of
intracellular lactate levels, which can inhibit RLR/MAVS signalling’*®. This
intricate regulation suggests a role for the MAVS-HK2 axis in connecting
the innate immune response with cellular bioenergetics during viral chal-
lenges. In macrophages, HK2 is also reported to associate with VDAC on
mitochondria to act as an innate immune sensor for bacterial
peptidoglycan®'®. Phagosomal processing of peptidoglycan leads to the
release of N-acetylglucosamine (NAG) that inhibits HK2 triggering its
dissociation from the OMM and activates NLRP3*'*. Mechanistically, HK2
dissociation from the OMM promotes mitochondrial Ca*" uptake, VDAC
oligomerisation and the release of mtDNA’”. Finally, in DCs, TLR

activation promotes HK2 association with mitochondria to facilitate the
rapid induction of glycolysis, which was essential for DC activation™.

In summary, the mitochondrial signalling platform, often centred
around MAVS, HK2 and VDAGC, serve as a crucial nexus orchestrating
innate immune responses against bacterial and viral infections. The con-
vergence of mitochondrial dynamics and antiviral signalling pathways
underscores the intricate cellular mechanisms deployed to counteract
pathogenic threats. Future research endeavours focused on unravelling the
complexities of RLR recruitment to mitochondria are poised to enhance our
comprehension of this vital axis in innate immunity. Collectively, the studies
on NLRP3 also highlight how all facets of mitochondrial physiology are
intertwined and work together to drive activation of this complicated sig-
nalling complex.

Future outlook and concluding remarks

Much of the research conducted thus far has involved extensive in vitro
stimulations of bone marrow- or monocyte-derived macrophages, DCs,
and neutrophils to model in vivo cell populations. While these model
systems are valuable for studying innate immune cell biology, they do
not precisely replicate tissue-resident or infiltrating in vivo cell popu-
lations. The latter are often shaped by a complex and dynamic micro-
environment that is difficult to reproduce in vitro™’. However, there are
now expanding toolkits emerging that will facilitate the measurement of
metabolic genes and metabolism in immune cells in vitro and in vivo.
Experimental changes to the medium composition and cell culture
geometry can now more closely reproduce in vivo conditions without
over complicating experimental methodologies'~**. Significant pro-
gress has been made in single-cell techniques, including single-cell RNA
sequencing (scRNA-seq), which has been used to identify OxPhos as a
distinguishing feature of tissue-resident macrophages across different
organs under steady state and obesogenic conditions™’. High-
dimensional spectral flow cytometry has also identified tissue-resident
macrophage metabolic heterogeneity during helminth infection™.
Other emerging techniques, such as single-cell energetic metabolism by
profiling translation inhibition (SCENITH), allow the study of energy
metabolism using flow cytometry and have been applied to in vitro and
ex vivo human and murine myeloid populations™**”. Finally, progress is
also being made in mass spectrometry imaging (MSI), which has been
applied for joint protein-metabolite profiling of single immune and
cancer cells. These expanding metabolic toolkits will enable greater
investigations of mitochondrial metabolism and signalling in innate
immune cell populations and beyond.

Since the designation of mitochondria as the ‘powerhouse of the cell’,
further research has revealed, as discussed here, their role as centrally
positioned signalling hubs essential for innate immune signalling. However,
while the importance of mitochondria cannot be overstated, many aspects of
how they influence innate immune function remain unclear. There remain
many outstanding questions to be addressed in future work to better
understand the role of mitochondria in innate immunity. This is exempli-
fied by the NLRP3 inflammasome, which is evidently regulated by mito-
chondrial function (Table 1). What is the precise role of specific
mitochondrial signals such as mtROS, cardiolipin, and ATP synthesis for
the activation of this inflammatory signalling complex during bacterial and
viral infection? And are these involved in NLRP3 activation in vivo? What is
the source of mtROS and is it dependent on RET?™ The answer to these
outstanding questions may aid with therapeutic targeting of this process
during infection or inflammatory disease. Finally, given the importance of
mitochondria to innate immune cell biology, to what extent are mito-
chondrial diseases a manifestation of innate immune cell dysfunction?*” Or
what proportion of more common autoimmune disorders are driven by a
break in mitochondrial endosymbiosis?” We hope this review will inspire
research into these and many other questions that remain to be explored and
will promote a clearer comprehension of the extensive role of mitochondria
in innate immunity.
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Table 1 | Mitochondrial signal transduction and NLRP3 activation.

Mitochondrial signal Signalling Outcome Cell type

ATP and PCr synthesis Cytosolic ATP synthesis by CKB NLRP3 activation, IL-1p Macrophage
mtROS (Complex I-derived) HIF-1a stabilisation and //7b transcription NLRP3 activation, IL-18 Macrophage
mtDNA, mtROS Release of ox-mtDNA fragments NLRP3 activation, IL-18 Macrophage
Itaconate Complex Il inhibition, electrophilic properties Inhibition of NLRP3 and pyroptosis Macrophage
Cardiolipin Biosynthesis and translocation to OMM NLRP3 recruitment and activation, IL-1p, pyroptosis Macrophage
MAVS Oligomerisation on OMM NLRP3 recruitment and activation, IL-1p Macrophage
Mfn1 MAVS activation NLRP3 activation, IL-1p Macrophage
Mfn2 MAVS inhibition NLRP3 inhibition Macrophage
DRP1 MAVS inhibition NLRP3 inhibition Macrophage
HK2 dissociation from OMM Mitochondrial Ca?* uptake increase, VDAC oligomerisation mtDNA release, NLRP3 activation, IL-1f Macrophage
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