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Metabolomic-based aging clocks
Check for updates

A. IbáñezdeOpakua1,R.Conde2, A. deDiego2,M.Bizkarguenaga2,N.Embade2, S.C. Lu3, J.M.Mato2,4 &
O. Millet1,2,4

Molecular aging clocks estimate biological age from molecular biomarkers and often outperform
chronological age in predicting health outcomes. Types include epigenetic, transcriptomic,
proteomic, and metabolomic clocks. NMR-based metabolomic clocks provide a non-invasive, high-
throughput platform to assess metabolic health. We summarize key NMR-based models and present
a new approach that combines high predictive accuracy with clinical interpretability, identifying
disease-specific metabolic distortions and supporting risk stratification and early detection of
accelerated aging.

Development and validation of molecular aging clocks
A molecular aging clock is a biomarker-based computational model
designed to estimate an organism’s biological age—a measure of physio-
logical state that often predicts healthspan, disease risk, andmortality more
accurately than chronological age (the number of years since birth). Bio-
logical age reflects the cumulative impact of both intrinsic (genetic) and
extrinsic (environmental/lifestyle) factors, as well as the progressive func-
tional decline of cells and organ systems due to processes like cellular
senescence, mitochondrial dysfunction, and loss of proteostasis. These
clocks are generated by analyzing molecular changes that accumulate over
time in diverse biological samples (e.g., blood, saliva, and tissues) collected
from individuals of different ages. Machine learning and statistical models
are then trained to correlate thesemolecular patternswith chronological age
(first-generation clocks) or to predict health-related outcomes (second-
generation clocks).

Main types of molecular aging clocks
Epigenetic clocks
DNAmethylation patterns have been identified as some of themost reliable
aging biomarkers. Examples include Horvath and Hannum et al. clocks1,2,
and newer models like McCrory et al.3, which refine predictions based on
different tissue types and populations. Epigenetic clocks tend to be very
accurate in estimating chronological age; they often have limited ability to
identify the key biological processes controlling ageing4. Intriguingly, it has
been suggested that epigenetic-based aging clocks may be sensitive to sto-
chastic variation accumulation in the DNA5.

Transcriptomic clocks
Changes in gene expression are also strong indicators of aging. Clocks
based on transcriptomic data, such as Singh et al. and Lu et al.6,7,
capture shifts in regulatory networks driving functional decline.

Remarkably, this method was able to predict accelerated aging in a
small cohort of progeria patients8.

Proteomic clocks
Aging is associated with variations in protein abundance and post-
translational modifications. Examples include Argentieri’s clock, which
used proteomics to predict age-related functional status, multimorbidity,
and mortality risk across geographically and genetically diverse
populations9. Proteomic-bases aging clocks have been recently reviewed10.

Metabolomic clocks
Metabolite level changes provide insights into metabolic alterations asso-
ciated with aging. For example, Bucaciuc and coworkers developed a
metabolomic clock that detects aging-induced shifts such as NAD+ deple-
tion and mitochondrial dysfunction11.

Additional markers under investigation include telomere length,
senescence-associated secretory phenotype factors, chromatin remodeling,
and microbiome shifts, among others12,13.

Validation and application of aging clocks
Once generated,molecular aging clocks undergo validation on independent
cohorts to ensure their accuracy and generalizability14. Their primary
applications include: (1) First-generation clocks: Estimate chronological age
based on molecular biomarkers. A significant discrepancy between biolo-
gical and chronological age may indicate accelerated or decelerated aging,
which can signal health risks or resilience. (2) Second-generation clocks:
Predict health-related factors such as mortality risk, frailty, disease sus-
ceptibility, response to therapies, and the effects of lifestyle interventions
(e.g., diet, exercise, and pharmacological treatments like metformin or
rapamycin). As molecular aging clocks advance, the aim is to develop
personalized multi-omic models that integrate genomic, epigenomic,
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transcriptomic, proteomic, and metabolomic data for a comprehensive
assessment of aging and longevity15.

Limitations of single biological age measurements
Despite their potential, molecular aging clocks have several limitations that
impact their accuracy, applicability, and interpretation16:

Correlation vs. causation
Many aging clocks rely on molecular markers that correlate with age, but it
remains unclear whether these markers actively drive aging or are merely
byproducts of the aging process. For instance, DNA methylation changes
are strongly associated with aging but may simply reflect age-related phy-
siological shifts rather than directly influencing lifespan. In this context, it is
important to define the influence of genetic variation and environmental
factors on changes that are used to build-up the aging clock model.

Population-specific bias
Aging clocks trained on one population may not generalize well to
others due to differences in genetics, lifestyle, and environmental
exposures. Factors such as ethnicity, diet, environment, and socio-
economic status can influence aging trajectories, potentially leading to
biased predictions when applying a model across diverse groups.
Retraining or recalibrating aging clocks with population-specific data
is often necessary, and data integration from large and diverse long-
itudinal population studies is highly desirable.

Uncertain impact of longevity interventions
While reductions in biological age following lifestyle interventions (e.g., diet,
exercise, caloric restriction, or pharmacological treatments like metformin
or rapamycin) suggest potential anti-aging effects, it is unclearwhether these
changes translate into actual lifespan extension or improved long-term
health.

Limitations of single-time measurements
A single biological age measurement provides only a snapshot of aging at a
givenmoment andhas limitedvalue in tracking agingdynamics. Since aging
is a continuous process, transient influences such as illness, stress, or recent
lifestyle changes can cause short-term fluctuations in biological age esti-
mates, leading to potential misinterpretations.

Since aging is dynamic, a single measurement cannot capture the rate
of aging or its changes over time. Repeated measurements are necessary to
assess whether aging is accelerating, decelerating, or progressing normally.
Advanced models, such as DunedinPACE17, estimate the pace of aging by
tracking individual decline over decades. These approaches offer deeper
insights into biological aging, beyond a simple age estimate.

NMR-based metabolomic aging clocks
Nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical
tool widely employed in metabolomics for the qualitative and quantitative
analysis of small-molecule metabolites in biological samples, including
plasma, urine, cerebrospinal fluid, and tissue extracts. Its non-destructive
nature, high reproducibility, andminimal sample preparation requirements
make it particularly suited for comprehensivemetabolic profiling.While the
technique has intermediate sensitivity compared to other platforms, it
allows for reliable quantification of metabolite concentrations. Serum and
plasma are of particular interest due to their tightly regulated homeostasis
and clinically relevant concentration ranges.Metabolic profiling of serum is
especially informative for assessing central metabolism and glycemic con-
trol, key processes linked to aging and longevity18. Moreover, NMR offers
unprecedented resolution in lipoprotein subclass characterization, and the
combination of metabolites and lipoproteins as determined by NMR
spectroscopy provide insights into cardiometabolic risk and metabolic
syndrome19. In addition, specific serummarkers measurable by NMR, such
as GlycA, GlycB, and SPC, serve as robust inflammatory biomarkers. Col-
lectively, NMR spectroscopy represents a powerful platform for

constructing molecular models of metabolic age and developing
metabolomics-based aging clocks.

NMR spectroscopy has been employed to develop various models of
biological aging. Hertel and colleagues20 introduced a metabolomic
approach to estimate biological age (termed themetabolic age score), based
on urine samples analyzed using 1H NMR spectroscopy. Their study
included 4068 urine samples collected from Caucasian donors across
Central Europe. While the model achieved a linear correlation between
chronological age and metabolic age, its predictive accuracy was limited,
likely due to a regression-to-the-mean effect. Furthermore, urine is not an
ideal biofluid for long-term tracking of metabolic age, as its composition is
highly sensitive to short-term influences such as diet and medication.

An NMR-based analysis of serum and plasma samples from the
Estonian cohort (17,345 individuals), which included mortality data over a
five-year period, revealed a non-linear association between chronological
age and a biomarker score that could predict mortality independently of its
cause (cardiovascular, nonvascular, or cancer-related deaths)21. Similarly, in
a study using the FINNRISK cohort (44,168 individuals), a combination of
14 metabolites was identified as predictive biomarkers of mortality22. In
turn, Dimitri and coworkers analyzed a small cohort of healthy individuals
and people with Parkinson’s disease in order to investigate the metabolic
aging associated with the neurodegenerative disorder23.

Another study24 utilized over 18,000 serum samples collected from 26
Dutch hospitals to develop a metabolomics-based age predictor, termed
metaboAge, aimed at estimating an individual’s biological age. The model
was built on 56 metabolic features and included a diverse sample set com-
prising bothhealthydonors andpatients, as definedby the inclusion criteria.
As a result, the model reflects deviations from typical population norms,
which is consistent with its relativelymodest correlation with chronological
age (with a Pearson coefficient of 0.65). In line with these findings, Ala-
Korpela and colleagues analyzed serum samples from two distinct Finnish
cohorts to investigate the existence of slow and accelerated aging regions;
however, they were unable to clearly identify such regions25.

Finally, metabolic age models have been developed based on the
analysis of metabolic variables measured in blood samples from a large
number of individuals across nine cohort studies in the UK and Finland,
with participants ranging in age from 24 to 86 years26,27. The same studies
also conducted a meta-analysis of existing models and found that while
metabolic agemodels are onlymoderately correlatedwith chronological age
in independent populations, they offer additional predictive power for
morbidity and mortality beyond that of chronological age alone.

Towards an NMR-based global metabolomic
health test
At CIC bioGUNE, we initiated a precision medicine program involving a
cohort of 13,500 individuals from theBasqueCountry (AKRIBEAcohort)28.
This untargeted study recruits participants exclusively based on their
employment within the Mondragón Corporation (https://www.
mondragon-corporation.com/en/), a federation of worker cooperatives
headquartered in the Basque region of Spain, which employs approximately
31,000 individuals locally. Recruitment and biological sample collection are
conducted during routine annual medical examinations. Mondragón
Corporation operates across four sectors—finance, industry, retail, and
knowledge—thereby enabling the collection of samples fromadiverse range
of occupational environments.

This cohort served as the foundation for developing an NMR-based
metabolomic aging clock model, which was further supplemented with
additional samples to ensure balanced representation across the full age
spectrum, yielding a final dataset encompassing approximately 20,000
individuals. Formodel construction, we utilized one-dimensional 1H-NMR
(NOESY) spectra and applied a robust ensemble stackingmachine learning
approach to predict chronological age (see Materials and methods). This
strategy effectively mitigated the common issue of regression to the mean,
thereby enhancing generalizability (Fig. 1). The current versionof themodel
achieves a Pearson correlation coefficient exceeding 0.90 betweenmetabolic

https://doi.org/10.1038/s44324-025-00078-x Perspective

npj Metabolic Health and Disease |            (2025) 3:35 2

https://www.mondragon-corporation.com/en/
https://www.mondragon-corporation.com/en/
www.nature.com/npjmetabhealth


andchronological age,with significantly reducedprediction error compared
to our previous versions of the model (Fig. 1A). A slightly less accurate but
more interpretable version of the model, based on selected metabolites and
clinical parameters extracted from the NOESY spectra, reaches a Pearson
correlation just below 0.90 (Fig. 1B, C).

Importantly, individuals with various pathologies, including
chronic metabolic and oncological conditions, exhibited characteristic
deviations from their predicted metabolic age. In prostate cancer, a
disease more likely to develop in older men29, 717 cases were analyzed,
ranging from 55 to 75 years of age, with a mean chronological age of
approximately 67 years (Fig. 2A). The clinical and biochemical char-
acteristics of the patients with prostate cancer included in the study
have previously been described30. In this cohort, the metabolic dis-
tortion histogram, representing the differences between metabolic and
chronological ages, revealed a significant shift toward older metabolic
ages (+4.9 ± 9.2 years, p-Value = 1.0 × 10−19), while maintaining a
comparable distribution width (Fig. 2B), suggesting an overall accel-
eration of metabolic aging in prostate cancer patients.

In contrast, in metabolic dysfunction-associated steatotic liver disease
(MASLD), a condition affecting both men and women across a wide age
range31, the analyzed cases (N = 169, of which 131 had a defined subtype)
ranged from 20 to 70 years of age, with a mean chronological age of
approximately 65 years (Fig. 2C). The clinical and biochemical character-
istics of the patients with MASLD included in this study have previously
been described32. The corresponding metabolic distortion histogram (Fig.
2D) displayed a broader distribution, indicating greater heterogeneity in
metabolic distortion and a significant shift toward older metabolic ages in
MASLD (+14.5 ± 10.9 years, p-value = 1.9 × 10−29). These findings are
consistent with our previous work identifying distinct serum lipidomic
profiles among MASLD patients, independent of histological disease
severity. Specifically, we classified patients into three metabolic subtypes
(A–C), and found that individuals with MASLD with subtype A exhibited

lower serum very low-density lipoprotein levels and cardiovascular disease
risk than those with subtypes B and C32.

Accordingly, in Fig. 2C, MASLD subtype A samples are shown in red,
and subtypes B+C in orange. A comparison of their metabolic distortion
histograms (Fig. 2E) revealed amodest but statistically significant difference:
+13.3 ± 12.5 years for subtype A vs.+7.1 ± 9.7 years for subtype B+C (p-
value = 3.6 × 10−2). These results suggest differences in metabolic aging
among MASLD subtypes that are not captured by standard clinical eva-
luations, including histological assessment and conventional serum bio-
markers. The primary limitation of this finding is the relatively small
number of MASLD individuals with available subtype classification. These
distinct patterns underscore the model’s potential as a complementary
marker for uncovering clinically relevant but otherwise undetected disease
heterogeneity.

The ultimate objective is to bring clinical relevance to the metabolic
profiling space. To enhance interpretability and extend the analytical scope
beyond age prediction, we developed a metabolite quantification pipeline
based on fast-acquisition two-dimensional J-resolved NMR spectra. This
method enabled the identification and quantification of up to 49 serum
metabolites by minimizing signal overlap, a common limitation of one-
dimensional spectra. Additionally, the NOESY spectrum inherently con-
tains valuable information on lipoprotein subclasses and inflammatory
markers (vide supra). Building on this, we employed supervised ensemble
learning models trained on the same spectral data to estimate 25 additional
clinical parameters, encompassing both directly measurable biomarkers
(e.g., albumin and CRP) and indirectly inferred indices (e.g., calcium levels,
glomerular filtration rate, leukocyte count). To better understand model
behavior and clinical drivers of the age prediction, we used ShapleyAdditive
exPlanations (SHAP, a method that quantifies the average contribution of
each feature to the model’s predictions) to interpret the feature importance
of the stacking ensemble model (Fig. 3). This summary plot highlights the
top 10 most influential features ranked by their average absolute SHAP

Fig. 1 | Correlation between chronological age and
metabolic age for the test set of the 1D 1HNOESY-
based model. (A, blue) The cross-validation sets of
the model based on quantified metabolites and
clinical parameters (B, red), and the corresponding
independent test set (C, green). The NOESY-based
model achieved a Pearson correlation coefficient of
0.92 on the test set, with more than 75% of indivi-
duals exhibiting prediction errors smaller than 10
years. Slightly lower performance was observed for
themetabolite-basedmodel in both cross-validation
(R = 0.87) and test evaluations (R = 0.88).

Fig. 2 | Metabolic age distributions in individuals with prostate cancer and
metabolic dysfunction-associated steatotic liver disease (MASLD). Samples from
individuals with prostate cancer are overlaid on those from a male reference
population in (A) (orange and blue, respectively), and histograms of the differences
betweenmetabolic and chronological age (metabolic distortion) for these groups are
shown in (B).CMASLD samples overlaid on a reference population, with subtype A
in red and subtypes B+ C in orange, while D presents histograms of metabolic

distortion for these MASLD subtypes alongside a matched reference population
(orange and blue, respectively). Differences inmetabolic distortion betweenMASLD
subtype A and subtypes B+ Care shown in (E).Mean and standard deviation values
of metabolic distortion for individuals with prostate cancer andMASLD (combined
subtypes A+ B+ C) are indicated in orange; corresponding values for their
respective reference populations are indicated in blue. p-Values from
Kolmogorov–Smirnov tests assessing distribution differences are shown in black.
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values. For example, high values of Glyc A are associated with higher pre-
dicted age, while low levels of albumin also lead to higher age predictions,
evident by the inversion in color gradients. Both markers are linked to
inflammation: Glyc A is a direct inflammatory biomarker, and albumin
levels tend to decrease during inflammatory responses, highlighting the
relevanceof inflammation as a key physiological process in aging.While this
integration improves clinical interpretability, it does come with a modest
trade-off in predictive performance, with the model’s R value decreasing
from 0.92 to 0.88 (Fig. 1B, C). This hybrid dataset ultimately serves as a
powerful platform for integrating metabolic and clinical data, substantially
enhancing the interpretability and translational potential of the model
(Fig. 3).

33Previous studies using NMR-based data for age prediction have
shown limited performance, with maximum reported Pearson correlation
coefficients around 0.7820,24,26. In contrast, our models substantially exceed
this threshold, achieving correlations of 0.92 (NOESY-based) and 0.88
(metabolite-based), highlighting significant methodological advancements.
Nevertheless, recent studies33,34 argue that the value of an aging clockmay lie
less in its ability to accurately predict chronological age and more in how
strongly its age delta (i.e., the difference between predicted and chron-
ological age) relates to clinically relevant outcomes. On the other hand, our
findings resonate with those of Zhang et al.33, particularly in the importance
assigned to GlycA, albumin, and lipoprotein-related features.

Our best-performing model (a stacking ensemble that integrates a
Ridge linear regression with an ExtraTreesRegressor) bears a structural
resemblance to the Cubist model used by Mutz et al.34, which combines
decision tree–derived rules with localized linear models. Both approaches
leverage the strengths of tree-based methods for capturing complex, non-
linear interactions, while incorporating linear regression to model additive
effects and enhance interpretability.

While NMR-derived metabolic models demonstrate strong perfor-
mance in predicting chronological age, several limitations should be
acknowledged.Ononehand, themodels are always developed andvalidated
on specific cohorts, and their generalizability to more diverse populations,
including different ethnicities, geographic regions, or health conditions, is
required. Second, the interpretability of these models is inherently limited
compared to simpler, hypothesis-driven approaches. Future work should

focus on external validation, exploration of causative biological mechan-
isms, and potential clinical utility in longitudinal or interventional settings.

In conclusion, the integration of high-throughput NMR spectroscopy
with advancedmachine learning techniques has enabled thedevelopmentof
a robust, interpretable, and clinically meaningful metabolic age model
(Biogune’s model). By combining predictive NMR-based metabolomic
aging clockswith detailedmetabolite profiling, lipoprotein subclass analysis,
and estimations of standard clinical parameters, this approach moves
beyond basic diagnostics toward a comprehensive health assessment plat-
form. The incorporation of direct and inferred biomarkers bridges the gap
between metabolic phenotyping and clinical utility, offering a promising
avenue for early disease detection, personalized healthmonitoring, and risk
stratification. As this initiative continues to evolve, its scalability, cost-
effectiveness, and non-invasive nature position it as a compelling candidate
for implementation in routine clinical practice, ultimately advancing the
goals of precision medicine.

Materials and methods
Cohorts
The study leveraged several cohorts to ensure robust coverage across a wide
age spectrum, including healthy individuals and patients with relevant con-
ditions. Participants were from Southern Europe (Portugal, Spain, and Italy).
• AKRIBEA: A cohort of individuals recruited from the Mondragón

Corporation, a federation of worker cooperatives in the Basque
Country (Spain), covering diverse sectors (finance, industry, retail, and
knowledge). Participantswere recruitedduring routine annualmedical
check-ups. This cohort serves as a representative sample of the
working-age general population. Sample size: 13,545

• DDM-Madrid: Women aged 39–50 from the Madrid region (Spain),
who attended gynecological screenings at theMadrid SaludDiagnostic
Center between June 2013 andMay 2015. Participants were invited via
telephone. Sample size: 933

• Biosilver: Individuals recruited from geriatric centers, health centers,
and hospitals across Spain as part of an aging-focused study. Fasting
serum sampleswere collected between2023 and 2025. Sample size: 411

• Liver-Bible: Healthy blood donors from Milan (Italy), recruited for a
comprehensive screening of liver, metabolic, and cardiovascular
health. Sample size: 1641

• SPBB: Samples selected from biobanks of Spain integrated into the
ISCIII Biobanks and Biomodels Platform to supplement under-
represented older age groups. Sample size: 3353

• AGEPORTUGAL: Participants from an aging study conducted in
Portuguese geriatric centers. Sample size: 247

• Prostate Cancer: Individuals with prostate cancer recruited at Basurto
University Hospital (Spain), with samples managed by the Basque
Biobank for Research (BIOEF). Sample size: 717

• LITMUS: Patients with biopsied metabolic dysfunction-associated
steatotic liver disease (MASLD) from clinical centers in the UK and
Italy. Sample size: 169

To protect patient confidentiality, all data were double-coded prior to
analysis.

Blood collection and serum preparation
Venous blood was collected from fasting participants. Serum samples were
processed according to standardized operating protocols (Bizkarguenaga
et al.,28) and storedat−80 °Cuntil analysis. Briefly, bloodwas allowed to clot
at room temperature, centrifuged, and the supernatant serumwas aliquoted
into cryovials for long-term storage.

NMR spectroscopy
1H-NMR spectra were acquired using BrukerAvance III HD andNeo IVDr
600MHz spectrometers, equipped with BBI probes and SampleJet™ auto-
mation, maintaining a sample temperature of 5 °C. Calibration and quality
control followed the procedures described by35, ensuring spectral

Fig. 3 | Feature importance based on SHAP values for the stacking ensemble
machine learning model trained on 49 quantified metabolites and 25 predicted
clinical parameters.Features are ranked frommost to least influential based on their
average absolute SHAP values. Each point represents a SHAP value for an individual
observation, with color indicating the original feature value (red = high, blue = low).
A positive SHAP value indicates that the feature contributes to a higher predicted
age, while a negative SHAP value indicates a contribution to a lower predicted age.
This plot illustrates both the magnitude and direction of each feature’s impact on
model predictions.
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reproducibility and quantitative reliability. For each sample, a standard one-
dimensional NOESY spectrum (with solvent presaturation) and a fast-
acquisition two-dimensional J-resolved spectrum were recorded.

Metabolite and clinical parameter determination
To enhance interpretability, two complementary quantification strategies
were employed:
1. Metabolite quantification: Concentrations of 49 metabolites were

estimated based on the integration of distinct peaks in the 2D
J-resolved NMR spectra, which offer improved spectral resolution and
reduced peak overlap compared to 1D spectra. Quantifications were
validated through spiking experiments using serumsamples.However,
since these quantifications are used as input for machine learning
models, the absolute accuracy of the reported values is less critical than
their internal precision and consistency across samples. The quantified
metabolites include:
1,5-Anhydrosorbitol, 2-Aminobutyric acid, 2-Hydroxybutyric acid,
2-Oxoglutaric acid, 3-Hydroxybutyric acid, 3-Hydroxyisobutyric acid,
Acetic acid, Acetoacetic acid, Acetone, Alanine, Arginine, Asparagine,
Aspartate, Betaine, Choline, Citric acid, Creatine, Creatinine, Cystine,
D-Galactose, Dimethylamine, Dimethylsulfone, Ethanol, Formic acid,
Glucose, Glutamic acid, Glutamine, Glycerol, Glycine, Histidine, Iso-
leucine, Lactic acid, Leucine, Lysine, Methanol, Methionine, Myo-
inositol, N,N-Dimethylglycine, Ornithine, Phenylalanine, Proline,
Pyruvic acid, Sarcosine, Serine, Succinic acid, Threonine, Trimethy-
lamine-N-oxide, Tyrosine, Valine.

2. Clinical parameter estimation: For 25 clinical parameters, machine
learning models were trained using 1D NMR spectra as input and
clinically measured values as targets. Models were optimized using
TPOT (Tree-based Pipeline Optimization Tool), a genetic program-
ming framework for automated machine learning (autoML), which
selects and tunes pipelines for optimal predictive performance. The
performance of each model is reported as the Pearson correlation
coefficient (R) between the predicted andmeasured values, along with
the number of samples used for training (indicated in parentheses).
The estimated parameters and their respective performance are as
follows:
Albumin (R = 0.94, n = 557), Apolipoprotein B (R = 0.82, n = 532),
Bilirubin (R = 0.70, n = 579), Calcium (R = 0.81, n = 556), C-reactive
protein (R = 0.80, n = 1565), Erythrocyte sedimentation rate (R = 0.78,
n = 22,148), Erythrocytes (R = 0.73, n = 22,113), Estimated glomerular
filtration rate (R = 0.79, n = 1394), Fructosamine (R = 0.77, n = 212),
Glyc A (R = 0.99, n = 14,288), Glyc B (R = 0.98, n = 14,288), HDL
cholesterol (R = 0.97, n = 25,984), Hemoglobin (R = 0.80, n = 23,724),
Iron (R = 0.79, n = 511), LDL cholesterol (R = 0.96, n = 22,672), Leu-
kocytes (R = 0.62, n = 22,671), Lipoprotein(a) (R= 0.95, n = 3526),
Platelets (R = 0.62, n = 23,725), SPC (R = 1.00, n = 14,288), Total
cholesterol (R = 0.97, n = 25,781), Total protein (R = 0.79, n = 1285),
Transferrin (R = 0.90, n = 511), Triglycerides (R = 0.95, n = 26,054),
Urate (R = 0.79, n = 22,262), Urea (R = 0.99, n = 557).

Data analysis
To reduce age-related sampling bias, five age ranges were defined: 0–30,
31–40, 41–50, 51–65, and 66+. Random selection was used to equalize the
number of samples per group, yielding a final balanced dataset of
9500 samples (1900 per age group).

Two parallel machine learning models were developed to predict
chronological age:
• Model 1: Utilized the 1D 1H-NMR spectra (NOESY) as input.
• Model 2: Used the quantified metabolite concentrations and clinical

parameters.

Both models followed a common pipeline: data standardization fol-
lowed by a stacking ensemble method, combining a Ridge linear regression
modelwith anExtraTreesRegressor (a tree-based ensemblemodel).Model 1

prioritized predictive performance, while Model 2 was designed for
interpretability.

Model optimization was performed using a cross-validation strategy.
First, 20% of the total dataset was set aside as an independent test set. The
remaining 80%was used formodel training and internal evaluation through
fivefold cross-validation.

The results of the five cross-validation folds for Model 2 are presented
together in Fig. 1B, while the final performance on the held-out test set is
shown in Fig. 1A, C for Models 1 and 2, respectively.

Interpretability was achieved using SHAP (SHapley Additive exPla-
nations) values, which quantify the contribution of each feature to indivi-
dual predictions. However, caution must be exercised when interpreting
SHAP values in biological data due to potential multicollinearity, as biolo-
gical variables are often highly correlated, which can distort feature
importance estimates.

Data availability
Data will be available upon request to the corresponding authors.

Abbreviations
NMR nuclear magnetic resonance spectroscopy
NOESY nuclear Overhauser effect spectroscopy
SHAP SHapley Additive exPlanations

Received: 16 May 2025; Accepted: 20 July 2025;

References
1. Hannum, G. et al. Genome-wide methylation profiles reveal

quantitative viewsof human aging rates.Mol. Cell 49, 359–367 (2013).
2. Horvath,H. &Horvath, S.DNAMethylationAge ofHumanTissues and

Cell Types. Genome Biol. http://genomebiology.com/2013/14/10/
R115 (2013).

3. McCrory, C. et al. GrimAge outperforms other epigenetic clocks in the
prediction of age-related clinical phenotypes and all-cause mortality.
J. Gerontol. 76, 741–749 (2021).

4. Prosz, A. et al. Biologically informed deep learning for explainable
epigenetic clocks. Sci. Rep. 14, 1306 (2024).

5. Meyer, D. H. & Schumacher, B. Aging clocks based on accumulating
stochastic variation. Nat Aging 4, 871–885 (2024).

6. Singh, S. P. et al. Machine learning based classification of cells into
chronological stages using single-cell transcriptomics. Sci. Rep. 8,
17156 (2018).

7. Lu, J. et al.Heterogeneity and transcriptomechangesof humanCD8+
T cells across nine decades of life. Nat. Commun. 13, 5128 (2022).

8. Fleischer, J. G. et al. Predicting age from the transcriptome of human
dermal fibroblasts. Genome Biol. 19, 221 (2018).

9. Argentieri, M. A. et al. Proteomic aging clock predicts mortality and
risk of common age-related diseases in diverse populations. Nat.
Med. 30, 2450–2460 (2024).

10. Johnson, A. A., Shokhirev, M. N., Wyss-Coray, T. & Lehallier, B.
Systematic review and analysis of human proteomics aging studies
unveils a novel proteomic aging clock and identifies key processes
that change with age. Ageing Res. Rev. https://doi.org/10.1016/j.arr.
2020.101070 (2020).

11. Bucaciuc Mracica, T. et al. MetaboAge DB: a repository of known
ageing-related changes in the human metabolome. Biogerontology
21, 763–771 (2020).

12. Palmer, R. D. Aging clocks & mortality timers, methylation, glycomic,
telomeric and more. A window to measuring biological age. Aging
Med. https://doi.org/10.1002/agm2.12197 (2022).

13. Min, M., Egli, C., Dulai, A. S. & Sivamani, R. K. Critical review of aging
clocks and factors that may influence the pace of aging. Front. Aging
https://doi.org/10.3389/fragi.2024.1487260 (2024).

https://doi.org/10.1038/s44324-025-00078-x Perspective

npj Metabolic Health and Disease |            (2025) 3:35 5

http://genomebiology.com/2013/14/10/R115
http://genomebiology.com/2013/14/10/R115
http://genomebiology.com/2013/14/10/R115
https://doi.org/10.1016/j.arr.2020.101070
https://doi.org/10.1016/j.arr.2020.101070
https://doi.org/10.1016/j.arr.2020.101070
https://doi.org/10.1002/agm2.12197
https://doi.org/10.1002/agm2.12197
https://doi.org/10.3389/fragi.2024.1487260
https://doi.org/10.3389/fragi.2024.1487260
www.nature.com/npjmetabhealth


14. Liang, R., Tang, Q., Chen, J. & Zhu, L. Epigenetic Clocks: Beyond
Biological Age, Using the Past to Predict the Present and Future.
Aging Dis https://doi.org/10.14336/AD.2024.1495. (2024)

15. Mavromatis, L. A. et al. Multi-omic underpinnings of epigenetic aging
and human longevity. Nat. Commun. 14, 2236 (2023).

16. Bell, C. G. et al. DNA methylation aging clocks: challenges and
recommendations. Genome Biol. 20, 249 (2019).

17. Belsky,D.W. et al. DunedinPACE, aDNAmethylationbiomarker of the
pace of aging. Elife 11, e73420 (2022).

18. López-Otín, C., Galluzzi, L., Freije, J. M. P., Madeo, F. & Kroemer, G.
Metabolic control of longevity. Cell 166, 802–821 (2016).

19. Gil-Redondo, R. et al. MetSCORE: a molecular metric to evaluate the
risk of metabolic syndrome based on serum NMR metabolomics.
Cardiovasc. Diabetol. 23, 1–13 (2024).

20. Hertel, J. et al. Measuring biological age via metabonomics: the
metabolic age score. J. Proteome Res. 15, 400–410 (2016).

21. Fischer, K. et al. Biomarker profiling by nuclear magnetic resonance
spectroscopy for the prediction of all-cause mortality: an
observational study of 17,345 Persons. PLoS Med. 11, e1001606
(2014).

22. Deelen, J. et al. Ametabolic profile of all-causemortality risk identified
in an observational study of 44,168 individuals. Nat. Commun. 10,
3346 (2019).

23. Dimitri, G. M., Meoni, G., Tenori, L., Luchinat, C. & Lió, P. On behalf of
the PROPAG-AGEING Consortium NMR spectroscopy combined
with machine learning approaches for age prediction in healthy and
Parkinsonasdisease cohorts throughmetabolomic fingerprints.Appl.
Sci 12, 8954 (2022).

24. VanDenAkker, E. B. et al. Metabolic age basedon theBBMRI-NL 1H-
NMR metabolomics repository as biomarker of age-related disease.
Circ. Genom. Precis. Med. https://doi.org/10.1161/CIRCGEN.119.
002610 (2020).

25. Ala-Korpela, M. et al. Cross-sectionally calculated metabolic aging
does not relate to longitudinal metabolic changes—support for
stratified aging models. J. Clin. Endocrinol. Metab. 108, 2099–2104
(2023).

26. Lau, C. H. E. et al. NMRmetabolomic modeling of age and lifespan: a
multicohort analysis. Aging Cell 23, e14164 (2024).

27. Shang, X. et al. Metabolomic age and risk of 50 chronic diseases in
community-dwelling adults: a prospective cohort study. Aging Cell
23, e14125 (2024).

28. Bizkarguenaga, M. et al. Prospective metabolomic studies in
precision medicine: the AKRIBEA Project. In Handbook of
Experimental Pharmacology vol. 277 pp 275–297 (2022).

29. Sekhoacha, M. et al. Prostate cancer review: genetics, diagnosis,
treatment options, and alternative approaches.Molecules 27, 5730
(2022).

30. Bruzzone, C. et al. 1H-NMR-based urine metabolomics reveals signs
of enhanced carbon and nitrogen recycling in prostate cancer. J
Proteome Res. 19, 2419–2428 (2020).

31. Younossi, Z. M. et al. Global consensus recommendations for metabolic
dysfunction-associated steatotic liver disease and steatohepatitis.
Gastroenterology https://doi.org/10.1053/j.gastro.2025.02.044 (2025).

32. Martínez-Arranz, I. et al. Metabolic subtypes of patients with NAFLD
exhibit distinctive cardiovascular risk profiles. Hepatology 76,
1121–1134 (2022).

33. Zhang, S. et al. A metabolomic profile of biological aging in 250,341
individuals from the UK Biobank. Nat. Commun. 15, 8081 (2024).

34. Mutz, J., Iniesta,R. &Lewis,C.M.Metabolomicage (MileAge)predicts
health and life span: a comparison of multiple machine learning
algorithms. Sci. Adv. 10, eadp3743 (2024).

35. Dona, AC. et al. Precision high-throughput protonNMRspectroscopy
of human urine, serum, and plasma for large-scale metabolic
phenotyping. Anal Chem. 86, 9887–9894 (2014).

Acknowledgements
Support was provided by the Department of Economic Development and
Infrastructures of the Government of the Autonomous Community of the
Basque Country (Elkartek, bg2021, bg2023) and the Plan Complementario
en biotecnología aplicada en Salud. This work was supported by NIH grant
R01DK123763 (O.Millet, S.C. Lu, J.M.Mato), theGrantCEX2021-001136-S
funded by MICIU/AEI/10.13039/501100011033, the project PID2023-
146132OB-I00 funded by MICIU/AEI/10.13039/501100011033 (J.M. Mato)
and by ERDF, EU and Ciberehd_ISCIII_MINECO, funded by the Instituto de
Salud Carlos III (J.M. Mato).

Author contributions
R.C., M.B., Ad.D. and N.E. collected the experimental datasets, A.I.O.
analyzed the data and A.I., S.L., J.M.M., and O.M. wrote the paper. All
authors revised and approved the final version of the paper.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to
J. M. Mato or O. Millet.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’snoteSpringerNature remainsneutralwith regard to jurisdictional
claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s44324-025-00078-x Perspective

npj Metabolic Health and Disease |            (2025) 3:35 6

https://doi.org/10.14336/AD.2024.1495
https://doi.org/10.14336/AD.2024.1495
https://doi.org/10.1161/CIRCGEN.119.002610
https://doi.org/10.1161/CIRCGEN.119.002610
https://doi.org/10.1161/CIRCGEN.119.002610
https://doi.org/10.1053/j.gastro.2025.02.044
https://doi.org/10.1053/j.gastro.2025.02.044
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/npjmetabhealth

	Metabolomic-based aging clocks
	Development and validation of molecular aging clocks
	Main types of molecular aging clocks
	Epigenetic clocks
	Transcriptomic clocks
	Proteomic clocks
	Metabolomic clocks

	Validation and application of aging clocks
	Limitations of single biological age measurements
	Correlation vs. causation
	Population-specific bias
	Uncertain impact of longevity interventions
	Limitations of single-time measurements

	NMR-based metabolomic aging clocks
	Towards an NMR-based global metabolomic health test
	Materials and methods
	Cohorts
	Blood collection and serum preparation
	NMR spectroscopy
	Metabolite and clinical parameter determination
	Data analysis

	Data availability
	Abbreviations
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




