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Recent advances in understanding the
roles of T cells in atrial fibrillation
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Atrial fibrillation (AF) is a common arrhythmia associated with severe outcomes like heart failure and
stroke. Recent studies highlight the crucial role of T in AF. Clinical studies have observed elevated
levels of CD4+CD28null T cells, Th17/Treg cells, CD8+ cells, and relatedmarkers in the peripheral blood
or atrial tissue of AF patients, correlating with disease severity and cardiovascular events. These T cell
subsets contribute to AF through: (1) releasing inflammatory factors like TNF-α and IL-17 which affect
calcium homeostasis and electrical activity in atrial myocytes and/or promote atrial fibrosis; (2)
recruiting inflammatory cells such as macrophages, causing local inflammation, oxidative stress, and
atrial remodeling; (3) secreting cytotoxic proteins like perforin and granzymes, inducing apoptosis in
atrial myocytes and affecting their action potentials; (4) direct contact, influencing atrial myocyte
electrophysiology. Understanding these T cell-mediated mechanisms may uncover new therapeutic
targets for AF.

Atrial fibrillation (AF) stands out as one of the most prevalent clinical
arrhythmias, significantly impacting the health of millions worldwide1.
Individuals with AF face a markedly increased risk of severe consequences,
including heart failure, stroke, and cardiovascular mortality. This heigh-
tened risk places a substantial burden on both the quality of life for affected
individuals and the broader public health system2,3.Despite years of research
into the etiology and mechanisms of AF, the precise underlying principles
remain incompletely elucidated4. Previous studies suggest that the occur-
rence of AF is intricately linked to multiple factors, including electrical
remodeling, structural remodeling, abnormalities in intracellular Ca2+

handling, and autonomic remodeling5,6. These factors interact in a complex
pathophysiological process. A general overview is provided here (Fig. 1); for
more information, see detailed reviews7,8. Electrical remodeling, a hallmark
of AF, is characterized by significantmodifications in the refractory periods
and conduction velocity of atrial cardiomyocytes. These alterations are not
only driven by sustained high atrial rates but are also profoundly influenced
by various pathological conditions, such as heart failure9 and obesity10. At
the molecular level, this remodeling process is closely associated with pro-
nounced changes in ion channel currents, particularly reductions in tran-
sient outward potassium current (Ito), L-type calcium current (ICa,L), and
sodium current (INa), as well as disturbances in connexin expression and
distribution. Structural remodeling of the atria involves cardiomyocyte

apoptosis/necrosis, atrial fibrosis, and deposition of interstitial collagen.
Ca2+ plays a pivotal role in the excitation-contraction coupling of cardiac
muscle.When an actionpotential occurs,membrane depolarization triggers
the opening of ICa,L, allowing Ca

2+ to enter. This Ca2+ influx then prompts
the release of Ca2+ from the sarcoplasmic reticulum (SR) via ryanodine
receptors (RyR2), generating calcium sparks and rapidly increasing intra-
cellular calcium concentration ([Ca2+]i), known as calcium transient,
leading to myocardial contraction. Later, Ca2+ is reabsorbed into the SR by
the calcium pump (SERCA2a) and expelled from the cell via sodium-
calcium exchange (NCX), aiding myocardial relaxation. Any disruption in
these regulatory factors can disturb this delicate balance, leading to calcium
homeostasis imbalance. To enhance understanding of the pathological
foundationunderlying the development ofAF, theEuropeanHeartRhythm
Association (EHRA), the Heart Rhythm Society (HRS), the Asia Pacific
Heart Rhythm Society (APHRS), and the Latin American Heart Rhythm
Society (LAHRS) recently released an expert consensus on atrial cardio-
myopathy (ACM)11. ACM is defined as any complex of structural, archi-
tectural, contractile or electrophysiological changes affecting the atria with
the potential to produce clinically-relevant manifestations. ACM increases
the risk of AF, and AF may, in turn, accelerate the progression of ACM.

Recent research has identified a novel factor contributing to AF—
immune system modulation12,13. While prior reviews have extensively
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discussed the role of innate immune cells in AF, particularly how macro-
phages release inflammatory cytokines that promote fibrosis14–16, emerging
evidence also highlights the critical role of the NLRP3 inflammasome. The
activationof theNLRP3 inflammasome involves “priming” and “triggering”
of a complex consisting of NLRP3, ASC, and pro-caspase-1, leading to the
activation of caspase-1. Activated caspase-1 then facilitates the maturation
and release of pro-inflammatory cytokines IL-1β and IL-18 through
gasdermin-D-mediatedmembrane pores. Furthermore, in cardiomyocytes,
NLRP3 activation disrupts Ca2+ handling by phosphorylating RyR2 and
phospholamban, likely through enhanced CaMKII pathways and impaired
AMPK signaling17–19. This article aims to elucidate the involvement of
acquired immunecells inAF, expandingourunderstandingof the condition
beyond the innate immune mechanisms.

Overview of T cells
T cells play a pivotal role in the adaptive immune system, exhibiting a range
of fundamental functions. Their ability to recognize antigens, facilitated by
distinctive T cell receptors (TCRs), enables the discrimination between self
and non-self entities, initiating precise immune responses. Following anti-
gen recognition,T cells undergo activation and clonal expansion, generating
effector cells essential for combating specific pathogens. CD3+ T cells with
αβTCRundergodifferentiationwithin the thymus, resulting in twoprimary
subsets: CD4+T cells, known as helper T cells, andCD8+T cells, recognized
for their cytotoxic activity. CD4+ T cells further diversify into specialized
types, including Th1, Th2, and Th17 cells, each playing distinct roles in
immune responses20 (Fig. 2).

Th1 cells play a pivotal role in the immune system by promoting
autoimmune diseases through the production of interferon-gamma

(IFN-γ). These cells are primarily involved in orchestrating responses
against intracellular pathogens and activating macrophages. In contrast,
Th2 cells contribute to immune responses by facilitating antibody pro-
duction. They synthesize interleukins (IL-4, IL-5, IL-6, and IL-13), sup-
porting the maturation and activation of B cells, which, in turn, produce
antibodies crucial for combating extracellular pathogens and participating
in allergic responses. Th17 cells, on the other hand, are implicated in
inflammatory conditions, producing IL-17 and contributing to defense
against extracellular bacteria and fungi. The intricate balance between Th1,
Th2, and Th17 responses is crucial for maintaining a harmonized immune
system. Regulatory T cells (Tregs), characterized by the signature
CD4+CD25+FOXP3+ phenotype, play a key role in immune tolerance.
Theymodulate immune responses by secreting cytokines such as IL-10 and
TGF-β, contributing to the prevention of excessive immune reactions.
Disturbances in the delicate balance between these T cell subsets can lead to
the onset or exacerbation of various disorders, including cardiovascular
diseases20–22.

T cells in the heart
The development of single-cell/single-nucleus sequencing technology has
significantly deepenedour understandingof cellular compositionwithin the
hearts of both mice and humans23,24. In healthy adult mice, immune cells
constitute approximately 4.7% of cardiac tissue, comprising macrophages,
monocytes, dendritic-like (DC) cells, B cells, T cells, and natural killer (NK)
cells25. Notably, T/NK cells represent the second largest population of
immune cells after monocytes/macrophages. Further analysis by Litviňu-
ková et al. of cardiac cellular composition in healthy human hearts revealed
that immune cells make up approximately 8.41% of cardiac tissue23.

Fig. 1 | Overview of pathogenesis of AF.Decreasing ICa,L and SERCA2a along with
increasing CaMKII, NCX (Na+/Ca2+-exchanger) and RyR2 expression and phos-
phorylation result in DADs, known as Ca2+ handling abnormities. Trigger is from
Ca2+ handling abnormities. Ion channel dysfunctions including decreasing INa and
Ito, increasing IKur and IK1, decreasing and misdistribution of connexin-40 and

connexin-43 cause electrical remodeling, known as decreasing ERP. Structural
remodeling is due to necrosis and apoptosis of cardiomyocytes and cardiac fibrosis.
Both electrical and structural remodeling can induce reentry. Trigger and reentry
promote AF occurrence.
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Interestingly, there is a significant discrepancy in immune cell distribution
between atrial and ventricular tissues, with immune cells accounting for
10.4% and 5.3%of cells, respectively. This discrepancy suggests a potentially
more pronounced role of the immune system in the atria. Moreover, the
study identified 21 distinct populations of cardiac immune cells, including
8 subgroupsofT cells suchasCD4+ effectormemoryTcells,CD4+ cytotoxic
T cells, CD8+ effector memory T cells, and CD8+ cytotoxic T cells. Sheng
et al. conducted further characterization of CD8+ T cells in the left atrium
(LA) and found that this specific subgroup exhibits high expression of
CCL5, a chemokine that can recruit T cells to infiltrate the heart26. Addi-
tionally, they observed a significant increase in the number of CD8+ and
CD4+ T cells in the LA of patients with AF compared to those with sinus
rhythm. There was also a notable rise in the proportion of infiltrating T/NK
cells in the LA of AF patients, exceeding 20% compared to approximately
5% in individuals with sinus rhythm. This comprehensive understanding of
cardiac immune cell populations and their distribution sheds light on their
potential roles in both health and disease states, particularly in conditions
like AF.

T cells in the AF
Table 1 presents a summary of clinical studies on changes in T cell
subtypes in AF. In 2010, activated CD3+ T cells were first identified
in human left atrial appendages of AF patients using immuno-
fluorescent staining27, with higher presence observed in adipose tissue
compared to myocardium28. Subsequent research has also found a
positive correlation between CD3+ immunostaining area and the size
of the LA, suggesting a link between CD3+ T cells and atrial struc-
tural remodeling29,30. However, there is ongoing debate regarding
whether the quantity of CD3+ T cells significantly varies among
different AF subgroups. Clinical AF can be categorized into parox-
ysmal (lasting up to 7 days), persistent (lasting longer than 7 days
and often requiring treatment to terminate), long-standing persistent
(lasting longer than 12 months) and permanent (continuous
arrhythmia, and failed or no treatment to restore sinus rhythm)31.
The number was found to be highest in patients with persistent AF,
but lower in those with permanent AF, suggesting that the infiltration

of CD3+ T cells is influenced by AF duration. Conversely, another
study found no statistical difference in CD3+ T cell infiltration
between paroxysmal and long-standing persistent/permanent AF30.
However, CD3+ T cells in AF patients may exhibit a different and
more pro-inflammatory phenotype compared to those in sinus
rhythm. Notably, AMPK hyperactivity is known to be crucial for
maintaining pro-inflammatory T cells32,33. Interestingly, AMPK
activity is increased in paroxysmal AF but reduced in long-standing
persistent AF patients34. Moving forward, adopting more precise
quantitative techniques and expanding sample sizes are essential for
comprehensive research. Furthermore, in patients with AF, there was
an increase in the number of CD3+ T cells in peripheral blood,
accompanied by elevated expression of CD69 and HLA-DR, which
are markers of T cell activation35. This highlights the potential role of
activated T cells in the pathophysiology of AF. In this section, we
briefly introduce evidence of T cell subtype involvement in AF and
summarize their potential roles.

CD4+

CD4+ T cells play a pivotal role in regulating adaptive immune
responses, capable of differentiating into various Th cell or Treg cell
subsets. These subsets can either enhance or suppress the activity of
other immune cells, exert direct pro-inflammatory or anti-
inflammatory effects on tissue cells, aid in B cell production of
high-affinity IgG antibodies, or demonstrate cytolytic activity36.
Several studies have found a significant increase in pro-inflammatory
CD4+ T cells in the peripheral blood and atrial infiltrates of AF
patients, implicating their involvement in the onset and progression
of AF35,37. The activation and function of these cells are influenced by
factors such as metabolism, the immune microenvironment, and
epigenetics. Recently, Infante et al. utilized RRBS (reduced repre-
sentation bisulfite sequencing) technology to analyze genome-wide
CpG methylation patterns in peripheral blood CD4+ T cells from
patients with AF compared to healthy individuals. They observed
increased methylation levels in AF patients, along with reduced
methylation and significant upregulation of key genes like CDK5R1,

Fig. 2 | Overview of T cell proliferation and dif-
ferentiation. Briefly, lymphoid stem cells are origi-
nated from stem cells in bone marrow. Then,
lymphoid stem cells migrate to thymus, and diverge
into CD3+ T cells. Subsequently, T cell receptor
(TCR) rearrangement occurs within thymus, which
results in αβ TCR and γδ TCR. In peripheral blood,
TCRαβ CD3+ T cells diverge into CD4+ and CD8+

T cells. CD4+ T cells diverge into Th cells and Treg
cells. These cells secret specific cytokines. CD8+ T
cell’s function relies on perforin, granzymes, cyto-
kines and FasL.
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GSE1, HSPG2, and WDFY3, effectively distinguishing AF patients
from healthy controls. However, further research is required to
understand how these altered methylation patterns impact the acti-
vation and function of CD4+ T cells38.

CD4+CD28null T cells
CD4+CD28null T cells, lackingCD28 co-stimulatorymolecules, behave quite
differently from traditional CD4+CD28+ T cells. Unlike their CD28+

counterparts, CD4+CD28null T cells are insensitivity to apoptosis induction
and resist to the suppressive effects of regulatory T-cells, leading to wide-
spread inflammation and autoimmune reactions39,40.Moreover, the absence
of CD28 transforms these T cells into cytotoxic entities resemblingNKcells,
exhibiting cell lytic activities and secreting perforins that harm vascular
muscle cells and myocardial tissues41,42. Additionally, CD28null cells, com-
pared with CD4+CD28+ cells, show increased secretion of pro-
inflammatory cytokines, including TNF-α and IFN-γ40,43.

CD4+CD28null T cells, which increase with age44 and are elevated in
various pathological situations, such as virus infections (CMV, HCV,
HIV)45, autoimmune disorders, and cardiovascular diseases, are particularly
notable in acute coronary syndrome (ACS)39. In ACS patients,
CD4+CD28null T cell expansion correlates with inflammation, condition
severity, and recurrence likelihood. Their expansion strongly links to both
ACS and coronary events46.

Recent studies have highlighted the role of CD4+CD28null T cells in AF
and cardiovascular outcomes. A 2017 study of congestive heart failure
patients found that those with AF had higher levels of CD4+CD28null cells,
which were predictive of mortality47. Similarly, a 2018 investigation linked
these cells to perioperative AF (POAF) in cardiac surgery patients48. How-
ever, a 2023 study involving large cohorts did not find significant associa-
tions between CD4+CD28null cells and new-onset AF49 or ACS50. These
clinical studies focused on circulating immune cell levels and have limita-
tions, such as using frozen samples and single-time-point assessments.
Further research is needed, particularly investigating CD4+CD28null cells

within atrial tissues of AF patients and in animal models, to better under-
stand their role in AF pathogenesis.

CD4+CD28null T cells appear to contribute to the pathophysiological
processes of AF through several intricate mechanisms (Fig. 3).

Firstly, these cells play a crucial role in atrial inflammation by secreting
TNF-α and IFN-γ, which activate not onlyCD4+CD28null cells but also other
inflammatory cells like macrophages and neutrophils51. Furthermore,
CD4+CD28null T cells exhibit heightened expression of NLRP3
inflammasome-related genes compared toCD4+CD28+Tcells, indicating a
state of pre-activated inflammation52. Activation of NLRP3 plays a crucial
role in the development and progression of AF53.

TNF-α specifically disrupts calcium homeostasis in atrial myocytes,
evidenced by in vitro experiments. In mouse atrial cells, TNF-α increases
spontaneous Ca2+ release, reduces Ca2+ transient amplitudes, and prolongs
decay times. These effects are driven by elevated reactive oxygen species
(ROS) andCaMKII activation, leading toRyR2phosphorylation54. Kao et al.
demonstrated in HL-1 cells that TNF-α suppresses SERCA2a gene
expression via promoter hypermethylation, resulting in decreased SER-
CA2a levels and impaired calcium handling55. In rabbit pulmonary vein
sleeve cardiomyocytes, TNF-α inhibits ICa,L, raising diastolic calcium and
enhancing NCX, promoting delayed afterdepolarizations (DADs) and
abnormal electrical activity56. Studies in mice support these findings,
showing that TNF-α deletion or inhibition with agents like etanercept
prevents adverse atrial remodeling and exercise-induced AF. TNF-α’s
arrhythmogenic effects are associated with disturbed calcium handling,
including increased triggered Ca2+ release57,58. Additionally, TNF-α can
induce atrial electrical and structural remodeling. For detailedmechanisms,
please refer to relevant reviews on this topic59.

Secondly, CD4+CD28null T cells are implicated in directly damaging
atrial myocytes, affecting their electrical activity and disrupting cardiac
electrophysiology, thereby increasing susceptibility to AF. Unlike
CD4+CD28+ cells, CD4+CD28null cells exhibit amore pronounced release of
perforin, facilitating the entry of toxic proteins like Granzyme B into target

Fig. 3 | Overview of CD4+CD28null cells’ role of AF development. Briefly, the
distribution to AF of CD4+CD28null cells is including inflammation, Ca2+ handling
abnormities, electrical remodeling and structural remodeling. CD4+CD28null cells
secret TNF-α and IFN-γ, along with overexpression of NLRP3-related genes, which
promotes cardiac inflammation. Secondly, TNF-α promotes ROS, then promotes
Ca2+ handling abnormities and electrical remodeling through inhibiting ICa,L

suppressing SERCA2a, enhancing CaMKII, increasing RyR2 expression and phos-
phorylation and promoting NCX. Perforin also participates these processes. In
addition, secretion of perforin facilitates direct damage of Granzyme B, promoting
cardiomyocyte apoptosis. CD4+CD28null cells’ less responsive to Treg along with
TNF-α enhances cardiac fibrosis. Apoptosis and cardiac fibrosis promotes structural
remodeling.
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cells, ultimately triggering apoptosis60. Additionally, exposure of ventricular
myocytes to lysed granules or purified perforin induces rapid electro-
physiological changes. Investigations have revealed that this exposure can
lead to [Ca2+]i overload in cardiac myocytes, inducing the generation of a
non-selective channel current61. However, limited research evidence exists
regarding atrial myocytes.

Thirdly, the increased prevalence of the CD4+CD28null subset may be
associated with the activation of autoimmune responses and subsequent
cytotoxicity against atrial structures. Loss of CD28 on these cells reduces
responsiveness to the immunoregulatory effects of Treg, making the body
more susceptible to aberrant immune reactions. This heightened suscept-
ibility can lead todamage andfibrosis in atrial tissues, exacerbating the onset
and progression of AF39.

Th17/Treg
Th17 and Treg cells, essential T cell subsets, maintain immune balance and
respond to processes like infections, crucial for immune system function62.
Th17 cells are pivotal in driving inflammation and fibrosis during cardiac
injury, producing key cytokines IL-17 and IL-22, promoting tissue
inflammation and adaptivemyocardial remodeling63. Conversely, Treg cells
regulate immune responses, suppressing inflammation and autoimmunity
through cytokines like IL-10 and TGF-β, aiding in cardiac tissue healing64.
The imbalance of Th17/Treg lymphocytes contributes to cardiovascular
diseases, including atherosclerosis, angiotensin II-induced ventricular
remodeling, and post-myocardial infarction cardiac remodeling65–67. Recent
advancements in technologies like single-cell sequencing reveal high het-
erogeneity and plasticity in Th17 and Treg cells, with their functions
influenced by the localmicroenvironment68. As our understanding deepens,
it’s clear their interplay is integral to immune responses, especially in car-
diovascular diseases.

In recent years, several clinical studies have delved into the roles of
Th17, Treg, and the Th17/Treg ratio in AF. A retrospective analysis from
2016 proposed that the overactivation of Th17 cells might contribute to the
pathogenesis of AF69. The study involved 336 AF patients and matched
controls using propensity score matching. Despite variations in age, statin/
aspirin use, and coronary heart disease prevalence, Th17 cell-related cyto-
kines (IL-17A, IL-17F, IL-21, IL-22) were significantly elevated in AF
patients, correlating with AF risk and cardiac ultrasound parameters. In
another study, a 1:3 case-control investigation explored T cell subset
changes in rheumatoid arthritis-associated AF (RA-AF). Flow cytometry in
40 RA-AF patients and 120 RA controls highlighted higher Th1 and Th17
cells, Th1/Treg ratio, and rheumatoid factor values in RA-AF patients.
Logistic regression confirmed associations between these T cell subsets and
AF risk70. Another study aimed to predict POAF after off-pump coronary
artery bypass grafting by assessing theTh17/Treg ratio in 88 patients. POAF
patients showed increased Th17 cells and Th17/Treg ratio, correlating with
left atrial volume, CRP levels, and CHADS2/CHA2DS2-VASc scores. ROC
analysis indicated higher predictive efficacy of the Th17/Treg ratio com-
pared to other biomarkers71. In conclusion, these studies collectively
underscore the pivotal roles of Th17 cells and the Th17/Treg ratio in AF,
suggesting their potential contributions to thepathogenesis ofAF.However,
it is essential to note that the aforementioned research is primarily derived
from single-center studies. Consequently, further validation through mul-
ticenter trials and larger sample sizes is imperative to solidify these
observations.

The pro-inflammatory and fibrotic effects associated with Th17 cells
are predominantly mediated by IL-17. In our study using a rat model of
sterile pericarditis (SP), we inducedAF through esophageal burst pacing72,73.
SP rats showed shortened refractory periods, higher AF incidence, and
increased AF susceptibility, with elevated atrial inflammation and fibrosis
correlatingwith IL-17A levels. Treatmentwith anti-IL-17Areduced IL-17A,
significantly inhibiting AF and alleviating inflammation and fibrosis74. In
another AFmodel induced by acetylcholine and calcium chloride, genomic
and bioinformatics analyses demonstrated increased expression of IL-17 in
atrial tissues. Curcumin, a natural compound, mitigated fibrosis and

reduced AF episodes by inhibiting the IL-17 signaling pathway75. Further-
more, Th17 cells were found to activate neutrophils through IL-17A/F,
resulting in neutrophil infiltration, myeloperoxidase and ROS production,
and conversion of pro-matrix metalloproteinases (pro-MMPs) to MMPs,
leading to extracellular matrix degradation and myocardial fibrosis76. In SP
model rats, anti-IL-17Amonoclonal antibody treatment decreasedMMP-2
and MMP-9 activity in atrial tissues, along with increased TIMP-2 and
TIMP-3 activity74. Additionally, prior studies demonstrated the implication
of IL-17 in ventricular remodeling post-myocardial infarction in mice77, a
phenomenon observed in a rabbit myocardial infarction model78. These
effects may be associated with the enhanced activation of MAPK signaling
pathway by IL-17. Furthermore, their research uncovered a critical role for
IL-17 in ischemic heart failure models during the generation of ventricular
arrhythmias (VAs). IL-17, administered at concentrations of 5, 10, and
20 ng/mL, exhibited a concentration-dependent reduction in conduction
velocity, prolonged action potential duration, and increased inducibility of
VAs.Knockout of interleukin-17AdiminishesVAs susceptibility indiabetic
mice79. However, confirmation of whether IL-17A affects the action
potential and conduction velocity of atrial myocytes requires additional
research. These collective findings highlight the intricate involvement of IL-
17A in AF pathogenesis and suggest potential therapeutic avenues for
managing this cardiac arrhythmia.

Treg cells modulate immune responses by consuming crucial che-
motactic and growth factors needed for activated T cells, reducing inflam-
matory cell aggregation andpro-inflammatory cytokine secretion.They also
enhance anti-inflammatory cytokines like IL-10, which protects against
cardiac injury62. Systemic IL-10 administration suppressed myocardial
inflammation and fibrosis, alleviating cardiac remodeling in mouse models
of myocardial infarction and pressure overload-induced cardiac hyper-
trophy, possibly through STAT3 activation80,81. Additionally, it may
attenuate high-glucose-induced sinoatrial node dysfunction82. Recent
research highlights the impact of IL-10 deficiency, exacerbating atrial
inflammation, fibrosis, and AF induced by a high-fat diet83. Splenectomy
also intensifies atrial inflammation, fibrosis, and AF induced by pressure
overload. Systemic IL-10 administration significantly mitigates these
pathological conditions84. In a recent study with aged rats, treatment
involving B. fragilis administration improved atrial inflammation and
fibrosis, reduced AF inducibility, and concurrently increased Treg cell
numbers and IL-10 expression in the peripheral blood and spleen. These
findings suggest that Treg cells may alleviate atrial inflammation and
fibrosis, potentially reducing AF through IL-10 secretion85. However, a
recent clinical study on non-valvular AF patients revealed an elevated level
of IL-10 in peripheral blood, which was correlated with AF episodes86.
Interestingly, various other cell types, including monocytes-macrophages
and even Th17 cells, are capable of secreting IL-10. This prompts intriguing
questions about the dynamic changes in the quantity and functionality of
Treg cells in the context of AF, as well as their specific mechanistic roles in
this setting.

CD8+ T cells
CD8+ T cells, or cytotoxic T lymphocytes, are key players in adaptive
immunity against intracellular pathogens and cancer. They recognize and
eliminate infected or mutated cells by secreting cytotoxic proteins like
perforin and granzymes, or through Fas ligand interactions inducing cell
death. They also release pro-inflammatory cytokines such as TNF-α and
IFN-γ. Most effector CD8+ T cells undergo apoptosis post-response, but
5–10% becomememory cells. Thesememory CD8+T cells quickly respond
upon re-exposure to the antigen, efficiently targeting virally-infected and
cancer cells. The CD8+ T-cell population is diverse, comprising various
subsets, including cytotoxic and suppressor T cells20,87. The overall impact of
CD8+ T cells is determined by the dominance of specific subsets, such as
CD8+CD57+ T cells87.

CD8+ T cells emerge as key contributors to cardiovascular disease
pathogenesis, notably in atherosclerosis, as extensively detailed in recent
reviews22,88. Recent studies using single-cell sequencing reveal increased
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clonal expansion ofCD8+ effectormemoryT cells (lowCCR7 andL selectin
expression) in plaques, specific to influenza and SARS-CoV-2, and cross-
reacting with self-antigens in vascular cells, suggesting autoimmune con-
tributions to atherosclerosis89. Regulatory CD8+CD25+ T cells, with
immunosuppressive functions, counteract this process90. Autoreactive
CD8+ T cells also contribute to myocardial damage in immune checkpoint
inhibitor (ICI)-associated myocarditis91 and autoimmune myocarditis92.
CD8+ T cells are involved in MI, where their depletion post-MI reduces
inflammation and preserves ventricular function, a result seen in mice
lacking granzyme B93. Elevated peripheral blood granzyme B in acute MI
patients correlates with higher 1-yearmortality risk93. Thus, cytotoxic CD8+

T cells may contribute to self-tissue damage through the heightened
expression of cytotoxic effector molecules such as granzyme B.

In the context of AF, several studies have reported an increase in the
number of CD8+ T cells in the atria and peripheral blood of patients.
Haemers et al. found that patients with permanent AF displayed greater
fibrosis and fibro-fatty infiltration in the epicardium of the right atrium
compared to those with paroxysmal AF and non-AF patients. Immuno-
histochemical analysis revealed a focal aggregation of inflammatory cells,
predominantly CD8+ T cells, at the transition zone between adipose and
fibrous tissues, suggesting their involvement in the inflammatory response
and fibrotic remodeling in permanent AF94. Supporting this, Sheng et al.
demonstrated a nearly threefold increase in CD8+ T cells in the left atrial
appendage of permanent AF patients compared to those in sinus rhythm.
These cells infiltrated both the subepicardial fat tissue and themyocardium.
Gene expression analysis of these CD8+ T cells revealed upregulation of
genes associated with T cell activation, oxidative stress response, and
leukocyte-cell adhesion26.

Kazem et al. investigated the relationship between POAF and CD8+

T cells in 129 patients undergoing elective heart valve or coronary artery
bypass grafting surgery. They found an increased proportion of peripheral
blood CD8+ T cells and a higher ratio of CD8+CD28null/CD8+ T cells in the
POAF group compared to the non-POAF group. Multivariate regression
analysis indicated that the frequency of CD8+CD28null T cells was inde-
pendently associated with POAF occurrence, highlighting their potential
predictive value95.

Friebel et al. studied 210 patients with first-diagnosis AF (FDAF) and
observed an increased proportion of peripheral blood CD8+T lymphocytes
expressing the activationmarkerHLA-DR. Additionally, there was a higher
percentage of mature CD8+CD57+ cells and elevated levels of plasma
cytotoxic effector molecules (granulysin, granzymes, sFasL). They also
found a close association between the PAR1 signaling pathway and cyto-
toxic CD8+ T cells in FDAF patients, which correlated with cardiovascular
events such as cardiovascular death, recurrent hospitalization for AF, heart
failure, transient ischemic attacks, ischemic stroke, and acute coronary
syndrome96. Although PAR4 is typically not expressed onCD8+T cells97, its
expression in atrial tissue significantly increases under pathological condi-
tions such as obesity and diabetes. This upregulation of PAR4 has been
linked to the activation of the NLRP3 inflammasome, potentially con-
tributing to the onset of AF98. These findings suggest that PARs signaling
may play a role in the potential cross-talk between the innate and acquired
immune systems, thereby promoting the onset and progression of AF.
However, the detailedmechanisms underlying this interaction remain to be
fully elucidated and require further investigation.

The aforementioned clinical research findings suggest a correlation
between CD8+ T cells and the onset of AF, as well as their association with
adverse cardiovascular events. However, these studies predominantly take
an observational approach, lacking comprehensive mechanistic investiga-
tions. It is postulated thatCD8+Tcellsmay contribute to the initiationofAF
through various mechanisms: (1) secretion of cytotoxic proteins, such as
perforin and granzymes, discussed earlier for their potential to induce
apoptosis in atrial myocytes and directly impact their action potentials; (2)
release of inflammatory factors, including TNF-α; (3) recruitment of other
inflammatory cells like macrophages, leading to local inflammation and
oxidative stress, thereby fostering atrial remodeling; (4) direct contact,

influencing atrial myocyte electrophysiology through Cx4399. However,
further research is essential to validate these proposed mechanisms.

Future perspectives
In summary, recent advances in the understanding of T cell involvement
inAFhave highlighted the complex interplay between the immune system
and cardiac tissue. Both CD4+ and CD8+ T cells are implicated in AF
pathophysiology, promoting inflammation, fibrosis, and atrial remodel-
ing. Dysregulation of T cell subsets, including Th17, and Tregs, under-
scores the importance of immune balance in cardiac health. Th17 cells
contribute to increased inflammation and fibrosis, while a reduction in
Tregs is associated with heightened atrial inflammation. CD8+T cells also
play a role in structural remodeling, suggesting a multifaceted immune
involvement in AF. Moreover, the abnormal proliferation of T cell sub-
types, such as CD28null T cells characterized by CD28 receptor down-
regulation, is associated with both the onset and persistence of AF. This
unusual expansionof T cellsmay increase the risk of cardiovascular events
following AF, indicating that the immune system’s role extends beyond
mere inflammation and fibrosis to influencing the overall cardiovascular
prognosis.

Most studies investigating the relationship betweenTcells andAFhave
significant limitations. They primarily focus on quantifying the number of
variousTcell subtypes inbloodorheart tissue in relation toAFpresence, but
these associations do not establish causality. Moreover, AF diagnosis in
these studies is often compromised by the lack of continuous rhythm
monitoring, potentially leading to an underestimation of the arrhythmia’s
trueprevalence. The predominanceof observational and retrospective study
designs further limits the reliability of these findings. Small sample sizes,
along with inadequate control of comorbidities and other risk factors,
introduce biases that affect the reported associations betweenTcells andAF.
Consequently, the overall quality of evidence from these clinical studies is
relatively weak, which should be carefully considered when interpreting the
results.

Future research should focus on elucidating the precisemechanisms of
T cell involvement in AF and exploring targeted immunomodulatory
therapies. Key areas include studying molecular pathways, epigenetic reg-
ulation, and developing biomarkers for early diagnosis and personalized
treatment. Clinical trials of immunomodulatory agents, such as cytokine
inhibitors and adoptive Treg therapy, are crucial for evaluating therapeutic
efficacy. Interdisciplinary collaboration and advanced technologies will
drive innovative approaches, aiming to restore immune balance and miti-
gate AF progression.
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