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Multi-channel masked autoencoder
and comprehensive evaluations for
reconstructing 12-lead ECG from
arbitrary single-lead ECG
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Jiarong Chen1,2,3, Wanqing Wu2, Tong Liu4 & Shenda Hong1,5,6

Electrocardiogram (ECG) has emerged as a widely accepted diagnostic instrument for cardiovascular
diseases (CVD). The standard clinical 12-lead ECG configuration causes considerable inconvenience
and discomfort, while wearable devices offers amore practical alternative. To reduce information gap
between12-leadECGandsingle-leadECG, this studyproposes amulti-channelmaskedautoencoder
(MCMA) for reconstructing 12-Lead ECG from arbitrary single-lead ECG, and a comprehensive
evaluation benchmark, ECGGenEval, encompass the signal-level, feature-level, and diagnostic-level
evaluations. MCMA can achieve the state-of-the-art performance. In the signal-level evaluation, the
meansquare errors of 0.0175and0.0654,Pearson correlation coefficients of 0.7772and0.7287. In the
feature-level evaluation, the average standard deviation of the mean heart rate across the generated
12-lead ECG is 1.0481, the coefficient of variation is 1.58%, and the range is 3.2874. In the diagnostic-
level evaluation, the average F1-scorewith twogenerated 12-leadECG fromdifferent single-leadECG
are 0.8233 and 0.8410.

The cardiovascular disease (CVD)1,2 contributes the leading mortality all
around the world. Moreover, the prevalence rate continues to show an
upward trend in the developing areas in the past decades3, posing a great
challenge for researchers and cardiologists to address. In clinical practice,
clinicians need to adopt some characterization tools4 to diagnose cardio-
vascular disease, and one of the most popular tools is the standard 12-lead
electrocardiogram (ECG). The significant advancements in deep learning
have enabled certain researchers to develop models capable of achieving
cardiologist-level proficiency in interpreting 12-lead electrocardiograms
(ECGs). For instance, Ribeiro et al. have successfully trained such a
cardiologist-likemodel, as detailed in their study5. In conclusion, the 12-lead
ECG can provide comprehensive cardiac information from various views
for doctors and classification models, playing an essential role in cardiac
healthcare.

However, the 12-lead ECG signal collection process puts at least 10
electrodes on the user’s surface, which causes considerable inconvenience
and discomfort for users, and make long-term cardiac health monitoring

difficult. Up to now, the standard 12-lead ECG is traditionally used in the
hospital for short-term diagnosis, usually lasting about 1 min, while long-
term monitoring6 is essential for capturing the paroxysmal cardiac
abnormalities. Consequently, the pursuit of user-friendly devices capable of
capturing ubiquitous electrocardiogram (ECG) signals is a priority for both
researchers and markets, including patch6–8, smartwatch9–11, and
armband12–14. Further, the single-lead ECG has been used for cardiac
abnormality classification, suchas the lead IECGfor theAtrial Fibrillation15,
the leadV1ECG for the Brugada Syndrome16, and the lead aVRECG for the
Sinus Bradycardia17. While wearable devices offer the advantage of ambu-
latory monitoring by collecting single-lead ECG signals, they do not match
the diagnostic depth of a standard 12-lead ECG. The limitation arises from
these devices capture the heart’s electrical activity from a restricted subset of
perspectives, whichmaynot provide a comprehensive assessment of cardiac
health.

It is of great importance to strike a harmonious balance between
clinical effectiveness andapplication feasibility.On theonehand, the clinical
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standard 12-lead ECG can comprehensively measure cardiac health5, but it
causes somewhat inconvenience and discomfort. On the other hand,
wearable devices have been a popular choice for users, but they are with
limited clinical importance. Then, many researchers tried to reduce the gap
between the reduced-lead and 12-lead ECG, like the challenge proposed by
Reyna et al.18. The challenge asks to access the diagnostic potential of the
reduced-lead ECG, including 6-lead, 4-lead, 3-lead, and 2-lead ECG. In this
challenge,Nejedly et al.19 adopt the ensemble learning, residual network, and
attentionmechanism to achieve state-of-the-art performance, and similarly
in these researches20–23. Unfortunately, these mentioned studies only focus
on the classification performance,merely providing an indirect approach to
reduce the gap between the reduced-lead and 12-lead ECG.

Subsequently, some researchers try to provide a direct approach to
reduce the gap between the reduce-lead (Specifically, single-lead) and 12-
lead ECG, that is, reconstructing 12-lead ECG with the reduced-lead
ECG24–33. Prior works managed to explore transformation between the
Frank lead and the standard 12-lead ECG, in which the inverse Dower
matrix is released by Edenbrandt et al.24, and it turns 12-lead ECG into
3-dimensionalVectorcardiogram.Nelwan et al.25 attempt to reconstruct 12-
lead ECG from reduced lead sets. The experimental findings indicate a
strong correlation coefficient of ~0.932when one or twoprecordial leads are
excluded from the lead set. Maheshwari et al.26 adopt a solution for recon-
structing 12-lead ECG from 3-lead ECG, and the reconstruction score is
about 0.9187 in the testing phase. However, the assumption of dominantly
linear relationship between ECG vectors can not fit the human heart elec-
trical conduction system. Some researchers adopted autoencoders with
different model architectures, such as Atoui et al.27 proposed Artificial
Neural Network (ANN), and successfully realized the generation process of
3-lead ECG to the remaining 5 chest leads. This work and the following
work all adopt the training idea of automatic encoders, including Sohn
et al.28 used LSTM; Gundlapalle et al.29 combined CNN and LSTM; Garg
et al.30 combined the attention mechanism in autoencoder, thereby
improving the feature expression ability. Generative adversarial network
(GAN)34 also attracts anumber of research attention, such as refs. 31–33. Lee
et al.31 adopt the conditional generative adversarial network(CGAN) to
explore the feasibility of converting limb leads into chest leads. It is worth
mentioned that the input of CGAN is ECG, instead of the random noise in
the traditional GAN. The average structural similarity index (SSIM)
between the generated ECG signal and the real ECG signal is 0.92, and the
percent rootmean square difference (PRD) is only 7.21%. Seoet al.32 alsouse
the CGAN for reconstructing 12-lead, and theMeanAbsolute Error (MAE)
between the generated and real ECG signals is only 0.25. Joo et al.33 proposes
a novel CGAN that consists of two generators, and achieves good recon-
struction performance, like the root mean square error between the gen-
erated and real 12-lead ECG is 0.32. Additionally, our previous work35 also

uses thismethod to reconstruct 12-leadECG from lead I ECG.However, the
training instability and poor diversitymake generating adversarial networks
to difficultly address this reconstruction task, and most of the above-
mentioned studies are limited flexible, since they only work on a fixed limb
lead30,32,35. Chen et al.36 propose a novel framework to establish Electrocardio
panorama; however, only the 12-lead ECG signals are considered useful,
while the remaining non-standard lead signals are deemed meaningless.
Consequently, there is a critical need to investigate methods for recon-
structing the 12-lead ECG from an arbitrary single-lead ECG, While these
methodologies are capable of approximating the reconstruction of a 12-lead
electrocardiogram (ECG) from limited-lead inputs, there remains a sig-
nificant research gap that needs to be addressed in the domain of 12-lead
ECG reconstruction. Firstly, the traditional generative models usually focus
on the fixed single-lead, instead of arbitrary single-lead ECG. Secondly, the
related works27–33,35 lack a comprehensive evaluation benchmark, mainly
focus on the signal-level evaluation. Therefore, the contributions in this
study are as follows:
• This study proposes amulti-channelmasked autoencoer,MCMA, and

it can convert arbitrary single-lead ECG into 12-lead ECG.
• This study designs a comprehensive evaluation benchmark, ECG-

GenEval, including signal-level, feature-level, and diagnostic-level
evaluation.

• MCMAcan achieve state-of-the-art reconstructionperformance in the
ECGGenEval across the internal and external testing datasets, with a
mean square error of 0.0175 and a Pearson correlation coefficient of
0.7772 in the internal testing dataset.

In aword,MCMAdemonstrates its efficacy in reconstructing a 12-lead
ECG froma single lead, therebyoffering significant potential to augment the
capabilities of wearable health monitoring devices in the digital health era.
This advancement is poised to improve the diagnostic and monitoring
capabilities of these devices, ensuring more accurate and accessible health
assessments for users.

Method
ECG background
ECG capture the electrical activity of the heart, characterized by distinct
waveforms such as the P-wave, QRS-complex, and T-wave. The standard
12-lead ECG has been a prevalent diagnostic tool in clinical practice due to
its ability to provide a comprehensive view of cardiac function. This tool,
however, requires the placement of 10 electrodes on the body’s surface. The
electrode positioning in the 12-lead ECG is detailed in Table 1.

Dataset
This study conducts a large-scale 12-lead ECGdatasets, consisting of 28,833
recordings from three public 12-lead ECG datasets, i.e., PTB-XL37,38,
CPSC201839, and CODE-test5. The proposed framework is trained and
validated with PTB-XL initially, and using the internal and two external
testing datasets to further prove its feasibility.

PTB-XL37,38 is used for model training, validating, and testing. As a
large dataset, PTB-XL involves 21,799 clinical 10-s 12-lead ECG signals, and
the sampling frequency is 500Hz.Basedon the clinical standard, this dataset
includes 71 kinds of ECG statements. As recommended, this study adopts

Table 1 | ECG background: the standard electrode
configuration in the standard 12-lead ECG

Lead Electrode Position

I Left Arm, Right Arm

II Left Foot, Right Arm

III Left Foot, Left Arm

aVR Right Arm

aVL Left Arm

aVF Left Foot

V1 4th intercostal space at the right sternal border

V2 4th intercostal space at the left sternal border

V3 Midpoint between V2 and V4

V4 5th intercostal space at the midclavicular line

V5 Lateral to V4, at the left midaxillary line

V6 Lateral to V5, at the left midaxillary line

Table 2 | The data distribution of PTB-XL and CPSC2018, and
these datasets are used for signal-level and feature-level
evaluation

Dataset Role Number

PTB-XL Training Set 87,200

Validation Set 10,965

CPSC2018 Internal testing set 11,015

External testing set 55,999
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the standard tenfold setting, in which the folds from the 1st fold to the 8th
fold is the training set, and the 9th fold and the 10th fold act as the validation
set and testing set, respectively. The ratio for training:validation: and testing
is about 8:1:1.

CPSC201839 is used as an external testing set since the data distribution
and information do not appear in model training and choosing. CPSC2018
contains 6877 12-lead ECG, and these lengths varied from 6 s to 60 s with
500Hz in sampling frequency.

CODE-test is also used as an external testing set, particularly for
diagnostic-level evaluation. CODE-test includes 827 12-lead ECG collected
from different patients with different arrhythmia. Ribeiro et al.5 contributed
a trained cardiologist-level classification model for this testing dataset.

Table 2 presents the data distribution for the signal-level and feature-
level evaluation in PTB-XL and CPSC2018. Table 3 presents the data dis-
tribution for the diagnostic-level evaluation in CODE-test, including 6
distinguished arrhythmia types in this dataset.

MCMA
Multi-Channel Masked Autoencoder (MCMA) masks 11 different leads,
leaving only a single-lead ECG to generate the standard 12-lead ECG.
MCMA takes a single-lead ECG as input and produces a 12-lead ECG as
output, both with a signal length of 1024. The abstract of MCMA is seen in
Fig. 1. In this study, no preprocessing steps like filtering or scaling are

applied to avoid altering the ECG signals. Additionally, MCMA uses a
multi-channelmasked configuration to reduce training and inference costs,
requiring only onemodel, which sets it apart from related approaches in the
prior works30,32,33,35.

Model architecture
MCMA needs a designed architecture, as seen in Fig. 2. Motivated by
ResNet40 and UNet41. The model includes two modules, namely, the
downsampling and upsamplingmodules, which are composed of themulti-
convolution block (MCBlock) and multi-convolution-transpose block
(MCTBlock), respectively. The kernel size (k) is 5 and the window size (s) is
2. The choice of setting kernel size as 5 for MCBlock andMCTBlock layers
aims in achieving effective feature extraction in deep learning models,
particularly in those processing data with rich spatial hierarchies. The
window size is usually 2 for the striding process, which can reduce the
feature dimension and improve the learning ability. The activation function
is GELU. The experimental results with different hyperparameters can be
seen in Supplementary materials. To improve the gradient stability, layer
normalization (LN) and instance normalization (IN) are used in each block.
The skip connections can speed up the convergence rate of the model and
improve the representation ability. Additionally, the basic training recipe is
provided in Table 4.

MCMA implementation
Padding strategy. MCMA utilizes a zero-padding strategy to retain the
space information for each single-lead ECG. When the single-channel
ECG is processed into the 12-channel format, while the other channels
are zeros, as seen in Eq. (1).

Pðecg12; iÞ ¼ Iz × ecg12½i� ð1Þ

In Eq. (1), the shape of index matrix for zero-padding is 12 × 1, Iz(i) = 1
with other elements being zeros. Specifically, the output shape equals
the input shape, and the shape of ecg12 is 12 × N, then the shape of
ecg12[i] is 1 × N, so the output shape also is 12 × N. With zero-padding,
MCMA can adaptively solve different inputs. To highlight its

Table 3 | The data distribution of CODE-test, and it is used for
the diagnostic-level evaluation

Abbreviation Description Quantity %

1dAVb 1st degree AV block 28 3.4%

RBBB right bundle branch block 34 4.1%

LBBB left bundle branch block 30 3.6%

SB sinus bradycardia 16 1.9%

AF atrial fibrillation 13 1.6%

ST sinus tachycardia 36 4.4%

Fig. 1 | The 12-lead ECG generation with single-
lead ECG. Top-left: the input single-lead ECG can
be arbitrary, including I, II, III, aVR, aVL, avF, V1,
V2, V3, V4, V5, V6.Top-right: it shows the detailed
process, and this case takes lead I as an example.
Bottom: the evalution benchmark, including signal-
level, feature-level and diagnoistic-level.
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advantages, the 12 copies for the single-lead ECG acts as a comparison,
named as the copy-padding strategy. The index matrix for copy-
padding strategy, Ic, all elements are 1. At the same time, the arbitrary
input lead and the fixed lead (lead I) are compared. In addition, the 12-
lead ECG is provided in model training, and the padding strategy aims
to mask the original 11-lead ECG with zeros or the remaining single-
lead ECG in the standard 12-lead ECG.Meanwhile, only the single-lead
ECG exists in the real-world application process, it should be with the
padding strategy for the proposed framework.

Loss function. The generative models mainly involve autoencoder(AE)42,
generative adversarial network(GAN)34, diffusion model43. Although the
diffusionmodel has shown its great potential and ability in various tasks, the
sampling speed44 is challenging. GAN32,33,35 and AE30 have been studied by
the previous research works. Additionally, it is worth mentioning that the
traditional GAN is not enough to complete this task, which supports con-
verting random noise into the generative signals. Therefore, the researchers
of this task adopted a conditional generative adversarial network, including
Seo et al.32 Joo et el.33, and ourprevious study35. In this study, the autoencoder
can be a feasible solution for this 12-leadECG reconstruction task, due to the
training stability. Further, the proposed framework needs to be compared
with the GAN-based32,33,35 and AE-based30 methods.

The autoencoder (AE) can extract the latent representation from the
raw data and convert the latent representation into the target output. The

common loss function (L) is shown in Eq. (2).

L ¼ jjecg12 � AEðecg1Þjj2 ð2Þ

In Eq. (2), the 12-lead and single-lead ECG signals are represented by ecg12
and ecg1. P means the padding strategy, as shown in Eq. (1), i means the
index, varying from 1 to 12. MCMA employs a zero-padding strategy as
default, while copy-padding is utilized for comparative analysis within the
ablation study.

Inferencing MCMA. After the training process, MCMA can be used in
real-world applications, i.e., the inferencing (testing) process. The single-
lead ECG with the zeros-padding strategy is the input of MCMA. Then,
the application process for MCMA can be seen in Eq. (3).

gecg ¼ AEðIz × ecg1Þ ð3Þ

In Eq. (3), gecg is the generated 12-lead ECGwithMCMA, ecg1 is the single-
lead ECG collected by wearable devices, Iz can convert ecg1 into the input
of AE.

Comprehensive evaluations of ECG reconstruction
This study introduces ECGGenEval, a comprehensive evaluation bench-
mark for 12-lead ECG reconstruction, including three distinct dimensions:
signal-level, feature-level, and diagnostic-level.

Signal-level evaluations. This study adopts the Pearson correlation
coefficient (PCC) and mean square error (MSE) in the signal-level eva-
luation. The real and generated ECG signal are defined as recg and gecg.
Then, the definitions for PCC andMSE are shown in Eqs. (4) and (5).

PCCðrecg ; gecgÞ ¼
μðrecg × gecgÞ � μðrecgÞμðgecgÞ

σðrecgÞσðgecgÞ
ð4Þ

MSEðrecg ; gecgÞ ¼ μððrecg � gecgÞ2Þ ð5Þ

Fig. 2 | The detailed model architecture, the proposed model mainly includes
MCBlock and MCTBlock. Left: the situation of each layer and shape changes from
input to output. Top-right: composition ofMCBlock, including two branches, which

will achieve downsampling; Bottom-right: composition of MCTBlock, including
two branches, which will achieve upsampling.

Table 4 | The hyperparameters configuration in the MCMA
training process

hyperparameters configuration

Batch size 256

Epochs 100

Signal Length 1024

Optimizer Adam

Learning rate 1e-3
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In these equations, as Eqs. (4) and (5), μ(*) and σ(*) denotes the mean
value and standard deviation, respectively. PCC varies from −1 to 1,
andMSE is bigger than 0. The relationship between PCC and generation
performance is positively related, while the relationship between MSE
and generation performance is negatively related. For the signal-level
evaluation, a better generative model should be with a higher PCC and
lower MSE.

Feature-level evaluations. Furthermore, this study adopts the esti-
mated heart rate of the generated 12-lead ECG for the feature-level
evaluation. Since the heart rate in real 12-lead ECG signals theoretically
occurs simultaneously, and the generated signals should meet this
requirement. Themean heart rate (MHR) at the jth lead can be calculated,
as shown in Eq. (6).

MHRðjÞ ¼ 60× ðn� 1Þ
Pn�1

i¼1 ðRðiþ 1; jÞ � Rði; jÞÞ ð6Þ

In Eq. (6), the ith detectedR-wave in jth lead is denoted asR(i, j), and its unit
is second.Therefore,MHR can represent the heartbeat perminute. Basedon
the 12MHR from different 12-lead ECG, the average valueMMHR can be
computed with Eq. (7). Then, the feature-level evaluation involves standard
deviation (SD), Range (the difference between maximum and minimum),
and coefficient of variation (CV), expressed as MHRSD, MHRRange and

MHRCV, respectively. The calculation processes can be seen in Eq. (8),
Eq. (9) and Eq. (10), respectively.

MMHR ¼ 1
12

X12

j¼1

MHRðjÞ�
ð7Þ

MHRSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
12

X12

j¼1

ðMHRðjÞ �MMHRÞ2
v
u
u
t ð8Þ

MHRRange ¼ maxðMHRÞ �minðMHRÞ ð9Þ

MHRCV ¼ MHRSD

MMHR
ð10Þ

The reference estimation is completed with the original 12-lead ECG
These feature-level evaluation is good if the inter-lead heart rates are
consistent.

Diagnostic-level evaluations. This study also adopts the diagnostic-
level evaluation for this 12-lead ECG reconstruction task. MCMA is able
to convert the limit-lead (even single-lead) ECG into 12-lead ECG, which
bridges the limited-lead ECG to the classifiers which trained with 12-lead

Table 5 | The signal-level evaluation of mean square error (MSE) and Pearson correlation coefficient (PCC) between the
generated and real 12-lead ECG in the internal testing set, PTB-XL

Output I II III aVR aVL aVF V1 V2 V3 V4 V5 V6 Mean
Input

MSE

I 0.0032 0.0095 0.0120 0.0032 0.0055 0.0101 0.0149 0.0466 0.0444 0.0293 0.0193 0.0140 0.0177

II 0.0074 0.0035 0.0112 0.0029 0.0087 0.0054 0.0166 0.0484 0.0480 0.0297 0.0183 0.0132 0.0178

III 0.0069 0.0075 0.0065 0.0056 0.0050 0.0052 0.0171 0.0497 0.0530 0.0381 0.0247 0.0167 0.0197

aVR 0.0052 0.0056 0.0162 0.0018 0.0089 0.0093 0.0150 0.0460 0.0440 0.0270 0.0158 0.0116 0.0172

aVL 0.0046 0.0090 0.0078 0.0049 0.0040 0.0072 0.0160 0.0472 0.0482 0.0343 0.0228 0.0157 0.0185

aVF 0.0077 0.0048 0.0077 0.0045 0.0067 0.0042 0.0170 0.0496 0.0514 0.0346 0.0220 0.0153 0.0188

V1 0.0072 0.0098 0.0173 0.0047 0.0093 0.0113 0.0092 0.0371 0.0464 0.0368 0.0231 0.0153 0.0190

V2 0.0085 0.0103 0.0169 0.0055 0.0100 0.0113 0.0131 0.0206 0.0288 0.0336 0.0258 0.0174 0.0168

V3 0.0080 0.0103 0.0179 0.0052 0.0099 0.0116 0.0152 0.0304 0.0172 0.0229 0.0221 0.0166 0.0156

V4 0.0074 0.0089 0.0162 0.0044 0.0096 0.0104 0.0166 0.0419 0.0293 0.0127 0.0151 0.0140 0.0156

V5 0.0067 0.0075 0.0160 0.0035 0.0093 0.0096 0.0162 0.0464 0.0402 0.0195 0.0094 0.0103 0.0162

V6 0.0065 0.0071 0.0160 0.0033 0.0092 0.0093 0.0155 0.0474 0.0452 0.0247 0.0123 0.0081 0.0171

Mean 0.0066 0.0078 0.0135 0.0041 0.0080 0.0087 0.0152 0.0426 0.0413 0.0286 0.0192 0.0140 0.0175

PCC

I 0.9880 0.7719 0.5516 0.9222 0.8357 0.5436 0.8400 0.7413 0.7410 0.8195 0.8604 0.8720 0.7906

II 0.8389 0.9870 0.6201 0.9343 0.6236 0.8670 0.8113 0.7212 0.7117 0.8219 0.8768 0.8920 0.8088

III 0.8438 0.8174 0.9778 0.8203 0.8808 0.8814 0.7995 0.7090 0.6621 0.7389 0.7965 0.8203 0.8123

aVR 0.9131 0.9030 0.3281 0.9885 0.6174 0.6038 0.8406 0.7418 0.7472 0.8443 0.9026 0.9176 0.7790

aVL 0.9249 0.7711 0.8622 0.8483 0.9763 0.7171 0.8204 0.7343 0.7037 0.7709 0.8178 0.8361 0.8152

aVF 0.8231 0.9245 0.8697 0.8637 0.7453 0.9783 0.8003 0.7083 0.6763 0.7710 0.8282 0.8486 0.8198

V1 0.8353 0.7498 0.2492 0.8562 0.5706 0.4704 0.9798 0.8071 0.7012 0.7482 0.8113 0.8406 0.7183

V2 0.8040 0.7300 0.2865 0.8249 0.5582 0.4720 0.8810 0.9830 0.8666 0.7785 0.7867 0.8070 0.7315

V3 0.8152 0.7365 0.2303 0.8351 0.5469 0.4682 0.8358 0.8842 0.9866 0.8824 0.8313 0.8251 0.7398

V4 0.8364 0.7881 0.3247 0.8698 0.5579 0.5469 0.8092 0.7784 0.8703 0.9872 0.9157 0.8752 0.7633

V5 0.8624 0.8344 0.3373 0.9096 0.5790 0.5879 0.8183 0.7408 0.7796 0.9199 0.9865 0.9471 0.7752

V6 0.8685 0.8490 0.3353 0.9202 0.5852 0.6041 0.8324 0.7329 0.7397 0.8707 0.9509 0.9871 0.7730

Mean 0.8628 0.8219 0.4977 0.8828 0.6731 0.6451 0.8391 0.7735 0.7655 0.8294 0.8637 0.8724 0.7772
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ECG as input. Therefore, this study can evaluate the generated 12-lead
ECG using classification performance, including the precision (Pre),
recall (Rec), specificity (Spe) and F1-score (F1), as shown in literature5.
These calculation process of classification metric are seen in Eq. (11),
Eq. (12), Eq. (13) and Eq. (14).

Pre ¼ TP
TP þ FP

ð11Þ

Rec ¼ TP
TP þ FN

ð12Þ

Spe ¼ TN
TN þ FP

ð13Þ

F1 ¼
2×TP

2×TP þ FN þ FP
ð14Þ

Also, the original classificationperformancewith the real 12-leadECG is the
standard reference, and the generated 12-lead ECG with the other
methods30,32,33,35 are used in the result comparison.

Table 6 | The signal-level evaluation of mean square error (MSE) and Pearson correlation coefficient (PCC) between the
generated and real 12-lead ECG in an external testing set, CPSC2018

Output I II III aVR aVL aVF V1 V2 V3 V4 V5 V6 Mean
Input

MSE

I 0.0252 0.0335 0.0353 0.0271 0.0268 0.0330 0.0566 0.0909 0.1008 0.1018 0.117 0.1378 0.0655

II 0.0300 0.0264 0.0330 0.0265 0.0309 0.0271 0.0613 0.0971 0.1059 0.1031 0.1173 0.1379 0.0664

III 0.0304 0.0305 0.0273 0.029 0.0263 0.0270 0.0605 0.0980 0.1125 0.1138 0.1267 0.1434 0.0688

aVR 0.0290 0.0299 0.0389 0.0233 0.0318 0.0314 0.0564 0.0943 0.1023 0.1007 0.1157 0.1371 0.0659

aVL 0.0276 0.0334 0.0294 0.0294 0.0244 0.0298 0.0585 0.0929 0.1080 0.1128 0.1261 0.1432 0.0680

aVF 0.0311 0.0277 0.0287 0.0282 0.0286 0.0260 0.0631 0.0996 0.1110 0.1102 0.1235 0.1416 0.0683

V1 0.0310 0.0346 0.0394 0.0278 0.0317 0.0338 0.0443 0.0797 0.1038 0.1128 0.1264 0.1432 0.0674

V2 0.0311 0.0342 0.0385 0.0293 0.0315 0.0335 0.0533 0.0540 0.0792 0.1049 0.1271 0.1447 0.0635

V3 0.0307 0.0336 0.0397 0.0289 0.0319 0.0333 0.0567 0.0671 0.0634 0.0903 0.1202 0.1420 0.0615

V4 0.0302 0.0324 0.0398 0.0278 0.0320 0.0327 0.0593 0.0832 0.0787 0.0764 0.1111 0.1381 0.0618

V5 0.0294 0.0319 0.0397 0.0271 0.0318 0.0327 0.0589 0.0910 0.0933 0.0884 0.0979 0.1331 0.0629

V6 0.0292 0.0319 0.0396 0.0268 0.0317 0.0327 0.0586 0.0937 0.1008 0.0960 0.1087 0.1226 0.0644

Mean 0.0296 0.0317 0.0358 0.0276 0.0300 0.0311 0.0573 0.0868 0.0967 0.1009 0.1181 0.1387 0.0654

PCC

I 0.9822 0.7718 0.4308 0.9040 0.7185 0.5413 0.7310 0.6619 0.7080 0.8190 0.8646 0.8728 0.7505

II 0.7849 0.9858 0.5285 0.9320 0.4233 0.8764 0.6558 0.5909 0.6583 0.8081 0.8613 0.8670 0.7477

III 0.7786 0.8345 0.9732 0.8135 0.8331 0.8918 0.6635 0.5894 0.6015 0.7198 0.7714 0.7889 0.7716

aVR 0.8778 0.9155 0.2331 0.9864 0.4149 0.6631 0.7175 0.6303 0.7002 0.8423 0.8963 0.9087 0.7322

aVL 0.8600 0.7544 0.8151 0.8048 0.9665 0.7007 0.6989 0.6380 0.6387 0.7290 0.7782 0.7947 0.7649

aVF 0.7502 0.9300 0.8495 0.8552 0.6167 0.9787 0.6224 0.5646 0.6130 0.7476 0.7996 0.8123 0.7616

V1 0.7722 0.7332 0.1848 0.8240 0.3818 0.4911 0.9668 0.7416 0.6645 0.7282 0.7736 0.7942 0.6713

V2 0.7528 0.7210 0.2052 0.8028 0.4038 0.4711 0.7921 0.9793 0.8633 0.7866 0.7740 0.7766 0.6940

V3 0.7674 0.7514 0.1378 0.8246 0.3714 0.5053 0.7275 0.8684 0.9828 0.9008 0.8386 0.8174 0.7078

V4 0.7865 0.7963 0.1515 0.8625 0.3542 0.5504 0.6811 0.7256 0.8777 0.9856 0.9178 0.8726 0.7135

V5 0.8210 0.8172 0.1728 0.8988 0.3734 0.5576 0.6929 0.6617 0.7665 0.9207 0.9848 0.9393 0.7172

V6 0.8356 0.8165 0.1877 0.9088 0.3837 0.5641 0.7024 0.6372 0.7102 0.8664 0.9429 0.9859 0.7118

Mean 0.8141 0.8190 0.4058 0.8681 0.5201 0.6493 0.7210 0.6907 0.7321 0.8212 0.8503 0.8525 0.7287

Table 7 | The feature-level evaluation for the generated and
real 12-lead ECG in the internal testing dataset, PTBXL

Metric MHRSD MHRCV MHRRange

Input

Original 2.2137 3.21% 7.2195

I 1.1164 1.63% 3.5415

II 1.0073 1.51% 3.0958

III 1.2042 1.80% 3.7227

aVR 1.0785 1.61% 3.3192

aVL 1.1893 1.77% 3.6891

aVF 0.934 1.40% 2.8122

V1 0.9944 1.51% 3.1111

V2 0.9582 1.48% 3.0753

V3 1.0777 1.66% 3.4607

V4 0.9287 1.43% 2.9728

V5 1.0264 1.56% 3.2796

V6 1.0627 1.61% 3.3682

Mean 1.0481 1.58% 3.2874
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Results
Signal-level performance
First of all, the signal-level evaluation is the primary evaluationmetric, such
asMSE andPCC. In contrast to conventional approaches, this scheme offers
a distinct advantage: it enables the conversion of an arbitrary single-lead
ECG to a 12-lead ECGwithout the necessity of trainingmultiple generative
models. The experimental results of MSE and PCC are shown in Table 5,
where the horizontal direction represents the output and the vertical
direction represents the input. Besides, the reconstruction performance in
the external dataset, CPSC2018, is seen in Table 6.

Feature-level performance
This study also provides the feature-level evaluation results for MCMA,
including the standard deviationMHRSD, RangeMHRRange and coefficient
of variation MHRCV. The feature-level evaluation results in the internal
testing set PTB-XL and external testing set CPSC2018 are shown in Table 7
and Table 8, respectively. In the mentioned two tables, the first group is the
reference value of the original 12-lead ECG. Additionally, the R-peak
recognition is completed by algorithm45.

Diagnostic-level performance
Lastly, this study demonstrates the diagnostic-level performance of
MCMA. The classifier is trained and validated by Ribeiro et al.5, which
only accepts the 12-lead ECG. Then, it is essential to present the clas-
sification performance with the generated 12-lead ECG. For example,
Table 9 shows the classification performance of the generated 12-lead

ECGwith lead I. The detailed diagnostic-level evaluations are shown in
Table 10, including the original 12-lead ECG (as the reference), the
single-lead ECG (i.e., MCMA input) and the generated 12-lead ECG
(i.e., MCMA output), which directly shows the gain in the arrhythmia
classification task.

Comparison with other methods
MCMA compares with other research works, including Garg et al.30, Seo
et al.32, and Joo et al.33. As known, Garg et al.30 adopt the lead II, while Seo
et al.32 and Joo et al.33 utilizes the lead I. Moreover, MCMA can convert
arbitrary single-lead ECG into the standard 12-lead ECG. The comparisons
in signal-level, feature-level, and diagnostic-level are shown in Table 11,
Table 12, and Table 13.

Table 8 | The feature-level evaluation for the generated and
real 12-lead ECG in the external testing dataset, CPSC2018

Metric MHRSD MHRCV MHRRange

Input

Original 2.1313 2.65% 7.1267

I 1.3510 1.70% 4.4984

II 0.7732 0.99% 2.4776

III 0.9133 1.17% 2.9432

aVR 0.8590 1.10% 2.7977

aVL 1.3069 1.69% 4.2717

aVF 0.8146 1.04% 2.5931

V1 0.9355 1.24% 3.0275

V2 0.8629 1.16% 2.8255

V3 0.8467 1.16% 2.7630

V4 0.8529 1.14% 2.7957

V5 0.9544 1.28% 3.1345

V6 0.9093 1.22% 2.9712

Mean 0.9483 1.24% 3.0916

Table 9 | The diagnostic-level evaluation for MCMA, as the
generated 12-lead ECG is from lead I ECG, CODE-test

Metric Pre Rec Spe F1
Class

1dAVb 0.8750 0.7500 0.9962 0.8077

RBBB 0.8788 0.8529 0.9950 0.8657

LBBB 0.9630 0.8667 0.9987 0.9123

SB 0.7273 1.0000 0.9926 0.8421

AF 0.5833 0.5385 0.9939 0.5600

ST 0.9459 0.9459 0.9975 0.9459

Mean 0.8289 0.8257 0.9956 0.8223

Table 10 | The diagnostic-level evaluation for the generated
12-lead ECG in another external testing dataset, CODE-test

Metric Pre Rec Spe F1
Input

Original 12-lead5 0.8747 0.9100 0.9958 0.8872

I 0.3971 0.1309 0.9910 0.1824

MCMA+I 0.8289 0.8257 0.9956 0.8223

MCMA GAIN 0.4318 0.6948 0.0046 0.6399

II 0.0682 0.0339 0.9778 0.0333

MCMA+II 0.8401 0.8588 0.9946 0.8410

MCMA GAIN 0.7719 0.8249 0.0168 0.8077

III 0.1667 0.0056 0.9998 0.0108

MCMA+I 0.7237 0.6784 0.9923 0.6840

MCMA GAIN 0.5570 0.6728 −0.0075 0.6732

aVR 0.0000 0.0000 0.9985 0.0000

MCMA+aVR 0.4775 0.4261 0.9816 0.4348

MCMA GAIN 0.4775 0.4261 −0.0169 0.4348

aVL 0.0000 0.0000 0.9998 0.0000

MCMA+aVR 0.5728 0.6390 0.9827 0.5905

MCMA GAIN 0.5728 0.6390 −0.0171 0.5905

aVF 0.0000 0.0000 1.0000 0.0000

MCMA+aVR 0.5226 0.6532 0.9706 0.5223

MCMA GAIN 0.5226 0.6532 −0.0294 0.5223

V1 0.2641 0.2510 0.9973 0.2573

MCMA+V1 0.7670 0.8776 0.9923 0.8146

MCMA GAIN 0.5029 0.6266 −0.0050 0.5573

V2 0.1667 0.0611 1.0000 0.0894

MCMA+V2 0.7377 0.8435 0.9915 0.7824

MCMA GAIN 0.5710 0.7824 −0.0085 0.6930

V3 0.2428 0.1267 0.9990 0.1469

MCMA+V3 0.7669 0.8438 0.9929 0.8006

MCMA GAIN 0.5241 0.7171 −0.0061 0.6537

V4 0.1667 0.0090 1.0000 0.0171

MCMA+V4 0.7943 0.8373 0.9936 0.8090

MCMA GAIN 0.6276 0.8283 −0.0064 0.7919

V5 0.0000 0.0000 1.0000 0.0000

MCMA+V5 0.7582 0.8285 0.9917 0.7854

MCMA GAIN 0.7582 0.8285 −0.0083 0.7854

V6 0.0833 0.0049 0.9996 0.0093

MCMA+V6 0.7450 0.8113 0.9921 0.7717

MCMA GAIN 0.6617 0.8064 −0.0075 0.7624
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Ablation study
MCMA utilizes two key modules, one for arbitrary single-lead ECG
reconstruction, and another for zero-padding strategy. Then, it is necessary
to compare with different settings, including fixed-channel (lead I as an
example) and copy-padding strategy. The signal-level evaluation metric
includes mean square error (MSE) and Pearson correlation coefficient
(PCC). The experimental results comparison with different settings can be
shown in Table 14, including the lead I and the average value for 12 single-
lead ECG. In most cases, MCMA has achieved excellent result in 12-lead
ECG reconstruction task.

Case study
The training process details ofMCMAcan be illustrated as seen in Fig. 3. To
show the advantages of the proposed framework, the generated and real 12-
lead ECG should be clearly shown in Fig. 4, in which the generated and the
real signals are colored blue and red. Figure 4 demonstrates the great gen-
eration ability of the proposed framework. For example, the average MSE
and PCC between the generated and real 12-lead ECG is 0.0032 and 0.9560,
and it is concluded that the generator can generate 12-lead ECGwith single-
lead ECG. Besides the internal testing dataset (i.e., PTB-XL), the external
testing dataset’s (i.e., CPSC2018) reconstruction performance demonstrates
the proposed framework’s advantages from another aspect, as seen in Fig. 5.

Based on the experimental result provided in Fig. 4 and Fig. 5, it is shown
that the multi-channel masked autoencoder (MCMA) can be used to recon-
struct the 12-lead ECG with single-lead ECG. In clinical practice, the ECG
collected by wearable devices can be with different signal length, instead of the
fixed length. It is necessary to demonstrate the proposed framework cloud also
works with the variable-duration ECG signals, and the signal reconstruction
result with 10-s ECG is seen in Fig. 6. In this case, the 5000 points should be
filled with the extra 120 points, and it can be as the 5 individual samples for
MCMA to reconstruct 12-lead ECG with single-lead ECG as input.

Discussion
In this work, we propose amulti-channelmasked autoencoder,MCMA, for
generating the standard 12-lead ECG with arbitrary single-lead ECG. Fur-
ther, this study establishes a comprehensive evaluation benchmark, ECG-
GenEval, including the signal-level, feature-level, and diagnostic-level
evaluation. MCMA can work well in ECGGenEval, achieving state-of-the-
art performance.MCMAcanconvert arbitrary single-leadECG into12-lead
ECG, instead of the fixed-lead ECG30,32,33,35. Secondly, we provide multiple-
level evaluation results in an internal and two external testing datasets, and
the details are as follows.

Firstly, according to the signal-level evaluation results from Tables 5
and 6, on thementioned experimental results, it is known that the proposed
framework can reconstruct high-fidelity 12-leadECGwith single-leadECG.
The average MSE and PCC in PTB-XL are 0.0175 and 0.7772, while the
average MSE and PCC in CPSC2018 are 0.0654 and 0.7287, respectively.
The reconstruction performance in the internal and external testing dataset
can demonstrate its advantages, and MCMA can reconstruct the standard
12-lead ECG with arbitrary single-lead ECG as input. Therefore, the pro-
posed method can provide a feasible solution when collecting the standard
12-lead ECG is inconvenient and difficult, like remote cardiac healthcare. In
the signal-level comparison, theMSE and PCC for generating 12-lead ECG
with lead II are 0.0178 and 0.8088, better than Garg et al.30, with theMSE of
0.0292 and PCC of 0.7981. Therefore,MCMA can be used for 12-lead ECG
reconstruction tasks while the single-lead ECG is collected, and the signal-
level evaluation provides a novel solution in real-world cardiac healthcare
applications.

Table 13 | The diagnostic-level comparison of different
methods in CODE-test

Method Input Pre Rec Spe F1

Reference 12-lead ECG 0.8747 0.9100 0.9958 0.8872

Garg et al.30 Lead II 0.7268 0.8542 0.9881 0.7808

Input for MCMA Lead II 0.0682 0.0339 0.9778 0.0333

MCMA Lead II 0.8401 0.8588 0.9946 0.8410

Seo et al.32 Lead I 0.8248 0.8480 0.9948 0.8299

Joo et al.33 Lead I 0.7817 0.7846 0.9938 0.7730

Zhan et al.35 Lead I 0.8171 0.8739 0.9946 0.8423

Input for MCMA Lead I 0.3971 0.1309 0.9910 0.1824

MCMA Lead I 0.8289 0.8257 0.9956 0.8223

Table 14 | The ablation study for the proposed framework,
MCMA,which adopts the zero-padding strategy and supports
arbitrary single-lead ECG as input

Setting PTB-XL CPSC2018

Arbitrary Padding Input MSE PCC MSE PCC

No Zeros Lead I 0.0176 0.7879 0.0659 0.7480

Yes Copy Lead I 0.0183 0.7608 0.0674 0.6885

Yes Zeros Lead I 0.0177 0.7906 0.0655 0.7505

No Zeros 12 Single-lead 0.0406 0.3310 0.0911 0.2956

Yes Copy 12 Single-lead 0.0197 0.7198 0.0692 0.6291

Yes Zeros 12 Single-lead 0.0175 0.7772 0.0654 0.7287

Fig. 3 | Themean square error and Pearson correlation coefficient in the training
process. The red circle means training loss, the blue star means validation loss, the
black circle means training Pearson correlation coefficient (PCC), and the black star
means validation Pearson correlation coefficient (PCC).

Table12 | The feature-level comparisonofdifferentmethods in
PTB-XL and CPSC2018

Dataset Method Input MHRSD MHRCV MHRRange

PTB-XL Original * 2.2137 3.21% 7.2195

Garg et al.30 Lead II 1.1608 1.70% 3.5872

MCMA Lead II 1.0073 1.51% 3.0958

Seo et al.32 Lead I 1.8943 2.74% 6.3984

Joo et al.33 Lead I 2.6891 4.03% 8.8273

Zhan et al.35 Lead I 2.6952 3.82% 9.0689

MCMA Lead I 1.1164 1.63% 3.5413

CPSC2018 Original * 2.1313 2.65% 7.1267

Garg et al.30 Lead II 0.9545 1.24% 3.0523

MCMA Lead II 0.7732 0.99% 2.4776

Seo et al.32 Lead I 2.1899 2.79% 7.5269

Joo et al.33 Lead I 2.4136 3.31% 8.1059

Zhan et al.35 Lead I 2.8610 3.71% 9.9589

MCMA Lead I 1.3510 1.40% 4.4984
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Fig. 5 | The 12-lead ECG reconstruction performance in the external testing set
CPSC2018, the red lines are the real signals while the blue lines represent the
generated signals. Top: the real and reconstructed signal of lead I, lead II, lead III.

Middle: the real and reconstructed signal of lead aVR, lead aVL, lead avF, lead V1,
lead V2, lead V3. Bottom: the real and reconstructed signal of lead V4, lead V5,
lead V6.

Fig. 4 | The 12-lead ECG reconstruction performance in the internal testing set
PTB-XL, the red lines are the real signals while the blue lines represent the
generated signals. Top: the real and reconstructed signal of lead I, lead II, lead III.

Middle: the real and reconstructed signal of lead aVR, lead aVL, lead avF, lead V1,
lead V2, lead V3. Bottom: the real and reconstructed signal of lead V4, lead V5,
lead V6.
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Secondly, Tables 7 and 8 complete the feature-level evaluation. For the
internal testing dataset, PTB-XL, Table 7 demonstrates that the heart rate
estimation in different leads is similar in the generated 12-leadECG, and it is
even better than the original 12-leadECG.The estimated heart rate from the
real 12-lead ECGmay be different, since the noise exists in special channels.
Table 7 shows that the averageMHRSD,MHRCV, andMHRRange are 1.0481,
1.58%, and 3.2874, in which the optimal result is from the generated 12-lead
ECG by lead V4 ECG. Table 8 shows the external evaluation in CPSC2018,
the averageMHRSD,MHRCV andMHRRange are 0.9483, 1.24%, and 3.0916,
while the optimal result is from the generated 12-lead ECG by lead II ECG.
The generated 12-lead ECG from arbitrary single-lead ECG can produce a
good heart rate consistency in different leads, and it can even be better than
the original 12-lead ECG in some cases, due to the ECG signal denoising
function in the proposed framework. Table 12 demonstrates the advantages
of MCMA over others, which can be highlighted as red. Therefore, the
feature-level evaluation can demonstrate the advantages of MCMA.

Based on Table 9, the classifier can adopt the generated 12-lead ECG
for arrhythmia classification. The average F1-score over 6 classes is 0.8319.
Then, it is proven thatMCMAcan convert the single-lead ECG into the 12-
lead ECG, and the generated 12-lead ECG can retain the pathological
information, and it is different to the signal-level and feature-level evalua-
tion.Therefore,with themulti-channelmaskedautoencoder, it is possible to
complete arrhythmia classification with single-lead ECG, like lead I ECG in

Table 9. Further, according toTable 10, the classificationperformance of the
generated 12-lead ECG is better than that of single-lead ECG and similar to
the real 12-lead ECG,which can demonstrate the classification performance
gain brought byMCMA. The generated 12-lead from lead I can provide the
closest classification performance, the average F1 is 0.8319, which exceeds
other cases. According to Table 13, the classification performance with
generated 12-lead ECG is improved. For example, taking lead II as input,
Garg et al.30can achieve an F1 of 0.7807, lower than the proposed method.
Similarly, with the lead I as input, Seo et al.32 and Joo et al.33 have an F1 of
0.8299 and 0.7730, respectively, whileMCMA can be with a F1 with 0.8223.
From the view of classification task, the classification performance in the
above tables demonstrates the generated 12-lead ECG can be used for
cardiac abnormality detection,which canprove its advantage inbridging the
single-lead ECG and 12-lead ECG, and it is effective to generate the
pathological information with single-lead ECG as input.

As Table 14 shows, the proposed framework is effective. The multi-
channel strategy can support arbitrary single-lead to generate 12-lead ECG.
Although the reconstruction performance of lead I is slightly lower than the
fixed-channel. When the lead I ECG inputs, the fixed-channel can have a
MSE of 0.0176 and a PCC of 0.7879, while MCMA can be with a MSE of
0.0177 and a PCC of 0.7906. However, for the fixed-channel, it is difficult to
realize 12-lead ECG reconstruction with other leads, and the training and
inference cost is largely different in training and storing 12models with this
setting. Further, the zero-padding strategy is better than the copy-padding
strategy, while the two strategies both support the 12-lead reconstruction
with arbitrary single-lead ECG. The mean MSE and PCC in MCMA are
0.0175 and 0.7772, while the mean MSE and PCC in copy-padding are
0.0197 and 0.7198, respectively.

This study is with the following advantages, from the engineering and
clinical perspectives. Firstly, the generated signal is similar to the original
signal, as the mean square errors of 0.0175 and 0.0654, correlation coeffi-
cients of 0.7772 and 0.7287 in the signal-level evaluation. Secondly, the
generated signal can be used in the arrhythmia classification, as the average
F1 with two generated 12-lead ECG is 0.8233 and 0.8410 in the diagnostic-
level evaluation. According to the mentioned advantages, the contributions
are as follows:

Further, this study is expected to be a feasible solution for wearable
ECG monitoring, and it is able to improve the clinical importance of arbi-
trary single-lead ECG. For this research project, these experimented is
conducted in these public datasets, such as PTB-XL and CPSC2018.
Naturally, there are some limitations in this study, and these issues should be
addressed in the future, as follows. High-quality electrocardiogram (ECG)
signal acquisition method can significantly impact the reconstruction per-
formance, and it may be addressed in the sensing layer46 or the algorithmic
layer43. The generated signals necessitate evaluation by professional clin-
icians to ascertain their viability as a long-term substitute for the conven-
tional 12-lead ECG in continuousmonitoring scenarios.In other words, the
question is whether a physician can render an equivalent diagnosis utilizing
the 12-lead ECG generated by MCMA. Consequently, additional research
endeavors are essential to advance the mentioned problems, ultimately
realizing the considerable clinical relevance and practical utility.

In a word, this study proposes a novel generative framework to
reconstruct 12-lead ECG with a single-lead ECG, as multi-channel masked
autoencoder (MCMA), and it involves two main contributions. Firstly,
unlike othermethods, the proposed framework can convert arbitrary single-
lead ECG into the standard 12-lead ECG. The experimental results showed
that the proposed framework had excellent performance, achieving state-
of-the-art performance on the proposed benchmark, ECGGenEval,
including the signal-level, feature-level, and diagnostic-level evaluation. For
example, the average Pearson correlation coefficients in the internal and
external testing set are 0.7772 and 0.7287, outperforming the related
approaches.Additionally, it is shown that the zero-padding strategy canplay
an important role in the proposed framework, beats the copy-padding
strategy. In the future, it is necessary to study high-quality ECG and clinical
validation, to let the proposed framework play an important role in clinical

Fig. 6 | The generated and real 10-s 12-lead ECG, demonstrating its advantages
for variable-duration ECG reconstruction, the red lines are the real signals while
the blue lines represent the generated signals. From the top to the bottom, the
signals are lead I, lead II, lead III, lead aVR, lead aVL, lead avF, lead V1, lead V2, lead
V3, lead V4, lead V5, lead V6.
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practice, which provides a novel feasible solution for long-term cardiac
health monitoring.

Data availability
All datasets used in this study are openly available. PTB-XL: https://
physionet.org/content/ptb-xl/1.0.3/, CPSC-2018: http://2018.icbeb.org/
Challenge.html, CODE-test: https://zenodo.org/records/3765780.

Code availability
The open-source code is publicly available at https://github.com/
CHENJIAR3/MCMA.
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