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Multimodal AI-approach for the automatic
screening of cardiovascular diseases
based on nocturnal physiological signals
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Erdenebayar Urtnasan1,6

This study proposes amultimodal AI algorithmcalled theSleepCVD-Net to automatically screenCVDs
based on nocturnal physiological recordings. We designed and implemented a multimodal AI
algorithm, SleepCVD-Net, which utilizes three-mode deep neural networks to process input signals—
single-lead electrocardiography (ECG), Airflow, and oxygen saturation (SpO2). Nocturnal
physiological recordings were extracted from 194 subjects (80 controls and 114 subjects with CVD) in
the Sleep Heart Health Study database. The proposed SleepCVD-Net model demonstrated good
performance, achieving a mean accuracy of 97.55% on the test set. The F1-scores were 97.97%,
96.35%, 97.79%, and 97.49% for the control, stroke, angina, and congestive heart failure groups,
respectively. The results indicate thepotential for the automatic screeningofCVDsbasedonnocturnal
physiological signals. Furthermore, the SleepCVD-Net can serve as a valuable tool for monitoring
cardiac activity during sleep in inpatient, outpatient, and home healthcare settings.

Cardiovascular diseases (CVDs) encompass various heart and blood vessel
disorders, and they represent the leading cause of mortality worldwide,
responsible for 32% of all global deaths, equating to 17.9 million fatalities in
20191. This category includes conditions, such as coronary artery disease,
which can precipitate chest pain, myocardial infarction, or stroke, as well as
congestive heart failure, congenital heart disease, arrhythmias, and
endocarditis2. Additionally, CVDs can serve as a risk factor for chronic
conditions, such as chronic kidney disease3, obesity4, hypertension5, and
diabetes mellitus6, alongside other adverse health states, such as physical
inactivity7. Consequently, the early detection and prescreening of CVDs is
imperative from clinical, social, and economic perspectives.

Polysomnography (PSG) is the gold standard for diagnosing and
monitoring sleep disorders, including insomnia8, parasomnia9,
hypersomnolence10, sleep-related breathing11 and movement disorders12,
and circadian rhythm disorders13. PSG provides comprehensive physiolo-
gical data, encompassing electroencephalography, electrooculography,
electromyography, electrocardiography (ECG), oxygen saturation (SpO2),
Airflow,movement, and respiratory parameters14.Wehypothesize that PSG
is a huge and informative diagnostic tool, because its extensive diagnostic

capabilities can be leveraged for diagnosing not only sleep disorders but also
other chronic conditions when combined with advanced artificial intelli-
gence (AI) models, functioning as a preventative or prescreening tool for
comorbidities and risk factors.

Electrocardiography (ECG) is a critical bio-signal recording that cap-
tures essential features such as the QRS complex, RR interval, heart rate
variability, motion artifacts, and respiration. ECG has been extensively
utilized as the primary input in numerous studies focused on the detection,
classification, and diagnosis of CVDs, utilizing variations in heart rate
variability parameters from single-lead15,16, 12-lead17, and portable/Holter
ECG devices18. Similarly, medical imaging modalities, such as computed
tomography19, magnetic resonance imaging20, and other imaging
technologies21 are pivotal in CVD detection22,23. These bio-signals and
medical images are measured during the daytime and in the awake state of
the subject. To the best of our knowledge, no conventional studies have used
nocturnal data to screen or detect CVDs. Furthermore, nocturnal physio-
logical signals andPSGhaveneverbeenpreviouslyused for theprescreening
and early detection of CVDs, even though humans spend a third of their
lifetime during sleep.
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Many outstanding methods were proposed for CVD screening and
detection in the last decade. Thesemethods can be categorized by themodel
architecture, including single model, combined model, and multimodal-
based approaches. Many of the conventional studies employed the single
model-based method for CVD screening by applying machine learning or
deep learning techniques17–19,21–23. Some studies investigated the combined
model-based approaches that mixed various methods and classifiers for
CVD screening20,24. Recently, multimodal based models were introduced to
automatically detect CVDs using diverse data sources25–27. Multimodal
methods integrate heterogeneous data, including physiological signals,
medical images, electronic health records, and clinical data, and con-
currently analyze them for data abstraction and event detection. However,
there are very few studies of the multi-in multi-out and end-to-end
approaches for the automated screening of CVDs. Moreover, to date, a
multimodal AI-algorithm has not been developed for automatically
screening CVDs utilizing PSG data.

In this study, we introduce a multimodal AI-algorithm, termed
SleepCVD-Net, designed for the automatic screening of CVDs using noc-
turnal physiological recordings. The SleepCVD-Net model employs three-
mode custom-designed deep convolutional neural network (CNN) models
to extract informative featuremaps from each input signal. The SleepHeart
Health Study (SHHS) database was utilized for building a real clinical PSG
dataset to develop and validate the SleepCVD-Net model.

Results
The performance of the SleepCVD-Netmodel is presented in three formats:
a performance table (Table 1), confusionmatrix (Fig. 1), andROCcurves for

each class (Fig. 2). The proposed multimodal SleepCVD-Net model
demonstrated robust and consistent performance across all CVD outcomes
including healthy control (CNT), stroke (STK), angina (ANG), and con-
gestive heart failure (CHF).

There was no significant difference in performance between the vali-
dation and test sets, demonstrating the stability and robustness of the
SleepCVD-Net model. The total average accuracies of the SleepCVD-Net
modelwere 99.98%, 97.48%, and97.55% for the training, validation, and test
sets, respectively (Table 1).

Confusion matrices were used to illustrate the agreement between the
predictions of the proposed SleepCVD-Net model and the cardiologist’s
diagnoses. Additionally, we sought to identify which classes exhibited the
highest error rates among the CVD categories. The confusion matrices for
the training set (Fig. 1A), validation set (Fig. 1B), and test set (Fig. 1C)
displayed similar patterns. Notably, the confusion matrices for the valida-
tion and test sets demonstrated stable predictions.

Finally, we assessed the false positive rate of the proposed SleepCVD-
Netmodel for each target class: control, stroke, angina, and congestive heart
failure. The receiver operating characteristic curves for the test set are pre-
sented in Fig. 2, demonstrating high performance for each CVD class.

Discussion
In this study, we propose the SleepCVD-Net model, a multimodal AI
algorithm designed for the automatic screening of CVDs using nocturnal
physiological signals. The SleepCVD-Net employs a three-mode AI algo-
rithm, comprising Mode_ECG, Mode_Airflow, and Mode_SpO2, each
corresponding to single-lead ECG, Airflow, and SpO2 signals, respectively.
These modes represent the cardiorespiratory activity and characteristics of
the subjects. Themodel demonstrated very high performance, achieving an
average accuracyof 97.55%for the targetCVDs in the test set.Consequently,
the proposed multimodal AI algorithm can be utilized as an extension tool
to supportCVDscreening in conventional PSG studies for sleepmonitoring
and screening.

Several studies have explored various methods for detecting or pre-
dicting CVDs using single- or multi-lead ECG signals. Some recent studies
are analyzed and listed in Table 2 for comparison with the methods and
performance of our study.Most conventional studiesbasedonphysiological
signals utilized daytime single-lead ECG, two-lead ECG, and standard 12-
lead signals for the automated detection of CVDs and abnormal cardiac
rhythms. Therefore, it may not be appropriate to directly compare the
performance of this study with these studies. However, our results show
comparable or similar performances than all these conventional studies
(Table 2).

Specifically, Dai et al.16 proposed a deep CNNmodel to automatically
classify five different CVDs based on standard 12-lead ECG signals. They
developed a CNNmodel for classifying 1, 2, and 3-s ECG signals, achieving
the highest accuracy, sensitivity, and specificity with 1-s ECG segments.
Wang et al.17 introduced a rule-based algorithm for the automatic detection

Table 1 | Total performance of the multimodal SleepCVD-
Net model

Datasets Patients Precision Recall F1-score Accuracy

Training set CNT 0.9996 0.9999 0.9998 0.9998

STK 1.0000 0.9993 0.9996

ANG 0.9999 1.0000 0.9997

CHF 0.9998 0.9997 0.9997

Validation set CNT 0.9714 0.9874 0.9794 0.9748

STK 0.9810 0.9436 0.9620

ANG 0.9746 0.9790 0.9768

CHF 0.9769 0.9725 0.9747

Test set CNT 0.9717 0.9878 0.9797 0.9755

STK 0.9822 0.9455 0.9635

ANG 0.9772 0.9786 0.9779

CHF 0.9759 0.9740 0.9749

Note: CNT control, STK stroke, ANG angina, CHF congenital heart failure.

Fig. 1 | Confusion matrix of the proposed multimodal SleepCVD-Net for the CVD screening. A. Training set, B. Validation set, C. Test set.
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of abnormal heart rhythms from single-lead ECG signals developing and
implementing 12 different rules for 11 types of abnormal ECG rhythms.
Their method achieved an overall accuracy of 92.41% for detecting 12
different abnormal cardiac rhythms. Pławiak18 demonstrated an efficient
multiclass classification method for 17 classes of ECG abnormalities using
an evolutionary neural system and traditional machine learning meth-
odologies, including ECG signal preprocessing, normalization, spectrum-
based feature extraction, genetic optimization-based feature selection, and
four different classifiers. The best performance, with a sensitivity of 90.2%,
was achieved using a support vector machine. Desai et al.28 introduced an
ensemble learning algorithm for automatically detecting myocardial
ischemia from single-lead ECG signals. They extracted non-linear features
from the ECG signal such as high-ordered statistics. They applied them to a
decision tree, Adaboost, and Random Forest algorithms for myocardial
ischemia detection with a very high-performance accuracy of 99.51%.

Recently, several studies have applied multimodal architectures for
predicting CVDs and abnormal rhythm analysis. Bagheri et al.26 demon-
strated amultimodal deep learning approach for CVD risk prediction using
electronic health records. Their study incorporated heterogeneous data,
including unstructured medical text records and structured clinical infor-
mation. Various deep learning models were designed and evaluated, with
themultimodal bidirectional long short-termmemorymodel achieving the
highest performance, marked by an F1-score of 83.8%. Li et al.27 proposed a

machine learning-based multimodal approach for CVD prediction using
physiological signals, such as single-lead ECGandphonocardiograms. They
designed a dual-mode deep learningmodel to extract feature vectors, which
were then integrated using a genetic algorithm. The final CVD prediction
was performed using a support vector machine, resulting in a notable
performance with an F1-score of 87.4%. Pan et al.29 introduced a multitask
channel attentionnetwork to localize anddetectmyocardial infarctionusing
12-lead ECG data. They employed a residual-based channel attention net-
work to capture and integrate feature maps from different leads. Their
model was trained and evaluated on two different open ECG databases,
achieving a detection accuracy of 93.65% on the PTBXL dataset. In sum-
mary, these multimodal studies have proposed innovative methods and
demonstrated robust performances for their target outcomes, indicating
that multimodal approaches are becoming comprehensive solutions for
complex medical diagnostics and predictions.

Clinically, the main finding of this study is that the proposed
SleepCVD-Net model can effectively screen patients for CVDs, including
stroke, angina, and congestive heart failure using nocturnal physiological
signals. Additionally, it can extend the application of traditional diagnostic
PSG, which is primarily used for sleep disorders such as sleep apnea,
insomnia, and other parasomnias, to include diverse CVD screenings. The
proposed SleepCVD-Netmodel is applicable not only to full nocturnal PSG
but also to portable home PSG devices, enabling automatic CVD screening.

Fig. 2 |The receiver operating characteristic curve of
the proposed multimodal SleepCVD-Net for the
automatic screening of CVD based on nocturnal
physiological recordings.

Table 2 | Performance comparison with other studies

Study Year Sensors Method Accuracy Sensitivity Specificity

Dai et al. 16 2022 12-lead ECG CNN 99.59 99.04 99.87

Wang et al. 17 2021 Single-lead ECG Rule-based 90.47 81.59 91.75

Desai et al. 28 2017 Single-lead ECG Ensemble learning 99.51 98.82 99.83

Pławiak18 2017 Single-lead ECG SVM 98.85 - 99.39

Bagheri et al. 25 2020 Medical text, data biLSTM 84.70 83.8 -

Li et al. 26 2021 ECG and PCG SVM 87.40 90.30 84.50

Pan et al.27 2022 12-lead ECG MCA-net 93.65 96.55 88.59

Our method 2023 Single-lead ECG,
Airflow, SpO2

SleepCVD-Net 97.55 97.14 -
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This novel approach for detecting and screening CVDs during sleep has the
potential to reduce the economic burden associated with CVD treatments
and save time compared to conventional diagnostic methods.

From an engineering perspective, SleepCVD-Net was designed using a
multimodal architecture to simultaneously processmulti-signal inputs from
PSG recordings using AI technology. The input signals, such as ECG,
Airflow, and oximetry, have different data shapes and sampling rates. The
model was custom-designed and optimized both as a whole and in its sub-
modes for the automatic screening of CVDs from nocturnal physiological
signals. Multimodal AI technology can extend and provide novel applica-
tions for traditional diagnostic and screening tools widely used in clinical
settings, whether in hospitals or home healthcare environments.

However, this study had some limitations. The target CVDs were
limited to stroke, angina, and congestive heart failure; future studies will
focus on a broader range of CVDs. Additionally, clinical phenotypes and
characteristics were not considered as model inputs. Finally, the proposed
model requires significant computational resources to execute and obtain
results. Future research will aim to address these limitations and provide
more comprehensive solutions.

In summary, we propose the SleepCVD-Netmodel, which is based on
a multimodal AI algorithm for the automatic screening of CVDs using
nocturnal physiological signals. SleepCVD-Net employs a three-mode AI
algorithm and utilizes three primary nocturnal physiological signals: single-
lead ECG, Airflow, and SpO2, which capture the cardiorespiratory char-
acteristics of the subjects. The model demonstrated excellent performance,
achieving an average accuracy of 97.55% on the test set. Consequently,
SleepCVD-Net can serve as an extension tool for conventional PSG studies
by enhancing sleep monitoring and screening capabilities.

Methods
Study design
The proposed multimodal SleepCVD-Net for the automatic screening of
CVDs from PSG recordings comprises three primary components: a PSG
study, nocturnal physiological signal datasets, and a multimodal AI-
algorithm. A multicenter PSG cohort sleep study was conducted to recruit
participants and obtain PSG datasets for the development and validation of
the multimodal AI-algorithm (Fig. 3A). The three-channel nocturnal
physiological signalswere extracted from the PSG recordings to build theAI
datasets (Fig. 3B). A multimodal AI-algorithm comprising three distinct
sub-modes was designed and optimized for the automatic screening of
patients with CVDs (Fig. 3C). A comprehensive description of each com-
ponent is provided below.

Study population
For the study population, data from the SHHSwas utilized, and amulticenter
cohort study was conducted by the National Heart, Lung, and Blood Institute
to explore the association between cardiovascular outcomes and sleep-
disordered breathing29. The SHHS was the pioneering study that investigated
the relationship between sleep-related breathing disorders and the increased
risk of CVDs and all-cause mortality. During the study, nocturnal full-PSG
was performed on two occasions: during the first visit (November 1995 to
January 1998) with 6441 participants, and during the second visit (January
2001 to June 2003) with 3295 participants. We utilized PSG data from all
participants healthy control (CNT) group and diagnosed with stroke (STK),
angina (ANG), and congestive heart failure (CHF); as these conditions were
highly prevalent at the second visit stage of the SHHS study. All subjects
provided written informed consents, and the study protocol was approved by

Fig. 3 | Study design of the proposed multimodal SleepCVD-Net model for the
automatic screening of CVDs based on PSG recordings. A SHHS database that we
analyzed for this study. B Extraction of PSG recordings and building of the

physiological signal dataset. C Graphical overview of the proposed multimodal
SleepCVD-Net model for automatic screening of CVDs.
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The Institutional Review Board of the National Sleep Research Resources
(sleepdata.org/datasets/shhs, IRB: NCT00005275).

We matched the control group with the CVD group from the same
stage of the SHHS study at an approximate ratio of 2:1. In addition, we
excluded theparticipantswithoutPSGrecordings from thedata analysis.All
194 subjects (80 CNT and 114 CVD) who underwent a full-nocturnal PSG
recording during the second visit of the SHHS were included in this study
(Table 3). The baseline characteristics of the study population revealed
significant differences in age, sleep efficiency, and total sleep time between
groups. The demographic data indicated that the CVD group was older
(mean age: 73.7 y), had poorer sleep quality (mean sleep efficiency: 74.9%),
and shorter total sleep time (mean: 355.9min) compared to the healthy
control group. Our primary interest was in examining the nocturnal phy-
siological signal differences between the CNT and CVD groups.

Nocturnal physiological dataset
In this study, we constructed a nocturnal physiological dataset using ECG,
SpO2, andAirflow signals extracted from full-PSG recordings. During PSG,
nocturnal ECG signals were recorded using Ag/AgCl electrodes at a sam-
pling rate of 250Hz. SpO2wasmeasuredwithNoninXPOD3011 and 8000
sensors at a 1Hz sampling rate, and Airflow signals were obtained using a
Compumedics thermistor at a 10 Hz sampling rate. For preprocessing, a
high-pass filter (0.05Hz) was applied to both the nocturnal ECG and Air-
flow signals at the hardware level 30.

All three physiological signals were extracted from the entire duration
of the PSG recordings, excluding the initial andfinal 15min to eliminate the
wake or noisy sections. Following data extraction, the average total sleep
time was 373.51min. This data was segmented into 30-s events without
overlap for the nocturnal physiological channels. The resulting nocturnal
physiological dataset was then used to develop and evaluate themultimodal
SleepCVD-Net model. To do this, the study population was randomly
selected percent of 70 for the development group and 30 percent for the
evaluation group. Ten percent of the development data set was used as
validation set in training phase. The dataset was divided into a training set
(104,511 segments) consisting of 116 subjects, a validation set (51,476 seg-
ments) of about 20 subjects, and a test set (76,830 segments) composed of
58 subjects, as detailed in Table 4.

SleepCVD-Net
The proposed multimodal AI-algorithm comprises three sub-modes, each
with distinct structures and hyperparameters. The distinguished physiolo-
gical signals-ECG, SpO2, and Airflow-differ significantly in sampling rates
and the information they provide. As we aimed for the applicability of the
multimodal AI-algorithm across various scenarios, including in-hospital
full PSG and out-of-hospital portable PSG setups, we incorporated the three
physiological signals from PSG recordings. Furthermore, our goal is for the
multimodal AI-algorithm to expand the utility of the PSG traditionally used
for diagnosing sleep disorders, including the detection of CVDs. This
expansion would provide additional valuable information to sleep techni-
cians and specialists. Detailed descriptions of the implementation are pro-
vided below.

A. Nocturnal physiological signals. Three primary physiological sig-
nals were used as multi-input data for the multimodal AI-algorithm (Fig.
4A). Firstly, ECG was utilized to record the electrical signals of the heart
rhythm for analyzing cardiac activity. ECG exhibits cardiac rhythms,
which represent the periodic contraction and relaxation of the heart
muscles. Through the characteristics of the R, P, and T waves from the
QRS complex, we analyzed the heart rhythm and cardiac activity. The
oxygen flow through the upper airway into the lungs weremeasured from
Airflow. It monitors airflow limitation, reduction, and patterns, diag-
nosing respiratory issues, such as sleep apnea and hypopnea. By ana-
lyzing the cycle, the depth, regularity of inhalation and exhalation, and
respiratory patterns were assessed. Finally, the oxygen saturation in the
blood was measure using SpO2, which indicate how efficiently the blood
transports oxygen; a range of 95–100% is typically considered healthy. By
analyzing this data, the cardiovascular health can be determined through
the patterns of the heart and respiration.

The ECG measures heart rhythm, Airflow assesses respiratory pat-
terns, and SpO2 gauges oxygen saturation, collectively evaluating the overall
health. Distinguished nocturnal signals were directly input into the model
without any preliminary feature extraction or signal processing. The input
shapes for themodeswere 3,750×1 for ECG, 240×1 forAirflow, and 30×1
for SpO2 signals, respectively.

B. Data pre-processing. After signal selection, data preprocessing is
essential for each bio-signal in both machine learning and deep learning
models. Distinguished nocturnal signals (ECG, Airflow, and SpO2) may
include various noises due to external interference or the signal-
capturing process. Noise can degrade the data quality, thereby reducing
the accuracy of model training and prediction. Although raw biological
signals contain a wealth ofmeaningful information, theymay be difficult
to use directly in models. If significant features are not extracted, the
model may fail to learn meaningful patterns from the biological signals.
Biological signals may also contain measurement errors or sudden
outliers, which can hinder model training and result in performance
degradation. Through preprocessing, biological signal data can be
refined and made more consistent, enhancing model performance and
contributing to more reliable prediction outcomes. Preprocessing was
incorporated into the initial layers of the model, where batch normal-
ization was applied twice to the inputs (Fig. 4B). This preprocessing step
effectively handled signal processing tasks, such as detrending and
correcting baseline wandering. Theoretically, batch normalization can

Table 3 | Demographic characteristics of the study population

Measures Total CNT CVD p-value

Subjects (N) 194 (100.0) 80 (41.2) 114 (58.8) 0.04

Sex

Male 95 (49.0) 32 (40.0) 63 (55.3) =

Female 99 (51.0) 48 (60.0) 51 (44.7) =

BMI (kg/m2) 28.06 ± 4.76 27.94 ± 4.56 28.14 ± 4.91 0.77

AHI (per h) 16.44 ± 16.11 14.16 ± 13.78 18.05 ± 17.44 0.10

Age (y) 69.92 ± 10.96 64.49 ± 11.21 73.73 ± 9.04 0.00

Race 0.23

White 169 (89.1) 69 (86.3) 102 (89.5) =

Black 18 (9.3) 9 (11.3) 9 (7.9) =

Other 7 (3.6) 4 (5.0) 3 (2.6) =

Blood
pressure
(mmHg)

Systolic 127.61 ± 17.20 124.84 ± 13.30 129.57 ± 19.31 0.05

Diastolic 69.87 ± 10.34 71.17 ± 10.41 68.95 ± 10.23 0.14

Sleep
efficiency (%)

77.72 ± 12.80 81.64 ± 9.03 74.97 ± 14.29 0.00

Total sleep
time (min)

373.51 ± 72.32 398.56 ± 58.35 355.92 ± 76.13 0.00

Note: N Numbers, BMI Body mass index, AHI Apnea hypopnea index.

Table 4 | Distribution of the nocturnal physiological dataset

Dataset CNT STK ANG CHF Total

Training set 43,645 18,908 21,811 20,147 104,511

Validation set 21,508 9,349 10,582 10,037 51,476

Test set 31,738 14,005 16,269 14,818 76,830

Total 96,891 42,262 48,662 45,002 232,817

Note: CNT control, STK stroke, ANG angina, CHF congenital heart failure.
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be represented by Eq. 1.

xb ¼ α � xi � μffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ ε

p
� �

þ β ð1Þ

where ε is a random noise, μ is the mean of themini-batch, σ is the variance
of the mini-batch, α is a scaler, and β is a shift parameter. Both α and β are
trainable and updated in an epoch-wise manner 31.

C. Feature map nets. At this stage, high-dimensional data abstraction
was performed to extract informative feature maps. We employed deep
CNN models with four-layer, two-layer, and one-layer structures for
Mode_ECG, Mode_Airflow, and Mode_SpO2, respectively (Fig. 4C).
The ECG,Airflow, and SpO2 are all time-series data that vary over time.
A 1D CNN uses filters that move along the time axis to effectively learn

patterns in time-series data. This approach is advantageous for cap-
turing local patterns in time-series data and extracting features. Given
that time-series data is represented as one-dimensional arrays, using
1D CNN results in fewer parameters compared to a 2D CNN; making
the training process faster and more memory-efficient. Biological sig-
nals contain local patterns (e.g., the QRS complex in ECG, respiratory
cycles in Airflow, and sudden fluctuations in SpO2). A 1D CNN can
learn filters that effectively recognize these local patterns, highlighting
important parts of the biological signals while removing unnecessary
information. By using separate 1D CNN layers, the unique features of
each signal can be independently extracted, allowing the model to learn
significant patterns without interference between signals.

All convolutional layers were implemented using 1D convolution,
which is suitable for analyzing time series data as it is simpler and faster
than 2D convolutions. The 1D convolution operation can be represented

Fig. 4 | Graphical overview of the proposed SleepCVD-Net model for the auto-
matic screening of CVDs based on nocturnal physiological recordings.
A Multimodal input consisting of nocturnal physiological signals, including ECG,
airflow, and SpO2.BData preprocessingwas performed for raw signal normalization
using two-layer batch normalization for each modality. C Feature extraction was
conducted to generate a comprehensive featuremap by combining three sub-feature
maps.D The classification network for final discrimination was constructed using a

multilayer fully-connected neural network. EThe proposedmultimodal SleepCVD-
Net model produced predictive outcomes based on nocturnal physiological
recordings.Mode_ECG is a sub-mode for the single-lead ECG signal processing and
feature map generation. Mode_Airflow is a sub-mode for the Airflow signal pro-
cessing and feature map extraction. Mode_SpO2 is mode of the oxygen saturation
signal processing and feature maps.
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as follows

xk ¼ bk þ
XN

i¼1

wk × yi ð2Þ

where xk is the k-th feature, bk is the bias of the k-th feature, wk is the k-th
convolutional kernel from all features of the k-th feature, and yi represents
the i-th feature 32.

1Dmax-pooling layers follow all 1D convolutional layers to reduce the
dimensions of the intermediate featuremaps. This operation is knownas 1D
pooling when a 1D kernel is used. All pooling layers utilize maximum
pooling. The proposed SleepCVD-Net network employs the rectified linear
unit (ReLU) as the activation function in each layer, which can be repre-
sented as

f ðxÞ ¼ maxð0;wx þ bÞ ð3Þ

[where x is the feature-map, w is the weight, and b is the bias]. The ReLU
activation function provides robust training performance and consistent
gradients, thereby facilitating effective gradient-based learning 33.

After feature extraction on each mode, feature map flattening was
performed. The extracted feature map shapes were 1816 × 1 for Mod-
e_ECG,432 × 1 forMode_Airflow, and88 × 1 forMode_SpO2. For thefinal
decision-making process, all feature maps were concatenated, resulting in a
final feature map shaped 2336 × 1.

Biological signals interact with each other, and for the diagnosis of
cardiovascular diseases, it is important to comprehensively analyze various
signals. By performing flattening followed by concatenation, features
extracted from each signal are merged into a single vector, incorporating
richer information. This allows the model to learn the correlations between
multiple signals, enablingmore accurate predictions. The flattening process
converts high-dimensional features extracted by the CNN layers into 1D
vectors. This helps to reduce the complexity of the model and increase
computational efficiency. Concatenation integrates the features extracted
from each input variable, enabling the model to learn the relationships
between each input variable and make more accurate predictions based on
these relationships. This process allows the unique characteristics of each
input variable to be learned independently whilst modeling the complex
interactions between them. It is particularly useful for dealing with complex
problems where there are interactions between input variables.

D. Classification nets. Classification was done using a three-layer, fully
connected network (Fig. 4D). This network was trained using con-
catenated feature maps to reach a conclusion regarding CVD classes. To
optimize the classification performance and prevent overfitting and
underfitting, dropout was employed. The specific structure of this section
consisted of a dense_1 layer with 512 nodes, a dense_2 layer with 128
nodes, and a dense_3 layer with four nodes corresponding to each CVD
class. Dropout was applied after each layer, and softmax activation was
used in the final dense_3 layer to perform the final classification 34.

The concatenated vector is a large vector that includes various features.
The dense layer helps to learn the interactions between the features within
this large vector. This allows for a better understanding and discrimination
of the comprehensive patterns in different biological signals. Dense layers
(fully connected layers) enable the learning of more complex patterns by
nonlinearly transforming the input features through numerous neurons. By
combining the features extracted by the CNN layers and modeling various
nonlinear relationships, they provide stronger representational power,
enhancing the accuracy of detecting cardiovascular diseases. The dropout
layer prevents overfitting by randomly deactivating neurons during the
training process. By adding dropout layers, the model avoids excessive
reliance on specific neurons or paths, improving generalization ability and
performance on new data. This is crucial for maintaining robust perfor-
mance across diverse data distributions, especially considering the varia-
bility and diversity of biological signal data. Adding dense and dropout

layers twice ensures that the model undergoes a more stable and robust
training process, reducing abrupt fluctuations in the loss function and
allowing the model to learn in a smoother and more consistent manner.
Dropout layers also help prevent overfitting, enabling the model to achieve
more generalized performance.

E.CVDoutcomes. The proposedmultimodal SleepCVD-Net performed
multiclass classification into four distinct CVD categories: control,
stroke, angina, and congestive heart failure (Fig. 4E). A multiclass clas-
sification into four individual categories of CVDs is much more chal-
lenging than binary classification. Thus, for a more precise prediction of
each category, the sub-mode must learn the unique patterns and max-
imum utilization of information obtainable from each signal—the ECG,
Airflow, and SpO2. After separated feature map extraction, multiple
signals and feature maps incorporate more information and the repre-
sentational power of the proposed multimodal SleepCVD-Net model is
enhanced, thereby improving the reliability and accuracy of cardiovas-
cular disease detection. Learning the interactions and comprehensive
patterns across multiple signals enables more sophisticated decision-
making.

Implementation
To implement the proposed SleepCVD-Net model, we employed a high-
performance developing environment that entangled software with the
Keras framework35 and a TensorFlow backend36. For model training and
testing, an Intel CPU (i9-9900X @ 3.5 GHz) and NVIDIA GPU (GeForce
RTX 3090) were used.

Evaluation
The SleepCVD-Netmodelwas evaluatedusing the accuracy andF1-score to
assess the performance of automatic classification in different classes. To
calculate the F1-score, the precision and recall indexes should be repre-
sented for all classes. Additionally, total accuracy was calculated to facilitate
performance comparison with other studies. These metrics are defined as
follows:

Accuracy ¼ ðTPþ TNÞ=ðTPþ TNþ FPþ FNÞ ð4Þ

Precision ¼ TP=ðTPþ FPÞ ð5Þ

Recall ¼ TP=ðTPþ FNÞ ð6Þ
where TP, FP, TN and FNdenote the number of true positive, false positive,
true negative, and false negative events, respectively.

F1� score ¼
X

i

2 � wi
precisioni � recalli
precisioni þ recalli

ð7Þ

where i is the class index;wi = ni/N is theproportion of samples in class i;ni
is the number of samples in the ith class; and N is the total number of
samples.

A confusion matrix is a tool used to evaluate a classification model by
matching the actual classes with the predicted classes. By comparing the
predicted classes with the actual classes, the confusion matrix is utilized to
visually understand the performance of the model. The confusion matrix
helps identify the types of errors the model makes more frequently. This
insight was used to determine the necessary steps for improving the model
performance. Thus, the confusion matrix was used to individually evaluate
theperformanceof eachclass inamulticlass classificationproblem, aiding in
the understanding of the model performance for each class.

The receiver operating characteristic (ROC) curve is a graph that shows
the performance of a classificationmodel across all classification thresholds,
depicting the relationship between sensitivity and specificity. When the
dataset is imbalanced, a simple accuracymetric canmisrepresent themodel
performance. The ROC curve is less sensitive to class imbalance and can
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separately evaluate the classification performance of positive and negative
classes.Thismakes it useful for assessing the trueperformance of amodel on
imbalanceddatasets. TheROCcurveuses the areaunder the curve (AUC) to
evaluate the model’s performance, with a larger AUC indicating a higher
accuracy of classification.

Data availability
sleepdata.org/datasets/shhs, IRB: NCT00005275.
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