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Plasmonic biosensors and actuators for
integrated point-of-care diagnostics
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Nanoplasmonic optical antennas function as sensors and actuators, facilitating rapid and selective
on-site molecular diagnostics for personalized precision medicine. Here, we highlight advancements
in plasmonic biosensors and actuators within point-of-care diagnostics platforms, including optical
trapping, cell lysis and ultrafast photonic polymerase chain reaction. Furthermore, we discuss
nanoplasmonic optical sensing technologies, and commercial optical diagnostic systems.
Nanoplasmonic optical antennas are essential to photonic sample-to-answer systems, significantly
enhancing advancing preventive, personalized, and precision medicine.

The emergence of infectious diseases like COVID-19 (SARS-CoV-2),
monkeypox, and avian influenza has threatened public health and global
economies, with particularly severe impacts on low-income countries'™.
Significant advancements in infectious disease research and therapeutic
development have been made to overcome these challenges, focusing on
biosecurity, predictive and preventive medicine, and personalized health-
care. Among numerous technologies devoted to rapidly monitoring infec-
tious diseases, plasmonic biosensors are a powerful tool because of their
great specificity and sensitivity in sample collection and recognition. Plas-
monic nanostructures or nanoplasmonic optical antennas (NOAS), typi-
cally made of metals, have the unique property to concentrate and couple
with light for its oscillation and resonance of electrons on their surface™ at
highly localized hotspots. These hot spots in nanostructures generate a
photothermal effect, benefiting the localized photothermal lysis of patho-
gens, exosomes, or cells, and enhancing nucleic acid amplification tests
(NAATS) through photonic/plasmonic polymerase chain reaction (PCR) or
isothermal methods’ such as loop-mediated isothermal amplification
(LAMP), rolling circle amplification (RCA), and recombinase polymerase
amplification (RPA)"~’. NOAS also enable quantitative detection of mole-
cules through their fingerprints by enhancing their vibrational and elec-
tronic excitations near its surface. Molecular fingerprints can be identified
without labels using surface-enhanced Raman scattering (SERS)"’, plasmon
resonance energy transfer (PRET), quantum biological electron tunneling
(QBET)'"", reverse PRET", or the naked eyes (colorimetric detection)".
NOAS can be optimized to explore cellular environments'" and
monitor molecular dynamics5 . Size, shape, and composition of nano-
particles can be designed with specific localized surface plasmon reso-
nance (LSPR) wavelengths from the ultraviolet-visible (UV-vis) to the

infrared (IR) region'®. Various shapes offer different optical properties,
including nanospheres'’, nanorods', nanoshells”, nanocages®,
nanocrescents’', and nanostars™ (Box 1). Structures with sharp edges, like
nanocrescents”™* and magnetic nanocrescents” with high electro-
magnetic field enhancement factors and near-IR (NIR) absorption, serve
as alternatives for SERS substrates, and deeper penetration and reducing
photothermal damage in biomedical imaging. Anisotropic nanostructures
like nanorods, nanoshells, and nanocages with near-infrared LSPR are
especially useful for photothermal therapy due to reduced light attenua-
tion in biological tissues™™".

Plasmonic detection platforms offer stable solutions for identifying
biological components at low concentrations or at the single-molecule level,
which makes them ideal for early diagnosis and patient monitoring™. A
thorough understanding of the physical chemistry of nanomaterials is
crucial for designing molecular diagnostic systems that achieve ultra-fast
detection, especially in infectious disease diagnostics, where quicker results
can lower both time and costs in clinical environments.

This review highlights recent developments in plasmonic biosensors
and actuators, designed to create advanced integrated molecular diag-
nostic systems that enable sample preparation and detection on a single
chip. We investigate the principles of plasmonic trapping, the enrichment
of biomarkers, and the design plasmonic nanostructures to improve
photothermal lysis efficiency in biological samples. Furthermore, we
address how these nanostructures contribute to ultrafast photothermal
cycles in PCR for nucleic acid amplification. Finally, we examine label-free
plasmonic biosensors and their potential applications for future ultra-
sensitive molecular diagnostics aimed at early diagnosis in preventive and
precision medicine.
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Box 1 | Tuning the plasmon resonance of nanoparticles

At specific wavelengths, the collective oscillation of electrons in nano-
particles leads to significant total light extinction (absorption and scat-
tering) in the spectrum. This behavior is influenced by the nanoparticle’s
material, size, shape, and dielectric environment®*é.

Material composition significantly influences the intensity and spec-
tral location of the LSPR. Noble metals like gold and silver*® are com-
monly used due to their high free-electron densities and free electron-like
conduction bands, which facilitate strong interactions with electro-
magnetic waves in the visible spectrum®®. In contrast, other metals like
aluminum and copper have limited utility due to oxidation, lower plas-
monic efficiency, and restricted LSPR tunability**'*®?, Therefore, alloying
metals or modifying the surface can help adjust LSPR properties®”.

Nanoparticle size also affects LSPR characteristics. Due to electro-
magnetic retardation, larger nanospheres cause redshifted resonance
wavelengths, increased total extinction, and a higher scattering-to-
absorption ratio®*%, Forinstance, the LSPR of silver nanospheres shifts
from 400 nm to 500 nm as their size increases from 10 nm to 50 nm*®.

Conversely, smaller nanoparticles display sharper absorption peaks due
to strong radiative decay®®’. However, nanoparticles smaller than 2 nm
lack LSPR due to quantum confinement effects®*¢%,

Shape also influences optical properties. Isotropic particles like
nanospheres resonate at distinct visible wavelengths, while anisotropic
shapes such as nanorods, nanostars, and nanoshells support multiple
LSPR modes, extending into the NIR range. Gold nanorods have dual
LSPR peaks, associated with longitudinal (redshifted) and transverse
(blueshifted) modes, determined by their aspect ratio (AR) (length/
width)*®*=%? Nanoshells and nanocages can be adjusted by shell
thickness®'*%, cavity size, or porosity>*. By increasing the gold (lll)
chloride solution (HAuCl,) or iodine ion (1) concentration during synth-
esis, the LSPR can be redshifted to the NIR and the IR region in nano-
cages and nanostars®°%, respectively.

Lastly, the surrounding environment and interparticle distances (in
aggregates) can shift the LSPR wavelength, further affecting the optical
properties of nanoparticles.
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Fig. 1 | Complete biosensing process: from sample
collection to data analysis for the diagnostic
platform. In molecular diagnosis, biological sam-
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Biosensing workflow from sample-to-answer diagnosis
Biological samples such as blood, saliva, nasal swabs, or urine provide bio-
markers for disease-related endogenous genes and infectious microorgan-
isms at the molecular diagnostic level. In general, a comprehensive biosensing
workflow for sample-to-answer diagnosis involves transforming biological
samples into either qualitative or quantitative diagnostic results. This process
incorporates several steps: (1) sample collection, (2) enrichment and pur-
ification, (3) lysis, (4) target amplification, (5) signal detection, and (6) data
transmission. However, current chemical or mechanical sample preparation
techniques are often time-consuming, non-selective, and damaging to deli-
cate samples, which limit the purification yield of target molecules. Moreover,
traditional biosensing methods, including NAATS, generally require large
instruments and multiple sample preparation steps, and they exhibit a lower
signal-to-noise ratio when dealing with complex clinical biological samples.

Conversely, plasmonic biosensing and actuation techniques are par-
ticularly suitable for miniaturized integrated platforms tailored for point-of-
care (POC) diagnostics (Fig. 1). These methods can selectively enrich target
molecules, execute one-step localized plasmonic photothermal lysis, enable
efficient and ultrafast photothermal heat cycling for the amplification of
nucleic acids, or incorporate optical detection combined with artificial
intelligence (AI) analysis. They offer improved signal amplification and
processing speed, positioning them as an alternative to traditional methods
in various applications.

Plasmonic actuators for trapping and enriching nucleic acids,
proteins, exosomes, cells, and pathogens

A refined method known as plasmonic optical tweezers allows capturing
biomolecules such as nucleic acids, exosomes, cells and pathogens in low
concentrations, greatly minimizing the requirement for extensive sample

preparation equipment and chemicals. The optical forces involved in
these trapping platforms arise from interactions between light and matter,
mainly influenced by the scattering and gradient forces of the electro-
magnetic field”™’ (Box 2).

The plasmonic effect of nanostructures” can improve optical trapping,
significantly reducing the necessary optical power. Therefore, combining
nanoplasmonic structures and optical tweezers can improve the force scale
and potential well depth" for efficient optical enrichment of biological
samples (Box 2c¢). Plasmonic nanostructures can be engineered to efficiently
propagate light and concentrate it into a hotspot™ (Box 2d). When a
dielectric particle is located at position (r) near the plasmonic nanostructure
surface, the intensified optical near-field promotes trapping near the gold
pads. Simultaneously, the lateral scattering forces induced by the coupling of
evanescent waves drag the particle along the surface™:

(Faa®) = =3 [ dvRelia 2. 00) A (7. )

The particle size affects the resulting electromagnetic field distribution,
creating an optical potential landscape Ugq(R) which can impact the
particle motion. This potential energy Uy.q(R) originates the gradient (or
polarization) force, (Fgq(f)):

Foa = [ VLY P wOIE(r00)+ (V- P () E )

_ e(w)-1

in which P(r7 wo) = ———¢&(r,w,) is the vector electric polarization,
which correlates to the dielectric constant e(w,) of the material, the local
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electric field E(r, t) and magnetic field H(r, t) created by the incident light.
Then, a standard gradient relation expressed as:

Fgrad(t) = _vRUgmd(R)

where the potential Ugaq(R) defined from the optical index g of the
particle material and the electric near-field intensity |E(r,w)[’, is given by:

Upua® = =" [ e, a2
grad - 167 , vielr, wy

This potential depth can be actively tuned by altering the illumination
wavelength Ay =2nc/w, or the incident angle 6. A near-field plasmon
resonance and thus the trapping potential can be significant amplified by the
increasing the integral [ dv|E(r, wy)|*.

Two main strategies that can amplify optical forces on nanoparticles
are using surface plasmons generated by manipulating metal nanoparticles
to increase their mechanical response to the surrounding optical fields**** or
to create intensified fields*. The magnitude of light transmission is highly
influenced by excitation light’s wavelength and polarization, as well as the

nanostructure’s geometry and surrounding dielectric environment™.
Typically, metallic structures are patterned on dielectric substrates

Box 2 | Optical tweezer mechanism

containing target molecules in biological fluid samples. Among various
geometries, plasmonic dimers, consisting of two identical metal nano-
particles separated by a nanogap, exhibit properties that concentrate pro-
pagating light beyond its diffraction limit"~*’. When the propagating light
and the particles are linearly polarized, it results in tight confinement and an
intense light spot within the gap area™ (Fig. 2a). During light exposure,
plasmonic nanostructures undergo Joule heating due to the strong
absorption in metals. The heating creates a temperature gradient at the
interface between the nanostructure and its surrounding area, which
depends on the power and time of irradiation. In fact, in nano-optical
trapping, the temperature in a nanohole can increase by 10 °C by the illu-
mination of moderate light intensity (2 mW/um?)® or illumination on a
gold film at an intensity of 6.67 mW/um” (at Ao = 1064 nm)*’. The thermal
effect can consequently disturb the stable trapping by speeding up diffusion
and changing biological conformation™ due to thermophoresis, convection,
and thermos-osmosis”. The single nanohole structure exhibits a self-
induced back action (SIBA) effect, in which the trapped object reinforces the
restoring force within the trap™. The double nanoholes also dramatically
enhanced field gradients at the inner-aperture junction to further create a
sharper trapping potential'>”* (Fig. 2b). Moreover, Crozier's group
demonstrated a nano-optical tweezer based on all-silicon nanoantennas
without deleterious thermal effect”. To achieve high-speed trapping and
low concentration without perturbation of thermophoresis forces,

Optical tweezer or optical trapping is a force transducer that uses a dif-
fraction-limited, tightly focused laser beam to trap and manipulate
objects®®,

In the Rayleigh regime (particle size a < J), it responds to an electric
field which is based on polarizability a. The particle's dipolar polarizability
determines the magnitude of an optical field*"":

%
_ ik
67ey

where ag = 4m1ega’(e — 1)/(e + 2)°”; k is the field wavevector; and g is the
vacuum dielectric permittivity.
Hence, the optical forces can be calculated as®”:

1 > O | 0CE&y "
F_ZRe(oc)V|E| +%Re(EXH)+mVXEXE

Intensity gradient Radiationpressure  Polarization gradient

Where o = k,Im{a} /e, denotes the particle’s extinction cross-section, E
and H represent the electric and magnetic field, respectively, c the speed
of light in vacuum, and w the angular frequency of the optical field. The
first term represents the gradient force (Fga0) that pulls particles toward
the high-intensity gradient of the electric field. The gradient force is
proportional to the gradient of electromagnetic field intensity (/) / =
(Y)cnme, |E3| and tends to reduce the energy associated with induced
dipole:

=1 o4 > a

Fgrad = ZV|E0| = (Ecnmso)VI

The second term corresponds to the scattering force (Fsc4r) that

pushes particles along the direction of light propagation caused by

momentum transfer from light’s absorption and scattering®*:

—

n.,o N (Ogps + Ogcat)
F _ ""mYext Re(E x H*) = —m abs scat Re(E x H*
—o¢ el y=—""(0  Re )

scat —

The third term represents a spin-induced force resulting from the
presence of spatial polarization gradients (spin force is zero (E x E* = 0)
for the linear polarized light).

To optimize optical traps for different particle sizes and laser powers,
the gradient force and scattering force can be rewritten in terms of particle
size (r) and laser intensity (/)**:

2
p o 128lrr® (N 1)
< g W42

and

3,3 [N\2
Fgrad = _% <x2 T ;) V(|E|2)

Where A is the wavelength of the incident light, N is the object’s refractive
index relative to the medium, where n is the object’s refractive index. In
the Rayleigh regime, gradient and scattering forces scale with r*, and r®
respectively, so the gradient force usually dominates, pulling the particle
toward the highest field intensity (Box 2a) or lowest potential (since

U « —|E|?); the trapping potential (U) depends on both the gradient force

and particle size®®;

U(rg) = —ooF, / F(r)ar

Where r represents a position in space, dr denotes an infinitesimal dis-

placement. For a stable trapping, the potential well depth must exceed

the particle’s thermal energy (KT), typically requiring ~10kBT>>*%, Since
U x r, trapping smaller particles is more difficult and demands a higher
light intensity gradient or tighter focusing beam®° (Box 2b).
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electrothermoplasmonic (ETP) effects, a combination of plasmonic heating
with an a.c./d.c. (alternating current/direct current) electric field, induces the
capturing and forcing of suspended particles to the trapping area on the
timescale of a second. The a.c. field is then switched to a d.c. field or a low-
frequency a.c. field <10 Hz to permanently lock the particles in the hotspot
even when light illumination and d.c. field turning off®. By alter laminar
flows in microfluidics, the ETP can be implemented in LSPR assay to
accelerate the trapping of IgG to the sensor surface, resulting in improved
sensitivity and faster detection time® (Fig. 2d). However, when the plas-
monic heating is dissipated by high thermal conductivity substrate, the
photothermal hotspot is eliminated, preventing ETP flow induced particle
transportation®.

Moreover, optical traps are typically constrained to small sample
volumes. For low concentrations of biomolecules, exosomes, or pathogens,
it may not ensure reliable trapping and detection. Whang et al. integrated a
nanoporous mirror with hydrodynamic trapping to enhance bacterial
enrichment on the nanopores of a plasmonic optical array (Fig. 2¢). Strong
near-field enhancement occurs due to focused light from interference and
diffraction at the nanopore, nanoplasmonic particles attached and assembly
on the bacterial surface, and interactions of a plasmonic mirror surrounding
the nanopore. The diffraction of the incident light within the nanopore on
gold film causes constructive interference that can amplify the electric field
between gold nanoparticles and a gold film*>**”. When a particle tries to
escape, a reduction in light momentum (AT) generates a force (F) that draws
the particle back into the nanopore®’. Opto-hydrodynamic trapping, the
combination of opto-hydrodynamic effect and optical trapping, is used for
trapping different nanosized bio-samples such as viruses, mycoplasmas, and
pathogenic bacteria®. Moreover, photothermal actuation of Marangoni
flow allows microswarm robots to perform collective migration, self-
organization and group rejection®. This microswarm technology has been

applied to optothermal, damage-free gene delivery in biomedical
applications”. Additionally, Xin’s group introduced an opto-thermal-
hydrodynamic approach for precise manipulation and flexible patterning of
large-scale particle assemblies (up to 2000 particles) with a variety of shapes
and sizes (0.5-20 um)®, as well as direct 4D patterning with single-particle
resolution”.

Although convection flow comes with the disadvantages of photo-
thermal heating, photothermal-induced convection flow can be utilized to
enhance the assembly of various colloids with different gram-positive and
gram-negative bacteria (E. coli, B. subtilis, B. cereus, and M. luteus) for
strengthening the SERS signal without the need of specific linker or
templates™ (Fig. 2e). The motions of colloids depend on sizes and densities
under same velocities. Drag force pulls the small sub-100 nm molecules follow
the convection flow by their density. As the size of the molecule increased,
gravity and the buoyancy forces became more significant. Yet, when the
molecule density was approximately equal to that of water, drag force
dominated and controlled the transport. However, this method is still suf-
fering from particle aggregation so that it is not sufficient to use for single
particle trapping and fingerprint detection of a single biomolecule. Geometry-
induced electrohydrodynamic tweezers (GET) are introduced as an ideal for
massive single nanosized particles within seconds without detrimental heating
at the hotspot (Fig. 2f). The GET platform uses a scalable circular array of
plasmonic nanoholes with a central void to generate electrohydrodynamic
potentials that trap single nanosized particles at the void center, while also
enhancing fluorescence emission through surface plasmon waves™. The
plasmonic photothermal forces enable applications such as particle
separation’”*, cell/colloid manipulation”, extracellular vesicle (EV)
analysis’’, DNA size manipulation”, blood sorting”, and bacteria separation”.

Plasmonic optical trapping or plasmonic nanotweezers can become an
alternative method for enrichment of biomolecules since they have the
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Fig. 2 | Plasmonic tweezers as actuators for selective trapping and enrichment of
biological samples: DNAs, RNAs, proteins, exosomes, viruses, and pathogens.
a Reversible trapping of lambda DNA on a metallic nanostructure by switching
femtosecond-pulsed NIR laser irradiation on and off. Reprinted with permission
from ref. 51. Copyright 2013 American Chemical Society. b The nanogap of a gold
bowtie can create intense optical hot spots that trap DNA translocation through its
nanopore, offering physical control over the speed of DNA movement. Reprinted
with permission from ref. 54. Copyright 2015 American Chemical Society.

¢ Plasmonic bacteria are forced to align on the nanopore. Reprinted with permission
from ref. 285. Copyright 2018 Springer Nature. d An electrothermoplasmonic effect-
based LSPR microfluidic sensing chip can overcome optoelectrical convection flow,
demonstrated through high fluid velocities and improved immunoglobulin G

b. ey

)
Conductive flow-byS
photothermaf conversi

Bacterial enrichment
in the vicinity of the nanopores

detection performance. Reprinted with permission from ref. 61. Copyright 2018
American Chemical Society. e Thermophoretic force is created when photothermal
heating around gold nanorods under resonant laser irradiation (785 nm) drives
convection flow, enabling the localized plasmonic gold nanorods assembly with
micro-sized bacteria without requiring specific linkers or templates. Reprinted with
permission from ref. 70. Copyright 2022 Wiley-VCH GmbH. f Nanocavities of
geometry-induced electrohydrodynamic tweezers (GET) allow a.c. electro-osmotic
flow at the center of the void region where individual EVs are to be trapped, enabling
plasmon-enhanced optical trapping under laser illumination without causing
harmful heating effects. Reprinted with permission from ref. 62. Copyright 2023
Spinger Nature.

ability to overcome the diffraction limit for trapping and detection of bio-
molecules with low laser powers as well as chip device integration. Its
application remains limited application from lab-to-industry due to com-
plex fabrication methods, small trapping range and thermal effects although
there are many efforts to overcome its limitations, including increasing
inverse design, accurate trapping potential and perturbation, simplified
instrumentation®.

Enhanced lysis efficiency by nano-plasmonic structures

Photothermal heating does not necessarily have to be destructive when it
facilitates a hotspot area. If the temperature surpasses the trapped particles, it
can reshape the melt molecules into various forms depending on the power
and illumination time. Biological membranes of exosomes, cells, or
pathogens are highly vulnerable to heat, particularly within the range of
60-100 °C, which disrupts their structural integrity and functionality®*~*"
Therefore, the activation of nanoplasmonic photothermal lysis with loca-
lized heating up to 300 °C can effectively disrupt cellular membranes®.
Moreover, metal nanoparticles are promising alternatives for antibacterial
purposes due to their ability to produce reactive oxygen species (ROS) (-OH,
-0,7, and '0,), release cations, damage biomolecules, deplete ATP, and
interact with bacterial membranes®*” (Box 3). As nanoparticle size
decreases, their specific surface area increases, enhancing their interaction
with the surrounding environment®™". Bacterial cells interacting with
polyvalent gold nanoparticles can lead to cell damage through two main
pathways: (1) direct contact and (2) light-induced photothermal effect (Fig.
3a). A simple setup using LED illumination (excitation wavelength and
exposure time) through focused beams that match the optical absorption of
nanoparticles or nanostructures” can be coupled with LSPR”~** for localized

photothermal heating. The stability of local heating can be achieved by
controlling metallic nanostructures with less energy consumption™. Addi-
tionally, enhanced heating efficiency can be further achieved by controlling
the geometry of nanoparticles (such as size, shape, and wavelength) and
adjusting optical absorption at desired wavelengths™ or by using a concise
channel in a microfluidic chip to obtain efficient optical absorption. For
instance, Fig. 3b shows gold nanoparticles embedded in the modified her-
ringbone structure of polydimethylsiloxane (PDMS) microfluidic chips for
bacteria trapping and DNA extraction. Bacteria captured were irradiated with
a 532 nm laser for 10 minutes to complete the DNA extraction for the PCR
process™. Using the same 532 nm laser in the lysis chamber containing
magnetic particles, a 15 min irradiation can extract DNA from the foodborne
pathogens”. Spherical gold nanoparticles were irradiated by white light laser
beams to disrupt microbial membranes at 100 °C within 2 min™. Moreover,
the excitation by blue LED (447.5nm) on gold-coated polycarbonate
membranes quickly disrupts the membrane proteins of E. coli at a tem-
perature of 90 °C within 1 min, making them useful for point-of-care uri-
nalysis (Fig. 3c). NIR lasers were used to irradiate high-aspect-ratio gold
nanorods to achieve efficient localized photothermal bacterial lysing within
30s'". Moreover, the highly efficient photothermal cell lysis chip (HEPCL
chip) composed of PDMS chips and plasmonic gold nanoislands enables
broad-spectrum absorption and can evenly distribute temperature across the
chamber, reaching the optimal temperature for cell lysis within 30 s (Fig. 3e).
The heating efficiency of gold nanoislands can trigger lipid membrane
photoporation and successfully lyses 93% of PC9 cells at 90 °C while mini-
mizing DNA denaturation’. Compared to continuous light, LED-pulsed
plasmonic photothermal can extract enzymes and enhance the capability of
detecting antimicrobial resistance enzymes like p-lactamase'”'. Using on-chip
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Box 3 | Mechanism of photothermal lysis

Some metals, like zinc, silver, and copper, inhibit bacteria even in mac-
roscopic form, while iron oxide can typically develop antibacterial activ-
ities only at the nanoscale®'". When continuous waves or laser light are
exposed to gold nanoparticles, they produce singlet oxygen ('0,), gen-
erating a photochemical reaction that can destroy the cells. The equili-
brium of hot electrons correlated with 'O, photogeneration can be
explained by Dexter-type electron exchange coupling®'?*'®. One electron
moves from an oxygen 277 orbital to a photogenerated hole on the sen-
sitizer, while another electron of opposite spin transitions from a high-
energy sensitizer level to the same or another 277* orbital, resulting in
singlet oxygen in either the 'S or 'A*'**'®, For this process to occur, an
oxygen molecule must be within ~10 A of the nanoparticle surface at the
instant of excitation to allow electronic wavefunction interaction®'®. These
reactive oxygen species (ROS) cause oxidative stress, damaging bac-
terial membranes by targeting thiol groups in membrane proteins®'"*'®.
Moreover, nanoparticles release metal ions that disrupt the membrane by

altering lipopolysaccharide structures, inducing lysis, and interfering with
metabolic pathways®'".

Plasmon resonance relaxation in nanostructures can occur through
two main pathways: radiative decay, where photons are re-emitted, or
non-radiative decay, where hot electron-hole pairs are generated via
Landau damping''®*"®. These hot carriers interact with metal lattice
phonons, generating local heat. When photothermal heating raises
membrane temperature above 41.4 °C*%°, it converts the lipid bilayer from
a gel®' to a fluid phase®®. This induces photoporation®*® and expansion
among phospholipids, lowering membrane density and increasing
permeability®**. Water influx through the membrane causes swelling,
disruption and eventual release of cellular components®*~*', Interest-
ingly, the membrane has intrinsic properties for self-repair under mod-
erate heating. Brownian diffusion forces phospholipid molecules to move
from higher concentrations to lower concentrations for the healing
process®®.
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LED-pulsed plasmonic photothermal lysis achieves cell lysis without protein
denaturation (Fig. 3f). However, photothermal heating can cause non-
specific lysis of cells, mitochondria, bacteria, and vesicles, which may create
unwanted background interference. This interference complicates down-
stream analysis and differentiates between target and non-target molecules in
complex biological samples such as bodily fluids (e.g., blood, saliva, and urine)
or tissue extracts. Moreover, photothermal heating can lead to uneven tem-
perature distributions between the hotspot and surrounding areas, resulting
in either partial lysis or complete breakdown of cellular components. To
address this issue, it is essential to optimize optical power precisely to promote
efficient lysis while minimizing excessive non-uniform heating. An appro-
priate sample pretreatment or purification step may also be necessary before
photothermal lysis of cells and cellular components to ensure controlled and
selective processing.

Increase of overall temperature

The multiple-element nanoparticles made of iron-nickel-copper
(FeNiCu) selectively promote the release of ions to E. coli cell membrane
protein groups, depending on metal binding affinity to membrane proteins.
Specifically, copper ions were released significantly more than nickel, while
iron showed the least release'”. This highlights the potential of multi-
principal element nanoparticles for controlled metal jon release in anti-
bacterial applications (Fig. 3d). Recent focus has shifted toward leveraging
the synergy between metals’ surface plasmon resonance and semi-
conductors, broadening LSPR and enabling the excitation of adjacent
semiconductors'™'*. By semiconductor supports, hot electrons generated
from plasmonic metals are transferred to semiconductors under incident
light and extending the lifetime of these hot carriers'”. For example, an
interfacial bismuth sulfide/titanium carbide MXene (Bi,S3/TizC,Ty)
Schottky junction showed intense photocatalytic activity under near-

npj Biosensing| (2025)2:45


www.nature.com/npjbiosensing

https://doi.org/10.1038/s44328-025-00050-1

Review

/a4

| Wi
')'

FeNiCu metal

a. Bacteria Cell - AuNPs Polyvalent b. Concanavalin A C.
Interaction Damaged (ConA) 532nm laser AUNP o . ., == >
Bacteria Cell D ® ® & [ e =25
p //w\ 4 -
[ * Direct Contact P . Light
L / v N i on t
L 5 Damaged
! }L'th{Bacteria Cell 3 - S
Photothermal Loabl/- . - o )
Therapy Bacteria Cell ' Z- SIPPYess: = Photonic lysis ‘
ZuAh Photothermal DNA extraction
: e. f.
Graphene liquid cell . \
encapsulation / Protein driven dissolution of N ’ No signal | Red signal
- ! FeNiCu nanoparticles E s emission emission
- 5 = ! Rap 3% -~ I
s== ! . :
- ' ° '
==~ : : ¢
] I !
- T : A Metal | @ Propigium s 3
EPDS A 1 i atom | ; - iy
~% i ¢ Acysteire : Live cell Ruptured cell
i i
! |
|
i :
! )

E.Coli bacteria

Fig. 3 | Plasmonic lysis effects of nano-plasmonic structures. a Schematic diagram
illustrating the mechanism of cell disruption by the oxidative mechanism through
two main pathways: (1) direct contact and (2) light-induced photothermal effect.
Reprinted with permission from ref. 286. Copyright 2019 Wiley-VCH Verlag GmbH
& Co. KGaA, Weinheim. b Gold nanoparticles embedded in conjunction with a
modified herringbone-structured GASI microfluidic chip to capture, enrich, and
extract their DNA via a 532 nm laser with a power of 300 mW for 10 irradiations.
Reprinted with permission from ref. 98. Copyright 2017 Elsevier B.V. ¢ Gold-coated
nanoporous membrane enables 40,000-fold bacterial enrichment from a 1 mL
sample in 2 min and photothermal lysis of bacteria within 1 min through ultrafast
light-to-heat conversion. Reprinted with permission from ref. 8. Copyright 2019
American Chemical Society. d Multi-principal element nanoparticles (FeNiCu)

N0r0)

white LED on

white LED off

eLED pulse

show the release of metal ions (Cu, Ni, and Fe cations) with different binding affinity
to bacterial cell membrane protein functional groups, leading to the disruption of
bacterial walls. The release of ions decreased from copper to nickel and then to iron.
Reprinted with permission from ref. 102. Copyright 2023 American Chemical
Society. e Strongly absorbed plasmonic gold nanoislands (SAP-AuNIs) generate
uniform photothermal heating, achieving rapid cell lysing 93% of PC9 cells at 90 °C
in 90 s without nucleic acid degradation. Reprinted with permission from ref. 7.
Copyright 2023 American Chemical Society. f A rapid antimicrobial-resistance
point-of-care identification device (RAPIDXx) can extract contamination-free active
target enzyme by photothermal lysis of bacterial cells on a nanoplasmonic functional
layer on-chip without destroying the enzymatic activity by pulsed LED. Reprinted
with permission from ref. 101. Copyright 2024 Wiley-VCH GmbH.

infrared radiation by facilitating charge transfer, thereby increasing electron
density, and consequently generating reactive oxygen species, then enhan-
cing bacteria membrane permeability'®. The antibacterial efficiency was up
to 99.86% against S. aureus and 99.92% against E. coli within 10 min;
moreover, plasmon excitation of gold nanorods distributed on titanium
dioxide (TiO,) nanosheets can induce light-driven production of hot elec-
trons and ROS for broad-spectrum photocatalytic activity'”. However, the
substantial ROS can disrupt biomolecules and organelle structures, leading
to DNA/RNA damage'®'”. Therefore, precise control of nanoparticle
design and light irradiation is necessary to maintain the cellular components
for further diagnosis. Oxidative reactions from plasmonic lysis can produce
unwanted byproducts like lipid peroxidation and protein oxidation. These
reactions may also cause structural changes, jeopardizing biomolecular
integrity, leading to false-negative results in follow-up analyses. In addition,
biological systems contain inherent antioxidants and reducing agents that
can neutralize ROS or aid in molecular repair, which can markedly reduce
overall lysis efficiency. Like photothermal heating, ROS-mediated plas-
monic lysis can cause non-specific cell damage and inconsistent efficiency,
necessitating thorough optimization and purification to achieve selective
and reproducible results.

Nano-plasmonic structures enhanced nucleic acid amplification
Photothermal heating involves four primary steps, occurring within a
timescale of ~100 ps''*"'"’. First, when a photon from an incident light
reaches and is absorbed by the metal nanostructures, a generation of
electron-hole pair is generated, exciting electrons and holes and driving
them out of equilibrium. Next, these exciting, high-energy carriers undergo
thermalization by the relaxation of energy through electron-electron

scattering. Then, these electrons dissipate their thermal energy into the
lattice by electron-phonon interaction. Finally, this lattice energy dissipates
into the surrounding environment''"*"'" (external thermalization) (Fig. 4a).
Electron thermalization occurs extremely quickly in bulk metals (500 fs for
gold and 350 fs for silver)'"*'*¥, making plasmonic photon-to-heat conver-
sion adequate for use in NAAT application. In a subsequent study, mixing
gold nanoparticles into bulk solution''*'** improved PCR sensitivity'*' and
reduced reaction time to 10 min'** (Fig. 4b). In 2017, a remarkable
achievement of 30 thermal cycles in just 54 s was accomplished by incor-
porating plasmonic gold nanorods (aspect ratio 4.1) using an 808 nm NIR
laser (2 W) to photogenerated heating'*’. During the COVID-19 pandemic,
Cheong et al,, by integrating magneto-plasmonic nanoparticles having a
diameter of 16 nm illuminated by an 80-mW laser diode wavelength of
532 nm with a portable device, could detect SARS-CoV-2 RNA in 17 min'*,
Integrating ultrafast photonic PCR with microfluidic platforms for point-of-
care devices has involved extensive research on thin metal films'” to
accelerate amplification by minimizing sample volume and improving heat
transfer rates. Son et al. used a thin gold film (65% absorption, 120 nm thick)
as a photothermal heater for achieving 30 cycles within 5 min (Fig. 4c).
Then, two gold films form optical mirrors to increase the photothermal
heating efficiency and increase the sensitivity up to 2 DNA copies (cp)/puL'*".
Plasmonic pillar arrays, which absorb the light at the whole visible range, can
induce the photogenerated heating for photonic PCR'**'** (Fig. 4d). Pho-
tonic PCR is an effective solution for nucleic acid amplification, reducing
amplification time, improving accuracy, and lowering costs through inte-
grated plasmonics-based optofluidics and a low-cost complementary metal-
oxide-semiconductor (CMOS) sensor. Controlling photothermal heating
requires careful material selection, choice of light source, and integration
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Fig. 4 | Plasmonic nucleic acid amplification. a Electron-phonon coupling leads to
lattice heating. This coupling causes energy transfer. b Schematic illustration of
nucleic acid amplification in bulk solution when switching the LED on and off.

¢ Schematic illustration of nucleic acid amplification in a nanofilm. d Schematic

illustration of nucleic acid amplification in nanopillar structure. e Schematic illus-
tration of plasmon-enhanced colorimetric detection in isothermal amplification.

f Schematic illustration of nucleic acid amplification in a metasurface near-perfect
absorber.

with microfluidic chips (Table 1). However, current university-level
demonstrations are underdeveloped and often perceived as expensive sys-
tems, primarily due to limited experience with integrated circuits and
photonics within existing educational frameworks. As a result, students and
postdoctoral researchers lack opportunity to gain experience comparable to
that of professional device engineers in the industry. Skilled engineers can
mass-produce integrated optofluidics and CMOS sensors, creating low-cost
POC devices suitable for both developed and low-resource settings.

A plasmonic colorimetric sensing strategy was developed as a
simpler approach for rapid integration with a photonic PCR-based
POC device. For example, Jiang et al. introduced a direct detection
plasmonic PCR method by combining magnetic nanoparticles and gold
nanoparticle-based cross-linking colorimetry, achieving the limit of
detection (LOD) of 5copies/uL within 40 min'”. Additionally,
AbdElFatah et al. developed a microfluidic cartridge for plasmonic
LAMP and RCA with colorimetric detection (Fig. 4¢)". In this system,
hot electrons are generated from the self-assembled plasmonic nano-
particles (400 nm), accelerating nucleophilic reactions during the
amplification process. As a result, protons were significantly produced,
leading to a rapid decrease in pH, causing a color transition from fuchsia
to yellow. Moreover, to enhance the sensitivity of colorimetric signals,
they combined them with machine-learning algorithms to analyze the
readout. This algorithm is designed to interpret the color changes
quantitatively, determining whether the results are positive or negative
for the target nucleic acids'’. This method can amplify nucleic acids
within 10 min, making it suitable for POC testing. As an alternative to
thermal cycling-based PCR, isothermal amplification methods with a
wide range of temperatures can be performed using an inexpensive and
simple heating device. However, they still achieve the detection of single
RNA copies per reaction. Despite their technological advancements in
nucleic acid detection, these methods are limited in protocol standar-
dization and still suffer from inconsistency"”, false positive results"’,
complicated multiple primer sets'”, low amplification efficiency, and
non-specific amplification'”. Therefore, aside from LAMP, other

isothermal amplification methods have experienced delayed US Food
and Drug Administration (FDA) approval as primary diagnostic tools,
while PCR remains the gold standard for NAATS.

One of the major limitations in enhancing light-to-heat conver-
sion efficiency in photonic PCR devices is the light absorption of
nanostructures'**. Therefore, optimizing photothermal heating mainly
focuses on tuning their plasmonic properties for enhancing light
absorption and increasing electron-phonon coupling. A near-perfect
absorber for an ultrafast metaphotonic PCR chip was recently intro-
duced by Kim et al. as illustrated in Fig. 4f. A large-area titanium nitride
(TiN)-based broadband meta-absorber on a 6-in. wafer can enable
ultrafast DNA amplification within 6 min and 30 s using a compact
single IR LED source operating at 940 nm with a power of 3.8 W. TiN
offers significant advantages for photothermal heating over conven-
tional plasmonic materials by increasing electron-electron scattering
rise time (~115 fs) compared to gold (~1 ps), enabling quicker electron
excitation. Moreover, TiN exhibits a 25-100 times stronger electron-
phonon coupling than gold, resulting in a shorter thermalization time
(0.15 ps versus 5-10 ps for gold) and a greatly enhanced photothermal
effect'”. Enhanced light absorption in nanostructures has led to the
development of commercial photonic PCR systems now available on
the market.

Plasmonic structures enhance optical detection for molecular
diagnosis

For accurate molecular profiling, optical plasmonic antennas identify
target molecules through their unique vibration and electronic excita-
tions. By coupling optical antennas with target biomolecules, real-time
and quantitative detection can be achieved through the corresponding
spectra (Box 4).

Surface plasmon resonance
Surface plasmon resonance (SPR) is an optical sensing technique based
on the excitation of surface plasmon polaritons, electromagnetic waves
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Table 1 | Plasmonic photothermal cycles for the amplification of NAs

Materials Speed Reaction Light source Absorption Heating Cooling LOD Target Year
volume (nm) rate rate
(°C/s) (°C/s)

Spherical gold 10 min 25-40pL 532 nm laser, 3W 532 nm 7.62 3.33 - Human androgen 2012 (ref. 122)
nanoparticles (60 nm) receptor gene
Gold nanorods (AR 6) 1h/48 cycles (96 °C, - 808 nm, 3.6 mW 781 nm - - - - 2013 (ref. 278)

60°C, 78 °C)
120 nm gold film 5min/30 cycles (55°C,95°C)  5puL 450nm, 3.5W 450 nm 12.79 6.6 with 0.1 ng/pL A-DNA 2015 (ref. 279)

cooling
fan

10nmand 120 nm 4 min/30 cycles (94°C,68°C)  1.3puL 447.5 nm, ~20 W 300-500nm 7.5 6.35 2 DNA cp/pL c-MET cDNA 2016 (ref. 126)
gold films
Gold nanorods (AR 4.1) 54 s/30 cycles 10-25puL  808nm,2W 808 nm 70 50 1-50 ng DNA 2017 (ref. 123)
PEGylated and silica- 7.5 min/cycle 10pL IR-LED, 8.5W 846 nm 16.6 9.4 5ng/ M13mp18 DNA 2017 (ref. 280)
coated gold bipyramid pL-1 pg/pL
(PEG-Si-AuBPs)
Polycarbonate 10 min/40 cycles (95 °C - 447.5 nm, 890 mW 447 nm - - 10° CFU/mL E. coli 2019 (ref. 127)
membranes - 5 nm and 60 °C)
Titanium - 80 nm gold film
Glass nanopillar array (180 - 15l white LED, 3-7.5W <500 nm 9.3 12.4 0.1 ng/pL cDNA 2020 (ref. 127)
nm) with 10 nm Ag coating
and 40 nm Au nanoislands
(GNA@Ag/AuNls)
6 nm magnetic core 42 °C (5 min), (40 cycles/6 min), 20 L 532 nm, 80 mW 535nm 13.17 4.94 3.2cp/pL SARS-CoV-2 2020 (ref. 124)
covered by a 12 signal detection steps (3 min)
nmgold shell
150 nm iron oxide—-gold <5 min 10pL 850nm, 8.5W 850 nm 7.69 5.89 90 aM A-DNA 2021 (ref. 120)
(Fe;0,@Au) core—shell naked eyes
magnetic nanoparticles
Glass nanopillar array (180 3 min/40 cycles 1L White LED, ~2.8 W 400-500nm  11.95 7.31 1.37x 10*cp/uL  SARS-CoV-2 2021 (ref. 128)
nm) with 10 nm Ag coating
and 40 nm Au nanoislands
(GNA@Ag/AuNls)
30.0nmgoldcore-45.9nm LAMP, = 75 min 50 uL heat blocks ~530 nm - - 10 cp/reaction ~ SARS-CoV-2 2022 (ref. 281)
silver nanoshells
Gold nanorods 2 min/Reverse transcription 20 uL 3 IR- LEDs ~850 nm 6.7 —4.7with  59x10° SARS-CoV-2 RNA 2022 (ref. 119)
(AR ~ 4.5 nm) with 10 nm (RT) (2 min), denaturation 12V fan cp/uL
silica coating (95 °C/10s), <15 min/45 cycles

(60 and 95 °C)
N-heterocyclic carbene 8 min/40 cycles (60 to 95 °C) - Blue light 450 nm 8.75 17.5 843 cp SARS-CoV-2 2023 (ref. 282)
(NHC)-conjugated gold
substrate
Polystyrene particles LAMP, lysis 130 nL Ambient light = = = —5.3cp/ULDNA  SARS- 2023 (ref. 14)
covered by zinc oxide and (3 min),detection (10 min) CoV-2, influenza A
aluminum
Nanoscale gold islands Thermal lysis (3 min); RT-RPA 40 L 643 nm, 25 W NIR - - 10cp/ reaction ~ SARS-CoV-2 S gene 2023 (ref. 201)

(30 min); and hybridization on

pGOLD (1 h)
Glass nanopillar array (180 10 min (RT (210s)and 400s/40 2 pL White LED, High 18.85 8.89 10 cp/uL SARS-CoV-2 RNA 2023 (ref. 283)
nm) with 10 nm Ag coating  cycles) 168 mW/mm? absorption
and 40 nm Au nanoislands in the visible
(GNA@Ag/AuNIs) spectrum
Plasmonic cavity 3 min/30 cycles (55-95 °C) 1nL 785nm, 3.8W NIR 23.3 - 1cp/uL SARS-CoV-2 2024 (ref. 284)
membrane composed of
gold nanorods with
SiO, tips
Metal-insulator-metal (TIN 6 min 30 s/30 cycles (65-95°C) 4 pL 940nm, 3.8 W Broad 16.66 7.7 - A-DNA 2024 (ref. 135)
ring structure, SiO; layer, a absorption
TiN film) spectrum
80 nm gold film RCA, 40 min - Pulsed - - - 10° CFU/ mL B-lactamase- 2024 (ref. 101)

447.5nm, 0.75 W

producing E. coli

that propagate along a metal-dielectric interface. SPR is used to measure
the changes in the refractive index near the metal surface, typically at
interfaces with media such as liquid or air"*® (Fig. 5a). In SPR-based
molecular detection, the sensing surface was immobilized with specific
bioreceptors such as antibodies, DNA probes or ligands, which selec-
tively bind to the target molecules. When the target molecules bind to
immobilized bioreceptors, this leads to a change in refractive index, then
causing spectra or angular shift””**. SPR is known as a label-free
method, which allows binding kinetics measurement and offers high

sensitivity down to pg/uL'"”’. Commercial SPR-based sensors are being
developed for real-time monitoring of viruses'**'*!, proteins'*’, DNA'*,
exosomes'*’. SPR is considered a surface-sensitive technique; however,
its primary limitations stem from surface interactions. One significant
drawback is the non-specific signal response, which arises from the
broad region of the evanescent field (~100 nm)'**, whereas typical pro-
tein analyte sizes range only from 2 to 10 nm'*. This discrepancy can
result in non-specific signals from unintended contributions of mole-
cules in the surrounding medium rather than actual surface-bound
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Box 4 | The hierarchical structure of the energy levels of molecules

A molecule’s energy levels include electronic (Ee), vibrational (E,) and
rotational (E,) components, as described by the Born-Oppenheimer
approximation. These energy levels of the ground state and excited state
are illustrated by Perrin—Jablonski diagram, which shows energy transi-
tions between the ground state (S,), first (S4), and second (S,) excited
states of the singlet electronic manifold. At ambient temperature, most
molecules reside in the lowest electronic singlet state (ground state).
When irradiated with light of an appropriate wavelength, they can be
excited to a higher energy state. These excited states include electronic,
vibrational, and rotational states. Ultraviolet and visible wavelengths
(photon energy 5 x 10* to 1 x 10*cm™") excite a molecule into its elec-
tronically excited state. The infrared region (photon energy 4 x 10° to

1 x 10°cm~") and the microwave region (photon energy 2 to 0.5 cm~") are
used to excite a molecule to its vibrational and rotational excited state,
respectively®*°. During a spectroscopic transition (absorption and emis-
sion), the total energy absorbed or emitted is equal to the photon energy,

expressed as:
hv = AE, + AE, + AE,

where hv is the photon energy and each AE represents the change in
respective energy level**’.

Molecular spectroscopy utilizes these transitions to probe molecular
properties. Rotational motion energy levels allow molecular geometry deter-
mination, as these levels are directly related to the molecule’s moment of
inertia, which depends on internuclear distances. Electronic transitions in the
UV-vis region provide structural information about molecules in both ground
and excited electronic states. In plasmonic systems, light irradiation can excite
surface electrons near the Fermi level (Ef) into the sp-band. These hot elec-
trons can overcome the potential barrier and tunnel into nearby molecules,
promoting electronic transition into the excited state (e >)***' (LUMO: lowest
unoccupied molecular orbital, HOMO: highest occupied molecular orbital).

a b.
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AN~ Cad |
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= Electronic energy levels  ---»Vibrational relaxations
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interactions. Additionally, shifts in the bulk refractive index in complex
biological samples can induce a bulk response, leading to false-positive
or misleading signals. Addressing this issue has driven considerable
research efforts, including modulating the total internal reflection (TIR)
angle to optimize surface interactions and utilizing polymer brushes
under physiological conditions'”’. Developing robust strategies to
eliminate bulk response remains essential for enhancing the specificity
and accuracy of SPR-based biosensing.

Localized surface plasmon resonance

Localized surface plasmon resonance (LSPR) arises from the collective
oscillation of free electrons throughout the entire metal nanostructure,
leading to strong light absorption at specific wavelengths (Fig. 5b). In LSPR,
the electromagnetic field decays exponentially with a length of

%—J
Raman scattering

approximately 5-10 nm, which is highly sensitive to the refractive index of
the solution near the surface. Compared to SPR, LSPR offers higher spatial
resolution due to the nanoscale confinement. This characteristic enables the
development of refractive-index-based LSPR in biosensing fields'*. This
resonance, which depends on the refractive index, can be understood
through the electrical resonance of an LCR circuit made up of an inductor
(L), a capacitor (C), and a resistor (R). In this framework, the inductance is
attributed to the material properties, the fringe capacitance is linked to the
displacement current caused by the dipolar field interacting with the sur-
rounding medium, and the resistance represents the limitations on electron
oscillations at the surface'”’. In this model, the metal nanoparticle can be
considered a nanoinductor, and the surrounding medium as a nanocapa-
citor, with capacitance directly related to the refractive index of that med-
ium. The resonance frequency in electrical circuits is inversely proportional
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Fig. 5 | Plasmonic enhanced optical detection methods. a Schematic illustration of
the surface plasmon resonance (SPR). SPR uses light-excited surface plasmon
polaritons (SPPs) to detect the binding of ligands to receptors immobilized on a
metallic thin film surface. b Schematic illustration of the localized surface plasmon
resonance (LSPR). LSPR refers to the collective oscillation of conduction electrons
near the surface of metallic nanostructures when exposed to light, generating a
localized electromagnetic field with unique optical properties. ¢ Schematic illus-
tration of surface-enhanced Raman spectroscopy (SERS). The detected Raman shift
is correlated to the excited vibration of the molecule, occurring during the inelastic
scattering of photons (Stokes or anti-Stokes). d Schematic illustration of plasmon-
enhanced fluorescence (PEF). The plasmonic nanoparticles enhance the local
electromagnetic field, increasing the excitation rate and the radiative decay rate of
the fluorophore nearby. e Schematic illustration of plasmonic dimer. Plasmonic
coupling can enhance 10* stronger intensities than that of fluorophore molecules.
f Schematic illustration of plasmon resonance energy transfer (PRET). Energy is
transferred from plasmonic optical antennas to the molecule showing the quantized
quenching dips at the absorption peaks of the molecule on the scattering spectrum

E,iEJES
A

As Wavelength Wavelength Wavelength

of the nanoplasmonic optical antennas. g Schematic illustration of plasmonic
resonance energy transfer-based metal ion sensing (PRET-MIS). Metal ions can be
identified explicitly by conjugated metal-ligand complexes and a single gold
nanoparticle using PRET-MIS. When the absorption spectrum of the metal-ligand
complex matches with the scattering spectrum of the gold nanoparticle, it induces
energy transfer, resulting in a distinguishable quenching dip on the gold nano-
particle scattering spectrum. Reproduced with permission from*”’. Copyright 2009
Springer Nature. h Schematic illustration of quantum biological electron tunneling
(QBET). QBET spectroscopy uses PRET to observe real-time optical detection of
quantum biological electron tunneling and electron transfer in mitochondrial
cytochrome ¢ during cellular apoptosis and necrosis in living cells. i Schematic
illustration of reverse plasmon resonance energy transfer ({PRET). Monitoring
dynamic intercellular communication can be achieved by interfacing plasmonic
nanoantennas with resonating black hole quencher (BHQ-3) molecules, enabling
cell-cell signaling detection through enzymes like azoreductase released via EVs or
microvesicles (MVs).

to (LC)"?, which parallels plasmon resonance. Consequently, the plasmon
resonance frequency rises as the refractive index of the surrounding medium
drops. Diverse nanoplasmonic structures with different sizes and shapes are
used to enhance the sensitivity of LSPR biosensors and maximize the AA
(wavelength shift) upon biomolecule interactions'**'*. The enhancement
from plasmonic nanostructures has improved LSPR-based detection of
biomolecules such as ATP'”', proteins'**"*, exosomes'”.

Moreover, the LSPR-based technique can be integrated with lateral
flow-based POC sensing devices that rapidly perform colorimetric
detection'*"**, Compared to conventional SPR, LSPR provides an advan-
tage due to its high aspect ratio, enhancing the surface area for biomolecular
interactions and improving compatibility with complementary detection
methods, including SERS and surface-enhanced fluorescence (SEF)"“*'*.
While LSPR offers certain benefits, it typically exhibits lower sensitivity to
refractive index changes than conventional SPR. Nonetheless, its higher
aspect ratio allows for enhanced accommodation of biomolecules on the
surface of metal nanoparticles, which in turn boosts detection sensitivity.
Recent studies have explored SPR-LSPR hybrid systems to optimize sensor
performance'®’. Although LSPR shows significant potential for POC bio-
sensing, it encounters hurdles like low selectivity in complex biological

fluids, challenges in detecting membrane-associated species, and issues with
integration in multiplexed platforms and POC devices. Tackling these
obstacles is vital for the progress of LSPR-based biosensing technologies.

Surface-enhanced Raman scattering

Surface-enhanced Raman scattering'**'® is an enhancement technique
where Raman scattering (vibrational excitation) signals of molecules
adsorbed on nanoplasmonic surfaces are amplified by up to several orders of
magnitude (Fig. 5¢c). The scattering shift in the Raman spectrum is the
energy difference between the emitted photons related to the excited state of
molecular vibration’. Theoretically, SERS enhancement primarily arises
from an electromagnetic mechanism (enhancement factor of ~10'°-10")'®,
which contributes more significantly compared to the chemical
enhancement mechanism (enhancement factor of 10°)'*'®. The
electromagnetic field, generated by the activation of LSPR in plas-
monic structures, enables molecules near the nanostructure’s surface
to absorb the near-field, then excite unique molecular vibrations.
Coupling between the plasmon and molecular dipoles amplifies Raman
polarizability, transmitting a far-field SERS signal of the molecule’s

chemical fingerprint'®®. However, the most substantial SERS
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innovative Plasmonic PCR Technology, combining advanced plasmonic gold
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enhancements are confined to regions extremely close to the substrate,
where the intensity decreases drastically with distance (as r™' for
spheres). The localized areas, known as SERS hotspots, exhibit
enhancement factors ranging from 10° to 10"%. They are often found at
nanotips, interparticle gaps, and particle-substrate junctions'®""’.
Therefore, to increase SERS sensitivity, various hot spot-containing
plasmonic optical antennas, with enhancement factors above 10", were
observed in individual gold nanocrescents and nanostars with sharp
edges™"”". Hybrid nanostructure arrays with an enhancement factor of
107 exhibit a detection limit down to 107" M'">'”*, The large enhance-
ment from plasmonic nanostructures has enabled their use in real-time
monitoring molecular fingerprints of biomolecules (DNA, protein, lipid,
exosomes)*"°, imaging in living cells'’, and monitoring cellular
processes at the single-cell level'”®. However, in contrast, the intrinsic
ultra-sensitivity of SERS can be disadvantageous for accurate quantifi-
cation. This sensitivity is strongly localized within nanogaps or nanotips
of nanostructures, typically 1-10 nm, where intense local electro-
magnetic enhancement occurs'”. Metal colloids and nanosubstrates can
be easily aggregated, contaminated, and degraded under ambient
conditions'”’. Additionally, fluctuations in laser intensity and optical
alignment further contribute to the signal’s instability, compromising
measurement reliability'®'. Moreover, SERS applications for detecting
large molecules or cells, especially in complex biological matrices,
remain a challenge due to the weak interaction between macromolecules
and active surfaces and the low scattering cross-section of such
molecules'’. SERS also suffers from a high background noise level when
the detected signal is weak, making signal extraction challenging and
necessitating extensive data processing'*’ or the application of Al-based
analysis'*.

In this context, digital-SERS is becoming an alternative method for
quantitative analysis, addressing the challenge of reduced analyte numbers,
as long as a positive signal is generated'*’. Digital-SERS relies on the Poisson
distribution principle, controlling the ratio between analytes and SERS
substrates to ensure accurate single-molecule detection. It uses a binary
detection system, “1” for positive signal and “0” for negative signal, allowing
analyte numbers to be determined quantitatively''. While quantification at
extremely low concentrations remains challenging, increasing the number
of measurement events can significantly improve statistical reliability.

Plasmonic enhanced fluorescence (PEF)

Plasmonic surfaces and nanostructures have been shown to effectively
enhance fluorescent reporters’ intensity over 10° magnitudes'*"* vialocally
intensified electromagnetic fields in biomolecular assays'*'”’. However,
plasmonic properties of metal nanostructures affect fluorescence in two
opposing ways: fluorescent emission enhancement or fluorescence
quenching. Surface plasmon-quenched fluorescence occurs when a fluor-
ophore is located within 10 nm of a plasmonic surface, leading to significant
fluorescence quenching due to surface plasmon-induced resonance energy
transfer from the excited state of the fluorophore to the surface plasmons of
the nanoplasmonic structures'**'**, By contrast, surface plasmon-enhanced
fluorescence can occur at slightly larger distances, where the plasmonic field
enhances the local electromagnetic field, increasing the fluorophore’s
excitation rate and radiative decay rate'”* (Fig. 5d). A metal nanocube film
showed fluorescence lifetime measurements indicating fluorescence emis-
sion intensity increasing over a factor of 3 while sustaining high quantum
efficiency (>0.5) and high directional emission achieving a collection effi-
ciency of 84%'”. A signal enhancement of nearly 3000-fold has been
achieved by combining multiple factors: enhanced excitation, highly
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directional light extraction, improved quantum efficiency, and suppression
of blinking through modifications to the quantum dot surface'”’. Modified
nanorods (fluorescence enhancers) with light emitter (molecular fluor-
ophores), spacer layer, and recognition element (such as biotin) can enhance
fluorescence emission rate by over 6700-fold compared to an 800 con-
tinuous wave (CW) fluorophore and improve the sensitivity in
fluorescence-linked immunoassays by approximately 4750-fold'”". Using
recent advances in plasmonic substrates for fluorescence enhancement,
personalized POC devices can overcome the major challenges to rapid,
sensitive, and specific diagnosis of diseases>'**~". Surface plasmon-
quenched and surface plasmon-enhanced fluorescence can be combined for
selective detection of nucleic acids’ ™", pathogens’”*”, and cellular
internalization™.

However, the distance sensitivity between fluorophore and metal, at
which quenching and enhancement occur, is difficult to predict and
control””. This difficulty leads to suppressed detection results and reduced
signal fidelity in biosensing diagnosis. Therefore, functional spacer layers
between fluorophores and metallic surfaces have been designed with precise
thickness control and are now commercially available, such as atomically
thin hexagonal boron nitride (h-BN)*", polysiloxane copolymer film*",
dielectric layers™”, or polydopamine (PDA)-coated plasmonic
nanocrystals™”.

Plasmonic dimer

Due to the complicated nature of designing plasmonic nanostructures for
enhanced fluorescence emission, strong light-scattering plasmonic optical
antennas can solve the problem corresponding to fluorophores'”’. Com-
pared to fluorophore molecules or quantum dots, an increase in intensity of
up to 10°-10" can be observed in single gold nanoparticle-conjugated DNA
probes coupled with target molecules™'**>. The hybridization of nano-
particle probes with a single target mRNA leads to the formation of nano-
particle dimers with minimal interparticle spacing, causing a spectral peak
shift resulting from strong plasmonic coupling’™* (Fig. 5e). The scattering
intensity of the nanoparticle dimer was approximately 4.7-fold higher than
that of the monomer’**'. This phenomenon allows plasmonic gold
nanoparticle dimer probes to be used for quantitative imaging of target
mRNA and even multiple mRNA splice isoforms in living cells, which
cannot be observed by fluorophore-based probes™*. Moreover, the
enhancement factors of up to approximately 10° have been reported for the
two-dimensional (2D) nanoparticle arrays™>*'"*",

The electromagnetic intensity in the space between two particles rises
as the distance reduces from infinity to about 1 nm, resulting in a redshift of
the energy mode that indicates stronger plasmonic coupling’”’. However,
when the gap falls below 1 nm, the quantum tunneling of electrons across
particle surfaces becomes significant, causing a notable reduction in elec-
tromagnetic field intensity”****'. The effectiveness of plasmonic utilization
depends on selecting suitable nanoparticles, carefully controlling the
nanogap for optimal coupling, and implementing molecular functionali-
zation within the gap of the plasmonic nanoantenna’”. Plasmonic optical
antennas can be further functionalized to target biomolecules, enabling real-
time tracking of molecular events'”*****. This ability provides a valuable
approach to investigating gene-related biological issues and diseases,
including cancer, at the single-cell level.

Plasmon resonance energy transfer (PRET)

In addition to vibrational excitations, the molecular electronic fingerprint
can be captured and quantified through plasmon resonance energy transfer
(PRET)™ (Fig. 5f). PRET represents the overlap between the resonance
peaks of plasmon nanoparticles and the electronic resonance peaks of the
biomolecule. Energy transfer likely occurs via dipole-dipole interactions
between the resonating plasmon dipole in the nanoparticle and that of the
biomolecule. If the plasmonic resonance energy aligns with the molecular
electronic transition energy, the energy is transferred to the molecule’”’. The
scattering spectrum of the nanoplasmonic optical antennas exhibits quan-
tized quenching dips at the molecular absorption peaks (electronic

transition frequency)™. Using a PRET nanosensor, plasmon quenching dips
were observed to detect energy transfer in hemoglobin molecules and
cytochrome C on a single nanoparticle’s surface’’. However, individual
plasmonic antennas have specific spectral widths, which restrict their ability
to monitor multiple types of analytes or signals. This limitation complicates
broad-spectrum sensing and multiplexing detection. Current nanoparticle
fabrication technologies, including printing and patterning methods, exhibit
nonuniform spatial detection, which diminishes the reliability of PRET
measurements, such as chemical diffusion or cellular secretion. Due to
spectral and spatial limitations in PRET, continuous and comprehensive
tracking is hindered, especially in complex environments like live-cell
monitoring. However, metasurface-based multiplexed platforms can be
precisely designed to generate specific scattering spectra by gap plasmon and
grating effects to overcome the limitations in FRET spectroscopy. These
metasurfaces are composed of controllable arrays of metapixels, capable of
spanning the entire visible spectrum with high spatial resolution (~1.5 pm)
and supporting real-time, multiplexed detection of molecular interactions
over a broad field of view with distinct absorption frequencies within the
visible range™’. Moreover, PRET can be optimized over a wide spectrum,
such as UV or NIR, depending on the characteristics of metallic nano-
particles that determine their plasmon resonance wavelengths in these
spectral regions™**”.

Plasmonic resonance energy transfer-based metal ion sensing
(PRET-MIS)

Plasmonic resonance energy transfer-based metal ion sensing (PRET-MIS)
nanospectroscopy merges metal-ligand coordination chemistry with plas-
monic resonance energy transfer, resulting in enhanced sensitivity and
molecular specificity at the nanoscale (Fig. 5g). This technique employs a
gold nanoplasmonic probe to initiate selective energy transfer, which leads
to resonant quenching in Rayleigh scattering by aligning electronic
absorption bands with plasmonic resonance frequencies. Consequently, it
enables accurate metal ion detection, delivering both sensitivity and selec-
tivity through quantitative quenching that depends on the local ion

concentration™”’.

Quantum biological electron transfer (QBET)

The principle of quantum biological electron transfer or tunneling (QBET)
is similar to the PRET method. However, by precisely controlling the
function of the linker molecules as tunnel junctions for QBET detection,
electron transfer can be observed inlive cells and living enzymes (Fig. 5h). By
using QBET spectroscopy, real-time electron transfer in the electron
transport chain during cytochrome C dynamics was first observed at the
molecular level''. Different optical nanostructures, such as gold
nanospheres™, gold nanorods™, gold plant viruses™, gold bipolar
nanoelectrodes”™, plasmonic cavities™”, and pixelated metasurfaces’, have
been developed to study and modulate electron transfer dynamics in bio-

logical reactions, as well as real-time biomolecular spectroscopic imaging™.

Reverse PRET

In contrast to PRET, reverse PRET can be intentionally employed for
selective energy transfer for plasmonic quenching when molecular binding
leads to a plasmonic resonance shift or intensity extinction. Owing to this
phenomenon, gold nanorods functionalized with black hole quencher
molecules (BHQ-3) enable real-time enzyme activity monitoring in single
bacterial cells by detecting AzoR released via outer membrane vesicles,
which cleaves the azo bond in BHQ-3, thereby recovering the scattering
intensity of gold nanorods" (Fig. 5i).

Data analysis and transmission in molecular diagnostics

The COVID-19 pandemic has shifted diagnostic testing from centralized
laboratories to the POC platforms. Modern standard POC diagnostics
follow REASSURED criteria (real-time connectivity, ease of specimen col-
lection, affordable, sensitive, specific, user-friendly, rapid and robust,
equipment-free or simple, and deliverable to end-users)*” to achieve high
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analytical sensitivity at low concentrations of biomarkers in biological
samples. Therefore, there is a need for real-time data processing and error
reduction to maintain REASSURED criteria in clinical settings. With the
widespread integration of automated molecular assays into portable devices,
the trend has shifted towards real-time connectivity, mobile data sharing,
and integration with cloud-based health systems. These systems enable data
to be transmitted and analyzed in real-time for quality control and long-
term monitoring of public health**. Moreover, integration of POC sensors
with AI- and machine learning (ML)-assisted smartphone-based assays can
enhance image analysis, data and signal processing, and quantitative
interpretation in sensing methods such as lateral flow assays (LFAs),
NAATs, and optical-based technologies”***’. Designed Al and deep
learning algorithms can be optimized to process complex datasets and
accurately recognize small changes in protein, DNA, or RNA biomarkers
from exosomes'” from multiplex or digital sensing approaches'’*'*.
Moreover, convolutional neural networks (CNNs) were used as an alter-
native method to enhance optical-based diagnostics, offering faster and

more reliable results™'.

Commercial plasmonic detection system

Recently, various commercial optical techniques integrating nanoplasmonic
structures have been used for POC diagnostics, such as SPR detection, hand-
held SERS, and enhanced colorimetric detection in lateral flow assays™*>*.

As shown in Fig. 6a, Biacore was the first SPR-based sensor developed
and is widely used for real-time, label-free analysis of molecular interactions
in areas ranging from drug discovery to biotherapeutic development™. It is
designed to qualify and quantify antibodies and proteins by evaluating their
binding interactions, affinities, and kinetic profiles, from rapid association to
slow dissociation rates, all while maintaining their biological function. Biacore
SPR biosensors are designed with three core technologies: an optical detector
system, a 50-nm layer of gold on the sensor chip, a microfluidic chip and
liquid handling system™*. Biacore systems generally achieve a LOD around
50 Da for low-molecular-weight analytes and provide various assays and
monitoring capabilities to enhance the overall sensitivity of the
system™. However, Biacore systems require careful surface chemistry opti-
mization, and can be limited by non-specific binding in some applications.
Furthermore, the system necessitates a large machine and, as a result, it tends
to be quite costly. In contrast, Carterra offers a specialized high-throughput
surface plasmon resonance (HT-SPR) system explicitly designed for antibody
discovery and characterization (Fig. 6b). This HT-SPR technology facilitates
192 real-time interactions with molecules as small as 100 Da, utilizing the
high resolution of a charge-coupled device (CCD) camera. For the kinetic and
affinity measurement, HT-SPR can characterize up to 768 fragments and
1152 monoclonal antibodies (mAbs). Moreover, Carterra also develops
epitope binning, which can handle interaction mapping up to 191 x 191
mAb-mAb comparisons and epitope mapping by screening up to 96 mAbs
against a panel of 96 peptides. Beyond these workflows, Carterra offers
flexible multiplexing, accommodating up to 192 ligands, including mutants,
target variants, or controls, to meet a wide range of advanced biotherapeutic
discovery and characterization needs””’. While Carterra offers remarkably
high-throughput capabilities and advanced epitope binning tools, its per-
formance comes with trade-offs in sample consumption, system and dataset
complexity, bulky instruments, and initial investment. When experiments are
conducted by skilled users following SPR best practices with flexible assay
design, both Biacore and Carterra platforms yield almost identical, reliable
results, making them leading SPR platforms for label-free biomolecular
interaction analysis and accelerating antibody library characterization toward
clinical development™’. However, in the development of POC diagnostic
devices, handheld or palm-sized platforms have attracted significant attention
as alternatives to bulky SPR instruments, while maintaining the capability to
detect single viruses and particles smaller than 100 nm™”.

Colorimetric lateral flow assays are widely favored in POC devices for
their simplicity and low cost, enabling naked-eye detection of target bio-
markers. LFAs utilize gold nanoparticles for rapid testing; however, their red
color restricts their applicability for multiplex assays”. The NG-Test

CARBA 5 by NG Biotech is a multiplex lateral flow immunoassay designed
using gold nanoparticles conjugated with monoclonal antibodies that are
specific for the five most prevalent carbapenemase families: KPC, OXA-48-
like, VIM, IMP, and NDM (Fig. 6¢). All 185 carbapenemase isolates were
correctly detected in less than 15 min with achieving overall 100% sensitivity
and 95.3-100% specificity’™. By a simple protocol with minimal hands-on
time, no specialized instrument, and excellent sensitivity and specificity, the
CARBAS5-LFA has been cleared by the FDA™" and registered in the Eur-
opean Database on Medical Devices (EUDAMED)*” as an in vitro diag-
nostic device. Another commercial Nucleic Acid Lateral Flow Immunoassay
(NALFIA) from Pocket Diagnostic is a hybrid detection method combining
nucleic acid amplification with LFA for visual detection of target DNA/RNA
sequences (Fig. 6d). The target sequence is amplified initially with a
fluorophore-labeled primer (biotin, fluorescein (FAM) or digoxigenin),
then introduced onto the lateral flow strip, where it binds to nanoparticle-
conjugated antibodies, producing a visible color change’”. NALFIA obtains
high sensitivity and specificity, comparable to real-time PCR™*; however, it
still suffers from quantitative accuracy, sensitivity and specificity at lower
concentrations, and multiplexing capacity.

Highly scalable SERS sensors have emerged as the next generation in
molecular detection due to their high sensitivity, noninvasiveness, and mul-
tiplex capability'*****. The commercially available Klarite substrate was fabri-
cated using photolithography techniques on a silicon wafer (Fig. 6e) to
fabricate an inverted pyramid array of hot spots with highly reproducibility and
uniformity”. Under ideal conditions, these substrates obtain a typical relative
standard deviation (RSD) from 10 to 15% under drop-and-dry conditions,
with low substrate background™”’. Another ready-to-use SERS substrate from
Ocean Insight is designed for rapid and sensitive detection of chemicals and
biomolecules (Fig. 6f). The SERS active areas (5.5 mm diameter circle) are
typically made of gold (excitation wavelength of 785 nm) or silver (excitation
wavelength of 532 nm), offer reliable performance, and can be easily integrated
with a handheld Raman spectrometer. A comparison of the LOD for three
commercial SERS substrates from Hamamatsu, SERSitive, and Ocean Insight
shows that at a 107°M concentration, SERSitive and Ocean Insight offer better
performance. However, background noise limits their effectiveness at lower
concentrations. However, at 10~°M, the Hamamatsu substrate demonstrates
higher sensitivity for thiophenol detection, especially at 633 nm excitation™.
Although the commercial SERS substrates are well recognized, their practical
applications remain challenges, including low reproducibility, small active
surface areas, batch-to-batch variation, and high manufacturing costs.

Apart from direct virus capture, nucleic acid amplification plays a vital
role in POC diagnostics. As illustrated in Fig. 6g, the photonic PCR platform
developed by Nanopartz utilizes gold nanoparticles and gold nanorods in
the PCR reaction mixtures. These particles rapidly convert light to heat, with
over 90% absorption and 100% efficiency, achieving heating rates of up to
20 °C/s’”. The Nanopartz photonic PCR prototype is simple, fast, offering
thermocycling capability and highly specific amplification. Moreover, it is
fully compatible with standard PCR protocols, making it a promising
candidate for the integrating plasmonic and conventional PCR into a self-
powered, portable POC device. The ultra-fast Nexless Kimera P-IV plas-
monic RT-qPCR technology integrates gold nanorods and vertical surface-
emitting lasers to replace conventional heating methods like Peltier blocks.
This approach enables rapid thermal cycling and achieves a PCR efficiency
of 88.3% in under 10 min (Fig. 6h). The device can detect as few as 1 DNA
copy with 100% accuracy in direct-urine analysis’”. However, to achieve
reliable results, careful biological reagents preparation - such as primer
designs - is needed, and further clinical validation is still required.

Future perspectives and challenges

While nanoplasmonics-based actuators for the selective trapping and
enrichment of biological samples and biosensors for the sensitive detection
of protein, RNA, and DNA biomarkers hold the promise of revolutionizing
biomedical diagnostics, several challenges—including fabrication scal-
ability, stability, and specificity—must be addressed to fully realize their
potential for clinical applications.
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Scalability and cost-effectiveness

The fabrication of highly organized and reproducible nanostructures con-
tinues to represent one of the principal challenges in the area of
nanoplasmonics-based biosensors.

The prevailing top-down fabrication methods for laboratory-scale
applications with resolution of 100 nm or better, including electron beam
lithography (EBL) and focused ion beam (FIB) lithography, are character-
ized by high precision; however, they are also time-intensive, costly, and lack
the scalability necessary for mass production. This scenario has engendered
a demand for low-cost alternative manufacturing methods to facilitate
commercialization.

In this context, large-scale and cost-effective top-down lithography
techniques, such as nanoimprinting, nanostencils, interference lithography,
and deep and extreme ultraviolet lithography, have emerged as viable
alternative manufacturing strategies™””. Attainment of uniformity and
high throughput remains a critical concern. Low-cost, disposable biosensor
chips are preferred to prevent cross-contamination and eliminate the need
for complex cleaning processes when working with biological samples.
Therefore, systems that support single-use cartridges paired with a stand-
alone reader represent the most practical solution. However, intensive
research is necessary to address challenges in fabrication methods as well as
the cost of biomaterials (e.g., reagents) required to manufacture inexpensive

single-use cartridges™’.

Complex biological sample handling

The extensive range of analytes and matrix compositions—such as bodily
fluids in medical diagnostics and food samples in food safety—presents
distinct challenges for sample collection and processing, which are
essential for on-site biosensing. Microfluidic systems demonstrate sig-
nificant utility in biosensor integration by facilitating multiplexed func-
tions such as sample preparation, concentration, and analyte transport,
while simultaneously minimizing the volume of required samples and
limiting the utilization of expensive reagents™“®. Furthermore, the
nanoplasmonic actuators enhance purification and selectively enrich
targeted biomarkers. Nanoplasmonic sensors can be integrated with
nanoplasmonic actuators into a smart integrated photonics and micro-
fluidic integrated circuit (IC) system, which can be employed for sample
preparation, as previously discussed, and holds promise for integration
with microfluidics. This combination aims to achieve high specificity and
sensitivity in the detection of specific biomolecules within complex
samples. However, several challenges remain that hinder the advance-
ment of technology transfer and commercialization, primarily due to the
complexities such as material compatibility, alignment precision, and
fluidic control that are involved in integrating all components into a
single, portable platform’*. In addition, efficiently transferring light from
an external source to the plasmonic structure within the microfluidic
channel without significant loss requires clear optical paths that can be
obstructed by microfluidic materials or channel designs.

Surface chemistry for biofunctionalization

While sensitivity, resolution, and detection speed represent crucial metrics
for the assessment of nanoplasmonic biosensor performance, surface
chemistry plays a vital role in determining the efficacy of biosensing through
molecular recognition between receptors and targets. Thus, it is imperative
that the surface chemistry of nanoplasmonic sensors is both robust and
reliable to facilitate effective biofunctionalization, ensuring stable binding of
biomolecules such as antibodies or aptamers. However, the nonplanar and
heterogeneous characteristics of nanoplasmonic surfaces pose significant
challenges for surface modification.

Nanoplasmonic surfaces, which often include three-dimensional or
non-planar nanostructures such as nanoholes, nanopillars, or nanoparticles
and may incorporate multiple materials, present greater challenges for
uniform biofunctionalization compared to flat surfaces. This complexity
necessitates the implementation of innovative approaches, such as material-
selective or site-specific functionalization techniques.

Moreover, integrating nanoplasmonic sensors with biomembranes
allows for the incorporation of membrane-bound receptors and mitigates
nonspecific binding by passivating the sensor surface’”. Furthermore, a
notable lack of analytical methods capable of adequately evaluating and
quantifying each step of functionalization persists, a gap that is crucial for

assessing the diffusion of these sensors within the market™”.

Emerging directions

Advancements in materials science and optical physics are anticipated to
facilitate further progress in nanoplasmonic biosensors. Recently, 2D
materials such as graphene, transition metal dichalcogenides (TMDs), and
black phosphorus have been utilized with increasing frequency in nano-
plasmonic biosensing, owing to their distinctive properties, thereby playing
a crucial role in the detection of various biomolecules™. Low-dimensional
van der Waals (vdW) materials provide distinct advantages for nanopho-
tonic biosensing by generating highly confined polaritonic waves. Their
diminished dimensionality—illustrated by two-dimensional graphene—
augments plasmonic field confinement, leading to enhanced sensitivity and
performance compared to conventional nanophotonic systems reliant on
surface plasmons in metallic films’”. Various biosensing techniques,
including SPR*’, FRET, and evanescent wave-based methods, along with
the associated characteristics, synthesis approaches, and integration tech-
niques of two-dimensional materials, have attracted significant attention.
Alternative materials capable of generating plasmonically enhanced
light-matter interactions have garnered considerable interest, particularly
copper, aluminum, indium, and magnesium, as they present a cost-effective
substitute for conventional metals such as gold and silver in large-scale
applications™". Integrating microfluidics", flexible electronics”*, and wire-
less communication”” will facilitate the development of compact, portable,
and user-friendly POC devices. Furthermore, the incorporation of AI’”* and
ML for real-time data analysis and interpretation will substantially enhance
diagnostic accuracy, providing label-free, multiplexed detection at ultra-low
concentrations. Through sustained interdisciplinary collaboration, nano-
plasmonic biosensors hold the potential to transform healthcare, environ-
mental monitoring, and biosecurity by means of rapid, reliable, and
accessible sensing technologies.

Conclusion and outlook

In this review, we examine the advancements in nanoplasmonic optical
antennas utilized as biosensors and actuators within the realm of molecular
diagnostics. Integrated nanoplasmonic biosensors have the potential to
optimize the sample preparation process while inflicting minimal damage
through plasmonic trapping. Moreover, they facilitate label-free, real-time
detection of a singular target through plasmonic photothermal actuation for
the purposes of sample enrichment and lysis. Recent advancements in
integrated molecular diagnostic systems utilizing nanoplasmonics demon-
strate high sensitivity, rapid response times, and portability for disease
detection through the application of the plasmonic photothermal effect in
NAATS, rendering them particularly beneficial in resource-limited settings.
Smartphones equipped with integrated detection systems utilizing plas-
monic biosensors and sample preparation platforms will establish an effi-
cient molecular diagnostic system. This system amalgamates sample
enrichment, lysis, amplification, and detection processes onto a singular
chip. Such systems represent promising instruments for remote healthcare
and personalized health monitoring. Furthermore, nanoplasmonic optical
antennas as actuators and biosensors exhibit substantial potential not only
for advanced real-time healthcare tracking and monitoring but also for
elucidating life sciences and quantum biology at the single-cell level. For
instance, nanoplasmonics serve to illustrate intracellular quantum pro-
cesses, such as electron transfer in mitochondria' and bacterial
communication'® with one another as well as with host cells, thereby illu-
minating the field of quantum biology. Furthermore, the cavity quantum
electrodynamic properties stemming from the strong light-matter interac-
tion between surface plasmons and emitters-whether they be fluorescent
probe-tagged proteins or biomolecular emitters such as chlorophyll””>*"*,

npj Biosensing| (2025)2:45

16


www.nature.com/npjbiosensing

https://doi.org/10.1038/s44328-025-00050-1

Review

can be a promising quantum plasmonic biosensor platform that does not
necessitate sophisticated measurement tools or cryogenic temperatures.
Additionally, alternative plasmonic materials, such as graphene derivatives,
may be integrated into biosensor systems”’. Nanoplasmonic optical
antennas are utilized in high-speed hyperspectral imaging systems to
observe and analyze biomolecular interactions within living biological cells
at a single-copy resolution. Future advancements in nanoplasmonics are
expected to transition from research to practical healthcare applications,
thereby fostering innovative diagnostics and personalized medicine.
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