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City road infrastructure can be considered a public good, and congestion is the intersection of demand
for mobility with the limited available transportation supply. Congestion pricing is effective in reducing
demand to sustainable levels below network capacity limits, but also controversial, as it introduces
equity issues and systematically discriminates against lower-income groups. Karma is a non-
monetary, fair, and efficient resource allocation mechanism that employs an artificial currency different
from money, incentivises cooperation amongst selfish individuals, and achieves a balance between

giving and taking. Where money does not do its job, Karma achieves socially more desirable
allocations by being aligned with consumers’ needs rather than their financial power. This work
highlights the value proposition of Karma, provides guidance on Karma mechanism design, and
equips the reader with a useful software framework to model Karma economies and predict
consumers’ behaviour. A case study of road pricing demonstrates Karma'’s potential.

Public goods are resources available to all in society without restriction. The
tragedy of the commons describes a situation, in which insufficient incen-
tives in combination with self-interested individuals results in overuse,
depletion, or damage of these public goods (even this is not in anyone’s long-
term interest)"”. Road networks and congestion can be considered exem-
plifying this problem’. Road networks attract many users, as they enable
individual mobility, and provide accessibility to many useful destinations for
work, shopping, education, socialization, or recreation purposes. Roads
provide a diminishing utility for a growing number of users; if too many
vehicles enter the network, traffic slows down and congestion arises. Con-
gestion is a global issue, with consequences for drivers, residents, and society.
Noise, air pollution, and security incidents, affect the living quality and
health of residents. A significant amount of a driver’s life-time is wasted in
traffic jams. Wasted consumption of energy and time cause financial
damages to the economy, and avoidable emissions contribute to global
warming and the climate change**.

Governmental intervention and regulation can help to solve conges-
tion, by aligning individual incentives with the collective good and keeping
consumption of the road infrastructure at sustainable levels. Access-
restricting regulations involve the establishment of property rights, ration-
ing (capping)’, cap-and-trade mechanisms’, taxation’, or value pricing"’. A
broad variety of economic instruments have been proposed to cope with the
issue of congestion and can be used to control traffic demand and supply.
Traffic demand management employs road pricing, such as tolled bridges

and tunnels, urban congestion pricing, and tolled highway lanes'". Besides,
examples to control the supply can be found in license plate rationing,
tradeable credit schemes, and mobility permits'>"’. These economic
instruments can be designed and implemented in conjunction with other
traffic management strategies, such as infrastructure improvements, public
transport expansion and investments, traffic signal optimization, and
information provision, to create a comprehensive and effective transpor-
tation system.

Economic instruments introduce monetary, market-based incentive
mechanisms for the allocation of resources. Despite potential benefits for
solving the socially relevant question of traffic congestion, economic
instruments appear to enjoy little support outside academia. Limited social
and political support has caused many proposed schemes to be abandoned
before implementation, or postponed for an undefined time'. Reasons for
the lack of public acceptance include lack of trust in government, perceived
severity of congestion, organized opposition by drivers, and equity
concerns”. Often, the public is not convinced about the severity of con-
gestion and the need for the implementation of economic instruments,
doubts technological feasibility, or is concerned with privacy issues'®".
Moreover, drivers refuse to be charged for something they feel is not their
fault and ought to be free to them'. In addition to that, people made
significant decisions related to high personal investments, such as buying a
car, choosing where to work, and deciding where to live. These decisions
were based on costs and travel times for commuting in advance. This sunk
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cost fallacy often provokes organized opposition from drivers'®. Finally,
economic instruments can raise equity concerns; they may dis-
proportionately benefit higher-income travellers who can afford tolls, while
imposing additional costs on lower-income commuters with fewer trans-
portation alternatives. Following question therefore arises: How can traffic
demand be reduced in a socially-feasible, equitable way that is accepted by
the public?

Monetary markets are not always the right tool for resource allocation,
and in many contexts, the use of money is not desired, socially accepted,
considered ethical, or even permitted. Therefore, a growing branch of lit-
erature is concerned with artificial currencies'’, which represent non-
monetary markets and resource allocation mechanisms. For isolated, single-
stage resource allocation problems, extensive work on non-monetary
matching and combinatorial assignment problems has been conducted™ .
For repeated resource allocation problems, there are few works on non-
monetary market mechanisms yet, among which Karma has evolved as an
important narrative™.

Karma employs a currency different from moneys; it can only be gained
by producing and only be lost by consuming a specific resource. It is a
resource-inherent, non-monetary, non-tradeable, artificial currency for
prosumer resources (produced and consumed by market participants alike).
As a non-monetary mechanism, Karma complements monetary markets
and provides attractive properties. For example, it is fairness-enhancing,
near incentive-compatible, and robust towards population
heterogeneity”’ . Due to its design, one can consider Karma as playing
against one’s future self, as the only way to consume is to put in effort and
produce first, and future needs must be traded off against present needs
when consuming. Last but not least, Karma is reported to not only concern
the efficiency and fairness of resource allocation but also to lead to a decrease
in resource scarcity in peer-to-peer markets™ .

Using the example of congestion pricing, let us discuss Karma™, where
vehicles need to pay a surcharge for driving in the city. Due to the monetary
disincentive, people will trade off their urgency to drive to the city and their
willingness to pay. However, congestion pricing can be problematic, as
equity issues emerge in a society with unequal distribution of economic
power: the poorest will most likely not be able to afford the charge, and thus
consume significantly less. Karma could make a difference here: not driving
could be considered producing, and driving could be considered consuming
the resource “right of driving to the city”. Instead of paying money as a
congestion pricing tax, Karma points could be used. These Karma points
cannot be bought, but only gained by not consuming. Therefore, Karma
would create a balance between giving and taking, between using and not
using the public good. This would force individuals not to trade off the price
with other resources they could buy alternatively but to solely consider
present versus future consumption of this specific resource. Moreover, the
socio-economic contexts, such as income or wealth, and therefore the
above-mentioned equity considerations, would not play a role anymore.
Finally, contrary to monetary pricing, Karma would not impose additional
financial costs on the society.

Karma and tradeable credit schemes have in common that they are
both some forms of artificial currency used for paying for mobility
resources. While Karma is a demand management strategy, tradeable
credit schemes are a supply management strategy. Contrary to tradeable
credit schemes, Karma is not tradeable. This can be especially useful in
addressing the aforementioned equity issues with economic instruments
in the context of traffic demand management, as poor individuals have no
ability and incentive to sell their rights to others to be able to afford
additional other resources that could be bought with money. Rather,
Karma enforces individuals to act according to their mobility needs only,
fully independent of their economic situations. This ultimately leads to an
inclusive allocation of mobility resources to those in need, and not those
able to afford to pay for them. Even though Karma is a non-tradeable
currency, yet, Karma can be considered a market mechanism, as indivi-
duals’ actions affect each other, and prices in Karma depend on the
market’s demand and supply.

The overall goal of this study is to demonstrate the potential of Karma
to address the equity issues of economic instruments when coping with
public goods. This work primarily follows two objectives: (i) to highlight the
value proposition of Karma as a non-monetary resource allocation
mechanism, and (ii) to equip the reader with the necessary tools and
knowledge to successfully apply Karma in various contexts and domains. To
achieve these objectives, we elaborate on the properties of Karma, provide
guidance on the design of Karma mechanisms, outline a game-theoretic
model of Karma as a dynamic population game, and present a software
framework to model problems and predict user behaviour in Karma
economies. In addition, we compare Karma economies with monetary
markets in a case study on bridge tolling, to demonstrate its usefulness.

The contributions of this study are twofold. First, this study contributes
to the economic discussion of traffic demand management by providing the
perspective of non-monetary market mechanisms to explicitly address
equity issues by introducing Karma as a feasible, alternative complement to
monetary markets, and tradeable credit schemes. Second, this study con-
tributes to the literature on Karma mechanisms, by providing a unifying
framework of mechanism design elements, as well as a software library to
efficiently simulate Karma economies. Ultimately, this work enables more
systematic, reproducible research on Karma for resource allocation.

The remainder of this work is structured as follows. Section Literature
Review summarizes related works on Karma, presents applications in
transportation, highlights its value proposition, and presents mechanism
design elements. Section Results presents the case study of a tolled bridge and
the underlying assumptions we have made when comparing money with
Karma, and analyses the results of comparing money and Karma markets.
Section Discussion converses about the concept of Karma in depth, com-
paring it with monetary markets and tradeable credit schemes, elaborates on
the underlying perspectives on fairness, highlights challenges and limita-
tions of Karma, and blueprints the real-world implementation of Karma
mechanisms at the example of congestion pricing. Section Methods outlines
the modelling of Karma as a game, presents the software framework and
outlines its usage in a simple computation example about auctions. Section
Conclusions brings this work to an end, and outlines future research
directions.

Literature review

Related works on Karma

Karma is a concept that emerged from the domain of filesharing®, enjoyed
popularity as a technological component in blockchain applications, and
gained prominence as an artificial, non-monetary currency in the literature
of economics. As a resource allocation mechanism, Karma has been applied
in a wide range of contexts, including file and computational resource
sharing in peer-to-peer networks, allocation of transmission bandwidth in
telecommunication networks, and distribution of food and organ
donations™.

In the context of traffic demand management, pilot studies on Karma
have investigated its potential use for high occupancy and priority toll
lanes™*, auction-controlled intersection management with fully connected
vehicles””, and transportation modality pricing””*.

When applied as a resource allocation mechanism, Karma can be
described by a population of agents, where each agent ---

* has a specific amount of Karma,

¢ has a random, time-varying urgency (representing the agent’s cost
when not getting a specific resource),

* has an individual temporal consumption preference type (a discount
factor, representing the subjective trade-off between consuming now
versus later).

In a repeated, auction-like setup, agents are matched randomly in
rounds to compete for a specific resource by bidding with Karma.
Depending on their urgency, Karma balance, and consumption type, agents
must determine an optimal bid to earn the resource when necessary, while
accounting for potential future competitions in subsequent rounds.
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Table 1 | Karma mechanism design elements

Design element Option
Currency
Parity Price, Threshold, Binary

Balance limits

Unlimited, Bounded (upper, lower)

Amount control

Constant(per capita), Uncontrolled, Expiry, System

Initialization Equal endowment, Weighted endowment, Random
endowment, None

Redistribution Property tax, Payment tax, Lottery, None

Interaction

Price control

Auction, Centrally defined, None

Price limits

Only positive, Binary, None

Resource provision

By agent(s), By system

Resource allocation

Auction winner, System decision, Provider decision

Counter-party

N agents, One agent, System

Peer selection

Market, Neighbourhood, Randomly assigned, Active

selection

Decision-making Free

Urgency process Homogeneous, Heterogeneous

Temporal preference Homogeneous, Heterogeneous

Transaction

Payment amount Bid, Peer’s bid, Difference in bids, System Order, Fixed,

Nothing

Payment receiver Resource provider, System, Equally across population,

Weighted across population

Karma gain Resource provision, Resource consumption

Karma lose Resource consumption, Expiration, Rule-violation

Riehl et al.”® identifies mechanism design elements based on a sys-
tematic comparison of previous Karma applications. These mechanism
design elements are outlined in Table 1 and cover three aspects of Karma
mechanisms: currency, interaction, and transaction. As noted in many
previous works, a major design complexity is choosing the right amount of
Karma currency in circulation” . If there are too few currency units, there
will be hoarding to save the scarce currency for very urgent situations to
consume; if there are too many currency units, the value of a single currency
unit is no longer sufficient to stimulate the provision of resources. In the case
of a time-variant resource supply, dedicated amount control becomes
necessary.

Value proposition of Karma

Karma has the potential to address the equity issues of economic instru-
ments when coping with public goods. Governmental intervention in the
context of public goods involves regulating access to them, so that con-
sumption is limited to a sustainable amount. The access right to consuming
the public good can be considered the resource of interest. This resource can
be viewed as a prosumer resource, as each system participant can both
produce and consume it. The allocation of this resource can be done by a
central coordinator (i.e., the government) or a decentralized mechanism
(ie., the market). Monetary markets can cause equity issues, as resource
consumption is linked to economic power, which is usually distributed
unequally. Instead of monetary markets, artificial currency mechanisms
such as Karma could be used for resource allocation.

Previous research has found that Karma provides useful features that
distinguish it from money. Karma is fairness-enhancing, as the consump-
tion of resources depends on urgency and previous behaviour, and not on
economic power. Karma is able to approach levels of efficiency similar to
centralized, efficiency-maximizing algorithms, while outperforming them
in terms of fairness”***". Karma has a direct approach towards utility. As
Karma is resource-inherent, there is no other aspect besides the pure utility

value of a specific resource for participants when bidding at auctions. Hence,
Karma achieves high levels of incentive-compatibility’***™*. In monetary
markets, the readiness to pay prices not only depends on utility but also on
economic power, and the comparison of values with other resources that
could be bought alternatively for this price. Karma is of substantial value
here, as it enables an intuitive, direct, utility-focused, comparison-free
evaluation of a resource’s value. Rather than to trade-off resources against
each other as in monetary mechanisms, Karma allows solely for the
resource-specific trade-off between present and future needs. Moreover,
Karma decreases the scarcity of resources, as it incentivises cooperative
behaviour and contributions amongst a population of rational, selfish
individuals. This happens, when resources are not provided by a central
coordinator, but provided by prosumers themselves (e.g., services). The
underlying incentive scheme of Karma can cause significant increases in
available resources; examples for this property include content sharing’***’,
computational power in distributed computing applications™**™*, a better
mobile network coverage>’~"", and more food and organ donations™".

Applied as an economic instrument in the context of traffic demand
management, Karma mechanisms can be a valuable complement to
monetary markets. Karma-driven economic instruments can overcome
equity issues, and contribute to public acceptance and support for traffic
demand management. Moreover, Karma does not create additional finan-
cial costs or taxes for users, which addresses the unwillingness to pay for
road usage. Karma intrinsically embodies a fairness-enforcing scheme,
balances consumption and production of resources, and ultimately controls
a sustainable usage of public goods.

Results

In this work, we compare the distributional effects of money and Karma-
based markets, deriving insights on when Karma works better than money.
We use a case study related to New York, focusing on a static route choice,
repeated resource allocation problem setup of bridge pricing for daily
commuters.

Case study: the Manhattan borough & New York city

New York City is the most populous and most densely populated city in the
United States of America, with an estimated population of 8.3 million
people, and a land area of 1.2 square kilometres. New York City is located at
the southern tip of New York State, and divided into five boroughs that are
separated by rivers and the sea. Culturally and economically, it is one of the
most vibrant cities, being home to financial institutions (Wall Street, New
York Stock Exchange), and to headquarters of international corporations
and organizations alike (United Nations, UNICEF). Due to its flourishing
economy, New York and especially the borough Manhattan attract many
visitors and commuters.

The neighbouring state of New Jersey is home to a large share of
Manbhattan’s workforce, with around 1.23 million people commuting daily.
New Jersey and Manhattan are separated by the Hudson river. There are
mainly three connections, drivers can use to cross the river: the Holland
Tunnel (Interstate 78), the Lincoln Tunnel (Route 495), and the George
Washington Bridge (Interstate 95), as shown in Fig. 1. Together, these three
connections transport more than 493,000 vehicles per day. The Holland
Tunnel consists of two tubes, has an operating speed of 56 km/h, a length of
around 2.5 km, 9 lanes, and transports around 89,792 vehicles per day. The
Lincoln Tunnel consists of three tubes, has an operating speed of 56 km/h, a
length of around 2.4 km, 6 lanes, and transports around 112,995 vehicles
per day. The George Washington Bridge consists of two decks (levels), has
an operating speed of 72 km/h, a length of around 1.4 km, 14 lanes, and
transports around 289,827 vehicles per day, making it the world’s busiest
vehicular bridge. The connections are separated by 4,37 km and 10.87 km
respectively™.

Currently, all bridges and tunnels in New York city follow a unified toll
rate scheme by the New York Port authority, with prices per vehicle types,
and time (on- and off-peak hours). The tolls are collected when entering
New York, and not when entering New Jersey. Special discounts apply for
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taxis, or ride-sharing vehicles. Normal passenger vehicles pay between
$13.38 and $15.38 (according to New York Port Authority, see 2024 Toll
Rates https://www.panynj.gov/bridges-tunnels/en/tolls.html).

Unfortunately, New York is not only known as an attractive city, but
also is it known as the city with the worst traffic in America. Vehicles spent
an average of 154 seconds per kilometre driving in New York City (at an
average speed 20 km/h) during rush hour. This sums up to 112 wasted hours
per year and vehicle due to congestion (see the TomTom Traffic Index
Ranking 2023 https://www.tomtom.com/traffic-index/ranking/?country=
US for reference). Constructions, planned maintenance, scheduled over-
night closures, and security incidents regularly cause the closure of these
important bottlenecks.

In this case study, let us discuss static road pricing with monetary
markets and Karma schemes for a scenario, where only two of the three
passages are available. Let us assume that there is a fire hazard due to an
accident in the Holland Tunnel, and that the tunnel is blocked for a week.

New Jersey

Fig. 1 | New Jersey and Manhattan (New York). Manhattan attracts a large
workforce from the neighbouring state of New Jersey, with commuters travelling via
Interstate 95. The commuters can choose between Holland Tunnel, Lincoln Tunnel,
and George Washington Bridge, to cross the Hudson river. In this case study, we
explore the distributional effects of pricing the Lincoln tunnel, assuming the Holland
Tunnel is closed and the traffic must distribute across the remaining two routes.
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Fig. 2 | Travel time model. The travel times per route (a) depend on the traffic (flow)
on each route. While the Lincoln Tunnel is a faster route in general, it reacts more
sensitively to higher traffic, and becomes much slower due to congestion. The
George Washington Bridge is a slower route, but has a higher capacity and therefore
does not react to increased traffic flows. From a system perspective, the optimal
traffic flow split can be achieved when the total travel time (vehicle hours) is

vehicle x hours

Driving from A to B in our case study map (Fig. 1) would be around 26.55
kilometres (35 min free flow) via the Lincoln Tunnel, and 49.89 kilometres
(40 min free flow) via the George Washington Bridge. Before closure, it was
only around 17.38 kilometres (24 min free flow) via the Holland Tunnel.
The traffic that came from Interstate 95 and used the Holland Tunnel, will
divert to the next closest passage nearby: the Lincoln Tunnel. As a con-
sequence, the Lincoln Tunnel faces congestion. Therefore, the New York
City Port Authority decides to price the Lincoln Tunnel higher, and to stop
charging for the George Washington Bridge. Doing so, the authority aims to
distribute the additional traffic more efficiently between the two connec-
tions. In order to mitigate congestion, the authority will choose a price that
minimizes the total travel time. We will compare the effects of road pricing
between monetary markets and Karma markets.

Figure 2 depicts the travel time model. We assume a traffic flow of
10,000 veh/h, which is split across the two routes. While the Lincoln Tunnel
has a shorter travel time upfront, it gets congested quickly, and after 6000
veh/h it is much slower compared to the alternative route. The route via
George Washington Bridge offers slower travel times, but higher capacity
and less congestion and delays for even higher flows. From a system-optimal
point of view, a minimum total travel time of 6791 vehicle hours (40.75 min
average travel time) can be achieved, if the total flow (10,000 veh/h) splits to
3983 veh/h on the Lincoln route and 6017 veh/h on the George Washington
route. Unfortunately, rational (selfish) individuals would optimize their
individual outcome, leading to a user equilibrium (Wardrop equilibrium) at
a split of 6169 veh/h on the Lincoln Tunnel, as there is no way to improve
one’s individual outcome by changing anymore. The split at the user
equilibrium (45.01 min average travel time) causes 4.26 min of additional
travel time to every vehicle on average. With the right pricing of the Lincoln
Tunnel, the total travel time could be reduced by almost 10%.

Figure 3 depicts the population urgency model. We model the popu-
lation with ten urgency levels (1-10), where the urgency levels are assumed
to be randomly-geometrically distributed in three different scenarios
(p=0.6,p=0.5, p=0.4). The n-th urgency level represents delay costs of n
times the hourly wage, which is considered the value of time (VOT). An
hourly salary based on the salary distribution of New York City (as reported
in the 2022 US. Census (https://en.wikipedia.org/wiki/Household_
income_in_the_United_States#Distribution%20_of_household_incom))
is assumed.

Problem specification

Let us assume, that a population of commuters decides at the beginning of
every day, whether they want to conduct their daily commute with their car
via the Lincoln or the George Washington route. Depending on their
urgency, commuters are willing to pay more or less. Let us further assume
that the system is in a user equilibrium state, meaning the usage of roads and
expected travel times are similar and known to all drivers.

14000
12000
10000 System Optimum
6791 hours
3983 veh/h
8000
6000 aliit s

4000 6000 8000
Split on Lincoln Tunnel [veh/h]

10000

minimized (b), resulting in approximately 3983 veh/h on the tunnel route, and the
remainder via the bridge. However, rational individuals seeking to achieve the best
outcome for themselves, as a consequence lead to a tunnel usage (Wardrop equili-
brium) at which the travel times of both routes are equal. As a result, the selfish
behaviour of rational individuals causes an additional 4.26 min of travel time per
vehicle on average.
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Fig. 3 | Population urgency model. Combining salary (a) and urgency distribution
(b) for three different scenarios results in a value of time (VOT) distribution (c) that
can be used to analyse the distributional effects using monetary road pricing. The
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urgency of individuals represents their willingness to pay n-times its salary for using
the Lincoln Tunnel. We assume three geometrically-distributed urgency scenarios
for this investigation.
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Karma auctions leads to the migration of the Stationary Nash Equilibrium from 50%
using the tunnel route to a system-optimal traffic flow split for a threshold between 5
and 8 Karma points (depending on the scenario).

For monetary markets, we calculate the user equilibrium following™;
when drivers choose between taking the Lincoln Tunnel or the George
Washington Bridge route they will minimize their costs. Each driver
experiences three types of costs: for paying the fee if using Lincoln, paying
fuel, and delay costs based on their VOT. We assume an average vehicle
consumption of 6.5 1/100km (36 mpg), and a fuel price of 0.96 $/1. The
numbers originate from reports published in 2021 by the U.S. Secretary of
Transportation on the average fleet fuel consumption (https://edition.cnn.
com/2022/04/01/energy/fuel-economy-rules/index.html) and the average
fuel price (https://tradingeconomics.com/united-states/gasoline-prices).

For Karma markets, we assume pairwise auctions between exactly two
consumers, where each day, all consumers of the population are attending
exactly one auction. The auctions are first price auctions, where the highest
bid is paid to the society. The bidder wins the auction and needs to pay his
bid, if his bid (the action) is above a certain (centrally-defined) Karma
threshold price and the highest bid of the two auction participants. As bids
are discrete integer values, but Karma threshold prices are continuous,
winning the auction is modelled stochastically. Imagine an auction with two
agents, bidding 3 and 4, and a threshold price of 4.2. Then this means that
the agent with bid 4 receives the resource with a chance of 20%. Imagine an
auction with two agents, bidding 3 and 4, and a threshold price of 3.5. Then
this means that the agent with bid 4 receives the resource with a chance of
100%. The bid is paid to the society, meaning that at the end of each day, the
winning bids from all auctions are collected, and then equally distributed
across every member of the population (including the winners). The sum of
all paid bids is distributed evenly as integer where possible, the rest is
randomly distributed via a lottery. For example, in a population with 100
individuals, the sum of bids is 132. In this case, every individual receives one
Karma point, and the remaining 32 Karma points are distributed point by
point to randomly drawn individuals with replacement (it is possible that an
individual is drawn multiple times). Users earn Karma by the bids they

receive through the payments to the society. If they bid low or loose their
auctions for multiple days, they accumulate Karma points over time, which
enables them to bid higher when necessary for them.

One further assumption is, that all agents have an equal, temporal
preference type with a discount factor of 0.85 (following previous studies).
This temporal preference represents how much agents trade off future costs
(rewards) over present costs (rewards). A discount factor of 0 would
translate to completely neglecting any future costs, while 1 would translate
to completely neglecting any present costs.

The consumer population is initiated with an average budget of 10
Karma points per individual, and the costs are modelled similar to the
monetary market.

How prices affect consumer behaviour

Figure 4a shows how different prices for the Lincoln Tunnel will affect the
consumer behaviour in monetary markets. Without the presence of pricing,
the user equilibrium lies at the Wardrop equilibrium (around 60% will take
the Lincoln Tunnel). For an increasing price, the demand drops. For a price
of $18.42, the user equilibrium lies exactly at the system optimum in sce-
nario 1 ($21.36 and $25.54 for the other two scenarios). Similarly, a price in
Karma Markets can reduce consumption, as shown in Fig. 4b. Without the
presence of pricing, the highest-bid auctions will result in 50% of the
population winning, as the market is modelled with exactly two randomly
chosen participants per round. For a price of around 5.36 Karma, the user
equilibrium can be controlled to sustainable levels as well in scenario 1 (6.27
Karma and 7.71 Karma for the other two scenarios).

Figure 5 shows the share of consumers and travel times across different
incomes and urgencies at the optimal price for scenario 1. Monetary markets
enable consumers with higher incomes (higher salary levels) to use the
Lincoln Tunnel, and to thus achieve significantly lower travel times. For
instance, only ~20% of the consumers at the lower end of income are willing
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Fig. 5 | Resource usage and travel time across salary and urgency. When optimally
pricing the tunnel route with monetary mechanisms, individuals with higher
incomes (salary class) experience significantly shorter travel times (c), as they can
afford to access the faster route more often (a). When pricing with Karma
mechanisms, access to the faster route and travel times are not related to the

individuals' income. With regard to the urgency levels, it can be observed for both
mechanisms that individuals with higher urgency experience shorter travel times
(d). In monetary mechanisms, individuals of very high urgency levels (starting from
level 6) almost all access the faster route (b), while in Karma mechanisms, this is not
the case. (The figures are plotted at the optimum travel split for scenario 1).
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Fig. 6 | Urgency level distribution. The urgency level distribution of individuals
(conditional probability) on both routes reveals that Karma achieves a greater
alignment with needs than money does (higher resp. lower average urgency level on
faster resp. slower route). On the faster Lincoln route (a), a higher average urgency
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level of drivers can be observed for the Karma resource allocation mechanism (when
compared with monetary market mechanisms). Similarly, on the slower George
Washington Bridge route (b), a lower average urgency level of drivers can be
observed. (The figures are plotted at the optimum travel split for scenario 1).

(or able) to pay for using the Lincoln Tunnel, while ~95% of consumers at
the upper end of income are willing to pay for usage. Therefore, consumers
with lower income have a noticeably higher travel time (~45 min) when
compared with those of higher incomes (~34 min). These results exemplify
the equity issues related to road pricing using monetary markets. Even
though the pricing mechanism allows for achieving more efficient usage of
the road infrastructure, it embodies the discrimination based on income,
which is unevenly distributed across consumers. Contrary to that, we can
observe Karma markets are completely indifferent to the income of con-
sumers, as Karma follows its own, non-monetary logic. In Karma markets,
39.83% of all consumers, regardless of salary, will get access to the Lincoln
Tunnel, and therefore achieve an average travel time of 40.75 min.

Karma allocates resources by addressing the needs of
consumers

With regard to different levels of urgency, we find monetary markets
guarantee access to the resource of interest to the highest levels of urgency
(almost 100%), while only ~22% of consumers of lower urgency use the
tunnel. Compared to money, the Karma mechanism deviates slightly; in the
lowest urgency level 1, ~17% (so ~5% less) of the consumers get access to the
tunnel, and at urgency level 3, ~70% (so ~5% more) of the consumers can
access the tunnel. For higher levels of urgency, the Karma mechanism only
guarantees ~75% (25% less) of the consumers access to the tunnel. At first

sight, these results might imply that Karma does not align as well with the
urgencies of consumers as money does. However, one must take into
account that most consumers are in the lower urgency regimes (e.g., 95% of
consumers with urgency less than level 5).

Therefore, we have analysed the distribution of urgency levels within
the preferred route (Lincoln Tunnel) and the alternative route (George
Washington Bridge), as shown in Fig. 6. The results show that the Karma
mechanism leads to a situation where consumers of higher urgency are
present in the Lincoln Tunnel, and consumers of lower urgency are present
on the George Washington Bridge when compared with the monetary
market. The Karma mechanism achieves an average urgency level of 2.32 in
the Lincoln Tunnel (2.14 for money), and an average urgency level of 1.24 on
the George Washington Bridge (1.35 for money).

Next, we analysed the costs and benefits of the road pricing strategy (for
scenario 1). Table 2 contrasts resource usage, travel times, and cost break-
down for a situation where there is no pricing, where pricing with monetary
markets is applied, and where pricing with Karma mechanisms is applied.
Due to the introduction of pricing, resource usage can be reduced and
therefore total travel time (and average travel time) can be reduced to a
possible minimum. The cost breakdown reveals that the total financial costs
per user, which consist of fuel costs, fees for the usage of the Lincoln Tunnel,
and travel time costs (due to the VOT), can be reduced from $89.03
(unpriced) down to $81.20 (9% less). Thus, controlling access to the resource
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Table 2 | Case study: cost & benefit analysis of Karma pricing

Comparison Unpriced Money Karma
Resource usage
...Consumers on Lincoln route %61.79 %39.83 %39.83
Times
...Av. travel time [min] 45.01 40.75 40.75
...Total travel time [veh x h] 7511 6791 6791
Costs per user
...Fuel $2.19 $2.53 $2.53
...Fees $0.0 $7.33 $0.0
...Travel time $86.84 $71.97 $78.66
Total costs per user $89.03 $81.84 $81.20
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Fig. 7 | When Karma works better. The superiority of Karma over money in terms
of alignment with needs depends on the distribution of salaries. At a certain level of
inequality in the income distribution, Karma performs better than money (Gini
coefficient above ~ 0.35).

yields significant improvements for the drivers. While the fuel costs increase
only slightly from $2.19 up to $2.53 (as more consumers drive the longer
route via the George Washington Bridge), the pricing introduces financial
fee costs in the case of monetary markets of $7.33 on average to the con-
sumer. Karma has an advantage here, as no additional financial costs due to
fees are generated. With regard to the costs due to travel times (VOT), we
can observe that monetary markets can achieve stronger cost reductions
from $86.84 down to $71.97 (17% less), as the money mechanism takes
salaries and VOTs into account. Au contraire, Karma focuses on consumer
needs (urgencies) only, and hence achieves solely 9% travel time cost
reductions. Essentially, Karma and money both yield improvements when
compared to the unpriced situation, with almost similar total cost
improvements per user. The cost reductions from the monetary mechanism
originate from a better alignment with the VOTS, at the cost of an additional
fee, while the cost reductions from the Karma mechanism originate from a
better alignment with the urgencies.

When Karma outperforms money

Finally, we have tried to better understand when Karma outperforms
money. A major determinant of the distributional effects of the monetary
mechanism is the distribution of financial power. Therefore, we sampled
synthetic salary distributions with different levels of evenness measured by

the Gini coefficient. The Gini coefficient of the assumed salary distribution
of New York from the case study lies around 0.375. We generated salary
distributions with Gini coefficients between 0.20 and 0.50, as most nations
possess income distributions in that range. We then determined optimal
prices to achieve system-optimal resource usage of the Lincoln Tunnel, and
quantified the average urgency levels of consumers in the Lincoln Tunnel as
ameasure for how well the mechanism allocates resources and how strongly
it is aligned with the consumer needs. The results for the three different
scenarios are shown in Fig. 7, where alignment with needs (urgency) is
measured as the average urgency level in the Lincoln Tunnel.

In societies with more even distributions (smaller Gini coefficients),
monetary markets can achieve a larger alignment with the consumer needs.
The larger the inequalities in financial power become, the less alignment
with consumer needs can be achieved. The Karma mechanism, instead, does
not react sensitively to the salary distribution. The superiority of Karma over
money depends on the urgency distribution as well. In our case study, it
turns out that the Karma mechanism works better than money for scenarios
1 and 2. In the fictional scenario 3, however, when urgency regimes become
more evenly distributed, the Karma mechanism is slightly worse. In scenario
1, less than 5% of the consumer population is urgent enough to be willing to
pay more than three times their hourly salary in exchange for the same
amount of time, while in scenario 3 it is already 30%, which can be con-
sidered to occur rarely in practice.

Summary of findings

To summarize, Karma is a fair and efficient resource allocation mechanism
that has the potential to address the equity issues of economic instruments
when coping with public goods. The results of the case study indicate that,
similar to money, Karma can be used as a resource pricing mechanism to
control the user equilibrium to sustainable levels of consumption. Contrary
to money, Karma embodies fairness, as it does not discriminate based on
financial power (income), but orients resource allocation on the urgency of
consumers. Karma is an efficient and robust resource allocation mechanism
that works independently of the distribution of financial power in a society.
The results indicate that Karma achieves a resource allocation that is better
aligned with the urgencies of consumers than money does. This is especially
the case for societies with higher inequalities in financial power. Further-
more, Karma pricing does not impose additional costs on the users and
generates significant improvements both in travel times and total costs
per user.

Discussion

In this section, we critically and comparatively discuss Karma in the context
of congestion pricing and tradeable credit schemes, elaborate on the
underlying fairness concept of Karma, highlight challenges with Karma
mechanisms related to inactive users and market liquidity, how to solve
them, and outline a blueprint for real-world implementation.

First, let us discuss Karma in the context of congestion pricing, and
tradeable credit schemes. Urban traffic congestion is a pertinent issue, with
dramatic consequences such as wasted lifetime and impaired life quality,
pollution of the city population and environment with emissions and noise,
wasted fuel and economic damages, and effects on public health due to stress
and emissions. Traffic demand management aims to decrease traffic flow to
solve congestion. This is achieved by incentive mechanisms that change the
behaviour of consumers. Most people agree that it is necessary to reduce the
consumption of road transportation resources in order to improve the
livability of cities, and to achieve environmental goals. Yet, traffic demand
management experiences significant public resistance. Even though most
people acknowledge congestion is a severe problem, only a few cities (Sin-
gapore, London, Stockholm, Milan, Gothenburg, and New York) worldwide
implement traffic demand management measures such as congestion pri-
cing. To drive the real-world implementation of traffic demand manage-
ment, these equity issues must be sufficiently addressed, in order to gain
public acceptance in political, public decision-making processes. The first
step, therefore, is to better understand the public resistance against
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congestion pricing. Equity issues and additional imposed costs are the major
reason for public resistance. If access to roads is restricted, people can drive
less often. However, driving often is the only affordable and accessible
means of transportation in cities. Public transportation is often insufficiently
available, inconvenient, and expensive. People’s concern is that monetary
instruments will cause systematic inequities and discrimination, leading to
situations where those who cannot afford will drive less, while others just
continue their current consumption behaviour. However, mobility is an
essential component in today’s life, for accessing better work opportunities,
education facilities, and recreation. A systematic, unequal restriction to
mobility resources therefore harbours the threat of systematically repro-
ducing and reinforcing existing societal inequalities.

The motivation for our research on Karma was to address these equity
issues. Is it possible to develop a form of congestion pricing that is more
equitable? Similarly, tradeable credit schemes were extensively discussed in
the literature to answer this question. Tradeable credit schemes (also termed
tradeable mobility permits, or mobility credits) are allowances that limit the
traffic demand and that grant holders the right to drive into the city".
Similar to conventional congestion pricing, tradeable credit schemes do not
enjoy large public support, as survey studies have found. While tradeable
credit schemes seem a popular alternative to conventional congestion pri-
cing and license plate rationing, they do not enjoy support when compared
with unrestricted access. People are concerned with the restriction of their
freedom, and rather choose freedom over tradeable credit scheme systems.
The acceptance depends furthermore on cultural, economic, and social
contexts ***°. A study shows that tradeable credit schemes might not suffi-
ciently address equity issues, as especially people of lower income will sig-
nificantly reduce their mobility consumption™. Furthermore, scholars raise
additional concerns with tradeable credit schemes, such as the cognitive
complexity of trading the allowances to actually benefit from the ability to
trade the permits, as the the credit price is endogenously determined by the
credit-trading behaviour”’”. Karma-based congestion pricing might be a
significant improvement for these equity issues, as not only the poor but all
users are equally forced to economize and reduce their consumption pat-
terns. This would address the concerns of systematic inequality, systematic
discrimination, and potentially achieve envy-freeness.

Second, let us discuss Karma in the context of fairness. Defining fair-
ness is a complex philosophical question, and usually depends on cultural
values, norms, and situational contexts™. Traffic demand management
measures such as congestion pricing reduce demand (consumption) by
using financial incentives. This usually faces public resistance due to equity
issue concerns. Probably, the most useful definition of fairness is such one
that enables us to win public acceptance. We must be convincing that the
traffic demand management system we try to implement is fair to all. Some
might argue Karma even decreases fairness. In conventional congestion
pricing, or systems with tradeable credit schemes, users that urgently need
the mobility resource can just buy it with money, while in Karma systems
this would not be possible. In scenarios where there are permanent, large
differences in the demand between users, Karma would fail to allocate
resources efficiently in this vein, as users do not have the ability to buy the
resource if necessary. Take work commuters as an example. Even though
they are willing to pay more, they are not able to get more. From this
perspective, taking the possibility to trade, buy, and sell rights using money
seems to let users worse off only. This critical interpretation of congestion
pricing with Karma probably advocates a definition of proportional fairness
in the spirit of Aristotle’. According to this definition of fairness, the more
you contribute, the more you should get. An implicit assumption of this
interpretation is that everyone in need who is willing to access the mobility
resource is able to buy the resource if necessary. As previous studies for both
congestion pricing and tradeable credit schemes show, this is not necessarily
the case. In the case of congestion pricing, many users might not be able to
afford the congestion tax anymore. In case of tradeable mobility credits,
users who would like to travel by car might rather sell their rights because
they need the money more urgently. Moreover, one could question whether
permanent, large differences in the demand between users are fair per se.

Permanent differences in traffic demand might be the result of existing
social inequalities that persist, perpetuate, reproduce, and reflect systematic
inequalities imposed by the system. In the sense of the transportation justice
movement” one could argue that mobility accessibility is related to socio-
economic, social mobility: (i) the poor cannot afford a car, and need to take
public transport instead, (ii) because they take the public transport, they are
disadvantaged and waste time, (iii) because they have less free time for
recreation and education, they are less productive and impeded from getting
a better job, higher income, and stay poor. Finally, we could ask whether
there are more or less noble reasons to consume mobility resources. And
even if we agree that commercial and commute related mobility should be
prioritized over leisure related mobility, one of the major reasons for the
congestion peak hours we observe in most cities is due to the daily commute.
We argue that Karma increases fairness. In order to achieve less congestion,
mobility resource consumption must be reduced; to put it simple we must
drive less. With Karma markets, all users equally need to economize their
budget, when considering on which days it is sufficiently urgent for them to
drive and when not. Within monetary markets (including conventional
congestion pricing and tradeable credit schemes), we systematically prior-
itize those who can afford, not necessarily those who are in need the most.
Important to emphasize at the same time is, that Karma might not achieve
fairness-optimal resource allocation or solves all problems, but rather can it
be considered an improvement in terms of fairness when compared with
unrestricted access, monetary congestion pricing, or tradeable credit
schemes. Karma shifts the problem from “being able to afford” to “being able
to produce” (i.e., not to consume). One could argue, that especially the parts
of the population with a lower income often need to commute more often, as
rents further away are more affordable, and often need to work in
employments that do not provide flexibility in work time and location. This
argumentation, however, focuses on the complexities that arise with
restricting access and enforcing mobility demand reduction, and neglects
the relative fairness-improvements that Karma has to offer when compared
with monetary congestion pricing.

The question of fairness often relates to the question of economic
welfare. When using monetary congestion pricing to reduce demand and
therefore congestion, we cause a reallocation of a smaller amount of scarce
mobility resources to a population of drivers. A monetary pricing
mechanism might allocate the resources most efficiently, as the mechanism
focuses on those who are willing to pay the most. In this sense, those who are
willing to pay the most are those with the highest value of time, which is the
product of their urgency level and their hourly salary. Furthermore, those
who are willing to pay the most, are those that would experience the highest
economic damage by being delayed. However, we argue that another per-
spective and definition of welfare might be necessary here, such one that
focuses on needs rather than the value of time. We are convinced, that public
acceptance towards traffic demand management using economic instru-
ments could be enhanced, when considering everyone’s damage in time as
equally important, meaning that the urgency level itself, rather than the
value of time, is what we should consider as welfare measure. As shown by
the results of this study, Karma achieves higher levels in that sense, as it
focuses on needs only, independent of economic power. Assuming the time
and needs of everyone as equally important (independent of their economic
power) therefore democratizes demand reduction and increases acceptance.

Third, let us discuss the challenges with inactive users and market
liquidity. A challenge with Karma mechanisms is the liquidity of the Karma
market, meaning the right amount of Karma currency in circulation®" ™.
Two important aspects play a role in controlling liquidity: amount control,
and strategies to cope with inactive users. First, controlling the amount of
Karma, for example by a fixed amount of Karma per person, is crucial to
ensure that there is no hoarding of Karma while also providing sufficient
incentives to stimulate production and consumption. In the case of a time-
variant number of users, a dedicated amount control is an important aspect
to consider when designing Karma economies. Second, the activity of users
plays an important role. In practice, population heterogeneity in temporal
preferences and urgency processes will exist, causing significant permanent
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Table 3 | Notation for Karma game and modelling

Symbol Description
Indexes & scalars
i Index of agent in population
j Index of participant in interaction
t Index of time/epoch of the game
e Index of interaction
n Number of agents in population
Sets
N Set of agents in population
Set of possible agent types
Set of possible urgency levels
K Set of possible Karma balances
Set of participants in interaction
Ay Set of possible actions for participant (with Karma balance k)
o Set of possible outcomes from an interaction
Be Vector of participants’ actions (in interaction e)
Agent state
T Type
ut Urgency level
kf Karma balance
Interaction
al‘? Action of participant j in encounter e
@) Outcome of interaction
of Outcome of interaction e for participant j

Modelling (probabilistic functions)

Probability of outcome o given the participant actions B

©p[0, 5]

Probability of next Karma k'*' given current Karma k', participant’s

QK K, B, 0f]
actions B, and the participant’s outcome of

olr,uft! uf, of] Probability of next urgency uf*" given current urgency uf, outcome of

typet

Modelling (logic functions)

Clu, o] The immediate costs for a given urgency level and outcome

Tt The discount factor for a given agent type (of temporal preference)

z Karma overflow account

Skt Karma payment (positive means receiving)

Social State

[T, U, k, &) Probability of action a given the state 7, u, k

dplr, u, K] Share of population that has specific type t, urgency level u and Karma

balance k

Optimization (intermediate products)

vpla] Probability of action a (average agent)
Yplo, al Pr(o|a) (average agent)

Kolk*, k, a] Prik*|k, a)

&lu, a) Immediate expected cost for known action

pplT, U*, k*, u, k, @] Pr (u*, k*|k, u, a, 1)

R, u, K] Expected immediate cost

Pplt, u*, k*, u, K] Priu*, k¥lk, u, 1)

V[, u, K] Expected infinite horizon cost
Q[r, u, k, a] Single-stage deviation reward
Tplr,u,k,a] Perturbed best response policy

Optimization (hyper parameter)

n Change speed of 77, relative to d
w Change speed of 71,
A Greediness when calculating Q

differences in urgencies. Inactive users who have very low urgencies and
might never have an interest in consuming, harbour the threat of accu-
mulating large amounts of Karma over time, reducing the liquidity of the
market. Potential countermeasures to address these inactive users include
strategies to limit the maximum amount of Karma a user can possess and
redistribution of Karma using combinations of lotteries and auctions.
Moreover, as discussed in the following elaboration on a real-world
implementation, it might be useful to define minimum consumption rules
for members of the Karma economy, and to systematically exclude those
inactive users if they fail to comply.

Fourth, let us discuss a blueprint for a real-world implementation of a
Karma economy. In a real-world context, various complexities need to be
addressed when implementing a form of public good value pricing. The
largest complexity is probably the varying number of users in the system.
Similar to various propositions of tradeable credit schemes for congestion
pricing, a combination of conventional monetary congestion pricing and
equity-addressing instruments might be recommendable. Karma could
serve as a flat rate or frequent user programme, as a complement to con-
ventional monetary pricing for non-frequent, or foreign users. We envision
two possible ways to enter the city by car. One component is using con-
ventional congestion pricing, which could be applied to infrequent drivers,
such as tourists or inactive drivers. The other component is a Karma-based
congestion pricing, e.g., for recurrent, regular, and frequent users of the
public good. One could start with a conventional congestion pricing with a
sufficiently high cost, to incentivise regular users to join a Karma-based
system. Joining the Karma-based system would require the drivers to stay
for at least a certain period, and allows road usage only, when paid with
Karma. Violating this requirement would result in “painful” fines. The right
choice of a minimum membership duration and financial penalties could
provide the right incentives not to switch too frequently between conven-
tional congestion pricing and Karma mechanism, ensuring system
compliance.

Methods

Game-theoretic formalism

In previous works, Karma was described primarilly in verbal terms, which
impedes systematic, quantitative analysis. Modelling Karma as a game is
useful, as it allows us to predict user behaviour and to simulate Karma
economies as multi-agent systems™. In this section, we outline the game-
theoretic formalism used for our software framework and explain how the
agent behaviour can be predicted using the social state of the Stationary
Nash Equilibrium for dynamic population games.

We define indexes as non-capitalized letters, e.g., i. We denote sets as
calligraphic letters, e.g., A. We denote scalars as non-capitalized, indexed
letters, e.g., 7; or uf. We denote functions as capitalized letters, with discrete
arguments in square brackets and continuous arguments in round brackets,
e.g., A[b](c) = d. We denote probabilistic functions as Greek letters with
subscripts p, e.g., 7,. We denote Pr(a|b) to describe the conditional prob-
ability of an event a given b. Table 3 summarizes the notation used to
describe the Karma game, and to model the resource allocation problem for
the software framework.

Karma is as a repeated, stochastic, dynamic population Garme, repre-
sented by a tupleG of para-
meters. G = (N, T,U,K,C, T,0,,Q,,¥,,m,d,)

In a Karma game, there is a population of n agents. For each point in
time ¢ (epoch) of the game, each agent i of the population i € N =
{1,..., n} possesses a state consisting of a type 7;, an urgency level 1}, and a
Karma balance k} > 0, k; € K.

During each epoch ¢, a subset of agents J C N is encountering a
competition e for a resource at hand (interaction). Each participating agent
j € J during the encounter makes a decision based on its own type 7;
urgency level u}, and Karma balance k]’- independently of each other (as the
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state information of each agent is private, invisible to others) using the policy
m, = Pr(alt, u, k), and thus executes an action a]‘? ~m, during the encounter.
As aresult of the interaction there is an outcome o¢ that determines how the

resource is distributed for agent j (e.g, if it recjeives the resource). The
outcome (resource allocation) affects the future states of the participating
agents u*', k;"!Vj € J. The subset J is randomly and independently
chosen from the population. In one epoch, there can be multiple
interactions.

The agent type 7; € 7 is time invariant and represents the agent’s type
of temporal preference. The agent urgency level u! € U determines the
immediate costs (rewards) the agent experiences after the interaction of an
encounter e by the outcome o,. The immediate cost an agent experiences is
described by function C[u, o] that maps the urgency level and interaction
outcome to immediate costs. The discount factor function T[z] maps the
temporal preference type to the discount factor. The discount factor T[] €
{R\O < T[‘r]<1} indicates how much the agent trades off future costs
(rewards) over present costs (rewards). Tz] = 0 would not consider future
costs at all, while T[7] = 1 would not consider present costs at all.

The possible actions a$ that the agent can choose from during the
encounter e, is determined by its Karma balance a; € A;, = {1....k;}. The
decision-making process of the agent to choose an action a¢ from the set of
possible actions Aj, . based on its own, private state T U and kj is modelled by
the policy 7,. The policy 7, is a probabilistic function that maps from a given
private state to a probability distribution over actions ﬂp[Tj, uj, kj, aj] =
Pr(ajt; u; kj).

The vector of actions of all participants B, = {aiVj € J} cause one
outcome 0,. The outcome o, is the vector of outcomes for each participant
jof € O that is determined by the probabilistic outcome function ). The
outcome function ®,[o,,B,] = Pr(o,|B,) maps from all participants’
actions in B, to the probability of different possible outcomes. The outcome
0. of interaction e affects the participant’s next Karma balance k™'
according to a probabilistic function (2, that represents the Karma transi-
tion probability, referred to as the Karma payment rule:
Qp[k]t-“7 k;, B,, oj] = Pr(k]t-+1 |k]t-7 B,, o;). The outcome o, of interaction e
affects the agent’s next urgency level u]’.Jrl according to a probabilistic
transition function Wy, that represents the urgency transition probability,
respectively the 7-dependent urgency pro-
cess: W, [, u]f“, uj, o] = Pr(u'*u', of, 7).

The distribution of types, urgency levels, and Karma balances in the
population is the state distribution dp. dp[‘r, u, k] describes the share of the
population that has a specific type 7, urgency level #, and Karma balance k.
Together with the policy, the state distribution is called the social state of the
Karma game (7, d,).

Depending on the chosen design element options for the aspect cur-
rency (see Table 1), further complexity can be added to this game. The
amount of Karma per capita could be limited, or the total amount of Karma
in circulation could be controlled according to a specific logic™. Further-
more, some form of Karma redistribution could take place, for example in
the form of a lottery, or taxation.

Assumptions
Karma is a repeated, dynamic population game, as the Karma game is not
played once but multiple times and the time is split into discrete epochs
(rounds). As argued in previous works, a time horizon of at least multiple
rounds is crucial to incentivise cooperation amongst selfish
participants™***"***", The formalism describes a stochastic game, as the state
and state transitions of agents depend upon probabilities. Besides, the
behaviour of agents, such as their bids or accepting resource provision
requests, is modelled as a Markov decision process™*. The formalism
describes a population game, as the Karma mechanism aims to represent the
strategic interplay in large societies of rational (selfish) agents
(participants)®.

The Karma game makes certain assumptions in order to facilitate
simulation and computation of the Stationary Nash Equilibrium. We will
discuss these assumptions in the following:

 The selection of participants for an interaction is randomly chosen
from the population.

* The Karma balance of each agent must be greater or equal to zero.
There is no such thing as a Karma debt allowed.

* The total amount of Karma in circulation remains constant over time.

* The total amount of agents in the population remains constant
over time.

* The possible actions of an agent in an interaction solely depends on its
Karma balance.

¢ The decision-making process of agents to choose an action during an
interaction solely depends on its own, private state (type, urgency,
Karma), and not the states of others.

¢ The decision-making process of agents to choose an action during an
interaction solely depends on its own, current state, and not on its
previous states.

* The agents have an identical decision-making process by following the
same, state-specific policy, assuming that the policy describes the best
possible choice (optimum) for an egoistic, selfish, rationally
acting agent.

Several, important implications follow from these assumptions, and are
discussed in the following. Moreover, we provide guidance on how intelli-
gent modelling can achieve Karma games of higher complexity, despite
these restricting assumptions:

* The selection of participants is not discriminatory in terms of agent
type, urgency or Karma balance. This means that the probability to be
selected in an interaction is proportional to the share in the distribution
defined by d. There must be at least two participants selected. In certain
contexts, it could be possible to have auctions with more than two
participants, or even the whole population as in ref. 28.

* A changing number of agents could be modelled by introducing a
specific type and urgency, for agents that have no cost and no temporal
preference, and thus will act in an interaction with the specific action
type “no action” (e.g., refusing any action), so that they always result in
a specific outcome type (not receive resource).

* Only sealed bid auctions as a form of interaction are possible in the
Karma system, as the state of agents is private to others and the system.
This is particularly important, as it enables this form of decentralized,
parsimonious control to work without a large overhead, and without
the need to exchange any information except for the action. Of course
this assumes that certain forms of smart contracts enforce all partici-
pants to act according to the set of possible actions.

* An important assumption this model makes is that the agent’s
decision-making is a Markov decision process chain, meaning that the
decision-making of the agent at a specific stage only depends upon the
agent’s current exogenous state and available actions, but not a history
on past states or actions*.

 The action of an agent must at least be the bid in a sealed bid auction,
but can in addition include other actions. As an example, in ref. 28 the
action is the bid and the decision when (timeslot) to start driving to
work in the morning.

* The outcome of the interaction o, is the vector of outcomes o, ; for each
participant j. It could be modelled binary, where o,,; = 1 represents that
participant j receives the resource, and o,; = 0 represents that partici-
pant j does not receive the resource.

* Multi-agent control systems often aim to find mechanisms to align
selfish behaviour with global, societal goals. One can assume that a
population of rational agents, be it human or autonomous, will always
try to express a behaviour that will maximize their own, expected
reward. Therefore, once proven that the policy is the optimal policy for
a rational, selfish agent, we can conclude that all agents will follow the
identical, state specific policy. Of course, this does not necessarily mean
that each agent has the (cognitive) ability to identify the optimal policy,
but this can be discussed in future research. Besides, one could assume
an algorithmic bidding assistant for humans.
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Fig. 8 | Stationary Nash Equilibrium calculation.
The consumption behaviour of rational, selfish
individuals in Karma economies can be predicted by
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calculating the Stationary Nash Equilibrium. The

Stationary Nash Equilibrium™ consists of two
components: (i) a probabilistic policy matrix 7, that
describes how much individuals would be willing to
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* Agents can only possess and bid discrete amounts of Karma points.
This is designed intentionally to facilitate the calculation of user
behaviour (and the Stationary Nash Equilibrium), as each Karma
budget captures a different bidding behaviour in the policy matrix. A
continuous amount of Karma would result in an infinite number of
cases to capture in the policy matrix, which is computationally not
feasible. An approach to enable “more continuous” numbers is either to
increase the average initial Karma per user, thus extending the
dimensions of the matrices representing the Stationary Nash Equili-
brium. Another approach could be, similar to what we did in the case
study on New York, to model winning an auction with probabilistic
conditions relating to a continuous price.

The interested reader is recommended to look in further modelling
peculiarities in refs. 26-29,63.

Agent behaviour prediction
In order to simulate the Karma mechanism as a multi-agent system, it is of
crucial importance to predict the behaviour 7,[7, u, k, a] of agents. Usually
one assumes that each agent is rational and acts in its best self-interest,
meaning an agent achieves the best possible outcome for itself. The rational
behaviour of an agent is described by the optimal policymy[7, u, k,a). The
Nash Equilibrium of a game describes the optimal policy, where no agent
can improve its situation by deviating from the policy””****. A population of
rational agents following this optimal policy will lead to a stationary state
distribution d}. For dynamic population games, the concept of a Stationary
Nash Equilibrium describes the social state that consists of the optimal
policy and stationary state distribution (7, d). At least one Stationary
Nash Equilibrium for each Karma game is guaranteed to exist when the
circulating amount of Karma is preserved”***. The optimal social state can
be calculated in an iterative way, as outlined in Fig. 8, by computing inter-
mediate products.

vpla] represents the probability distribution of an average agent’s
actions.

vlal = " d,[r, u, klm[7,u,k,a]

T,u.k

1

yplo, a] represents the probability of an interaction outcome o for an
agent given its action a.

ylo.al =" v,a18,[0, B, = {a,d'}] @)

Kp[k*, k, a] represents the probability that an agent will have a Karma
balance k* after the interaction, given a previous Karma balance k and action
a. Depending on the logic defined in the Karma game for [kfrl , k;-, B, of
the modelling of this function becomes a complex, non-trivial task. For
instance, the Karma transition depends on whether the highest or second
highest bid wins, whether the winner pays the bid to its peer or to the society,
whether Karma redistribution takes place, etc.

&[u, a] represents the expected immediate costs an agent with urgency
level u, Karma balance k experiences, when performing action a in an
interaction.

&u,al =~ Clu, oly,lo, d] 3)

pplT u*, k*, u, k, a] represents the probability that an agent of type T will
have an urgency level u* and Karma balance k* after the interaction, given a
previous urgency level 4, Karma balance k, and action a.

R[7, u, k] represents the expected immediate cost for an agent of type 7,
urgency level u, and Karma balance k that follows the policy T[p[T, u, k, al.

Rlr,u, k] = Z [, u, k, aé[u, a] (5)

Pyt u*, k*, u, k] represents the probability that an agent of type 7 will
have an urgency level u* and Karma balance k* after the interaction, given a
previous urgency level u and Karma balance k, assuming that the agent
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follows the policy (7, u, k, a].

Pp[T7 u', k*a u, k] = Z ﬂp[T7 u, k, a]Pp[Tv u', k*v u, k, al 6)

V17, u, k] represents the expected infinite horizon cost for an agent of
type 7, urgency level u and Karma balance k. V[1, u, k] can be computed by
the recursive, Bellman-equation as shown below, and is guaranteed to
converge due to contraction-mapping.

Vir,u, k] < R[z,u, k] + T[r] Z Pz, u", k", u, K]V[z, u*, k'] )

u* k*

QI, u, k, a] is the single-stage deviation reward, when deviating from
the current iteration’s policy. This intermediate computation product
highlights where deviating from the current iteration’s policy is profitable
and guides the process of improving the policy. In the Stationary Nash
Equilibrium, Q would not deviate from the policy anymore, as it iteratively
converges towards the final, optimal policy.

Q[T7 u, k7 a] = f[uv {l] + T[T] Z PP[T7 u*7 k*a u, ka a]V[Ta u, k] (8)
u* k*

7,7, u, k, a] represents the perturbed best response policy. The hyper
parameter A controls for how strong (greedy) the single-stage deviation
reward of this iteration should be taken into account when improving the

policy.

exp(AQ[7, u, k, a] — max, AQ[7, u, k,a'])
Za’ eXP(AQ[‘ﬁ u, k7 a] — Max,« AQ[T7 u, k7 ﬂ*])

Ty

[T7 u7 k’ a] =

©)

Finally, the update of social state consists of two steps based on the
computed, intermediate products P and ﬁp. Two hyper parameters, control
the speed of change for the distribution (@), and for the policy relative to the
distribution (#).

m, < (1 = na@)m, + (116.))%1, (10)

d, < (1 — @)d, + (@)d,P, (11)

In order to calculate the optimal social state at the Stationary Nash
Equilibrium, previous works used iterative, heuristic and numeric optimi-
zation algorithms. Censi et al”’ suggests fixed point computation,
momentum method and simulated annealing. Elokda et al.”**** use evo-
lutionary dynamics inspired optimization algorithms. Elokda* employs the
Smith protocol. The choice of a suitable optimization algorithm is impor-
tant, as the state-space is large and the dynamics are rigid"'. In this work, we
compute the Stationary Nash Equilibrium employing an evolutionary
dynamics inspired optimization algorithm®. The interested reader is highly
recommended to review further optimization approaches in ref. 64, such as
the Replicator-approach, Brown-von-Neumann-Nash, Smith, and the
projection approach.

Software framework

In this work, we present a well-documented, open-source, software fra-
mework (Python, PEP8, GPL 3.0) to equip the reader with the tool-set to
apply Karma as a resource allocation mechanism. It implements the game-
theoretic formalism, allows for the computation of the Stationary Nash
Equilibrium, provides a rich template library to model Karma, and enables
the simulation of Karma as a multi-agent system.

To use the software, users will need to follow a three-step approach: (i)
defining their Karma game (modelling), (ii) predicting the behaviour of
market participants (optimization), and (iii) simulation of a multi-agent
system Karma economy (simulation). In the following we will outline how
the reader can model a resource allocation problem, how the optimal policy

at the Stationary Nash Equilibrium can be computed using the optimization
module, and finally how to simulate the resource allocation as a multi-agent
system. For more information and details, please refer the to GitHub page
and documentation.

First, let us discuss modelling. In order to model a Karma resource
allocation problem with the software framework, the user needs to specify
general parameters, logic functions (for simulation) and probabilistic
functions (for optimization). The probabilistic functions need to be pro-
vided to capture how an individual agent would model reality and make
decisions, in order to determine the optimal behaviour of a rational agent.
The logic functions need to be defined in order to simulate the Karma game
as a multi-agent system. The software framework offers a rich library of
predefined templates and examples for the probabilistic and logic functions.

To begin with, the user needs to specify general parameters such as the
average initial Karma, number of agents n, number of participants in an
interaction || J ||, initial distribution d,[7, u, k], set of temporal preferences
T, set of urgency levels U, set of valid Karma balances /C, and set of possible
interaction outcomes O.

Next, the user needs to specify probabilistic functions, namely the
probabilistic outcome function @, (Pr(o|B)), the probabilistic Karma
transition function 0, (Pr(k""'[K', B,, 0, ;))» and the probabilistic urgency
transition function ¥, (Pr(u'*'[uf' o, 7).

Afterwards, the user needs to specify logic functions that determine
payments between participants 6k; and/or a Karma overflow account Z that
can be used for redistribution of Karma (i.e., property tax) and payments to
the society (distribution of Karma): the cost function C([u;, 0;] — R), the
temporal preference function T ([7;] — [0; 1] € R), the outcome function
(B, — o,), the payment function ([a;,0;] — [{6kVie N},Z]), the
urgency transition function ([u;, 0;] — u;), the overflow distribution func-
tion ([{k,Vi € N},Z] — {6k¥i € N}), and the Karma redistribution
function ({k,Vi € N} — {8kVi € N}).

Table 4 connects the design parameters of the Karma mechanism with
the modelling aspects of the software framework. Please note, the frame-
work encodes the outcome o, = 0 as not receiving a resource (costs appear)
and o, = 1 as receiving the resource (no costs appear).

Second, let us showcase the optimization process, which represents the
computation of the Karma Game’s Stationary Nash Equilibrium, as
described in Algorithm 1.

Algorithm 1. Behaviour prediction
1: Init social state
2: while not AbortionCriterion do

3: Adjust state space

4: Validate social state

5: Compute intermediate products (in this order)
6: Update social state

7: end while

Init social state. To initialize the state distribution, one needs to define an
initial distribution across agent types, urgency levels and Karma balances.
The distribution will determine the average Karma amount in the
population, which needs to stay constant over the runtime of the algo-
rithm. To initialize the policy, the software framework offers three pos-
sible initializations by default: “bottom”, “even” and “top” that represents
initial policies in which the agents always bid 0 (bottom), always bid the
maximum Karma amount (top) or an even distribution between them
(even). We recommend “even” as we observed the convergence to pro-
ceed faster.

AbortionCriterion. As mentioned in the game-theoretic model, we
employ an iterative approach to calculate the Stationary Nash Equili-
brium. Over many iterations, the difference of the social state after and
before the iteration decreases. While the algorithm will converge towards
the Stationary Nash Equilibrium, at some point, when the precision of the
social state is sufficient, one can abort the computation. A certain
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Table 4 | Karma design and modelling

Design element

Modelling aspect

Currency

Parity Ay, O
Balance limits K
Amount control Constant

Initialization Initial distribution
Redistribution Redistribution function
Interaction

Price control

Payment function

Price limits

Ay, Payment function

Resource provision

Problem-specific

Resource allocation

Outcome function

Counter-party

I

Peer selection (Options by simulation module)

Decision-making Optimal policy m,[t, u, k, a]

Urgency process ¥, Urgency transition function

Temporal preference T[1], Discount factors

Transaction

Payment amount Payment function

Payment receiver Payment function,

Overflow Distribution function

Karma gain & Payment function,

Karma lose Overflow distribution function,

Redistribution function

abortion criterion defines the sufficiency in this context. In our software
framework, we recommend the user to have a dual abortion criterion:
maximum number of iterations, and a convergence threshold for the
differences of social states between iterations.

Adjust state space. While the Karma game, as defined in this work,
could have an infinite state (possible Karma balances K) and thus action
space (possible actions .A), in practice it is impossible and unnecessary to
calculate dp and T, for infinite spaces. In the software framework, we store
d, and 7, in arrays (tensors) of finite dimensions. We define initial state
and action space based on the average initial Karma, and then dynami-
cally expand the spaces when certain conditions are met, which make
expansion necessary.

The initial state and action space need to be set by the user. We
recommend an initial action space with a size equal to the average initial
Karma, and an initial state space with a size equal to four times the average
initial Karma (as within the first iterations the Karma distribution at the
average initial Karma sinks and spills over to neighbouring Karma balances
on the left and rights).

The action space is expanded, if the sum of the policy’s action prob-
abilities of the boundary action (highest action in the space) across all types,
urgencies and Karma balances, exceed a threshold value. The state space is
expanded, if the sum of the distribution’s shares for the highest four
boundary states (highest Karma balances in the space) across all types, and
urgencies, exceeds a threshold value. We do so, to make sure there is always
enough space for the distribution to expand. Based on our computations, we
found that the distribution reacts sensitive to hitting the boundary, and that
convergence decelerates significantly.

Validate social state. The numerical computations of the algorithm
with decimal floating point numbers can cause rounding errors that
accumulate over the iterations. Thus, it is important to regularly validate

whether the social state is correct, and if not, to correct through nor-
malization. The d[z, u, k] is valid, if: (i) all the shares for different types,
urgency levels, and Karma balances add up to 1.0, and (ii) the average
Karma balance equals the average initial Karma balance:

> dlr,u, Kl =1.0A> kxd,[r,u, k] = const. (12)

T,u,k T,u,k

The policy ﬂp[‘l', u, k, a] is valid, if the probabilities of all actions for a
given agent type, urgency level, and Karma balance adds up to 1.0:

an[r, u,k,al=10V 7,u,k (13)

Compute intermediate products. The intermediate products are cal-
culated using an evolutionary, best-response dynamic, as described in the
game-theoretic formalization. Please note, the iterative calculation of Vis
initialized as V[, u, k] = 0, and aborted based on two criteria: (i) max-
imum number of iterations, (ii) convergence threshold.

Update social state. The update of the social state follows the ela-
boration in the game-theoretic formalization. The hyper parameters can
be tweaked for specific optimization problems, and also changed adap-
tively over the iterations to accelerate convergence. Based on our
experiences, we recommend the values A = 1000, @ = 0.20, 7 = 0.50 as a
good set of hyper parameters to start with.

Third, let us discuss the time-discrete simulation of Karma as a multi-
agent system is outlined in Algorithm 2. The implemented simulator can be
integrated seamlessly with other simulators, and offers storage and com-
putation for all Karma related population values. At all times, the software
framework records the population related information (type, urgency level,
Karma balance, cumulated costs, number of encounters), and provides
useful methods to retrieve information on the simulation progress.

Algorithm 2. Simulation
1: Init social state
2: While not AbortionCriterion do
3: Begin epoch
4: Execute interactions
a: Participant selection
b: Decision-making process
c: Determine outcome
d: Karma transactions (payments & overflow)
5: Close epoch
a: Urgency transition
b: Karma overflow distribution
¢: Karma redistribution
6: end while

Init social state. In addition to the game parameters specified during
modelling and optimization, the number of agents n, an initial state
distribution d[, u, k], and the optimal policy np[‘r, u, k, a] need to be
provided. By default, an initial state distribution will be derived from the
computed Stationary Nash Equilibrium, in order to simulate a multi-
agent system that already is in its steady state. However, there are options
to initiate the system by equally distributing Karma units.

AbortionCriterion. The simulation happens in discrete periods of time
(epoch), and can be repeated until a user-defined abortion criterion is
met. Each epoch consists of three computation steps.

Begin epoch. The first step of an epoch is to record of the states before
interactions.

Execute interactions. The second step of an epoch consists of executing
one or multiple interactions. Each interaction requires a list of
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costs when not winning the auction (u = 1), are higher for larger Karma balances but
do not exceed 9, as the chance of meeting a random competitor with a larger bid is
almost zero (b). The infinite horizon reward (c) shows that the expected costs
(negative rewards) for individuals depend on their Karma balance. The perturbed
best response (f) demonstrates that the policy above (middle right) is the best
possible bidding strategy, and that one cannot improve its own outcome by deviating
from it.

participating agents, to predict the actions of the participants based on the
optimal policy, and to compute an outcome of the interaction based on
the participant actions. The outcome of the interaction will then cause the
Karma transaction which includes the update of costs, and Karma bal-
ances. The list of participating agents could originate from a domain
specific simulator, or could it be generated randomly.

Close epoch. The third step of an epoch includes the update of states:
urgency transition, Karma overflow distribution and Karma redistribu-
tion (and internal recording). Karma overflow distribution refers to the
possible distribution of Karma payments in case the bids are paid to the
society during transactions. Karma redistribution refers to a possible
redistribution of Karma after the transactions, for example in form of a
property tax or a lottery based scheme.

Computation example

In this example, we will discuss the optimization and simulation of a
resource allocation problem, where there is one type of user with a temporal
preference of 0.8, and two urgency levels with costs 0 and 3. The initial
Karma balance is set to 6. In terms of logic, the highest bidding participant in
an interaction of two agents wins, and pays the bid to the peer. Also, let us
assume there is no Karma redistribution.

Figure 9 shows the results of the optimization process after 1000
iterations. Starting from an average initial Karma of 6, we can observe that
the state space expanded up to a Karma balance of 40 units, and the action
space expanded to 11 units for bidding (more is irrational for the given set-

up) (Fig. 9, first row). The distribution d,[7, u, k] of Karma across the
population is right skewed, meaning that there is no incentive to hoard large
amounts of Karma. The Karma policies (Fig. 9, second row) show that if
there is an urgency of zero ﬂp[T, u =0, k, a], and thus no costs incurred with
not getting the resource, there is little incentive to bid anything except for 0,
in order to save the Karma units for situations when the urgency is not zero.
If there are costs incurred to not getting the resource however 7,[7, u = 1, k,
a] we can observe a bidding behaviour, up to 9 Karma units. Above that, it
doesn’t make sense for the participant to bid higher and rather save its
Karma units, as there are almost no agents owning more than 20 Karma
units, and no competitor will bid more. Moreover, not all available Karma
units are used in bidding in order to save the units for future encounters.
These two policies lead to the average action distribution of a randomly
selected competitor. The infinite horizon reward V[, u, k] (Fig. 9, third row)
shows that the expected reward (negative costs) increases (costs decrease)
the larger the Karma balance. This means that participants with higher
Karma balances are more likely to win the auctions. The single stage
deviation Q[7, u, k, a] matches almost completely with the derived Karma
policy after the 1,000 iterations, which means the optimal policy is reached,
as there is no benefit anymore in deviating from it.

Figure 10 shows the results of the simulation process after 10,000
epochs with one random interaction of two participants per epoch, and a
population of 200 individuals. On average, each agent has had around 75
interactions as a result. The shape of the Karma distribution resembles the
predicted Stationary Nash Equilibrium. Furthermore, we can see that the
cumulative costs of the agents are right-skewed, with an average of 0.7,
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Fig. 10 | Simulation as multi-agent system. The simulation of a Karma economy as
amulti-agent system of 200 rational individuals over 10,000 epochs, leads to a Karma
distribution similar to the one predicted by the Stationary Nash Equilibrium (a). The
encounters (b) between two random participants per epoch, occur in a normally
distributed manner, with each individual participating in approximately 75

interactions on average. The cumulative cost distribution demonstrates (c) that the
chance of experiencing high costs over time is very low. The Karma balance tran-
sitions (d) show that Karma balances either increase by the bid of the opponent,
decrease by one’s own bid, or remain the same (both zero bids).

meaning that agents rarely experience severely high costs after multiple
interactions. The Karma balance transition shows the probabilities that an
agent with a Karma balance before (abscissa) ends up with a Karma balance
after (ordinate), averaged across all types and urgencies. One can observe
three main diagonals, as participants either do not participate in an inter-
action (remain with the same amount of Karma), or participate and either
win the resource (lose Karma) or lose the resource (win Karma).

Conclusions

This study set out to demonstrate the potential of Karma to address equity
issues associated with economic instruments when coping with public
goods. Within this work, we reviewed important design elements and
challenges in designing Karma mechanisms, discussed the value proposition
of Karma as a non-monetary resource allocation mechanism, modelled
Karma as a game, and equipped the reader with a useful software framework
to predict consumer behaviour in Karma economies. Using a case study on
bridge tolling as an example, we systematically compare the distributional
effects and related equity issues of monetary and Karma resource allocation
mechanisms and demonstrate the potential of this concept. The results show
that Karma outperforms money, especially in situations where financial
power is unequally distributed across the population, as Karma achieves a
stronger alignment with consumer needs. The Karma mechanism embodies
fairness, as it does not discriminate based on financial power (income) and
furthermore does not generate an additional financial burden for
consumers.

Future research could investigate the effects of different urgency and
type distributions as well as populations with temporal preference hetero-
geneities (differing discount rates). In this sense, empirical studies could be
conducted to determine more realistic distributions of urgencies and tem-
poral preferences across populations. Moreover, research on addressing
inactive users in Karma Economies using maximum Karma balances,
redistribution, and combinations of lotteries and auctions presents pro-
mising future work directions. Furthermore, a systematic, simulation-based
equity analysis, a comparison with tradeable credit schemes, and a discus-
sion of Karma as a form of non-tradeable credit scheme could pose

interesting research questions. In addition, empirical, behavioural studies
could access whether the cognitive complexity in a Karma economy is
sufficiently low to ensure that people are able to act rationally and in their
own best interest. Finally, survey studies to assess the public acceptance of
Karma economies for public good value pricing could yield valuable insights
into how Karma could drive the real-world implementation of traffic
demand management, complementing tradeable credit schemes, license
plate rationing, and congestion pricing.

Data availability
The Karma software framework, and its documentation are available in the
GitHub repository: https://github.com/DerKevinRiehl/karma_game_library.

Code availability
The software framework and documentation can be found on the GitHub
repository https://github.com/DerKevinRiehl/karma_game_library.
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