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Classifying electric vehicle adopters and
forecasting progress to full adoption
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Electric light-duty vehicle sales are increasing, but adoption is not uniform. Forecasting who is
adopting and when is crucial to planning infrastructure, creating incentives, and ensuring equity. We
identify different clusters of adopters in California, examine adoption rates within them, and forecast
adoption trajectories.Clusters are classifiedby revealed characteristics using results fromamulti-year
survey of 18,921 plug-in electric vehicle (PEV) adopters. Eight clusters are identified: four each among
single-vehicle and multi-vehicle households. We classify the population into these segments and
simulate future PEV adoption using Bass diffusion. We compare adoption trajectories—assuming
current rates of adoption, a scenario of 100% new vehicle sales by 2035, and a scenario of “net zero”
by 2045. Our analysis finds large clusters with low to-date PEV adoption, encompassing 47% of the
population, and results reveal some clusters are not on track to meet California sales targets and/or
climate goals.

Plug-in electric vehicles (PEVs) play a crucial role in decarbonizing trans-
portation globally as they can reduce vehicle greenhouse gas emissions
especially when powered by low-carbon electricity. PEVs, which include
battery electric vehicles (BEVs) and plug-in hybrid electric vehicles
(PHEVs), are a subset of zero-emission vehicles (ZEVs) that are experien-
cing rapid growth. As an example, in California PEVs accounted for 25.3%
of new light-duty vehicle sales in 20241. Recent policies aim to ensure a full
transformation of the light-duty vehicle sector to ZEVs or PEVs, with
supply-side regulations including mandates. Several regions have adopted
such policies, which require vehicle manufacturers to sell or produce a
certain quantity of such vehicles in a given year2. Studies have shown that
early PEV adopters have been more affluent than the general population,
across multiple regions and prior to the 2020s—they are highly educated,
have higher incomes, own homes, and possess many vehicles3–5. However,
the expandingPEVmarket signals a shift towards broader accessibility, with
more typical households adopting the technology.

This paper uses California as a case study to examine the potential path
to full light-duty vehicle electrification, especially within different segments
of the population. With a supply-side mandate, Advanced Clean Cars II
(ACCII)6, California plans to electrify all new vehicle sales and eventually
transform its entire vehicle fleet. ACCII is explained in further detail in
“Context”. We aim to investigate heterogeneity in PEV adopters and
determine rates of adoption needed to meet climate goals. Specifically, we
intend to answer the following research questions:
• What types of households adopt PEVs?
• How quickly have different types of households adopted PEVs?

• Howquicklywill different types of households need to adopt to achieve
full PEV transition targets?

Our study extends the existing body of knowledge onPEVadoption by
providing insights into PEV adopter heterogeneity and adoption rates
relative toCalifornia climate targets.WeanalyzePHEVs andBEVs together,
similar tomany studies in the literature2,5,7–9, becauseboth fuel types canplug
in to electricity to refuel, which necessitates/promotes behavioral changes
and because in California (the region of study) PHEVs are permitted as part
of the 100% ZEV regulation. First, we identify differences in PEV adopters
based on their vehicle needs. We use several observable characteristics as a
proxy for measuring vehicle needs: revealed household vehicle fleet pre-
ferences (e.g., number of vehicles and vehicle body type), land use char-
acteristics (e.g., rural or urban), and sociodemographic attributes (e.g.,
income and age). This diverges from the existing body of literature which
focuses on heterogeneity in stated preference or examines socio-
demographic and psychographic characteristics. Vehicle fleet and land use
preferences must be considered when modeling future adoption because
they significantly influence the purchase decision of vehicles10–12. Second,we
estimate adoption trajectories for different clusters of the population using a
Diffusion of Innovations (DOI) approach13. This allows us to estimate
adoption rates for each cluster while allowing for heterogeneity in early
adopters. Finally, this study estimates what adoption rates are needed to
meet climate goals such as (1) ACCII targets and (2) carbon neutrality by
2045. Both scenarios forecast a future in which California ultimately
achieves full PEV adoption but differ by whether the models meet specific
targets in 2035 (adoption due to 100% ZEV sales) or 2045 (near full
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adoption) respectively. While our study provides insights into PEV adop-
ters, we focus only on the initial PEV acquisition and not subsequent
additional or replacement purchases. Parameterizing variation within PEV
adopters is crucial for policymakers to design tailored incentives and
identify specific obstacles faced by distinct groups.

We examine PEV adopters, performing cluster analysis to identify
classes and then modeling each class’s rate of PEV adoption. Latent
class analysis using revealed vehicle fleet, land use, and socio-
demographic characteristics is used for clustering and Bass diffusion
models are fit to each cluster to determine adoption rates. One of the
reasons Bass models are suited for this analysis is because these models
asymptotically approach 100% adoption, and we model full vehicle
adoption, the scenario in which all vehicle-owning Californians adopt
an electric vehicle. Both the clustering and diffusion models are cali-
brated on empirical data of actual adopters, repeated cross-sectional
surveys of PEV adopters over the period from 2012 to early 2020. We
estimate separate diffusion models for each cluster detected, finding
each is at different points in its diffusion trajectory.

Literature review
Context
Governments worldwide aim to increase PEV sales to promote transpor-
tation decarbonization, with several aiming for a full transition to the new
technology.Many countries target 100%of light-duty vehicle (LDV) sales to
be PEVsor other types of ZEVsby a specific year, either through announced
government targets or formal proposals14. Certain US states have gone even
further by turning targets into supply-side regulation: AdvancedCleanCars
II (ACCII). ACCII regulates that 100% of new vehicle sales by 2035must be
ZEVs or PEVs, which includes fully-electric BEVs and partially-electric
PHEVs, in California and other US states that have adopted the rule under
Section 177 of the Clean Air Act15,16. California is progressing towards this
goal with ZEVs (PEVs) comprising 25% (24.8%) of new LDV sales in 20231.
The state ismaking further strides towards decarbonizationwith a statewide
goal to achieve carbon neutrality by 2045 across all sectors, including
transportation17. The recent policies coupled with the popularity of PEVs
makes it feasible that California will be a template many regions can follow
to reach full PEV adoption in the coming decades.

With the rise of vehicle mandates has come a focus on equity impli-
cations. Existing literature finds early PEV adoption has been inequitable
thus far. Several studies use neighborhood-aggregated data to find lower
PEV ownership and rebates in neighborhoods with lower-incomes or
higher environmental burdens8,18. Hennesy and Syal18 find that ZIP codes
with Latino-majorities and formerly redlined neighborhoods have lower
PEV ownership and California Clean Vehicle Rebate Program (CVRP)
rebate amounts. Redlining was a past discriminatory lending practice in the
US that resulted in racially and economically segregated neighborhoods that
largely persist to this day. Guo and Kontou8 utilize Lorenz curves to find a
low proportion of the CVRP rebate goes to census tracts with lowermedian
incomes, lower PEV ownership, and higher environmental burdens and
with rebates spatially concentrated in metropolitan regions. These neigh-
borhoodswithhigh environmental burdens, or disadvantaged communities
as per CalEnviroScreen19, are areas most affected by many sources of pol-
lution (such as air andwater),withpopulations that are especially vulnerable
to this pollution. They also find inequality has lessened over time, with Gini
coefficients lowering between 2010–2018. Canepa et al. 20 investigate
individual-level PEV adoption data in disadvantaged communities (DACs)
in California. They find that PEV adoption is much lower in DACs than
non-DACs but even PEV adopters in DACs do not reflect the socio-
demographic characteristics of their neighbors. Sovacool et al. 21 also list
demographic and spatial inequity as issues with PEV diffusion.

Modeling PEV adoption in the entire population is vital to ensure
future adoption progressesmore equitably than early adoption.Wepropose
using clustering techniques to identify classes within PEV adopters and
subsequentlymatch these classes to the general population.We hypothesize
there are minority segments within PEV adopters that comprise large

portions of the general population. Clustering allows identification of
minority classes, which can be overlooked in more aggregated PEV adop-
tion studies. We then fit Bass diffusion models to each cluster, assuming
within each cluster there are “innovators,” “majority adopters” and “lag-
gards”—or those who adopt the technology earlier and those who adopt
later13.

PEV adopter heterogeneity
Researchers have sought to identify potential early PEV adopters since the
resurgence of the technology. Several studies examinedheterogeneitywithin
the general or potential PEV buyer population by focusing on psycho-
graphics and stated preference data22–24. These studies identify groups that
may be receptive to PEVs by using attitudes and preferences22,24 and
sociodemographic characteristics23. They use attitudes towards technology,
vehicles, environment, or other psychographics to identify segments likely
to adopt PEVs sooner and later, analogous to Rogers’ “innovators” and
“laggards”13 but using more attitudes than just “innovativeness”.

With rapid adoption of PEVs, research has shifted to investigate cur-
rent PEV adopters. Studies examining revealed preference heterogeneity
among PEV owners interview small samples of PEV owners or focus on
psychographics, discerning that early PEV adopters fall into different life-
styles categories25 or aremotivated by different specific factors26. Axsen et al.
25 use semi-structured interviews to identify four lifestyle classes of the 17
Canadian PEV owners they survey with different levels of engagement with
technology and the environment. They find two groups with lower
technology-engagement and two with lower environment-engagement,
challenging the assumption of homogeneity within early PEV buyers. Wei
et al. 26 conduct a factor analysis on a survey of PEV adopters and potential
consumers in China. They find six relevant factors promote PEV adoption,
one of which is “herd mentality.”

There are many attitudes, preferences, and other factors that influence
whether PEVs meet the needs of consumers and are important when
considering equity in PEV adoption but are difficult to measure in large
samples of actual adopters. Fortunately, current revealed data on household
vehicle fleets can act as a proxy for capturing these intangible factors. The
number of vehicles in a household is one such example. Studies have shown
households with PEVs and additional vehicles can meet their travel needs2
7–31. Similarly, preferences for different vehicle body types influence pre-
ferences for fuel types10,11. The literature finds distinct trends for consumers
who prefer pickup trucks or light-duty trucks such as Ford F-150 vehicles,
hereafter called “trucks.”Higgins et al. 10 find that truck buyersmay have the
highest disutilities for PEVs.Mohammad et al. 11 find body type preferences
correlate with different attitudes; e.g., they find truck buyers are the least
likely to purchase but have favorable views of PEVs.This gap could be due to
PEVs failing to meet this segment's’ vehicle needs. Additionally, research
shows household location, i.e., rural or urban, is critical to vehicle choice12.
Overall, preference for different vehicle body types andnumber of vehicles is
clearly correlated with factors that would determine whether a PEV can
meet the needs of individual households.

To model population-wide PEV diffusion, we use revealed household
fleet data, along with sociodemographic and locational data, as a proxy for
household vehicle needs and attitudeswhich are difficult tomeasure in large
samples. To anticipate inequitable diffusion, we consider heterogeneity in
the data: sociodemographic factors such as income, locational factors such
as housing type and urban/rural status, and vehicle needs & usage such as
number of vehicles and vehicle body type. This work builds upon studies of
heterogeneity in sociodemographics and the purchase decisions of PEV
adopters. Hardman et al. 32 separate PEV buyers into high- and low-end
buyers, finding the former are older, wealthier, andmore educated. Lee et al.
33 classify early PEV adopters in California, finding five main groups. This
study employs similar methods as Lee et al. 33 but makes several advance-
ments. First, the household vehicle needs are considered by including
households’ current vehicle fleet characteristics in the clustering model.
Second, PEV characteristics are not used to segment adopters but are stu-
died empirically after clustering. Finally, and most significantly, this work
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compares adoption rates to current policy through a scenario analysis, a task
not undertaken by previous work.

PEV Diffusion
Forecasting future PEV adoption is a key question for researchers. Bass
modeling, a common technique in diffusion modeling, produces S-shaped
cumulative adoption curves34. These curves align with Rogers’ Diffusion of
Innovation (DOI) theory, where “innovators” and “early adopters” adopt
first, and “laggards” adopt last13. Bass diffusion is one of the most popular
formulations of Rogers’ DOI and forms the basis for many PEV adoption
studies35–38.

There are criticisms of Bass diffusion modeling. The formulation
relies on two assumptions not necessarily always true: a symmetrical
pattern of adoption between early and late adopters and only two types of
diffusion communication channels, mass media and interpersonal
channels13. While modeling several consumer goods well, the Bass for-
mulation may not technically be the best fit for California PEV adoption.
Indeed, Kumar et al. 39 find that other S-shaped models such as Logistic,
Gompertz,GeneralizedBassmaybetterfit the adoptionpattern ofPEVs in
different countries.

In this study, we use Bass models to simulate diffusion within
clusters identified from early adopters of PEVs. Themarketing literature
is clear; there is no strong evidence that a specific diffusion model
consistently outperforms other diffusionmodels40. Researchers studying
diffusion across various technologies and regions come to conflicting
conclusions about whether Bass, Logistic and Gompertz models out-
perform each other40–43. Given that PEV adoption is nascent in most
countries and regions, there is no guarantee that themodels identified by
Kumar et al. 39 will continue to have the best predictive power with more
available data.

We opt to use Bassmodels for several reasons. First, thismodel has been
extensively investigated and shown to have good predictive power for several
technologies such as color televisions, durable goods, the Internet, mobile
phones, and online shopping35–38,40,44,45. Second, studies argue that it predicts

diffusion well even without marketing variables such as pricing and
advertising40,46,47. Studies that account for market variables may use models
such as theGeneralizedBassmodel, but this is unnecessary for our analysis as
we specifically aim to estimate diffusion trajectories in the absence of addi-
tional market factors. Third, it allows for differing earlier and later diffusion
rates while remaining symmetric. In contrast, the Logistic model estimates a
single diffusion rate and the Gompertz model has asymmetric diffusion, in
which later diffusion is slowed compared to earlier diffusion. PEVadoption is
nascent, and it is too early to predict whether later diffusion will be asym-
metrically slower than early diffusion. Sincewe aim to compare scenarios, the
symmetric Bass model allows us to estimate differences between scenarios.

Furthermore, S-shaped adoption patterns are appropriate to use
because Rogers assumes that 100% of a population adopts a new tech-
nology and Californian regulation aims to ensure this is the case15,17. As
ZEVs, specifically the subset of PEVs, take over the new car market, they
will subsequently filter into the used car market. While PEVs have
depreciated at higher rates than ICEVs, this trend is shifting quickly, with
newer model years and larger-range vehicles retaining significantly more
value48. It is too early to understand how this might affect the used PEV
market, how depreciationmay change in a fewmore years, or howquickly
PEVsmay enter the usedmarket. Yet it is clear that there is already a used
PEVmarket, it is growing, and there are policies to encourage this market
such as the FederalUsedCleanVehicle Credit. This study envisions future
scenarios in which consumer enthusiasm, policy, electrification of new
vehicle sales, and transformation of the used vehiclemarket is adequate to
guarantee full PEV adoption. While it is not definitive that PEVs will be
the dominant ZEV technology, currently their market offerings outpace
their competitors. Furthermore, recent legislation is ensuring substantial
investments will be made in PEV charging infrastructure, further incen-
tivizing PEV adoption.

Methods and data
The methods and data utilized in this paper are outlined in Fig. 1; main
methods are highlighted in green, final outputs are highlighted in orange,

Fig. 1 | Methods and data flowchart. Inputs, intermediates, and outputs of different methods used in the analysis. Main methods are highlighted in green, final outputs are
highlighted in orange, and original datasets are underlined.
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and original datasets are underlined. First, we identify clusters within a
survey of PEV adopters using latent class clustering (LCC). Next, we gen-
eralize adoption to the total population using two steps. We determine
cluster membership within the population through scoring; we use cluster
membership models to determine probabilities households belong to a
cluster and the total size of each cluster in the general population. We also
determine to-date adoption within clusters through weighting the original
PEV adopter survey. Finally, we create future scenarios using the outputs of
the previous two processes. We create three scenarios using Bass diffusion.
The first scenario models current growth while the second scenario simu-
lates a “net zero” future in which all clusters near full adoption by 2045.
Finally, we construct a third scenario in which adoption in all clusters is
constrained by the PEVs available in 2035. This final scenario relies on
ACCII regulated sales targets and household vehicle data from the general
population, using the National Household Travel Survey California Add-
On(CA-NHTS).Ourmethodology is designed tomirror the currentmarket
adopters, who are predominantly influenced by consumer preferences, and
to facilitate a scenario of transition to full adoption. This reflects a supply-
regulatedmarketwhere onlyPlug-inElectricVehicles (PEVs)will be offered
for sale after 2035 regardless of current consumer preference.

Characterizing PEV adopters
The first step utilizes latent class clustering (LCC) to characterize hetero-
geneity within PEV adopters. Of the various clustering algorithms available,
LCC was chosen because of its ability to handle different variable scales,
including ordinal, nominal, and count scales, and incorporate probability
distributions of variableswhen clustering. LCC iswidely usedas amethodof

“extractingmeaningful groups” fromdata49 andhas beenused in a variety of
transportation applications50–52.

We utilize data from multiple questionnaire surveys created by the
Electric Vehicle Research Center at the University of California, Davis. The
surveys were distributed between 2015–2020 and collected data from
Californian households with recent PEV purchases made between 2012-
early 2020. The California Air Resources Board assisted in survey recruit-
ment by inviting California Clean Vehicle Rebate (CVRP) applicants to
participate.TheCVRPwas akeydriver ofPEVadoption inCalifornia in this
period and about three-quarters of PEV buyers participated in the
program53. After filtering for insufficient sociodemographic data, 18,921
respondent households were identified as first-time adopters and used for
clustering. In this sample, 2,896 belonged to a household with a single
vehicle and 16,025 belonged to a household with multiple vehicles. Table 1
summarizes the survey data characteristics and more detailed information
can be found in the report prepared by Tal et al. 54.

There are two sources of selection bias when we attempt to represent
the population of PEV adopters using this survey. First, survey respondents
may not accurately represent the population of CVRP applicants. Second,
CVRP applicants may not accurately represent the population of PEV
adopters. These biases may be further exacerbated by changing CVRP
requirements over time. Income caps were instituted by the program and
disqualified high-income PEV buyers from receiving a rebate starting in
201655. Consequently, high-income adopters may be underrepresented in
our survey. Indeed, Guo and Kontou8 find that the share of CVRP rebates
distributed to low-income groups and disadvantaged communities has
increased over time, especially after the institution of income caps.

Table 1 | PEV survey data used for clustering summary statistics

Demographics and Context Single-Vehicle Households Multi-Vehicle Households Total

Proportion of Total 15% 85% 100%

Sample Size 2,896 16,025 18,921

Average Income (thousands USD)a 129.5 194.1 184.1

Average Age (years)b 45.9 49.2 48.7

Proportion of Femalesb,c 38% 27% 28%

Average Educationb,d 2.30 2.33 2.33

Average Household Size 1.65 2.99 2.78

Average Number of Drivers 1.35 2.22 2.09

Housing Type & Tenure

Proportion in MUDs 35% 14% 17%

Proportion in Owned Detached SFH 35% 71% 65%

Proportion in Owned Attached SFH 12% 7% 7%

Proportion in Rented Detached SFH 10% 6% 6%

Proportion in Rented Attached SFH 8% 3% 4%

Land Use

Proportion in Rural areas 17% 27% 26%

Proportion in Suburban areas 43% 53% 51%

Proportion in Urban areas 39% 20% 23%

Fleet Characteristics

Average Number of Vehicles 1.00 2.56 2.32

Fleet Mean Age (years) 2.26 6.63 5.96

Proportion of Truck Owners 0.0% 13% 11%

Proportion of SUV Owners 4.7% 56% 48%
a Average income calculated by using the midpoint of income ranges.
b Of the Householder.
c Includes all genders except males.
d Measured on an ordinal scale from 0 = Some High School or Less, 1 =High School Graduate, 2 =College Graduate, 3 =Graduate or Professional Degree.
MUDMulti-Unit Dwelling, SFH Single-Family Home.
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However, oversampling lower-income adopters may be a benefit for
clustering, as it handles the problem of imbalanced classes. It is well known
that early PEV adopters have been disproportionately higher-income
households5,33, thus clusters with lower-income households are likely much
smaller in size than thosewith higher-incomehouseholds. This is an issue of
imbalanced classes, where some “minority” classes have much lower
populations than “majority” classes. In classification tasks with imbalanced
data, there are a variety of methods to oversample minority classes56.
Similarly in social surveys, various methods are used to oversample rare
populations57.The income caps instituted by the CVRP program serve to
oversample low-income households, and this increases the likelihood that
we identify minority classes through clustering. While this is still an issue
when attempting to represent the entire population of PEV owners, we
present a method for overcoming this limitation in the following section.

We use household fleet and land use characteristics in addition to
sociodemographic data to characterize different types of households. First,
survey respondents are grouped by number of vehicles into single- and
multi-vehicle households. We do this because single and multi-vehicle
householdsplaydifferent roles in the vehiclemarket andwill have adifferent
impact on PEV diffusion, because single-vehicle households are sometimes
overlooked, and because they may need different policy support to adopt
PEVs.We chose to separate single- frommulti-vehicle households, and not
use any other grouping, because this isolates households that fully convert to
PEVs.Wehypothesize that householdswith two, three, ormore vehicleswill
have similar behaviors when adopting their first PEV as they have
backup ICEVs.

Second, we determine adopter clusters across the entire dataset using
sociodemographic, land use, and fleet characteristics. Sociodemographic
variables include household income, age, gender, education, number of
drivers, household size, housing type & tenure, and land use classification.
Respondent data are used for individual-level variables (age, gender, &
education). Land use is modified from Salon et al. 58 and simplifies the
original five categories by grouping the two lowest- and two highest-density
categories, creating rural, suburban, and urban levels. Household fleet data
are examined for multi-vehicle households including number of vehicles,
average fleet age, presence of trucks, presence of SUVs/vans. Fleet data is
restricted to multi-vehicle households because the survey is a convenience
sample ofPEVbuyers and therehas been limitedPEVbody type availability.
Home charging infrastructure is excluded as a clustering variable because it
is endogenous to the decision to purchase a PEV, but the included housing
variables, such as housing type, tenure and land use, are good predictors of
home charging access as Ge et al. note59.

A LCC model without covariates is summarized by Eq. (1) below,
where x is a single nominal latent variable with K categories, yit is the
response variable i for individual t, andT is the total number of individuals.
In this analysis, yit is a household’s sociodemographic orfleet characteristics
and k is the class membership. The conditional probability density for yit
given condition of the membership x is f yit jx

� �
.

f yi
� � ¼

XK
k¼1

P kð Þ
YT
t¼1

ðyit kj Þ ð1Þ

The Expectation-Maximization (EM) and the Newton-Raphson (NR)
algorithms are used to estimate the LCC models. Both algorithms are
iterative, maximum-likelihood approaches that are given a set of starting
values and estimate parameters stepwiseuntil a given criteria is satisfied.The
EM algorithm is used until the change in likelihood is lower than a set
criterion, then theNRalgorithm is used to reach the set limit of convergence.
While stable, both algorithms are sensitive to localmaxima of the likelihood
functions. To address this issue, multiple models with different sets of
parameters starting values are tested. Another issue occurs when the
number of parameters is greatly increased, usually by increasing the number
of classes. When this occurs, it may be difficult to achieve both model
identification and convergence. The following approach is used to avoid this

issue and select the appropriate number of classes for the model. First, the
model is estimated sequentially with an increasing number of latent classes,
startingwithone class and endingwhen themodel is impossible to interpret,
and classes become too small. Then, the ideal number of classes is chosen
based on several probabilistic statistical measures including Bayesian
Information Criterion (BIC) and Akaike Information Criterion (AIC),
considering the marginal improvement of model fit between successive
models. The number of clusters is chosen whenmodel fit measures cease to
decrease significantly60,61.

Thefinal latent classmembershipmodel estimates coefficients βwhich
determine the probability of respondent t belonging to class k given
response variables i. Equations (2) and (3) summarize the probability Pðt 2
kÞ for a model with K classes.

Ukt ¼
X
i

βikyit ð2Þ

Pðt 2 kÞ ¼ eUkt

PK
x¼1 e

Uxt
ð3Þ

Generalizing to the total population
Wegeneralize to the general Californian population using two techniques: a
scoring process tomatch PEVadopter classes to the general population and
a weighting process to determine the share of PEV sales, and thus cumu-
lative adoption, attributed to each cluster.

We match PEV adopter clusters to the general population to project
full diffusion. To represent the state’s population, we use the 2017 National
Household Travel Survey California Add-On (CA-NHTS)62, which details
travel behavior and sociodemographic data for 26,095 California house-
holds with appropriate weights. Additional data on housing type was
imputed from the 2015–2019 American Communities Survey63.

To determine the cumulative adoption in each cluster, we apply a
weighting process using the PEV adopter survey, PEV sales data, and LCC
membership models similar to weighting done by Jenn et al. 9. As stated in
the previous section, there are two sources of selection biaswhen attempting
to represent the entire population of PEV adopters using the PEV adopter
survey. To account for these biases, weweight the PEVadopter survey using
PEV sales data from the California Energy Commission’s New ZEV Sales
data1 which are derived from analysis of the state’s DMV data. This dataset
contains the total PEV sales bymake and fuel type by year in California and
allows us to generalize the survey to the population of adopters and then to
clusters. We calculate weights to represent the share of total annual PEV
sales each respondent represents, thenuse respondents’ clustermembership
probabilities to determine the total annual PEV sales by cluster.

Latent class cluster (LCC) membership models, Eqs. (2) and (3), are
applied to each household in the general population, using theCA-NHTS as
a representative population. The LCC membership models determine the
probability a household belongs to each of the clusters. Clustermembership
models were developed separately for single- andmulti-vehicle households.
Applying LCC models to this population allows us to determine the total
size of each cluster in the general population, i.e., how many households in
California fit into the eight clusters developed in the first section of this
analysis.

Weighting is needed to estimate the cumulative PEV adoption by
cluster across the entire California population, as there are certain limita-
tionswith the PEVadopter survey data. This step ensures thatmodel results
are more representative of the population of PEV adopters. Survey
respondents are givenweights basedon the annual sales of themakeand fuel
type (either BEV or PHEV) of the PEV they purchased. The weight for a
respondent who purchased a vehicle of makem and fuel type f in year y is
given bydividing the total vehicles sold in the state by the numberof vehicles
in the survey of make m and fuel type f in year y, Eq. (4). To determine
adoption by cluster k each year, the householdweight of each respondent i is
multipliedwith the probability pk;i, the probability that respondent i belongs
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to cluster k, and is summed across all respondents in the sample offirst-time
adopters S, Eq. (5). The entire process is summarized in the equations below.
We aggregate sales tomake and fuel type because there is not enoughdata to
weight by model or location as well. Sales information is gathered from the
California Energy Commission’s New ZEV Sales data1.

Wy;i ¼
Vehicle Salesy;m;f

Survey Vehiclesy;m;f
ð4Þ

Adoptionk;y ¼
XS
i¼1

Wy;i�pk;i ð5Þ

Creating future scenarios
Weconstruct three diffusion scenarios to illustrate the rate of PEV adoption
in California until 2050: business-as-usual “BAU”, “Net Zero”, and “ACCII
Targets” scenarios.

All three scenarios aremodeled using past adoption data by cluster but
the second and third scenarios include additional constraints. The BAU
scenario only considers past rates of PEV adoption. The “Net Zero” sce-
nario, informed by California’s net zero targets, includes specific adoption
rates in 2045 as constraints to the cluster diffusion models. In contrast, the
“ACCIITargets” scenario utilizes past adoption data but includes additional
constraints for 2035. By using Advanced Clean Cars II vehicle sales targets
and vehicle age data from households by cluster, we calculate the expected
adoption in each cluster by 2035 and include them as constraints.

All three scenarios are created with Bass diffusionmodels and detailed
descriptions of each scenario are given in the following sections. An over-
view of the data sources for each scenario is summarized in Table 2.

Bass models are fit using past PEV adoption by cluster developed
through the weighting process along with the total size of each cluster. The
fraction of each cluster that has adopted PEVs is calculated by dividing
cumulative adoption for each cluster by the total size of each cluster and is
computed for years between 2012 and 2019 (data from2020 is excluded as it
does not cover the entire year). Finally, we construct two Bass diffusion
scenarios: one business-as-usual “BAU” case and a “Net Zero” case. Both
cases fit past cumulative adoption fractions, but the Net Zero case also fits
Bass curves to a pre-determined endpoint in 2045. As California is com-
mitted to carbonneutrality by 2045,we construct the scenario inwhich 98%
of households adopt at least one PEV by 2045. Bass diffusion curves are
estimated separately for each cluster and scenario, creating a total of 16
adoption trajectories. Equation (6) summarizes the Bass formulation, where
F tð Þ is the cumulative fraction of households that have adopted the new
technology by time t. Adoption depends on two parameters, p and q, which
govern the rate of earlier and later adoption, respectively.

F tð Þ ¼ 1� e� pþqð Þt
1þ q

p e
�ðpþqÞt ð6Þ

Weconstruct a third scenario inwhich adoption in 2035 is constrained
by the availability of PEVs given ACCII sales regulations. We estimate the

expected value of adoption in 2035 among the eight clusters using sales
targets andvehicle agedata by cluster, gathered fromtheCA-NHTS.Then, a
third set of cluster Bass diffusionmodels are estimated using this 2035 value
along with past PEV adoption data.

First, assuming the ages of vehicles in householdfleets are similar to the
CA-NHTS,we calculate theprobability of householdPEVadoption in 2035.
We assume that theprobability that a specific vehicle in a householdfleet is a
PEV is given by Eq. (7), the fraction of PEVs in a specificmodel year, which
is taken fromACCII targets. Furthermore, we assume that the probability of
adoption is the probability at least one of a household’s vehicles is a PEV. If
the number of vehicles in a household is v and adoption only occurs among
the three newest vehicles in a household, vehicles a, b, or c, the probability of
adoption is given by Eq. (8) whereA, B, andC are the events that vehicles a,
b, or c are PEVs respectively.

P PEV jmodel year y
� � ¼ number of PEVs in model year y

number of vehicles in model year y
ð7Þ

P adoption
� � ¼

P Að Þ
P A∪Bð Þ

P A∪B∪Cð Þ

if v ¼ 1

if v ¼ 2

if v > 2

8><
>:

ð8Þ

Where

P A∪Bð Þ ¼ P Að Þ þ P Bð Þ � P A \ Bð Þ

P A∪B∪Cð Þ ¼ P Að Þ þ P Bð Þ þ P Cð Þ � P A \ Bð Þ
�P A \ Cð Þ � P B \ Cð Þ þ P A \ B \ Cð Þ

In this calculation, wemake the additional assumption thatA,B, andC
are independent events, thus the joint probability of events occurring is
given by multiplying the probabilities of the individual events,
e.g., P A \ Bð Þ ¼ P Að ÞP Bð Þ.

The expected value of adoption for cluster k is given by Eq. (9), where
wi is the reported weight of respondent i in the CA-NHTS, pk;i is the
previously calculated probability of respondent i belonging to cluster k, and
padoption;i is calculated by Eq. (8).

E adoption in cluster k
� � ¼

XN
i¼1

wi�pk;i � padoption;i ð9Þ

This calculation alsomakes the following assumptions: (1)ACCIIZEV
targetswill be equivalent to the percentage of PEVs sold in particular year or
alternatively, the fractionof FCEVs is negligible; (2) vehicles donotflow into
or out of California; (3) vehicle lifespan and scrappage is similar between
ICEVs and PEVs;

We construct estimates for P PEVjmodel year y
� �

, plotted in Fig. 2,
using the following sources. From2019–2022we use historicalmarket share
data from the California Energy Commission1. From 2026–2035, we use
ACCII regulated market shares15. Finally, data is interpolated for the
intermediate years, 2023–2025, while a probability of 1% is assumed for all
years prior to 2019.

Results
Characterizing PEV adopters
Two sets of latent class cluster models were estimated testing 1–8 cluster
assumptions (LatentGold version 5.0, 2016), one set each for single- and
multi-vehicle households. Models with four clusters were selected for fur-
ther analysis based on interpretability and model fit measure marginal
improvements (BIC,AIC,AIC-3),which are summarized inSupplementary
Table 1. These clusters, whose relative sizes and names are depicted in Fig. 3,
were the best at capturing the heterogeneity among PEV adopters and
model fit measures did not significantly improve after four clusters. Models

Table 2 | Overview of the model constraints for each scenario
modeled with Bass diffusion

Scenario Model Constraints Policy Based On

BAU Past adoption data -

Net Zero Past adoption data & 2045
constraint

California net zero by 2045

ACCII Targets Past adoption data & 2035
constraint

Advanced Clean Cars II
100% new ZEV sales
by 2035
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with cluster assumptions five and greater resulted in similar clusters which
diminished interpretability.

The single-vehicle household clusters differ significantly from
typical early adopters, who tend to be high-income, male, highly
educated, and homeowners, as Table 1 indicates. Two clusters consist
of lower-income households with a higher proportion of female
adopters. Another two clusters include a high number of renters and
occupants of multi-unit dwellings (MUDs). The survey respondent,
who is the main driver of the PEV, determines individual-level vari-
ables such as gender. Vehicle fleet characteristics are not included
because all households have a single PEV, predominantly sedans.
“Lower-income” indicates that the cluster average income is much
lower than the survey average. All four clusters generally have fewer
household members and drivers. Table 3 provides the averages of all
variables for each cluster.
• Lower-Income Old Families (27.1%): This cluster consists of lower-

income, older homeowners, with over half the households having a
female primary PEV user.

• Lower-Income Young Renters (26.2%): These households are younger,
more often renters, urban dwellers, and about 41% female.

• High-Income Families (24.8%): Comprising higher-income, highly
educated homeowners who mostly identify as male, this group most
closely resembles the typical PEV adopter.

• Mid/High-Income Young Urban Renters (21.9%): These households
are younger, urban, often living in MUDs, with mid to high incomes,
and a higher proportion of males.
Multi-vehicle households make up a large portion of the population,

63% in California63, and these clusters exhibit higher incomes, larger
household sizes, more drivers, and a higher proportion of males compared
to single-vehicle households. The clusters identified includeone large cluster
and three smaller ones. Table 4 details the averages of all variables for each
cluster.
• High-Income SUV Families (41.6%): This largest cluster comprises

high-income, middle-aged suburban homeowners with large house-
holds. They typically own newer ICE SUVs, with two to three vehicles
in total.

Fig. 2 | Vehicle PEV probability. Probability a
specific vehicle in a household fleet is a PEV by
model year, P(PEV|model year y).

Fig. 3 | PEV adopter clusters. Eight adopter clusters
from latent class clustering: 4 single-vehicle and 4
multi-vehicle clusters.
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• Middle-Income Young Renters (22.3%): These younger, middle-
income households have smaller fleets, the lowest incomes among
multi-vehicle PEVhouseholds, and aremore likely to be urban renters
or MUD residents.

• Mid/High-Income Old Families (20.0%): This group consists of older
families with mid to high incomes, high rates of home ownership, and
slightly older vehicle fleets similar in size to the first cluster.

• Mid/High-Income Rural Truck Families (16.1%): Predominantly mid/
high-income rural households, they have the highest rates of detached
home ownership and the largest household fleet sizes, often owning
older ICE trucks.

The eight clusters spanmany types of households and are namedbased
on prominent characteristics in relation to other clusters. Figure 4 depicts
how these groups qualitatively compare for various variables including
income, landuse, housing type, and age.Wefind two lower-incomeclusters,
multiple young renter clusters, one extremely rural cluster, and one extre-
mely urban cluster. While all households are assigned to clusters, some
household types have low representation among all the clusters. Examples
include older renters, middle-aged lower-income households, and lower-
income urban and rural households.

We also examine the characteristics of adopted PEVs between
different clusters, looking at body type and luxury status. Most PEVs
purchased were sedans with only 4.7% of the sample purchasing SUVs
and minivans. The second multi-vehicle clusterMiddle-Income Young
Renters had the lowest percentage of PEV SUVs/minivans at 2.1%
while the third single-vehicle cluster High-Income Families had the
highest percentage with 6.3% of households owning PEV SUVs/
minivans. We also examine the proportion of luxury vehicles by using
Tesla Model X and Model S vehicles as a proxy, as they were the most

purchased, most expensive PEVs in the dataset. Across all clusters,
11.3% of households chose these vehicles, with the highest cluster at
16% (multi-vehicleMid/High-Income Old Families) and lowest at 3.2%
(single-vehicle Lower-Income Young Renters).

Adoption rates and future scenarios
The next step was determining how Californian households fit into
these cluster definitions. Using the CA-NHTS, we developed a repre-
sentative household population and applied latent class scoring for-
mulas to assess each household’s likelihood of belonging to each
cluster. We calculated the total population for each cluster, using
separate scoring models for single- and multi-vehicle households,
without considering households moving between these groups. While
clusters may not represent all households precisely, such as older
families in MUDs, we calculate the household probability of belonging
to a cluster and the expected value for the total size of each cluster.
Table 5 summarizes the averages of various characteristics across the
eight clusters in the PEV sample compared to the overall population.
We observe that same-cluster averages between the population and
PEV sample are similar for most variables except income and housing
type, likely because PEV adopters are disproportionately high-income
homeowners. However, differences between clusters were consistent
between the two samples.

We weigh the survey by annual PEV sales in California to deter-
mine cumulative adoption by cluster then fit Bass diffusion curves to
each cluster to demonstrate future adoption paths. Figure 5 depicts the
cumulative adoption as points and the business-as-usual (BAU) Bass
model fit. Full Bass parameters are summarized in Supplementary
Table 2.

Table 3 | Cluster sociodemographic characteristics for single-vehicle household four-cluster model

Variables Clusters Single-Vehicle
Households

Lower-Income Old
Families

Lower-Income Young
Renters

High-Income
Families

Mid/High-Income
Young Renters

Proportion of Total 27.1% 26.2% 24.8% 21.9% 100.0%

Cluster Size 784 758 719 635 2,896

Income (thousands USD) a 86.0 74.9 191.6 172.7 129.5

Age 61.3 35.4 47.9 37.1 45.9

Proportion of Females b 52% 41% 30% 24% 38%

Education c 2.22 2.11 2.46 2.44 2.30

Household Size 1.42 1.54 1.98 1.70 1.65

Number of Drivers 1.23 1.27 1.49 1.43 1.35

Housing Type and Tenure

Proportion in MUDs 22% 47% 0% 76% 35%

Proportion in Owned
Detached SFH

55% 9% 72% 0% 35%

Proportion in Owned
Attached SFH

16% 7% 20% 3% 12%

Proportion in Rented
Detached SFH

4% 21% 6% 8% 10%

Proportion in Rented
Attached SFH

2% 16% 2% 13% 8%

Land Use

Proportion in Rural 25% 15% 21% 7% 17%

Proportion in Suburban 51% 44% 45% 31% 43%

Proportion in Urban 24% 41% 34% 62% 39%
a Average income calculated by using the midpoint of income ranges.
b Includes all genders except males.
c Measured on an ordinal scale from 0 = Some High School or Less, 1 =High School Graduate, 2 =College Graduate, 3 =Graduate or Professional Degree.
MUDMulti-Unit Dwelling, SFH Single-Family Home.
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The cumulative adoption estimates by cluster reveal two key trends.
First, the clusters with the lowest rates of adoption comprise a large portion
of the population. Three clusters fall into this category: multi-vehicleMid/
High-Income Rural Truck Families (20.5% of California’s population),
single-vehicle Lower-Income Old Families (14.3% of California’s popula-
tion), and single-vehicleLower-IncomeYoungRenters (12.4%ofCalifornia’s
population). These clusters, each with <3% cumulative adoption in 2019,
account for almost half of the population but comprise very different
households. The latter two clusters are composed of single-vehicle house-
holdswith lower incomes, small household sizes, and fewer driverswhile the
first cluster is composed of multi-vehicle households with higher incomes,
large household sizes, and many drivers. Counterintuitively, the first two
clusters have high rates of home ownership of both detached and attached
single-familyhomes. This result highlights that adoption is slow in segments
of thepopulationdespite highhomeownership rates,whichusually signifies
access to home charging or ability to install home chargers. Factors other
than home charging access could be limiting PEV diffusion in these seg-
ments such as lack of knowledge or negative sentiment towards PEVs or the
unaffordability of PEVs and home charging infrastructure. Second,
the clusters with the highest rates of adoption comprise a small fraction of
the population. The single-vehicleHigh-Income Families and multi-vehicle
High-Income SUV Families are 2% and 12% of the population respectively
but had between 7–10% cumulative adoption in 2019. Both clusters

comprise households with similar high incomes, high education levels, and
high levels of homeownership who live in mostly suburban areas, but differ
on number of vehicles, household size, and number of drivers.

California has targets for carbon neutrality by 2045 and regulation
that will ensure all new vehicles sold in the state will be zero-emission by
2035. Because of that, we construct two further scenarios: a “Net Zero”
scenario in which all clusters reach 98% first-time PEV adoption by
2045 and an “ACCII Targets” scenario in which cluster adoption is
constrained by PEV availability to 2035 due to ACCII ZEV sales targets.
The “ACCII Targets” scenario directly uses vehicle ages within clusters
to determine the expected adoption in each cluster. Figure 6 sum-
marizes the total and percent adoption across all three scenarios in 2035
and 2045. Supplementary Table 2 summarizes the Bass coefficients for
all three scenarios.

In certain clusters, lower adoption in “ACCII Targets” than other
scenarios suggests full adoption will be slowed due to a lack of older PEV
availability. Households in these clusters currently own older vehicles, but
therewill not be enougholderPEVs to support higher adoption rates such as
those needed for the “BAU” or “Net Zero” scenarios if they keep similarly
aged vehicles. If more households wish to adopt, they must acquire newer
PEVs than they typically would or obtain older PEVs fromoutside the state.
This situation is particularly extreme for the second single-vehicle cluster,
Lower-IncomeYoungRenters, where nearly 70%of households need ormay

Table 4 | Cluster sociodemographic & fleet characteristics for multi-vehicle household four-cluster model

Variables Clusters Multi-Vehicle
Households

High-Income SUV
Families

Middle-Income
Young Renters

Mid/High-Income Old
Families

Mid/High-Income Rural
Truck Families

Proportion of Total 41.6% 22.3% 20.0% 16.1% 100.0%

Cluster Size 6,671 3,569 3,200 2,585 16,025

Income (thousands USD) a 237.6 149.7 164.0 174.8 194.1

Age 46.2 37.4 67.8 50.4 49.2

Proportion of Females b 22% 33% 21% 37% 27%

Education c 2.48 2.24 2.38 2.01 2.33

Household Size 3.44 2.79 2.17 3.12 2.99

Number of Drivers 2.30 2.09 2.05 2.41 2.22

Housing Type and Tenure

Proportion in MUDs 8% 32% 12% 7% 14%

Proportion in Owned
Detached SFH

82% 28% 80% 88% 71%

Proportion in Owned
Attached SFH

4% 15% 6% 1% 7%

Proportion in Rented
Detached SFH

4% 14% 1% 4% 6%

Proportion in Rented
Attached SFH

1% 11% 1% 0% 3%

Land Use

Proportion in Rural 25% 17% 30% 43% 27%

Proportion in Suburban 57% 48% 53% 47% 53%

Proportion in Urban 17% 35% 17% 10% 20%

Additional Fleet Characteristics

Number of Vehicles 2.55 2.25 2.46 3.11 2.56

Fleet Age (years) d 5.75 5.32 6.93 8.84 6.39

Proportion of Truck
Owners

0% 7% 13% 54% 13%

Proportion of SUV Owners 77% 35% 41% 48% 56%
a Average income calculated by using the midpoint of income ranges.
b Includes all genders except males.
c Measured on an ordinal scale from 0 = Some High School or Less, 1 =High School Graduate, 2 =College Graduate, 3 =Graduate or Professional Degree.
d Modeled using an ordinal scale 0 =Under 2 years, 1 = 2–5 years, 2 = 5–10 years, 3 =Over 10 years
MUDMulti-Unit Dwelling, SFH Single-Family Home.
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want to adopt PEVs but only 40% may be able to in 2035 (“BAU”/“Net
Zero” vs. “ACCII Targets”).

In certain other clusters, “BAU” adoption is the lowest, implying full
adoption could be slow without interventions to meet net zero or ACCII
targets. Households in these clusters own more, newer vehicles on average
and there are sufficient PEVs under ACCII to support high adoption rates,
but they are not on track to reach these numbers. Moreover, the current
adoption trajectory estimates only a small fraction of households will adopt
relative to what is needed for 2045 targets. This scenario is especially
apparent in the fourth multi-vehicle cluster,Mid/High-Income Rural Truck
Families, in which two-thirds of households could adopt but only roughly a
quarter would (“ACCII Targets” vs. “BAU”). If fewer households wish to
adopt, PEVs will likely collect in in these households. Probabilistically, this
suggests the assumption of independence between vehicles is incorrect, e.g.,
if you own a PEV, you are more likely to own more PEVs and vice versa.
Non-adopter households would acquire ICEVs older than they typically
would or obtain newer ICEVs from outside the state.

Discussion
Decarbonization will likely require full LDV electrification in the coming
decades. Rather than viewing early EV adopters as a monolith, we examine
them as the first adopters across various segments within the broader
population to gain valuable insights. We highlight heterogeneity in current
PEV adopters to show how full PEV adoption may progress in the entire
population. This study answers several questions related to PEVadoption in

California. First, it examines current adoption in California, identifying
several clusters that diverge from archetypal early PEV adopters. Second, it
calculates rates of adoptionwithin each cluster, finding several large clusters
with low-to-date adoption. Finally, this study constructs three scenarios for
future PEV adoption in the state, comparing current adoption trends, net
zero decarbonization targets, and targets for new vehicle sales.

We utilize repeated cross-sectional surveys of PEV owners in Cali-
fornia to examine heterogeneity in PEV adopters, grouping PEV adopter
households into eight clusters using latent class analysis: four single- and
fourmulti-vehicle groups.UsingBass diffusionmodels,we parameterize the
rate of adoption within each cluster under various circumstances. This
analysis is unique in that we utilize heterogeneity within a large sample of
PEV adopters to develop full adoption scenarios for the entire population of
California. We make this analysis even more useful by examining single-
vehicle households separately from multi-vehicle ones and examining
sociodemographic, land use, and household fleet information.

Clustering adopters reveals groups of PEV users who significantly
differ from typical early adopters. We find multiple clusters that are lower-
income, rural, or live in apartments—a larger range of clusters than are
found by Lee et al. 33. This is especially relevant in the context of equity;
earlier studies found that even when earlier PEV adopters were from dis-
advantaged communities, they tended to be more affluent and non-
representative members of their neighborhoods20. While classes derived
from PEV adopters do not perfectly represent every Californian household,
they provide a useful starting point for exploring the state’s transition to

Fig. 4 | Comparing clusters. Comparing average adopter characteristics across various pairs of variables for all eight clusters.
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electrifying all households. We find that the corresponding population
clusters have much lower incomes than the PEV clusters, yet relative dif-
ferences between clusters for income, age,housing type, and landuse remain
consistent

While our cluster analysis implies that awider portion of the population
has access to PEVs, we also find that rates of adoption are low among several
groups. Three clusters encompass 47% of the population but comprise
households with varying levels of vehicle ownership, home ownership, and

income among other differences. Policymakers will need to consider the
specificneedsof thesehouseholdswhendeveloping incentives, infrastructure,
and other policy interventions to help these households adopt PEVs.

The scenario analysis finds that there is misalignment between adop-
tion in some clusters and adoptionmatching California sales targets and/or
net zero goals.

First, some single-vehicle clusters may be hindered from adopting
PEVs due to a shortage of older PEVs (>25% of Californian households).

Table5 | Total sizeof clusters in thegeneral populationalongwith selectedvariable averages in thegeneral population (Pop) and
in current PEV adopters (PEV)

Cluster Size (Pop) Age Income
($1,000s)

Proportion
in Rural

Proportion
in MUDs

Cluster Name Households % Pop PEV Pop PEV Pop PEV Pop PEV

Single-Vehicle

Lower-Income Old Families 1,840,737 14% 66 61 $47 $86 27% 25% 38% 22%

Lower-Income Young Renters 1,592,762 12% 41 35 $42 $75 17% 15% 61% 47%

High-Income Families 243,488 2% 50 48 $160 $192 16% 21% 1% 0%

Mid/High-Income Young Renters 406,220 3% 40 37 $154 $173 4% 7% 89% 76%

Multi-Vehicle

High-Income SUV Families 1,486,974 12% 46 46 $155 $238 25% 25% 13% 8%

Middle-Income Young Renters 2,134,446 17% 37 37 $84 $150 19% 17% 51% 32%

Mid/High-Income Old Families 1,584,099 12% 69 68 $95 $164 29% 30% 17% 12%

Mid/High-Income Rural Truck Families 2,637,109 20% 51 50 $96 $175 46% 43% 14% 7%

Fig. 5 | Business-as-usual PEV adoption. Cumu-
lative household PEV adoption by cluster in the
BAU scenario by percent of cluster before 2020 (top)
and total number of households through 2055
(bottom). PEV sales attributed to each cluster is
depicted by points in the top image.
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Currently, many of these households possess older conventional vehicles,
either purchasednewor used. By 2035, theremaynot be enough older PEVs
for these households even if they wish to electrify. Households may keep
older conventional vehicles, acquire newer PEVs than they typically would,
obtain older PEVs fromout-of-state, or reduce car ownership. If households
choose the first option, full adoption will be pushed later.

Second, somemulti-vehicle clusters have adoption rates slower than is
needed to meet ACCII or net zero goals. These households tend to have
newer vehicles and there will likely be enough newer PEVs to keep these
households on track for 2045 adoption goals. However, they have business-
as-usual adoption rates that are not sufficient to meet net zero or ACCII
targets, signaling additional support may be needed to encourage adoption.
If they continue to lag, available PEVs may cluster in the relatively few
households eager to adopt, leading to these familiespurchasing their second,
third, or even fourthPEVwhilemany otherhouseholds hold on to ICEVsor
search to buy new ICEVs elsewhere. This study focuses on adoption of the
first PEV in a household, but it may be the case that the bulk of new PEV
sales end up clustered in multi-PEV households.

There are certain limitations with this study. First, the model assumes
unchanging vehicle ownership patterns and stable clusters, not allowing for
households to move between clusters overtime. For example, it allows
households to convert vehicles to PEVs but does not consider households
adding or reducing vehicles over time. Thus, this model does not allow
households tomove between single- andmulti-vehicle clusters. Thenumber

of vehicles andhouseholds is also kept constant over time to see the effects of
PEV diffusion within the population. However, both the population of
households and vehicles will invariably change over time in California and
have additional effects on PEV diffusion. The effects of increasing or
decreasing vehiclefleets or population is outside the scope of this project but
is an interesting area for future study.

Similarly, this study also does not examine discontinuance in PEV
ownership. While it is suitable to model PEV adoption using Bass models
since California regulation aims for full adoption, discontinuance is still an
issue in the short-term64. Another limitation is that this study examines PEV
owners over a period when limited vehicle body types were available on the
PEV market. As new PEV trucks and SUVs enter the market, adoption
could change course radically, especially in clusters with high rates of truck
and SUV ownership.

This study also does not consider market forces, which could change
PEV diffusion. Bass diffusion assumes symmetric diffusion between early
and late adopters with only two types of diffusion communication channels:
mass media and interpersonal channels13. However, resistance to PEVs, a
diminished second-hand market due to continued higher depreciation
rates48 or other factors could further slow PEV adoption in later years,
creating the need for an asymmetric diffusion model such as the Gompertz
model. On the other hand, factors could accelerate PEV diffusion, as is the
case in Norway and China, two of the world’s leading PEV markets. In
Norway, incentives ensuring PEV price parity, greater model selection,

Fig. 6 | PEV adoption scenarios.Adoption in percent (top) and total households (bottom) for the BAU,Net Zero, and ACCII Targets scenarios in 2035 and 2045. Adoption
is the probability a household owns at least one PEV.

https://doi.org/10.1038/s44333-025-00049-1 Article

npj Sustainable Mobility and Transport |            (2025) 2:32 12

www.nature.com/npjsustainmobiltransport


reduced vehicle prices, and extensive marketing have worked to hasten
adoption65. PEV adoption has been similarly increased in China through a
combination of financial and preferential polices66,67.

Finally, this study is limited by the biases in the dataset. First, higher-
income PEV adopters are likely underrepresented in the data. This bias
likely translates to underestimating diffusion rates for higher-income clus-
ters, meaning that certain clusters such as multi-vehicle High-Income SUV
Families and single-vehicleHigh-Income Families could be further along the
adoption process than we estimate. However, these households are a small
percentage of households inCalifornia overall. Additionally, certain types of
households are not well represented among PEV adopters and are grouped
within the most similar clusters. Examples include older renters, middle-
aged lower-income households, and lower-income urban and rural
households. It is possible that households in these categories are numerous
but currentlyhave lowadoption rates. If the studywas repeated in the future,
these households may warrant additional clusters.

Conclusions and policy implications
Regulations for new light-duty vehicle sales are ensuring vehicles sold
globally will be zero-emission vehicles, which largely comprise plug-in
electric vehicles. Many countries have fuel or emissions standards that will
result in higher ZEV sales, and several countries have gone so far as to
enshrine zero-emission vehicle (ZEV) sales regulations into law. These rules
require vehicle manufacturers to sell or produce a certain quantity of ZEVs
in particular regions. Several countries and regions have adopted ZEV
mandates, including China, Korea, several US states, and certain provinces
in Canada2.

We consider the case study ofCalifornia to showhowcurrent adoption
may fail to reach ZEV sales targets and climate goals when considering
heterogeneity in households and vehicle ownership behavior. When con-
sidering different population clusters, it is clear that there is a mismatch
between adoption trajectories, ZEVs sales requirements, and net zero goals,
especially for specific groups like households that own older vehicles. Our
results from California have global relevance because electric vehicles will
play a significant role in achieving net zero emissions. The International
Energy Agency estimates that 60% of global car sales will need to be electric
vehicles in 2030 to meet net zero by 205068. The method developed in this
paper can be applied to other regions and the results for California have
global policy implications.

Our results indicate that additional measures are needed to ensure
equity in the transition to plug-in electric vehicles (PEVs). This research
shows that households likely to own one vehicle or older vehicles todaymay
not be able to electrify vehicles quicklywithout interventions. In the absence
of additional policies, these householdsmay keep old conventional vehicles,
seek them from other regions, or be forced out of vehicle ownership alto-
gether. Policies may be needed to disincentivize the purchase of older
conventional vehicles and promote their retirement, while incentivizing the
purchase of older plug-in electric vehicles. Concurrently, ifmorehouseholds
are unable to afford private vehicle ownership, policymakers will need to
support other measures that improve accessibility and mobility to house-
holds without vehicles including investing in public transport, improving
active transport infrastructure, and supporting transit-oriented
development.

Additional policies may be required to ensure PEV ownership is dis-
persed among households likely to own multiple vehicles. This research
suggests there may be a segment within the Californian population that has
high incomes and high rates of home ownership, but low rates of to-date
PEV adoption. As these households are also likely to own large vehicles, it is
unclear whether limited PEV body types or other factors are limiting
adoption in this group. Policy to encourage shifts in perceptionof PEVsmay
be needed to encourage adoption if the latter is the issue. As is, high supplies
of new PEVs may lead to small segments of the population adopting many
PEVs while other segments avoid them altogether.

Overall, additional policy is needed to ensure the transition to lower
emission vehicles is equitable and just. Clustering adopters enables us to

comparePEVdiffusion across varioushousehold types.Analyzing adoption
at the cluster level reveals where electrification is lagging and identifies the
specific challenges families encounter. This analysis can help inform pol-
icymakers which households need additional support to adopt electric
vehicles and help the state achieve its decarbonization targets.

Data availability
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