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This paper explores the system-level impacts of electrification on road freight transport efficiency, a
complex concept involving various stakeholders. Electrification adds further complexity by
introducing new stakeholders, dynamics, and efficiency variables. The study applies System
Dynamics modelling to explore interactions between efficiencies and the impact of electrification. The
model is grounded in literature, expert interviews, and workshops, using Swedish data to simulate
2010-2050 for heavy trucks. Results highlight trade-offs among efficiencies and a worse-before-better
behaviour in cost, as electrification initially increases costs but results in lower long-term costs. The
model allows testing of policy interventions endogenously to explore their dynamic impacts. Findings
show two phases of electric truck adoption. Policy analysis suggests focusing on charging
infrastructure in the first phase and cost-oriented policies in the second. By increasing system-level
understanding, this paper offers valuable knowledge to decision-makers navigating the transition

towards a more efficient and sustainable system.

Road freight transport is a major contributor to greenhouse gas emissions
and other environmental externalities’. To accelerate decarbonisation,
several climate targets have been introduced. At the EU level, the Fit for 55
package outlines broad emissions reduction goals, alongside specific targets
for heavy-duty vehicles™. In Sweden, the national climate goal targets a
minimum 70% reduction in transport sector emissions by 2030 compared
to 2010, with the aim of achieving net-zero emissions by 2045'. Among the
various decarbonisation pathways, the electrification of heavy-duty trucks
(from here on referred to as E-trucks) is a promising solution’. However, this
transition is more than just technological shifts; it is a system transition that
involves a broad range of stakeholders with diverse roles and goals®”.
Therefore, it is challenging to understand the system-level impacts of
electrification on the road freight transport system.

Among the various impacts of electrification, this study focuses spe-
cifically on its effect on road freight transport efficiency, often used as a
performance metric in academic research, industry practices, and policy
agendas’. Efficiency serves as a fundamental measure of operational effec-
tiveness and is central to both strategic business decisions and governmental
sustainability goalsg. However, within the context of freight transport, effi-
ciency is a complex, fuzzy concept, with varying definitions among stake-
holders and across different system layers*'".

Several studies on freight efficiency have focused on cost and economic
aspects: efficiency for business. This includes metrics such as vehicle utili-
sation, fill rate, and loading time (e.g, refs. 9,11). However, with

sustainability becoming a key consideration in transport planning, a new
dimension has emerged: efficiency for society, which takes into account fuel
consumption and greenhouse gas emissions (e.g., refs. 12,13). The literature
highlights the need to move beyond relying on a single performance indi-
cator for efficiency and instead consider trade-offs and rebound effects and
adopt a system-level perspective'*"". In response, some studies have pro-
posed frameworks to explore different kinds of efficiency simultaneously,
recognising different economic, operational, and environmental
metrics™'*"’.

Introducing electrification adds further complexity, bringing in new
stakeholders, dynamics, and efficiency variables. To fully understand how
electrification affects road freight efficiency, a system-level perspective is
essential. This allows us to zoom out and examine the different kinds of
efficiency, the dynamic interactions between them, and how electrification
impacts them. To accomplish this, we utilised a system dynamics (SD)
methodology, which is useful for modelling the dynamics of complex sys-
tems and incorporating diverse stakeholder perspectives'’. In the existing
literature, some studies applied SD to investigate freight decarbonisation,
including the adoption of E-trucks (e.g., refs. 18,19). In particular, SD is
effective for exploring the effects of different policy interventions and
understanding how these policies shape system behaviour over time. Prior
research has explored how various policy levers, such as subsidies, infra-
structure investment, and carbon pricing, could impact the electrification
paths (e.g., refs. 20,21).
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Although some studies have explored transport efficiency and others
have focused on electrification of freight transport, this study aims to
complement these studies by adopting a system-level perspective that
captures several efficiency variables and examines their interdependencies.
By developing an SD model, this study investigates the dynamics between
these different efficiency variables and how electrification may change these
dynamics or introduce new ones. This analysis also incorporates a policy
analysis, evaluating how different interventions influence both efficiency
outcomes and E-truck adoption. Therefore, two research questions are
posed: (i) How does electrification impact different kinds of efficiencies? and
(ii) How do policies impact the adoption of E-trucks and different kinds of
efficiencies to achieve a more sustainable transport system?

The contributions of this paper are twofold and lie at both methodo-
logical and practical levels. The methodological contribution is to develop an
SD model exploring the interplay of different efficiencies and how elec-
trification introduces new dynamics and alters existing ones in the Swedish
context. The model integrates various efficiency dimensions from both
societal and business perspectives within a dynamic framework, capturing
their mutual feedbacks and long-term interactions. The simulation runs
from 2010 to 2050, enabling validation against historical data (2010-2023),
aligning with the base year of Sweden’s climate goal’, and providing a
reasonable future outlook to ensure sound policy analysis. Moreover, the
practical contribution is to highlight the critical role of planning and pol-
icymaking in a transition to E-trucks and in improving efficiency variables.
Through scenario analysis, the model allows policymakers to understand
the impacts of different policies and provides them with helpful actionable
insights on the timing and combination of interventions needed to transi-
tion to a more sustainable freight transport system.

The rest of this paper is structured as follows: The section “Literature
overview” reviews the relevant literature on freight transport efficiency, SD
modelling in electrification, and relevant policy interventions. The section
“Methods” presents the research methodology, detailing the model
development process along with the structure and components of the SD
model. The section “Results” presents the simulation results and the effects
of different policies on adoption and efficiency outcomes. The section
“Discussion” discusses the key findings and takeaways, highlighting the
trade-offs between different efficiencies, future studies and limitations.

Literature overview

Road freight transport efficiency as a complex concept

The road freight transport system is a complex system involving many
stakeholders operating across multiple layers. Several models have been
developed to represent the complex interplay between these stakeholders
and layers (e.g., refs. 22,23). Freight transport efficiency, in this context, is a
fuzzy and multifaceted concept that can become a wicked problem in a
policy context'’. In general, transport efficiency describes how effectively
resources (time, space, vehicle, fuel, driver, etc.) are used to move goods
relative to the outputs achieved™. Yet, defining and measuring freight effi-
ciency is a challenging task, and each stakeholder tends to adopt its own
definition, metrics, and priorities.

Previous studies have examined road freight efficiency from various
stakeholder perspectives, including logistics service providers (e.g., ref. 25),
shippers (e.g., ref. 26), hauliers (e.g., refs. 27,28), and distributors (e.g., ref. 9).
Each perspective emphasises different kinds of efficiency, such as cost-
effectiveness, resource utilisation, or environmental performance indicators.
However, there seems to be a lack of a common agreed definition of
transport efficiency that applies across all stakeholder perspectives.

Several studies on freight transport efficiency are oriented towards
the economic benefits of transport efficiency, including vehicle utilisa-
tion, fill rate, optimising fleet size, empty running, and loading
time™"**~. As sustainability gains importance in transport research,
some studies are also examining environmental aspects, considering fuel
demand and the connection with greenhouse gas emissions. This focus is
motivated greatly by climate change and the possible constraints on
emissions and fuel consumption"’. Domagata & Kadlubek'” expand this

view by proposing a multidimensional framework for assessing road
freight efficiency across EU countries. Their analysis connects inputs,
such as energy and capital, to outputs like freight volumes and CO,
emissions. It highlights significant differences in national performance
and underscores the importance of selecting appropriate indicators.
Other studies have similarly addressed energy and environmental effi-
ciency, including those by refs. 13,31.

The literature highlights the need for caution when relying on single
performance indicators, emphasising the importance of considering
trade-offs and rebound effects and adopting a system-level perspective.
For example, Arvidsson'* describes the load factor paradox, where
increasing load factor may require longer routes or more complex sche-
duling, which can lead to higher total distances and emissions. Likewise,
Brinsmead'” highlights a trade-off between environmental efficiency, such
aslower fuel use and emissions, and service performance factors like speed
and reliability. Improving one often comes at the cost of the other,
emphasising the need for balanced, system-level design in sustainable
freight transport.

To address these complexities, some frameworks have been proposed
to explore different kinds of efficiency. Arvidsson'® presents various trans-
port efficiency measures that affect different stakeholders within the system,
such as driver efficiency, vehicle efficiency, and route efficiency. The Net-
work for Transport Measures'® defines transport efficiency from two per-
spectives. From a company perspective, the goal is to deliver on time, at the
right place, in the right conditions, while meeting certain cost restrictions.
From a societal perspective, the negative impacts of transport should be
included, such as land use, accidents, resource utilisation, noise, and emis-
sions. Finally, Wehner et al.* propose a multi-system framework for defining
road freight transport efficiency, which illustrates that stakeholders at dif-
ferent system levels (e.g., material flow or transport infrastructure levels)
work towards diverging goals, resulting in different definitions of freight
transport efficiency. Furthermore, the framework includes a governance
dimension and accounts for the diverse conditions of different systems and
their interconnections. Visual representations of the three frameworks are
provided in Supplementary Information 1.

This study aims to complement existing literature by adopting a
system-level perspective that accounts for multiple dimensions of efficiency.
Rather than focusing on a single variable, the approach captures several
efficiency variables and examines their interdependencies within the
broader freight system.

System Dynamics models for freight transport electrification and
relevant policies

To understand the complex dynamics of different kinds of freight transport
efficiency and how electrification impacts them, SD offers an appropriate
method for analysing and simulating system behaviour over time'.
Shepherd™ highlights the application of SD in transport, noting that it is
especially useful for modelling system-level interactions among various
stakeholders. Several studies have applied SD to the decarbonisation of
freight systems. Ghisolfi et al.” reviewed SD models addressing freight
transport decarbonisation. Additionally, Ghisolfi et al.** and Raoofi et al.”
provided conceptual models to understand the dynamics between various
subsystems within the freight transport system.

Ghisolfi et al.”® model alternative fuel and mode adoption in Brazil,
showing how policy inertia and slow technological shifts can hinder dec-
arbonisation progress. Shafiei et al.”** analyse the influence of fiscal
incentives on alternative fuel vehicle adoption, revealing how subsidies and
taxes shape both consumer decisions and macroeconomic outcomes.
Cagliano et al.” simulate the adoption of electric and hybrid vans in urban
logistics, identifying the influence of advertising, social image, and word-of-
mouth on market penetration. In operational contexts, Aschauer et al.**
used SD to show how logistics strategies enhance transport operations and
reduce environmental impacts, while Thaller et al.”’ used causal loop dia-
grams to map stakeholder relationships and operational dynamics in urban
freight. Other modelling approaches, such as the ASTRA model ™, have been
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Fig. 1 | Methodological process of the study. A mixed approach of literature review, semi-structured interviews, a group model building workshop, and validation

interviews. The figure is based on the standard SD methodological process'.

used at the EU level for strategic transport and energy policy analysis,
simulating interactions among demand, vehicle technology, the economy,
and environmental outcomes.

Recently, Raoofi et al”, in a closely related study, examined how
charging infrastructure availability influences E-truck adoption, with a focus
on investment decisions by public and private actors and the effects of five
policy levers (charging and vehicle subsidies, technology maturity invest-
ments, electricity and diesel price changes). Their study centres on adoption
rates, without assessing how electrification affects freight transport effi-
ciency. Moreover, it does not account for potential rebound effects of costs
on freight demand.

Furthermore, a number of policy-focused studies underscore the
importance of regulatory and economic instruments in driving freight
decarbonisation. Ovaere & Proost” evaluate the European Union’s Fit for 55
package, emphasising the importance of vehicle subsidies, carbon pricing,
and infrastructure investments in making E-trucks economically viable.
Moreover, Breed et al.”’ examine how EU CO; fleet regulations influence the
necessary market share of zero-emission trucks, depending on manu-
facturer strategy. Liu and Xiao"' use a scenario-based SD model to analyse
how policy incentives, including subsidies, infrastructure provision, and
consumer preferences, shape electric vehicle adoption in China. Bian and
Xu" demonstrate that policy combinations, such as promoting the green
image and implementing carbon tax rebates, can reduce emissions without
compromising rural logistics growth. Menezes et al.”’ also highlight the
necessity of integrated policy mixes to achieve substantial emission cuts in
urban transport systems. In a behavioural policy context, Ertelt et al.** show
that perceptions of policy neutrality and emotional drivers like anticipated
regret can delay managerial decisions to adopt zero-emission trucks in
Sweden.

Connecting two bodies of literature on the different kinds of efficiencies
and electrification of the road freight transport system, our study adopts a
system-level perspective and investigates the dynamics between various
transport efficiencies and how electrification may change these dynamics or
introduce new ones by developing an SD model. This effort is grounded in
the context of sustainability to guide policymakers and decision-makers
towards more informed decisions that could lead to a sustainable future
transport system.

Methods

System Dynamics (SD), rooted in control theory and systems thinking®, is a
method for understanding complex systems with many interacting variables
and feedback loops”. As detailed in the section “Literature overview”, the
road freight transport system is one such complex system. Moreover, it
involves multiple stakeholders such as shippers, carriers, infrastructure
providers, and the public sector”’, making the SD methodology particularly
relevant to our study.

To develop the SD model for this study, we followed the standard SD
methodological process”’, as shown in Fig. 1 and explained in the text. In
total, we engaged 35 experts from public authorities, industry, and acade-
mia, as detailed in Supplementary Information 2.

The problem and its boundaries were defined through a literature
review (see Supplementary Information 3 for an overview). To further refine
the problem and develop the dynamic hypothesis, we conducted eight semi-
structured interviews with experts from public authorities, industry, and
academia, following the method outlined by Luna-Reyes and Andersen.
During the semi-structured interviews, we guided discussions with experts
using a predefined set of questions that covered various variables and
dynamics (see Supplementary Information 2).

In the next step, a Group Model Building workshop was conducted,
involving eleven experts from the public authorities, industry, and acade-
mia. Group Model Building is a participatory approach in SD, where sta-
keholders collaborate to create a dynamic model of a complex system to
understand the underlying causes and feedback structures that drive system
behaviour” ™. During the workshop, participants were involved in three
main activities: eliciting key variables, initiating a causal loop diagram, and
understanding the impacts of different policies (see Supplementary Infor-
mation 2 for descriptions of the activities). Causal Loop Diagrams (CLDs)
from different groups in the workshop were the main outcomes.

Building on the insights from the literature, interviews, and workshop,
we developed a refined Causal Loop Diagram (CLD) and a simulation
model utilising Stella Architect version 3.2.1. These were iterated with the
experts through various meetings aimed at evaluating the model’s structure,
the accuracy of the mathematical equations, and the quality of the exo-
genous data. Data collection was supported by relevant official authorities
and experts in the field.

npj Sustainable Mobility and Transport| (2025)2:42


www.nature.com/npjsustainmobiltransport

https://doi.org/10.1038/s44333-025-00061-5

Article

diesel .
+ /—? trucks

demand for
trucks

system energy

N carrier efficiency
freight demand

&y

cost
per ton

b
+ /
transport 4.

cost

transport efficiency

N

total number
of trucks

"
E-trucks

emission ratio compared

to the baseline
‘\\
cost savings
by using E-trucks
E-truck

sales o
3+

availability of
charging infrastructure

"

Feedback loops:

R1 - Economy of scale
B1 & B2 - Transport cost
R2 - Tech maturity

number of
charging R2
+ infrastructure
R4 - E-truck increase charging
technology B3 - E-truck use charging
maturity of E-trucks R5 - E-truck decrease emission
R6 - Rebound effect of cost savings

Fig. 2 | The simplified causal loop diagram (CLD). The positive signs on the arrows
indicate influence in the same direction; the negative signs on the arrows indicate
influence in the opposite direction. The loops are indicated in the legend on the right,

and each loop is identified as either a reinforcing (R) or a balancing (B). Supple-
mentary Information 4 provides details on the loops and dynamics of various
variables.

To validate the model, we conducted a series of tests, including
structural assessment, unit checks, behaviour reproduction, extreme con-
dition tests, and sensitivity analysis, based on Sterman"”. Additionally, we
conducted five interviews with experts to confirm the validity of the model
(based on Richardson & Pugh™). Furthermore, based on the sensitivity
analysis and collaborative meetings with experts, various policy levers were
developed. These were subsequently evaluated through policy and scenario
analyses to assess the impact of different policies on the system.

Model structure: dynamic hypothesis
Figure 2 illustrates the dynamic hypothesis in the form of a Causal Loop
Diagram (CLD) and shows the key feedback loops underlying the problem.

The feedback loops in Fig. 2 show that as freight demand (in ton) rises,
the demand for trucks increases. Therefore, the supply side reacts by buying
new trucks, either diesel or E-trucks. As a result, the total number of trucks
rises, increasing the transport cost. The transport cost increases in turn the
cost per ton, bringing a decrease in demand. The loops of transport cost (B1
¢ B2) limit the demand growth. In contrast, the economy of scale (R1)
reinforcing loop illustrates how the growth in freight demand (in ton)
reduces transport cost per ton. Lower costs trigger an increase in induced
demand due to price changes. Therefore, the higher the freight demand, the
lower the cost per ton, further boosting the freight demand (see refs. 51,52).
The interplay between the three loops - R1, B1 & B2 - determines if the
freight demand increases, decreases, or is in equilibrium. Furthermore, the
transport efficiency is related to this interplay, as it is measured as the freight
demand divided by the capacity of the supply.

The right side of Fig. 2 depicts the dynamics of the four factors influ-
encing the attractiveness and market share of E-truck sales: the cost savings
by using E-trucks, the availability of charging infrastructure, the technology
maturity of E-trucks, and the emission ratio compared to the baseline. The
cost savings by using E-trucks increase with an increase in technology
maturity and positively influence the E-truck sales share. The technology
maturity is influenced by the number of E-trucks sold. Therefore, the higher
the number of E-trucks, the higher the technology maturity”. This has a
dual effect, increasing directly and indirectly (through the cost savings) the
E-truck sales share. These two effects are depicted by the loops Tech
maturity (R2) and Cost saving (R3).

Moreover, as more E-trucks enter the market, the demand for charging
stations increases™. In the E-trucks use charging (B3) balancing loop, this
increased demand for charging stations results in a reduced availability of
charging stations, hindering E-truck sales. However, in the E-truck increase
charging (R4) reinforcing loop, the surge in demand for charging stations
motivates the construction of more stations, consequently increasing
availability. This positive feedback loop, in turn, boosts E-truck sales. Finally,
the E-truck sales share reduces the number of diesel trucks in the fleet. This
reduction in turn reduces the emission ratio compared to the baseline,
which boosts E-truck sales share™. This dynamic is represented in the
reinforcing loop E-truck decrease emission (R5).

Main model assumptions
The main model assumptions are as follows.

The definitions of different kinds of efficiencies are based on the lit-
erature and the expert opinions. It is important to consider how we define
and calculate efficiency when the results are used (see the section “Model
Structure: simulation model” for a detailed definition of the efficiency
variables).

Four factors are considered as E-truck adoption drivers: cost saving,
availability of charging infrastructure, technology maturity, and emission
ratio compared to the baseline. In addition, we assume that cost savings
influence E-truck adoption once cost parity is achieved. Prior to that,
adoption is driven by infrastructure availability, technology maturity, and
emission ratio compared to the baseline.

The model is based on the Swedish market and government. The
structures have been validated with experts and policymakers based in
Sweden.

Only E-trucks and diesel trucks are considered in the model. Hybrid,
hydrogen-fuelled, biofuel, and other alternative fuel trucks are not included.
This focus was informed by our expert group during the problem articu-
lation phase, where they identified E-trucks as having the greatest potential
for emission reduction in the sector, an insight supported by recent literature
(e.g., refs. 5,56).

The category of trucks studied includes heavy trucks, defined in Swe-
den as those weighing over 3.5 tonnes. Additionally, there are no separate
classifications within this category; all trucks over 3.5 tonnes are considered
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as a single group. This assumption is based on the fact that most Swedish
data sources, such as Trafikanalys, SCB, and Trafikverket, aggregate all
trucks over 3.5 tonnes into a single category, with limited or inconsistent
disaggregation data. Aggregating these subclasses also reduces the com-
plexity of the model and aligns with the system-level scope of the study.

The simulation time spans from 2010 to 2050. Starting from 2010
allows for validation against historical data (2010-2023) and aligns with the
base year used in Sweden’s climate goal’. Extending the model to 2050
provides a reasonable future outlook to ensure sound policy analysis, in line
with our expert opinion.

Equal lifetimes of trucks are assumed for E-trucks and diesel trucks™, as
definitive values for these parameters for E-trucks have not yet been
established. However, this parameter, along with others, is adjustable in the
model and online interface, enabling users to explore how varying
assumptions influence the simulation results.

Different types of stationary charging, including depot, highway, and
destination charging, are aggregated in the model. The focus is on the overall
impact of charging station availability on E-truck adoption, rather than on
the dynamics or competition among specific charging options. In addition,
other charging strategies, such as Electric Road Systems (ERS) and battery
swapping, are excluded, in line with the focus of EU-level planning initia-
tives such as the Alternative Fuels Infrastructure Regulation (AFIR) and
Sweden’s national plan®®,

Freight demand is calculated by considering the growth in population
and a fixed demand rate of each person in one year. Moreover, an elasticity

of -1 is considered to model the variation of demand due to the variation
in price.

Model structure: simulation model

The simulation model comprises 268 variables, 165 equations, and
16 stocks, organised into 9 sectors that are described in detail in the following
texts. A simple representation of the simulation model is presented in Fig. 3.
The Stella Architect version is available in Supplementary Information 5,
and full model documentation is provided in Supplementary Information 6.
In addition, because efficiency variables are central to this research, a table in
Supplementary Information 6 summarises all efficiency variables modelled
in the study, along with their definitions, calculation formulas in the SD
model, and the impact of electrification.

Freight demand sector is described as follows. The main goal of this
sector is to calculate the freight demand in ton km for road transport. This is
calculated by multiplying the demand rate, the Population of Sweden and the
AVERAGE DISTANCE WEIGHTED BY TON. Note that parameters are
written in capital letters throughout this section.

* The demand rate considers a base demand rate taken from transport
statistics”, and it is influenced by the Effect of Price Change on Demand
Rate. This effect is calculated as a stock that takes into account the
fractional change in price per ton per year and the elasticity between
cost and demand. In practice, this structure gives an increase in
demand when prices drop and vice versa. The elasticity is assumed to
be constant and equal to -17'.
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* The Population of Sweden is calculated as a stock to match the popu-
lation statistics and projections®.

» The AVERAGE DISTANCE WEIGHTED BY TON variable represents
the average distance that each ton travels (from a demand side) in the
system. This is not related to any operational value, but rather it
measures the average distance between origin and destination. The
data is taken from the Samgods PWC matrix”’, which states all the
origins and destinations of trips in the freight transport system of
Sweden.

Efficiency of supply sector is described as follows. The goals of this
sector are twofold: to calculate the demand for vehicles and to calculate the
transport efficiency. The demand for vehicles is calculated considering the
needed freight supply to satisfy the demand, which is calculated by multi-
plying the demand by the RATIO BETWEEN SUPPLY AND DEMAND.
This ratio represents how much transport work from the supply side is
needed to satisfy the demand. This ratio is calculated using data from the
Samgods PWC matrix™ and Trafikanalys®. Moreover, when electrification
begins, the fotal detour in ton km is also added to the needed supply. This
depends on the detour distance per E-truck, which is influenced by the
availability of charging infrastructure, calculated within the charging
infrastructure sector.

The transport efficiency is calculated considering the freight demand in
ton km and the maximum possible transport work. This maximum work is
the total transport work that would be possible if all trucks were to operate at
maximum capacity (always full) and drive the maximum annual mileage.
The transport efficiency can be seen as the combination of three other kinds
of efficiencies, described below. A summary of all efficiency variables
modelled in the study is provided in Supplementary Information 6.

o The routing efficiency, which considers the ratio of the freight demand
in ton km and the transport work. The number of trucks and the actual
transport work per truck are used to calculate the transport work.
Routing efficiency is decreased by the need for E-trucks to take more
detours during the early stages of adoption when charging
infrastructure is limited. As adoption progresses and charging
infrastructure expands, routing efficiency improves, approaching
pre-electrification levels.

* The fill rate, which considers the ratio of transport work and the
potential transport work considering a full load, where potential
transport work is the amount that could be carried out if all trucks were
always travelling full. Fill rate decreases in the early stages of E-truck
adoption due to the battery weight of E-trucks. As adoption progresses
and battery technology matures, battery weight decreases and fill rate
improves.

o The vehicle utilisation, which considers the ratio of the potential
transport work considering a full load and the maximum possible
transport work. Vehicle utilisation decreases due to a reduction in fotal
available driving time, as there is some time required during shifts for
E-truck detouring, queuing and charging. As more charging
infrastructure is built, detouring and queuing time decreases,
improving vehicle utilisation. However, vehicle utilisation remains
lower than pre-electrification levels due to the charging time required
during the shift.

The fleet sector is described as follows. In the fleet sector, the dermand
for trucks and the E-truck sales share (explained in the next sector) are used
to calculate the diesel truck sales and the E-truck sales. These sales are inflows
to the Diesel Truck Fleet and E-truck Fleet stocks. In turn, these stocks have
truck decommissioning as outflows. The fotal number of trucks is calculated
as the sum of the two fleets.

The E-truck Sales sector is described as follows. The E-truck sales share
is determined considering four factors: cost savings by using E-trucks,
availability of charging infrastructure, E-truck technology maturity, and
emission ratio compared to the baseline. Each factor varies from 0 to 1, with
0 corresponding to zero influence and 1 corresponding to maximum

influence. Each factor has a different weight, and an innovator rate of 2.5%"
is considered as the base growth rate to start the adoption. In this way, when
all four factors reach their maximum, the result is an E-truck sales share
of 100%.

o The cost savings by using E-trucks are considered in terms of the ratio
between the annual cost of one E-truck and one diesel truck. The cost
savings are maximum when this ratio reaches the minimum value.
Cost-related considerations consistently emerge as a dominant factor
in adoption decisions (e.g., refs. 57,63,64).

o The availability of charging infrastructure considers the ratio between
the number of charging stations and the demand for charging stations
by E-trucks. The influence of this availability on E-truck sales is
maximum when the availability is 1. Availability of charging
infrastructure is also recognised as an important enabler (e.g.,
refs. 19,54,65).

o The technology maturity considers the ratio of technology maturity to
the goal. This ratio measures the progress of technology maturity
compared to the set goal. The influence of maturity is maximum when
the ratio is 1. Prior works (e.g., refs. 66,67) point to the significance of
vehicle and battery technology maturity.

 The emission ratio compared to the baseline considers the emission
reduction ratio compared to the emissions during 2010. The influence
of the emission is maximum when the emission ratio compared to the
baseline is lowest. As E-trucks produce no tailpipe emissions,
environmental performance is another motivator for adoption (see
e.g, refs. 55,68).

The cost sector is described as follows. In the cost sector, the annual cost
of one diesel truck and of one E-truck is calculated, considering the cost of
diesel fuel (or of electricity), the maintenance cost, and the annual purchase
cost™”. The E-truck purchase cost is calculated in the technology maturity
sector and decreases over time. Moreover, the annual employee cost for each
vehicle is calculated. These costs allow us to understand the cost parity point
between E-trucks and diesel trucks. Moreover, the annual total cost is cal-
culated considering the entire fleet, and the cost per ton is calculated by
dividing the annual total cost by the freight demand in ton. The cost per ton is
used in the freight demand sector to understand the rebound effect of a
change in cost on the demand for freight transport. Note that a discount rate
was not applied when calculating the costs.

The emissions sector is described as follows. In the emissions sector, the
total annual emissions are calculated as the annual emissions from diesel
trucks, considering the distance driven by the diesel truck fleet. The total
annual emissions are then compared with the emission level in 2010,
resulting in the emission ratio compared to the baseline, which is considered
as one kind of efficiency. The reason for this comparison is that Sweden’s
transport climate target is to reduce emissions by a minimum of 70% by
2030 compared to the levels of 2010*. The emissions coming from the
production of electricity are omitted, as in Sweden’s transport climate target
only operational emissions (tank-to-wheel) are considered. Similarly, the
emissions from diesel trucks are calculated considering the carbon intensity
of diesel fuel, corresponding to the equivalent carbon dioxide emissions per
litre of diesel consumed during driving (tank-to-wheel). Naumov et al.”’
used a similar approach to model emissions.

The Truck Characteristics sector is described as follows. In this sector,
the characteristics of diesel and E-trucks are calculated separately to be used
in the other sectors. The main outputs of this sector are the fleet average load,
truck capacity, total distance, and transport work. Each of these variables is a
weighted average considering the share of diesel and E-trucks. The load is
calculated, including both loaded and empty km. The E-truck capacity is
calculated excluding the weight of the battery. The total distance and
transport work of the E-trucks are calculated, including the potential detours
to charging stations and considering the potential extra time needed for
charging.

The Charging Infrastructure sector is described as follows. The infra-
structure is planned by considering the current E-truck Fleet and calculating

npj Sustainable Mobility and Transport| (2025)2:42


www.nature.com/npjsustainmobiltransport

https://doi.org/10.1038/s44333-025-00061-5

Article

the current demand for charging stations based on the average station
demand per E-truck. The Installed Charging Stations is a stock that has an
inflow of building stations and an outflow of scrapping stations. The TIME
TO PLAN AND BUILD A STATION is considered a delay in the system
together with the LIFETIME OF A CHARGING STATION">”,

The average station demand per E-truck is calculated using three
variables:

» The kWh consumption of one E-truck is calculated by multiplying the
annual total distance per E-truck by its energy consumption per
kilometre.

» The Average Power of Charging Station is assumed to increase over
time due to technological advancements™.

o The possible utilisation rate of a station changes over time, bounded
between two values. The lower bound reflects the limited and uneven
distribution of charging stations during the early phase of E-truck
adoption, while the upper bound represents the maximum achievable
technical level. As adoption progresses, the utilisation rate gradually
transitions from the lower to the upper bound, following the growth in
the share of E-trucks.

Two efficiencies related to the charging infrastructure are defined in
this sector:

* The availability of charging stations is calculated by dividing the
Installed Charging Stations by the current demand for charging
stations.

¢ The utilisation rate of charging stations is calculated by dividing the
kWh consumption by the E-truck fleet (total annual energy
consumption by the E-truck fleet) and the kWh capacity of all installed
stations (combined energy capacity of all installed charging stations
over a year).

Based on the availability of charging stations, a queuing time and a
detour time are calculated. If the availability is 1, both the queuing and
detour times are zero. If the availability is zero, both queuing and detour time
are at their maximum value. These variables influence the E-truck char-
acteristics and therefore the efficiency of the system as a whole.

The E-truck Technology Maturity Sector is described as follows. The
E-truck Technology Maturity is calculated as a stock, with inflow learning in
E-truck technology, inspired by Nieuwenhuijsen et al.”. The learning is done
thanks to Re»D spending and based on the TECHNOLOGY IMPROVE-
MENT PER SEK SPENT. So for each SEK spent in R&D, the technology
maturity accumulates. The Re&D investment comes from the private sector,
and especially from the income from diesel and E-truck sales. The tech-
nology maturity influences three variables, which in turn influence the cost
and characteristics of E-trucks:

» The E-truck purchase cost, which decreases the closer the technology
reaches its maturity. The minimum E-truck purchase cost is set as
equal to the DIESEL TRUCK PURCHASE COST".

 The Battery Weight (ton/kWh), which decreases the closer the tech-
nology reaches its maturity. Both initial and minimum battery weights
are taken from Zu & Li”* and re-evaluated with updated data from
Teichert et al.”.

» The Average Power of Charging Station, which increases the closer the
technology reaches its maturity. Both initial and maximum power are
taken from ACEA™.

Model validation
To ensure the accuracy and reliability of the simulation model, various
validation tests were conducted using the methods proposed by Sterman".
A structural assessment validation process was conducted through meetings
with experts, as mentioned in the methodological process. Moreover, the
model passed the unit check function, confirming that the dimensional
consistency is respected.

Eight extreme condition tests were carried out, involving setting
selected model parameters to extreme values and comparing the behaviour

generated by the model with the expected behaviour, which is available in
Supplementary Information 7. In addition, several behaviour reproduction
tests were conducted to validate the model against real-world trends.
However, behaviour validity is less critical than in classical forecasting
models, as the model represents a future system with limited calibration
data. A point-by-point match with observed behaviour is neither feasible
nor essential. The main results of these tests are presented in Supplementary
Information 8. Finally, 26 sensitivity analyses have been conducted to
examine the model’s responsiveness to changes in parameters for which
data was unavailable or limited. Some of these are further explored in the
section “Sensitivity analysis”; the rest is reported in Supplementary Infor-
mation 9. From the sensitivity results, a selection of policies was run. Sup-
plementary Information 10 reports information on all the policies, while the
results of the most influential policies are presented in the section “Policy
analysis”.

All input parameters are obtained from official statistics and relevant
scientific research. For transparency and reproducibility, all input data
utilised in the model is provided in the model documentation, which can be
found in Supplementary Information 6, including detailed references or
sources for each input parameter.

Results

In this section, first, the base scenario results are described, depicting the
most important dynamics in the system. Then, a comparison between the
base scenario and a scenario without E-trucks is performed, followed by a
short overview of the sensitivity analysis performed. Finally, the most
relevant policies are analysed.

Base scenario results

Fleet size comparison is shown in Fig. 4, illustrating the trends of E-truck
and diesel truck fleets in Sweden over time. The total number of trucks
shows a nearly linear growth pattern. The E-truck fleet grows exponentially,
while the diesel truck fleet expands up to a certain point before gradually
declining. The two curves of the diesel and E-truck fleet meet when the two
technologies comprise 50% of the total market. After this point and until the
end of the simulation, the share of E-trucks is higher than the share of diesel
trucks.

Cost parity point is illustrated in Fig. 5, comparing annual costs of
E-trucks and diesel trucks, including purchase, maintenance, and opera-
tional costs. Initially, E-trucks have significantly higher total costs compared
to diesel trucks. However, in the middle of the simulation (around the year
2036), the costs intersect, after which E-trucks have lower total costs than
diesel trucks for the remainder of the simulation. Note that the year of cost
parity depends on the pace of technology maturity, distance driven, price of
electricity, and other model assumptions and should not be viewed as a
prediction but as a critical point after which there is a change in behaviour.

E-truck sales development over time is illustrated in Fig. 6. These, as
mentioned in the section “Model Structure: simulation model”, depend on

Fleet comparison
100k

vehicle

2010

2020 2030
year

— Diesel Truck Fleet

2040 2050

— E-truck Fleet
- total number of trucks

Fig. 4 | Fleet comparison. The figure shows the comparison of E-truck and diesel
truck fleets in Sweden, 2010-2050.
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a) purchase cost of E-truck vs. diesel truck

b) operational cost of E-truck vs. diesel truck
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Fig. 5 | Cost parity point of E-trucks and diesel trucks. The figure compares the (a) purchase cost, (b) operational cost, and (c) total cost of E-trucks and diesel trucks

over time.
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Fig. 6 | E-truck sales share. The figure highlights two S-shaped growth phases: the
first phase (2025-2035) and the second phase (2035-2045).

four factors: the cost savings by using E-trucks, the availability of charging
infrastructure, the technology maturity of E-trucks, and the emission ratio
compared to the baseline. The figure reveals two connected S-shaped growth
patterns, representing two phases of adoption: the first phase from 2025 to
2035 and the second from 2035 to 2045. The year of cost parity drives the
transition from the first to the second phase. During the first phase, the cost
parity point is not reached yet; thus, the cost does not drive E-truck sales, and
the increase in sales is primarily driven by an increase in the availability of
charging stations. Note that changes in cost can change the timing of cost
parity, which in turn can influence sales dynamics. After reaching cost
parity, during the second phase of adoption, E-truck sales are primarily
driven by the decrease in the annual cost of E-trucks, driven by technology
maturity.

What happens if we do not transition to E-trucks?

To assess the impact of not transitioning to E-trucks, we ran a simulation
without them. Figure 7a shows that, in the no E-trucks scenario, transport
cost per ton decreases until 2030 due to the improved fuel consumption rate
of diesel trucks (based on Basma et al.”*) and then stabilises for the rest of the

simulation. However, when E-trucks are included, there’s a temporary
increase in cost per ton midway through the simulation, mainly driven by
the initially high purchase costs of E-trucks. Ultimately, by improving the
technology maturity of E-trucks, the annual cost of E-trucks is lower
compared to diesel trucks (see Fig. 5 in the section “Base scenario results”).
The lower annual cost, together with the higher E-truck fleet, leads to a lower
cost per ton towards the end of the simulation.

As shown in Fig. 7b, transport efficiency stays relatively stable
throughout the simulation in the no E-trucks scenario. However, when
E-trucks are added, efficiency dips midway and then improves toward the
end, but it doesn’t reach the level seen in the no E-trucks scenario. Therefore,
switching to E-trucks ultimately decreases transport efficiency due to the
weight of the battery, the extra time required for detouring to charging
stations, queuing, and charging, and the rebound effect of cost.

As Fig. 8 illustrates, switching to E-trucks can significantly lower the
emission ratio compared to the baseline. Without E-trucks, emissions rise
due to increasing freight demand. The spike in emissions in the year 2022 is
linked to a change in Sweden’s Greenhouse Gas Reduction Mandate” . This
mandate requires fuel suppliers to reduce emissions from diesel fuel by
blending in biofuels. A government decision to significantly decrease the
mandated biodiesel share led to a noticeable increase in emissions. The
results of the base scenario-previous mandate illustrate the potential emis-
sion reduction if the mandate had not been changed.

Results of extreme condition and behaviour reproduction tests

As part of the model validation, as explained in the section “Model vali-
dation”, eight extreme condition tests were conducted, summarised in this
section and presented in detail in Supplementary Information 7. Results of
extreme condition tests show that when E-truck adoption is disabled or
delayed, diesel vehicles dominate the fleet, and long-term costs remain
higher. Electrification generally results in lower cost per ton, higher freight
demand, and improved sustainability outcomes, including reduced emis-
sions and increased energy carrier efficiency, despite a slight decline in
transport efficiency. Extreme scenarios, such as infinite E-truck lifetime or
zero electricity cost, accelerate E-truck adoption and reduce system costs.
However, rapid adoption can outpace infrastructure growth, leading to
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Fig. 7 | Comparison of base scenario vs. no E-trucks. The figure compares the base scenario with a no E-truck scenario on a) cost per ton and b) transport efficiency. Note
that the y-axis in the transport efficiency figure does not start from zero, as the differences between the different policies would otherwise not be visible.
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Fig. 8 | Comparison of emission ratio compared to the baseline across three
scenarios. The figure presents the emission ratio relative to the 2010 baseline for the
base scenario, a no E-trucks scenario, and the base scenario with the previous
mandate.

reduced availability of charging infrastructure. Changes in parameters like
the number of annual shifts per vehicle or share of empty kilometres sig-
nificantly affect vehicle demand, vehicle utilisation, and fleet composition.
Opverall, the model responds as expected across these extreme condition
tests, validating its internal consistency and highlighting the trade-offs
relevant to policy analysis.

Moreover, several behaviour reproduction tests were conducted,
comparing the model’s output to actual data on transport work, distance
driven, and the number of trucks”. These comparisons supported the
calibration of parameters for which data was unavailable or limited and were
reviewed with experts during the second round of interviews. Validation of
the E-truck initial adoption proved more challenging due to limited data
availability, as adoption is still in its early stages. Although the model does
not exactly replicate the current E-truck fleet, experts noted that real-world
figures are influenced by early-stage purchases for testing or branding
purposes. To address this, based on expert recommendations, the focus was
shifted to transport work by E-trucks. Expert feedback confirmed that this
level of accuracy is sufficient for analysing the impact of electrification on
transport efficiency. For more details about the behaviour reproduction,
please refer to Supplementary Information 8.

Sensitivity analysis

To validate the model structure and to understand which variables have the
most significant impact on the model results, we conducted a sensitivity
analysis on 26 model parameters. In each test, we varied one parameter +
20% to understand each parameter’s relative impact on the model’s result. In

this section, two representative sensitivity analyses are discussed, while all 26
sensitivity runs can be found in Supplementary Information 9. Figure 9a, ¢
show that the impact of the change in the price of electricity and diesel is only
on the second phase of adoption. The cost does not drive the E-truck sales
before the cost parity year, although it affects the timing of cost parity and
can therefore influence sales dynamics. By comparing Fig. 9b - d, it can be
seen how the diesel price increase has a higher magnitude than the electricity
price increase. Moreover, Fig. 9b shows that a change in the price of elec-
tricity impacts the cost per ton, with a more significant impact towards the
end of the adoption, as we have more E-trucks then. Similarly, Fig. 9d shows
that a diesel price change impacts the cost per ton with a more significant
impact at the start of the simulation, as we start in 2010 with a diesel truck
share of 100%.

In addition, as explained in the section “Model Structure: simulation
model”, the E-truck sales share is determined by a weighted average of four
factors: cost savings, availability of charging infrastructure, technology
maturity, and emission ratio compared to the baseline. Due to the limited
data available from large-scale E-truck adoption, these weights were esti-
mated based on expert opinions and are uncertain. To address this uncer-
tainty, a series of sensitivity analyses was conducted. The results show that
doubling the weight of availability of charging infrastructure leads to a
significantly higher adoption rate, while doubling the weight of cost savings
slows down the adoption process. For further details, please refer to Sup-
plementary Information 11.

Policy analysis
Based on the sensitivity analysis, we identified ten policy parameters with the
most significant impact on the model’s results. After several iterative
meetings with experts, we selected four key policies, detailed below. All
policies are implemented in the model from the year 2025, assuming future
implementation.

* Carbon tax on price of diesel is imposed to account for the environ-
mental costs associated with diesel use. This tax increases the overall
price of diesel and is calculated based on the carbon intensity of diesel
and the external cost of CO, (assumed to be 5 SEK per kg CO, based on
Trafikverket”®). Introducing this tax would mean increasing the diesel
price by 65%. In the model, the higher diesel cost shifts the cost parity
year to an earlier year compared to the base scenario, making E-trucks
more attractive than diesel trucks earlier than in the base scenario.
Therefore, the influence of this policy is on Loop R3 - cost saving (Fig.
2). Additionally, the tax impacts the cost per ton, which is passed on to
customers and leads to a change in their freight demand.

* Incentive on E-truck purchase provide a 20% subsidy on the purchase
cost of E-trucks, making them more affordable. In the model, this
incentive shifts the cost parity year to an earlier year and enhances the
cost savings of using E-trucks, making E-trucks a more attractive
option compared to diesel trucks. Similarly to the previous policy, the
influence of this policy is on the loop R3 - cost saving (Fig. 2).

npj Sustainable Mobility and Transport| (2025)2:42


www.nature.com/npjsustainmobiltransport

https://doi.org/10.1038/s44333-025-00061-5

Article

a) E-truck sales (sensitivity on price of electricity)

1
€ 05
€
©
0
2010 2020 2030 2040 2050
year
c) E-truck sales (sensitivity on price of diesel)
1
€ 05
€
©
0
2010 2020 2030 2040 2050
year
Confidence values

0 50%

b) cost per ton (sensitivity on price of electricity)

300
g 4\/_’\\
£ 150
2
w
»n

0

2010 2020 2030 2040 2050

year
d) cost per ton (sensitivity on price of diesel)
300

. \
£ 150
2
w
»n

0

2010 2020 2030 2040 2050

year
0 75% 0 95% 0O 100%

Fig. 9 | Results of sensitivity analysis. The figure shows the impact of a change of + 20% in the price of electricity per kWh on (a) E-truck sales share and (b) cost per ton, and
the impact of a change of + 20% in the price of diesel per kWh on (c) E-truck sales share and (d) cost per ton.

E-truck sales share

Public Invest in
Tech Maturity

-

Long Term
Planning for I b E-truck
_ chargmg Purchase
c 05 ‘ Incentive
£
©
Price of
Diesel

" §

2050

2011) ZOZU 2030

year

2040

Fig. 10 | Design of the Combination Scenario. Infrastructure and maturity-related
policies in the first phase of adoption and cost-related policies in the second phase.

¢ Public investment in technology maturity is introduced as an addi-
tional driver. In the base scenario, only private investment is considered
for increasing E-truck technology maturity. This policy assumes public
sector investment to accelerate technology maturity. In the model,
adding public investment speeds up E-truck technology maturity,
leading to a decrease in the purchase cost of E-trucks. As technology
matures, the costs associated with producing E-trucks decrease,
resulting in lower prices for the trucks. Therefore, the influence of this
policy is directly on loop R2 - tech maturity and indirectly on loop R3 -
cost savings (Fig. 2).

* Long-term planning for charging is introduced to improve infra-
structure development beyond the reactive approach in the base
scenario, where charging station demand is based on the current
E-truck sales. Within this policy, a prediction of future E-truck sales is
added to determine the demand for charging stations and the
construction of new ones. This approach emphasises long-term
planning for the development of charging infrastructure. The influence
of this policy is on the loop R4 - E-truck increase charging (Fig. 2).

The results of implementing these policies are shown in Fig. 11 and
explained as follows.

Impact on E-truck share and emissions is illustrated in Fig. 11a, which
shows the share of E-trucks under different policies. In the first phase of
adoption (i.e., from 2025 to 2035), the “long-term planning for charging”
policy results in the highest E-truck share, while the “carbon tax on diesel”
produces the lowest share, even lower than the base scenario. This lower
share with the “carbon tax on diesel” policy occurs because the tax increases
diesel truck operating costs, leading to higher transport costs and a sig-
nificant drop in freight demand, as shown in Fig. 11b. However, in the
second phase of adoption (i.e., from 2035 to 2045), the “carbon tax on diesel”
increases E-truck share, while “long-term planning for charging” has the
most negligible impact. The different impacts in the first and second phases
of adoption highlight the importance of charging infrastructure planning in
the first phase and cost-focused policies in the second phase. In addition, Fig.
11d shows how the different policies impact the emission ratio compared to
the baseline. The “carbon tax on diesel” policy achieves the most significant
emission reductions. In contrast, the “incentive on E-truck purchase” policy
shows higher emissions in the first phase of adoption compared to the base
scenario. This increase occurs because the reduced E-truck purchase cost
lowers transport costs, leading to higher freight demand, as seen in Fig. 11b.
The increased freight demand results in more vehicles, including diesel
trucks, contributing to higher emissions.

Impact on freight demand and transport efficiency is demonstrated in
Fig. 11b, showing how freight demand changes under different policies and
emphasising the importance of considering the cost-demand rebound effect
when designing policies. The “carbon tax on diesel” policy significantly
reduces freight demand due to the increase in transport costs. The oscillation
observed in this policy is caused by a delay structure. As transport costs rise,
freight demand decreases with a delay, which then signals a reduction in
demand for trucks. This, with a delay, leads to a decrease in the total number of
trucks, lowering total transport costs. Similarly, transport efficiency varies
under different policies. As shown in Fig. 11c, the “carbon tax on diesel” policy
causes the most fluctuation in transport efficiency, making it less desirable.
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The trade-off between availability and utilisation rate of charging sta-
tions is shown in Fig. 11e, f. The “long-term planning for charging” policy
results in the highest availability but lowest utilisation rates, while the
“carbon tax on diesel” policy shows fluctuating patterns, ending with the
lowest availability and highest utilisation rates. When charging stations are
insufficiently available, their utilisation rates are high. However, as the
availability of charging stations increases with new construction, the utili-
sation rate per station declines. A balance (trade-off) is needed to optimise
both efficiency variables.

After investigating the impact of the single policies, we considered and
explored the impact of different policies at different points in time. Based on
the two phases of adoption (Fig. 6) and after several iterations during col-
laborative meetings with experts, we developed a Combination Scenario that
simulates the following combination of policies, illustrated in Fig. 10:

o The public investment in technology maturity policy is active during the
first phase of adoption. The effect of the technology maturity has many
delays involved. For example, technology maturity increases (with a
delay) the adoption of electrification, and the increase in technology
maturity decreases the purchase cost and annual cost of E-trucks.
Therefore, it is necessary to push technology maturity early on to see
future benefits of E-truck adoption.

* The long-term planning for charging policy is active during the first
phase of adoption since the availability of infrastructure mostly influ-
ences the first phase of adoption.

o The carbon tax on price of diesel policy is active during the second phase
of adoption. This policy is relevant in the second phase as it affects the
cost savings by using E-trucks.

* The incentive on E-truck purchase policy is active during the second
phase of adoption. Similar to the previous policy, this policy is relevant
in the second phase, as it affects the cost savings of using E-trucks.

The results of the Combination Scenario are depicted in Fig. 11,
together with the other policies. As shown in Fig. 11a, the market share of
E-trucks is higher in the Combination Scenario than all other policies at all
time steps. Regarding the emission ratio compared to the baseline, Fig. 11d
shows that the Combination Scenario is better than all other policies at all
time steps, except for the carbon tax on price of diesel policy. The carbon tax
is more efficient in reducing emissions if implemented in 2025 rather than
only in the second phase of adoption. However, Fig. 11b shows how the
Combination Scenario causes fewer oscillations in the freight demand
compared to the carbon tax policy. These oscillations are attributed to the
shock that the carbon tax policy brings to the cost of diesel trucks. The
oscillations are of lower magnitude in the Combination Scenario, as the
policy is implemented later (when there are fewer diesel trucks compared
to 2025).

Discussion
In this study, we explored the impact of electrification on different kinds of
road freight transport efficiencies and the dynamics between them. The
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Fig. 12 | Different kinds of efficiencies. The figure presents the various efficiencies explored in the study, divided into efficiencies for business and for society, highlighting

dynamics and relevant stakeholders. A summary of all efficiency variables modelled in the study is provided in Supplementary Information 6.

developed model is a dynamic model that includes rebound effects rather
than a traditional static prediction model. This section addresses and dis-
cusses the research questions. We also delve into the methodological choices
made during the study and conclude with a discussion on limitations,
suggestions for future research and the main takeaways.

Trade-offs between different kinds of road freight transport efficiencies
arise as electrification introduces new stakeholders, dynamics, and efficiency
variables into the system. For example, charging infrastructure providers
become key stakeholders who impact the availability of charging stations
and are, in turn, affected by the utilisation rate of these stations. Figure 12
illustrates the different kinds of efficiencies explored in this study, cate-
gorised into efficiencies for business and for society. This figure is based on
the insights from the literature®® and the results of interviews with experts.
The figure also aims to depict the dynamics between these efficiencies and
the involvement of various stakeholders.

This paper presents an SD model to answer the first research question,
i.e., how does electrification impact different kinds of efficiencies? There is no
definite answer, as electrification impacts different efficiencies in diverse
ways, creating significant trade-offs to consider. For instance, Fig. 8 and Fig.
7b show that electrification can significantly reduce emissions, benefiting
society, but it also decreases transport efficiency, impacting carriers.
Moreover, Fig. 11e, f reveals that while increasing the availability of charging
stations is beneficial for carriers, it can lower the utilisation rate of each
station, affecting charging infrastructure providers. Thus, balancing and
making trade-offs between different kinds of efficiencies is crucial.

From a cost perspective, as seen in Fig. 7a, electrification initially
increases the cost per ton during the adoption phase. However, after
reaching cost parity, the cost per ton ultimately decreases. Policymakers and
decision-makers should acknowledge this worse-before-better behaviour
and not be discouraged by an initial increase in cost per ton. This reduction
in cost per ton can trigger a rebound effect, where lower costs drive higher
demand. This rebound effect between cost and demand significantly
influences the dynamics and final results of the model and must be con-
sidered carefully to avoid unintended consequences.

Policy discussion explores the impact of four policy interventions on
the model to address the second research question, i.e., how do policies
impact the adoption of E-trucks and different kinds of efficiencies to achieve a
more sustainable transport system? The policies included are the following:
carbon tax on price of diesel, incentive on E-truck purchase, public investment
in technology maturity, and long-term planning for charging. Similar policies
have been considered in the literature. For example, Raoofi et al.” con-
sidered five policy levers, including charging and vehicle subsidies, tech-
nology maturity investments, electricity and diesel price changes. Moreover,
Earl et al.” propose eight policies that are considered key to ensuring the

rapid and sustainable development of E-trucks in Europe, including fuel
taxes, infrastructure standards, and funds for battery manufacturing.
However, Earl et al.”’ base their results on a static analysis, not considering
change over time and dynamic complexity. McNeil et al** report a sur-
prisingly high impact of tax credits and incentives to support electrification,
together with the construction of infrastructure in the USA. These results are
in accordance with our results, as they identify and test similar policies.

As shown in Fig. 6, two phases of adoption are identified. The year of
cost parity divides the two phases. The cost parity point is explored by
various authors in the literature (e.g., refs. 19,57,63,64), and it depends on
battery and truck size, distance driven, and application®"*. In our model, we
aggregate all trucks heavier than 3.5 tonnes; therefore, the cost parity point is
also aggregated. During the first phase, the increase in sales is primarily
driven by an increase in the availability of charging stations. Therefore,
policies that improve the availability of charging stations during the first
phase can boost E-truck adoption. After reaching cost parity, during the
second phase of adoption, E-truck sales are primarily driven by the decrease
in the annual cost of E-trucks. Therefore, policies that decrease the annual
cost during the second phase, such as energy carrier pricing, boost the
adoption. It should be noted that changes in cost can affect the timing of cost
parity, which in turn can influence sales dynamics. The importance of cost
and charging infrastructure is also highlighted by McNeil et al.*’. In addition,
Raoofi et al.” identified charging infrastructure as a key enabler of adoption.
This aligns with our findings, which show that infrastructure-focused
policies significantly drive adoption in the first phase, creating a ripple effect
that extends through the end of the simulation.

The knowledge gained from the analysis of the single policies described
in the section “Policy analysis” enables us to combine policies to achieve
effective impacts on the system regarding both E-truck adoption and
transport efficiencies in the Combination Scenario. When taking the public
sector perspective, one potential policy caveat is to balance incentives and
taxes. For example, the public investment in technology maturity policy is an
incentive that costs money to the public sector. In contrast, the carbon tax on
price of diesel policy is a tax that brings money to the public sector. Figure 13
shows the Total Public Sector Revenue, which is calculated as a stock
(accumulation) by considering both the incentives (seen as an outflow to the
revenue) and taxes (seen as an inflow to the revenue). The long-term
planning for charging policy is seen more as a regulation (without direct
taxes or incentives). The figure shows that the carbon tax on price of diesel
policy has a high revenue, while the incentive on E-truck purchase brings a
high expense to the public sector. The public investment in technology
maturity policy brings an expense to the public sector, but much less than
the expenses in incentive on E-truck purchase policy. It is clear how the
policies with high expenses for the public sector could not be economically

npj Sustainable Mobility and Transport| (2025)2:42

12


www.nature.com/npjsustainmobiltransport

https://doi.org/10.1038/s44333-025-00061-5

Article

Total Public Sector Revenue

1488 PP
_2
-
b
7
7
5
e
'
7
X 248 /’
D 0 m2m3md 56123 LB a5 o= 4F e = 5 26
3
1008 i
2010 2020 2030 2040 2050
year

-1-Base Scenario
—2-Carbon tax on diesel price
3-Incentive on E-truck purchase

—4-Public invest in tech maturity
-5--Long-term planning for charging
—6-Combination Scenario

Fig. 13 | Cumulative change in Total Public Sector Revenue in the Base Scenario
and under different policies. The Combination Scenario is the only scenario where
the revenue is zero at the end of the policy period (2045). A zoomed-in version of this
figure is provided in Supplementary Information 12.

viable in the long run since they penalise either the carriers and their cus-
tomers (with the carbon tax) or the public sector (with the incentives).
Therefore, a balance should be sought in the Total Public Sector Revenue.
This balance could be achieved when combining the policies in the Com-
bination Scenario. Figure 13 shows that the revenue in the Combination
Scenario is negative during the first phase of the adoption and positive
during the second phase, becoming zero at the end of the policy period.
Therefore, in the Combination Scenario, E-truck adoption can be increased
while maintaining a reasonable balance in the Total Public Sector Revenue.
This highlights the importance of implementing effective policies that
accelerate E-truck adoption while achieving high gains per unit of public
expenditure, thereby offering better value for government action.

Evaluating policy recommendations and the consequences of model
assumptions, a Combination Scenario was developed through discussions
with our expert group. However, in reality, there are numerous potential
policy interventions, both in terms of the policy types and the imple-
mentation time. To support broader experimentation, we built an inter-
active interface based on the simulation model (https://exchange.
iseesystems.com/public/treff-model/interface), allowing decision-makers
to test different policy combinations and observe real-time results.

In the Combination Scenario, we recommend implementing cost-
related policies during the second phase of adoption (after the cost parity
point) and infrastructure-related policies during the first phase. However,
applying cost-related policies after reaching cost parity may appear coun-
terintuitive. Our results suggest that to further accelerate adoption, con-
tinuing to reduce the cost of E-trucks, even beyond the parity point, can be
an effective policy intervention.

To explore this further, we tested a Reverse Combination Scenario, in
which we swap the timing of policy interventions, applying cost-related
policies in the first phase and infrastructure-related policies in the second
phase. As shown in Fig. 14, the Combination Scenario results in a higher
share of E-trucks by the end of the simulation compared to the Reverse
Combination Scenario. The latter shows a sharp drop in sales in the mid-
2030s, when cost-related policies are withdrawn and greater fluctuations in
transport efficiency occur, which are undesirable for manufacturers, freight
operators, and other stakeholders relying on system stability. Further details
are provided in Supplementary Information 13.

In addition, regarding the influence of cost savings on E-truck adop-
tion, the Base Scenario, based on the discussion with our experts, assumes
that prior to reaching cost parity, adoption is driven by other factors
(charging infrastructure availability, technology maturity, and emission

share of E-trucks

dmnl

1 3 1 2
2010 202v 2030 2040 2050
year
~:=Combination scenario
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Fig. 14 | Share of E-trucks across scenarios. The figure shows the share of E-trucks
in the Base Scenario, Combination Scenario, and Reverse Combination Scenario.

ratio compared to the baseline). Once cost parity is achieved, cost begins to
contribute to adoption decisions. However, we tested an alternative
assumption in which freight companies consider cost savings as a factor
from the beginning of the adoption, even before cost parity is achieved.
Under this alternative scenario, the overall two S-shaped patterns of E-truck
sales share remain, but the second growth phase shifts to the left, indicating
earlier uptake. Further details are provided in Supplementary Informa-
tion 14.

Methodological discussion is presented as follows. SD is used in this
paper to zoom out and have a broader perspective on the concept of effi-
ciency and the impacts of electrification. The model was grounded in the
scientific literature (see the section “Model Structure: simulation model”)
while also being shaped through a participatory process. These two
approaches complemented one another: the literature provided a scientific
foundation, while the participatory process ensured relevance to real-world
conditions and improved the model’s face validity”’. By combining these
approaches, the model benefits from both academic rigour and stakeholder
relevance, thereby strengthening its ability to support policy analysis.

Building on participatory modelling approaches commonly used in SD
research®®, we actively engaged stakeholders from industry, the public
sector, and academia to understand their decision-making mechanisms and
identify key variables. For example, we examined how carriers weigh the
trade-offs between adopting electric versus diesel trucks, how truck man-
ufacturers make decisions to increase investment in vehicle technology
development, and how policymakers evaluate investment strategies to
support the transition. Once the initial model was developed, we returned to
experts to validate the results and ensure the model’s behaviour aligned with
their expectations. Using an interactive interface built as part of the study,
experts were able to directly test the model by simulating different policies
and decisions. We conducted several “if-then” analyses, such as, “If the
diesel price decreases, what behaviour would you expect from the model?”
When model behaviour did not align with expert expectations, we used
sensitivity analysis and further testing to explore the underlying structure
and refine the model accordingly.

These engagements, carried out through interviews, workshops, and
expert meetings (see Supplementary Information 2), were critical in cap-
turing experts’ mental models and ensuring that the model is relevant to
real-world challenges. Moreover, participants and experts reported that the
study helped them to understand the system’s dynamics using a new
method. These findings and results align with the participatory approach in
SD modelling highlighted by refs. 46,86,87.

Apart from using the method as a participatory approach, the model
itself contributes to the literature. The model can be used by policymakers in
Sweden to understand the impacts of various policies. Moreover, the model
can be adapted to represent the road freight transport system in other
countries by changing the input data and confirming that the same
dynamics are valid in the new context. Therefore, this paper provides a tool
that can be used in different case studies to understand the impacts of
electrification on road freight transport efficiency and how various policies
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impact the adoption of E-trucks and efficiency. Moreover, the SD model in
this paper can be used for dynamic policymaking, as it allows us to consider
the dynamic impacts of different decisions and policies. Therefore, using SD
models significantly contributes to decision-makers and policymakers in
the field.

Other modelling methods could be used to tackle the problem
described in this paper. For example, agent-based models are a powerful tool
for solving complex questions and have been extensively used in transport
planning®. Kéhler et al.** review the application of modelling methodologies
to explain the dynamics of transitions and identify many possible methods,
including evolutionary economics models, SD models, agent-based models,
and socio-ecological systems models. Mercure et al.*” highlight that models
to simulate sustainability policymaking should include the feedback struc-
tures caused by human behaviour and propose an alternative modelling
approach based on complexity dynamics and agent heterogeneity. We chose
SD, as it allowed us to explore the dynamics of the transition while keeping a
holistic perspective and focus on the system-level effects rather than the
details of the technological shift to electrification and bridging a gap between
detailed technical models and qualitative policy studies.

Limitations and future studies are presented as follows. The initial
efforts to define efficiencies have proven that there are many different kinds
of efficiencies, and covering all of them could be challenging. Each stake-
holder group has its own different definitions and understandings of effi-
ciencies, making it hard to generalise efficiency as a concept on a system
level. Future studies could build on this by incorporating additional defi-
nitions of efficiency from other stakeholder perspectives. In particular,
examining investment efficiency from the public sector perspective would
be beneficial. Although we have touched on this aspect by considering
Public Sector Revenue in the policy discussion, future research could
undertake a more detailed and concrete analysis to assess the efficiency of
different policy interventions.

The study focuses on the competition between E-trucks and diesel
trucks, excluding alternative fuels such as biofuels and hydrogen. It also
aggregates heavy trucks (over 3.5 tonnes) into a single category. For future
research, it would be beneficial to explore the dynamics of other alternative
fuels and to segment the vehicle fleet by weight class for more detailed
analysis. Moreover, the model also considers charging stations as the main
charging solution, leaving out other charging strategies such as Electric Road
Systems and battery swapping, in line with EU-level priorities (e.g., AFIR)
and Sweden’s national electrification plan®. Charging stations are also
treated in aggregate, without differentiating between depot, highway, or
destination charging. The focus is on how the availability of charging sta-
tions influences E-truck adoption, rather than the dynamics between spe-
cific charging choices. However, incorporating distinct charging strategies
would be a valuable direction for future model development. In addition, the
impact of emerging technologies such as autonomous driving and vehicle-
to-grid (V2G) was not considered in this model but could be explored in
future research.

The model is based on the Swedish market and government, with
validation from experts in Sweden. While the data used is specific to Sweden,
the model can be generalised by adjusting its structures and input para-
meters. Future research could compare the model’s results across different
countries with varying policy schemes. Additionally, expert knowledge and
judgement were used during model development where necessary, which
introduces potential limitations due to the bounded nature of expert per-
spectives, even among domain experts. Future work could involve a broader
range of experts and compare outcomes across stakeholder views.

The model considers four factors influencing E-truck adoption: cost
savings by using E-trucks, the availability of charging infrastructure, the
technology maturity of E-trucks, and the emission ratio compared to the
baseline. Future studies could explore additional factors, including those
that might negatively impact adoption, such as range anxiety for drivers or
uncertainties related to energy prices.

One of the contributions of this model is the consideration of the
rebound effect of the change of cost per ton on the freight demand.

However, the elasticity is considered a constant. It would be more realistic to
express the elasticity as a function of the change in price. For example,
elasticity in response to a small price variation is likely to differ from that
under a large price variation. For instance, Fig. 11b shows a great reduction
of demand when the carbon tax policy is implemented starting in 2025. This
change could be unrealistic since the change in demand would be lower the
more the price deviates from its past behaviour. We believe, therefore, that
making the elasticity endogenous is an interesting avenue for future work,
while in this paper it is considered out of scope.

Moreover, the model does not currently account for regional variation,
fuel and technological diversity. It also does not explicitly represent the
heterogeneity in the decision-making of the different fleet operators, such as
the difference in risk tolerance, fleet renewal strategies, or responsiveness to
policy incentives, which could influence adoption trajectories. While these
aspects were discussed qualitatively during the participatory process, they
are not entirely formalised in the current model structure. Future work
could introduce behavioural heterogeneity and complement this model
with more disaggregated, spatially explicit models to enhance both beha-
vioural and geographic resolution.

Finally, the transition to E-trucks involves significant uncertainties,
including how electrification will impact various variables, the ripple effects
of these changes, and how policymakers will respond. While a long simu-
lation time is necessary to understand the dynamics of the system in the long
run, it also introduces greater uncertainty about input parameters. Future
studies should account for these uncertainties, employing techniques like
the Decision Making under Deep Uncertainty approach to better manage
variability in input parameters and model assumptions (see e.g., ref. 90).

Conclusions

This paper explores the impact of electrification on road freight transport
efficiency, considering efficiency as a complex concept with the involvement
of various stakeholders. FElectrification introduces new stakeholders,
dynamics, and efficiency variables, adding further complexity to the system.
To address this complexity and understand the dynamics of the system, this
paper utilises System Dynamics (SD) modelling. This method allows for
exploring the interactions between different efficiencies and stakeholders
and understanding how electrification affects the system. Our model dis-
tinguishes between different kinds of efficiencies and the impact of elec-
trification, with several dynamics between them.

The key takeaways of the paper can be summarised as follows:

o There are trade-offs between different kinds of efficiencies. For
example, while electrification reduces emissions, benefiting society, it
also decreases transport efficiency, impacting carriers. Moreover,
investing in and building more charging stations increases availability,
making it more convenient for carriers to access charging stations.
However, greater availability leads to lower utilisation rates for each
station, which affects charging infrastructure providers. Therefore, it is
essential to achieve a balance between these different kinds of
efficiencies.

¢ Electrification increases the cost per ton temporarily during adoption,
but after reaching cost parity, it ultimately lowers the cost per ton,
making the transition to E-trucks cost-effective in the long run.
However, this decrease in cost per ton can trigger a rebound effect,
where lower costs drive higher demand, potentially leading to
externalities such as emissions and congestion. This rebound effect
significantly influences the dynamics and results of the model, so it
must be carefully considered to prevent unintended consequences.

 The model results indicate two phases of E-truck adoption. In the first
phase (2025-2035), policies focused on expanding charging infra-
structure significantly impact adoption. In the second phase (2035-
2045), cost-focused policies become more influential. Given the delays
inherent in the system, a long-term perspective is essential to accelerate
E-truck adoption. For example, public investment in technology
maturity should be implemented early to achieve the desired outcomes.
Based on these insights, we developed a Combination Scenario that
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boosts E-truck adoption while simultaneously reducing public
expenses (balancing financial incentives against tax revenues). This
policy analysis underscores the crucial role of policymakers in the
system and the importance of making decisions at the right time and in
the right place.

The main contribution of this paper is the development of a dynamic
and feedback-rich model that sheds light on how electrification impacts
freight transport efficiency while highlighting the critical role of planning
and policymaking in successful electrification and improved efficiency
variables. The model offers a system-level perspective that goes beyond
isolated efficiency metrics, linking E-truck adoption, business and opera-
tional efficiencies with societal and environmental efficiencies in an inte-
grated, dynamic framework. By using a participatory process with experts
from industry, the public sector and academia, we ensure that the model’s
logic and results reflect both empirical data and expert knowledge, allowing
for sound policy analysis. Moreover, our policy analysis offers insights into
how policymakers can leverage such a model to make informed decisions at
the right time and in the right place. This paper provides valuable knowledge
to Swedish policymakers and those in similar contexts and can guide them
towards targeted interventions that help navigate the transition to a sus-
tainable road freight transport system.

Data availability

The model documentation and data sources of this study are publicly
available and can be accessed at https://github.com/ZeinabRaoofi/TrEff
Stella_ Model.

Code availability

The SD simulation model utilising Stella Architect version 3.2.1 is publicly
available and can be accessed at https://github.com/ZeinabRaoofi/TrEff
Stella_Model. An online interactive version is also available, allowing users to
engage with the model without requiring Stella software. Access the interface
here: https://exchange.iseesystems.com/public/treff-model/interface.
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