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One-shot learning-driven autonomous
robotic assembly via human-robot
symbiotic interaction
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Multi-procedure robotic assembly requires robots to sequentially assemble components, yet
traditional programming is labor-intensive and end-to-end learning methods struggle with vast task
spaces. This paper introduces a one-shot learning from demonstration (LfD) approach that leverages
third-person visual observations to reduce human intervention and improve adaptability. First, an
object-centric representation is proposed to preprocess demonstrations of humanassembly tasks via
RGB-D camera. Then, a kinetic energy-based changepoint detection algorithm automatically
segments procedures, enhancing the robot’s understanding of human intent. Third, a demo-trajectory
adaptation-enhanced dynamical movement primitive (DA-DMP) method is proposed to improve the
efficiency and generalization of motion skills. The integrated system uses visual feedback for closed-
loop reproduction of multi-procedure assembly skills, validated on a real-world robotic assembly
platform. Results show accurate sequence learning from a single demonstration, efficient motion
planning, and a 93.3% success rate. It contributes to trustworthy and efficient human–machine
symbiotic manufacturing systems, aligning with human-centered automation.

In the context of Industry 5.0’s human-centric manufacturing paradigm,
industrial robots are increasingly required to possess more intuitive and
user-friendly programming capabilities. This evolution enables robots to
adapt agilely and efficiently to ever-changing and complex work environ-
ments, facilitating seamless human–robot collaboration without hindering
productivity1–3. Assembly is one of the primary processes in the manu-
facturing industry, accounting for ~50% of total time and 30% of the total
cost4. In the actual assembly process, a specific series of manipulations (e.g.,
picking and placing operations of particular parts) needs to be performed in
a specific order, reflecting the long-horizon and multi-procedure char-
acteristics of assembly tasks. To enable robots to complete such long-horizon
assembly tasks, the key is making a sequence of decisions under given task
conditions, deciding which part to pick and where to place it. Subsequently,
picking the selected part in an unstructured environment with non-fixed
poses and transferring it to the desired location is the next challenge when
executing a particular decision. To tackle such tasks, manual programming
with explicitly defined pre-and post-conditions could be an explainable and
reliable solution. However, the performance of such explicit programming
relies heavily on expert experience and carefully designed events.

With the recent advancements in AI, end-to-end robot learning5 has
been investigated as a complementary method to manual programming to

reduce human programming workload by endowing robots with the
autonomy to learn specific skills6,7. However, robot learning remains an
expensive method today, especially for long-horizon tasks, due to the large
volume of data required and the time-consuming training phase8. More-
over, developing safe and reliable interaction mechanisms to avoid hard-
ware damage during robot exploration necessitates expert intervention9.

Bridging the gap betweenmanual programming and end-to-end robot
learning, Learning fromDemonstration (LfD) is regarded as a compromise
approach10,11, which can transfer manipulation skills from human to robot
via imitation. A key advantage of LfD is that it can enable subject-matter
experts with limited robotics or programming knowledge to develop robot
behaviors easily, fostering closerhuman–robot collaborationbymaximizing
their complementary skills. According to the categorization in the previous
publication12, the paradigm of LfD includes kinesthetic teaching, tele-
operation, andpassive observation.Kinesthetic teaching13 is an intuitiveway
to teach robots by manual guidance via physical human–robot interaction
with few teacher training requirements, studied in applications like
polishing14, pick-and-place tasks15, etc. However, this approach requires
specific robot hardware capabilities, such as torque sensors, to sense the
physical force exerted by humans. Moreover, the demonstration quality of
this approach relies on the user’s dexterity and smoothness, often
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necessitating post-processing even with experts12. Another teaching para-
digm, teleoperation16, involves teaching robots via joystick, GUI, VR con-
troller, etc., and is widely used for remotely demonstrating trajectory
learning17, task learning18, grasping19, etc. Compared with kinesthetic
teaching, teleoperation requires more training for teachers to become
familiar with the remote controller interface. On the other hand, passive
observation involves the robot remaining inactive during task demonstra-
tion, serving solely as a passive observer typically equipped with cameras or
other optical tracking devices20. Passive observation stands out for teaching
multi-procedure assembly tasks due to its ease of implementation and
minimal training requirements for the demonstrator, who only needs to
perform the entire task under the robot’s observation without tedious gui-
dance or remote-control processes. This aligns with the human–machine
symbiotic manufacturing paradigm, facilitating natural and efficient
human–robot interactions.

This paper proposes a one-shot LfD approach for the long-horizon
assembly tasks from third-person visual observation with minimal human
intervention, advancing the human–machine symbiotic manufacturing
system. First, we use an RGB-D camera to record a human performing the
assembly task once as a single demonstration. Based on this, we propose an
object-centric representationmethod that extracts the labels, pixel positions,
and 3D poses of individual components in the product assembly, enabling
the robot to perceive and understand the environment similarly to a human
operator. Second, we introduce a kinetic energy-based automatic procedure
segmentation algorithm to identify changepoints in the unsegmented long-
horizon demonstration, extracting the procedural chain of the taught
assembly task and enhancing the robot’s ability to interpret human intent.
Third, we develop a demo-trajectory adaptation-enhanced dynamical
movement primitive (DA-DMP) method to imitate task-specific motion
skills from the segmented sub-task trajectories, allowing the robot to gen-
eralize and adapt the learned skills to new scenarios. By integrating these
components, the robot employs visual feedback to achieve closed-loop
reproduction of multi-procedure assembly skills, embodying an adaptive
and interactivemanufacturing system.Theproposedmethod is validatedon
a physical robot performing a seven-part shaft-gear assembly task.

In robotics, learning from human demonstration (LfD) refers to the
program technique that allows end-users to teach robots new skills without
manual programming, which is a learning and generalization technique
more than recording and playing10. According to the teaching paradigm,
LfD can be categorized into kinesthetic teaching, teleoperation, and passive
observation12. Kinesthetic teaching is characterized by ease of demonstra-
tion but lacks suitability for tasks with high degrees of freedom (DoFs);
teleoperation is suitable for tasks with high DoFs but difficult to demon-
strate; and passive observation offers ease of demonstration and is ideal for
tasks with high DoFs, but may be challenging for mapping the demon-
stration to robot’s behavior12.

In recent years, considering the various advantages offered by these
demonstration methods, many studies have been conducted combining
them. Cheng et al.21 proposed a learning task and motion planning fra-
mework to solve long-horizon tasks (e.g., grasping a peg and inserting it into
a hole) with neural object descriptors (NOD-TAMP). In their work, human
teleoperation demonstrations for each procedure (with annotation) and
RGB-D observations were collected and used to extract object trajectories
via NOD. The proposed TAMP can combine skill segments from multiple
demonstrations to maximize effectiveness and adapt to the new task set-
tings. Freymuth et al.22 proposed a versatile skill imitation approach, named
VIGOR, to facilitate generalization to novel task configurations using geo-
metric behavioral descriptors (GBD). In this work, the teleoperated trajec-
tories are transformed intoGBD, and then aGaussianmixturemodel policy
is trained to generate versatile behavior trajectories. Rozo et al.23, focusing on
e-bike motor assembly tasks, combined visual observation with kinesthetic
teaching to learn object-centric skills by task-parametrized hidden semi-
Markovmodels (TP-HSMMs). The learned skills are then reproduced with
an online task execution method with Riemannian optimal control. Wang
et al.24 proposed a hand-eye action network (HAN) to enable robots to

imitate approximately human hand-eye coordination behaviors from tele-
operated demonstrations with visual observation, which could improve the
generalization of the learned skills in new conditions. As an extended study,
Wang et al.25 proposed a long-horizon task hierarchical imitation learning
framework called MimicPlay. In their work, the easy-to-record human
demonstration videos were used to train the high-level planner to generate
the latent plans in the long-horizon tasks, which were executed by the low-
level policy learnedby a technique similar toHAN. In these publications, the
demonstration is a mixture of passive observation with teleoperation or
kinesthetic, which relies heavily on human invention or additional training
on the input interface for the teachers.

The assembly task involvesmultiple procedures, making visual passive
observation advantageous in identifying the different operations of different
parts during the teachingphase compared to the other twomethods. In such
a scope, Duque et al.26 proposed a trajectory generationmethod for amulti-
part assembly task from visual demonstration, where the 3D trajectories of
the humanhand during the assembly process were tracked and then used to
train a task-parametrized GMM model for planning the robot’s execution
trajectories. In their work, the orientation of trajectory was not considered.
Liang et al.27 proposed a hierarchical policy network for learning sensor-
imotor primitives of sequential manipulation tasks from visual demon-
strations. In their work, an RGB-D camera was utilized to record a human
performing themulti-objectsmanipulation task multiple times, and the 3D
objects’poseswere tracked andused to train ahierarchical policy network to
reproduce themanipulation skill. The high-level policymanages the objects
of interest for each procedure, and the lower two policies are to decide the
robot’s action. As an extended study, Liang et al.28 utilized dynamic graph
CNNs (DGCNN) to achieve the category-level manipulation skills imita-
tion, where the objects in demonstration and testing could be different. Hu
et al.29 proposed a model-agnostic meta-learning (MAML) framework to
teach the robotwhat to do andwhat not to do through positive and negative
visual demonstrations. In their work, multiple demos were used to train a
control policy via task-contrastive MAML. Xiong et al.30 proposed a
learning-by-watch (LbW) approach to enable robots to physically imitate
manipulating skills by watching human video, in which the human arm is
translated into a robotic arm by image-to-image translation network for
calculating the reward to train a reinforcement learning policy. These
publications typically require an extended training process, whichmay pose
challenges when deploying the learned skills to real robots for task execu-
tion. In our work, besides pre-training an object detection network without
manual labeling, there is no need for an additional training process when
handling the recorded demonstration, making our method easier to deploy
into real manufacturing systems.

To improve the demo-efficiency of LfD and reduce the teacher’s effort,
many papers on the few-shot imitation technique have been published in
recent years that used a small amount of human demonstration to learn the
instructed task. Du et al.31 used large-scale offline unlabeled robot execution
data to pre-train a state-action embedding dataset and incorporated a few
human demonstrations to retrieve similar transitions in the offline dataset
for training a behavior cloning policy for a specific task. In their work, the
pre-required offline data could be expensive for some robot scenarios. To
learn the articulated object manipulating tasks, Fan et al.32 proposed a one-
shot affordance learning method, where the demonstration includes the
point cloud of the involved articulated object (e.g., dispenser, stapler, fur-
niture, etc.) and the trajectory of the human hand while manipulating the
object. Guo33 proposed a learning-from-a-single-human-demonstration
method, processing RGBD videos to translate human actions to robot
primitives and identifying task-relevant key poses of objects for kitchen
tasks, likewashing a bowel.Coninck et al.34 proposed amethod that learns to
grasp an arbitrary object from a single demonstration, where the operator
guides the robot to the grasping position of a specific object while recording
images from its wrist-mounted camera as the demonstration. The
demonstration is thenused to train a neural network that can generate grasp
quality and angles under different poses of the same object as the
demonstration.
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In contact-rich tasks, Li et al.35 proposed an information augmentation
technique to extract force information from the demonstration to improve
the generalization of the learner policy.Wen et al.36 utilized amodel-free 3D
pose tracker to extract the object-centric, category-level representation from
a single third-person visual demonstration for achieving category-level
behavior cloning, where the 3Dpose tracker provides online visual feedback
for closed-loop control in skill reproduction. Although this work involves
assembly processes, i.e., battery assembly and gear insertion, multi-
procedure assembly tasks are not considered. Instead of solely using
visual demonstration, Ren et al.37 combined kinesthetic teaching with visual
observation of a single demonstration to teach the robot for category-level
deformable 3D object manipulation tasks, including wearing-caps and
hanging-caps tasks. This work mainly involved the imitation of object
grasping poses and did not consider the impact of grasping uncertainty on
the post-grasp execution trajectory, that is, the robot executes in an open
loop after grasping. Vitiello et al.38 proposed a one-shot imitation learning
method to transfer the robot’s end-effector trajectory in demonstration into
a new scene where the object is in a novel pose estimated, in which the
demonstration requires both teleoperation input and visual observation,
and this work did not consider the multi-procedure, long-horizon tasks.
Valassakis et al.39 proposed a demonstrate once, imitate immediately
method (DOME), which is fundamentally based on an image-conditioned
object segmentation network followed by a learned visual servoing network
to enable the robot’s end-effector to mimic the same relative pose to the
object observed during the demonstration. In DOME, a single demon-
stration is needed, which requires eye-in-hand visual observation, tele-
operation, and kinesthetic teaching.

Existing literature on few-shot imitation learning primarily focuses on
scenarios with single procedures or single objects, often neglecting the
intricacies of multi-procedure, multi-object challenges. In contrast, our
work combines the proposed automatic procedure segmentation algorithm
with the DA-DMP method, which can effectively fill this gap. Overall, the
key novel contributions of this work are summarized below:
(1) A novel one-shot LfD pipeline for multi-procedure robotic assembly

tasks: Our approach integrates object-centric representations, an
automatic procedure segmentation algorithm, and a demo-trajectory-
adaptedDMPenhancement. This allows the robot to acquire task-level
and motion-level skills through a single demonstration, significantly
streamlining the teaching or programming workflow for multi-
procedure robotic assembly and fostering efficient human–robot
collaboration.

(2) An object-centric representation method for third-person visual
demonstrations in robotic assembly tasks: The proposed method
eliminates interference from the background environment and
execution subjects in the demonstration sample, focusing solely on the
status of task-related objects (product components). This improves
adaptability to changes in environmental setups and enhances the
robot’s perception capabilities, aligning with the development of
embodied AI with integrated sensory systems for interactive
manufacturing.

(3) An automatic procedure segmentation algorithm for long-horizon
assembly tasks: Given the long-horizon characteristic of multi-
procedure assembly tasks, task segmentation is crucial in decomposing
unsegmented demonstrations into a sequence of procedures12. The
proposed kinetic energy-based algorithm detects changepoints in the
demonstration without any feature selection, threshold tuning, or
human annotation, enabling the construction of a procedural chain for
task-level planning and enhancing human-robot collaboration by
understanding human intent.

(4) A demo-trajectory adaptation-enhanced DMP method for efficient
motion planning in novel environmental configurations: Compared
with the original DMP planning method40, the proposed planner uti-
lizes a trajectory transformation method that considers the specificity
of the assembly task, enabling improved execution efficiency. This
transformation allows the decoupling of a single sample and reusing it

in new scenarios, offering a more sample-efficient LfD method for
multi-procedure robotic assembly tasks and contributing to human-
centered automation.

Results
In this section, we conducted a set of experiments and a case study to
evaluate the proposedmethod. Firstly, the experimental setup is introduced
in detail. Secondarily, the numerical results of the proposed procedure
changepoints detection algorithm and DA-DMP learning are presented.
Then, the case study ona real robotwill also be presented to demonstrate the
effectiveness of the proposedmethod. Lastly, a discussion will be conducted
regarding the obtained results.

Experimental setup
The experimental setup is shown in Fig. 1. The hardware includes a
Microsoft Azure Kinect RGB-D camera, a Universal Robots UR5 robot
mounted, a Robotiq FT-300s force/torque sensor, and a 2f-140 gripper. All
the hardware interfaces are implemented in the robot operating system
(ROS). The assembly objects are 3D-printed by the CAD files offered by
theSiemens Robot Learning Challenge, labeled as baseplate, gear0,
gear1, gear2, gear3, shaft1, and shaft2.

In the demonstration collection, we recorded the color-depth image
streaming of the demonstrator executing this assembly task once at a fre-
quency of 30Hz, recording 1641 frames over a duration of 54.7 s. The
collected images were fed into the trained YOLOXdetector and the ICG 3D
pose tracker, obtaining the proposed object-centric representation. The
snapshots of the object-centric representation and the whole trajectories in
pixel space and Cartesian space are shown in Fig. 2.

Procedure changepoints detection
After object-centric representation for the collected demonstration, the
effectiveness of the proposed procedure changepoints detection algorithm is
verified. According to the characteristics of the task scenario, we set the
number of objects n ¼ 7. Andwithminimal tuning effort, we simply set the
threshold of assembly procedure t̂ ¼ 0:5, and the mass of objectsmoi ¼ 1.
The collected pixel-trajectories ρ 2 R1641× 7× 2 is input to the proposed
Algorithm 1. The result is shown in Fig. 3 and Table 1. From the result, the
segmented procedure derived from the detected changepoints can effec-
tively cover all procedure intervals, and the proposed algorithm can cor-
rectly identify the objects of interest for each assembly procedure.

As for the performance comparison, we compare our method to the
following five baselines: (1) Rbeast41, a Bayesian ensemble algorithm for
changepoints detection and time series decomposition; (2) PELT42, an
algorithm based on the selected cost function, where we carefully selected
the mean-variance cost for the best performance; (3) Ruptures43, an

Fig. 1 | The experiment setup.
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algorithm library for off-line changepoints detection, where we carefully
selected the radial basis function (RBF)-based method for the best perfor-
mance; (4) BOCD44, an online Bayesian changepoints detection algorithm;
(5) Fastsst45, a singular spectrum transformation (SST)-based detection
method, where the threshold of anomaly score of the SST was carefully
tuned for the best performance. In the implementation of all baselines, we
took the pixel trajectories of the assembly objects as input, and the algo-
rithms’ output is the changepoints in the input trajectories.

With the detected changepoints, we can segment the whole assembly
task into procedures. Similar to the semantic segmentation task in the field
of computer vision, we use mean intersection over union (mIoU), average
accuracy, average precision, and average recall as the evaluation metrics for
the involvedmethods. The result is shown in Table 2. In terms of themIoU
metric, our method achieves the highest score of 0.925, significantly sur-
passing other methods, which shows its superior overall accuracy of its
segmentation result. From the accuracy metric, our method also achieved
the best performance, highlighting its advantages in correctly identifying
procedure intervals. As for the precision metric, PELT achieves the best
performance, but its recall metric is lower, which indicates that it may miss
certain procedure intervals. Conversely, our method achieves the highest
recall value of 0.980, indicating superior coverage in all procedure
segmentations.

Dynamical movement primitive learning
We selected the assembly procedure of shaft2 as the scenario for com-
parative experiments to validate the superiority of the proposed DA-DMP
method over the original DMP method. First, based on the procedure
segmentation result, we express the 3D pose trajectory of shaft2 relative
to baseplate in the segmented demonstration procedure as
3-dimensional position trajectories and 4-dimensional quaternion orien-
tation trajectories. These 7-dimensional trajectories are then used as the

imitation demonstration for a Cartesian DMP. Through careful tuning, we
set the number of the basis function Nbf for this Cartesian DMP to 25,
aiming to balance imitation efficiency and accuracy. After imitating the
demonstration, to test the generalizabilityof learnedmovementprimitive, as
shown in Fig. 4, we align the new goal of the learnedDMPswith the target of
the demonstration. Then, we rotate the start point of the demonstration
around the target’s z-axis in increments of 20° to generate 18 new starts for
the learnedDMPs.With these configurations, we execute the learnedDMPs
open loop with the same execution time as the demonstration.

The planned trajectories and their Cartesian components of DMP and
the proposed DA-DMP are shown in Fig. 4, where the orientation com-
ponents are expressed as Euler angles for better readability. Compared with
the original DMP method, our method can better preserve the shape of
trajectories in the demonstration through the proposed demonstration
trajectory adaptation, thereby executing motion behaviors closer to the
demonstration in new scene configurations, thus enhancing the general-
ization capability of DMP. For quantitative analysis and comparison, we
computed the lengths of trajectories plannedbybothmethods, as depicted in
Fig. 5. It can be observed that, in contrast to the varying lengths exhibited by
original DMP across different settings, our proposed method consistently
presents shorter lengths in all settings, thus improving the efficiencyofDMP.

Case study
To demonstrate the performance of the proposed method, we conduct a
total of five case studies on a real robot, Universal Robots UR5, as shown in
Fig. 1. For each case study, we randomly initiated the location of the
assembly objects, as shown in Fig. 6.

According to the procedure chain and movement primitives learned
fromdemonstrationby theproposedprocedure changepoints detection and
DA-DMP, the robot reproduces the learned assembly skills by the proposed
closed-loop execution with visual feedback presented in Algorithm 2. To

Fig. 2 | Object-centric representation for the collected demonstration. Top: Snapshots; Bottom left: the pixel-trajectories; Bottom right: the SEð3Þ-trajectories of the
assembly objects.
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ensure collision safety during task execution, we continuously monitor the
external forces on the robot’s EEFusing the FT-300s FT sensor. In ourwork,
the potential collisions can be detected by assessing whether the change in
external force exceeds a threshold of 10N,prompting the robot to performa
post-collision reaction, releasing its gripper, to prevent hardware damage
from rigid impacts. The snapshots of the robotic closed-loop execution are
shown in Figs. 7–9. It can be found that the proposed method can handle

uncertainties arising from object displacement during the grasping action.
Furthermore, it incorporates the post-grasp poses of objects into account in
theDA-DMPplanning, thereby facilitating the success of the assembly task.

The planned trajectories by the proposedDA-DMP in each case study
are shown in Fig. 10. It can be shown that the proposed DA-DMP can
maintain the trajectory shape consistent with the demonstration to adapt to
the changes of the environmental configuration.

Fig. 3 | Detection result of our proposed method.

Table 1 | Procedure changepoints in the demonstration

Procedure 1 2 3 4 5 6

Start frame

Start time 3.26 10.76 18.73 28.93 37.23 47.03

End frame

End time 9.96 17.00 27.36 35.40 45.03 53.20

Target Oþ gear0 shaft1 gear1 shaft2 gear2 gear3

Reference O? baseplate baseplate shaft1 baseplate shaft2 shaft2
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The results of all five case studies are summarized in Table 3. In total,
the task success rate reaches 93.3%. Specifically, it can be found that most
procedures in the case studies were successfully completed, apart from
procedure gear2 in Case 2 and procedure gear1 in Case 4.We observed
that in these two failed cases, although the gears were successfully inserted
into the shafts, their teeth failed to align with those of the other gears. These
failures may be attributed to estimation errors in the 3D pose tracker for
assembly objects.

Discussion
The findings from the result of the performance comparison can be listed as
follows: (1) The proposed one-shot LfD method uses third-person visual
passive observation and only requires a single demonstration, which can
significantly reduce the workload and teaching difficulty for humans. In the
image processing for representing the teaching demo, employingDT-based
trainingdata generation for object detectionandCADmodel-based3Dpose
tracker can help eliminate manual labeling requirements, thereby mini-
mizing human intervention. (2) The proposed procedure changepoints
detection algorithm, based on general observations of multi-procedure
assembly tasks, exhibits superior detection accuracy compared to baseline
algorithms, which can accurately segment the demonstration into proce-
dure segments with greater precision. Moreover, the algorithm requires
minimal tuning and reflects the intention tominimize human intervention.
(3) The proposed DA-DMP, compared to the original DMP, can adapt the
single demo-trajectory to different environmental configurations, thereby
enhancing the generalization and execution efficiency of learnedmovement
primitives. (4)Using visual feedback toachieve closed-loop executionallows
for compensating to someextent for theuncertainty in robot grasping action
duringassembly tasks inunstructuredenvironments, thereby improving the
success rate of skill reproduction.

Table 2 | Performance comparison with baselines on
procedure segmentation

Method mIoU Accuracy Precision Recall

Rbeast41 0.788 0.973 0.972 0.808

PELT42 0.630 0.954 0.994 0.634

Ruptures43 0.847 0.979 0.919 0.921

BOCD44 0.416 0.838 0.654 0.672

Fastsst45 0.668 0.955 0.882 0.747

Ours 0.923 0.989 0.939 0.981

Fig. 4 | Comparison of planned trajectories generated by DMP (red dashed line) and the proposed DA-DMP (blackline) methods, alongside a single demonstration
trajectory (blue line) under varying start-end point configurations. a 3D visualization of planned trajectories; b Cartesian components of planned trajectories.
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The limitations of this work can be summarized as follows. The imple-
mented 3D pose tracker relies on CADmodels of assembly objects as priors,
which is typically feasible for product assembly scenarios since the models of
assembly objects are generally accessible during the product design stage.
However, in scenarios where obtaining objects’CADmodels is challenging or
where assembly objects belong to a certain category lacking fixed specifica-
tions, a model-free, category-level pose tracker may be more appropriate.
Moreover, althoughwe have designed a post-collision reactionmechanism to
ensure safety in physical contact during robot execution, thismechanismmay
not be robust enough to handle task failures resulting from visual observation
errors, as seen in the aforementioned failed cases. Introducing compliant
control mechanisms could be a viable alternative to manage the process of
physical interaction safely. Additionally, incorporating robot learning from
exploration, such as reinforcement learning, to compensate for observation
errors may also be a promising approach to address this issue.

Methods
In this section, we will first cover the preliminary aspects of this work, and
thenwewill present details of our proposed framework and its technique as
a solution.

Preliminaries
3D space transformation. In this work, the point in the 3D space is
defined asX ¼ ½ x y z� T 2 R3 and the homogeneous formeX ¼ ½ x y z 1� T 2 R4. The RGB-D image I ¼ ½ Ic Id �T 2
Rh×w × 4 captured from color depth camera with h×w resolution is
composed by 3-channels color information Ic and depth information Id.
Assuming that the color image and depth image have already aligned, the
pixel location of the image ρ ¼ ½ u ν� T 2 R2 can access RGB value
c ¼ IcðρÞ 2 R3 and depth value dZ ¼ IdðρÞ 2 R1.

The intrinsic parameter of the camera is denoted as

K ¼
f x 0 cx
0 f y cy
0 0 1

264
375 ð1Þ

where f x and f y are the focal length in the x-axis and y-axis direction,
respectively; cx and cy are optical centers in the x-axis and y-axis direction,
respectively.

Fig. 6 | Case study setup.

Fig. 5 | Trajectory lengths of the planned trajectories.
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Using the depth information and the intrinsic parameter, point’s
location can be obtained by projecting from 3D space pixel to space by

ρ ¼ π Xð Þ ¼
x
z f x þ cx
y
z f y þ cy

" #
ð2Þ

Correspondingly, we use X ¼ π�1 ρ
� �

to denote the project function from
pixel space to 3D pixel space:

X ¼ π�1ðρÞ ¼

IdðρÞðu�cxÞ
f x

IdðρÞðv�cyÞ
f y

IdðρÞ

2664
3775 ð3Þ

For the description of the task scenario in our work, we use Ol and C to
denote the assembly components semantically labeledby l ¼ f1; 2; . . . ; jOg
and the RGB-D camera, respectively. Plus, B, E, and q are denoted as the
robot’s base, end-effector (EEF), and joints, respectively. In the following
subsection, we will formulate the problem in robotic assembly tasks and
present our proposed framework.

Dynamical movement primitives. Dynamic movement primitives
(DMPs) is a method of trajectory control/planning proposed initially by
Schaal46, which has been a popular trajectory imitationmethod in the case
of LfD. First, we will briefly introduce the basic principles of DMP. The

DMP is based on a point attractive system:

€y ¼ αy βy g�y� �� _y
� �

þ f ð4Þ

wherey is the system state, g is the control goal, and αy and βy are the gain
terms which are familiar to the PD controller gain; f is the introduced
nonlinear force term. In DMP, the f is modeled as the function of the
canonical dynamical system x that has simple dynamics:

_x ¼ �αxx ð5Þ

For scaling the velocity of themovement primitive, a temporal scaling term
τ can be added:

τ€y ¼ αy βy g�y� �� _y
� �

þ f ð6Þ

where we can slow down the system by setting τ between 0 and 1, and speed
it up by letting τ > 1.

The nonlinear function f in Eq. (4) therefore can be defined as a
function of the canonical dynamical system x:

f ðx; gÞ ¼
PNbf

i¼1ψiωiPNbf
i¼1ψi

xðg � y0Þ ð7Þ

where y0 is the system initial state, ψi ¼ expð�hiðx� ciÞ2Þ is the ith
Gaussian basis function with center ci and variance hi; Nbf and ωi is the

Fig. 7 | Snapshots of the case study (general).
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number and weighting for the basis function ψi, respectively. By this
modeling, the nonlinear f is a set of Gaussians activated as the canonical
system of x to converge to its target. After defining the DMP-based point

attractordynamics, thenext is to imitate adesired trajectoryyd (i.e., the time
series of trajectory from demonstration in our case) to generate trajectory
when the goal changes. Given the demoyd, we can calculate the force term

Fig. 9 | Snapshots of the case study (humam inference involved complex setups).

Fig. 8 | Snapshots of the case study (cluttered occlusion).

https://doi.org/10.1038/s44334-025-00030-3 Article

npj Advanced Manufacturing |            (2025) 2:22 9

www.nature.com/npjadvmanuf


by:

f d ¼ €yd � αyðβyðg � yÞ � _yÞ ð8Þ

The solution of the weights of f d can be obtained by locally weighted
projection regression47:

ωi ¼
s>ψ if d
s>ψ is

ð9Þ

where s ¼
xt0ðg � y0Þ

..

.

xtNbf
ðg � y0Þ

264
375, ψ i ¼

ψi t0
� �

. . . 0

0 . .
.

0
0 . . . ψi tn

� �
264

375. Then,

applying this solution, we can obtain a new trajectory y ¼ fy0; . . . ;yTg
converge a given goal g by perform an open-loop rollout on the point
attractive system Eq. (4).

The proposed framework
In an assembly task, we assume that the task contains at most Oj j ¼ n
assembly parts from a predefined set O ¼ fo1; o2; . . . ; ong with semantic
labels l ¼ f1; 2; . . . ; ng. To complete this assembly task, the robot needs to
perform multiple pick-and-place actions sequentially in a specific order
according to the assembly relation among the parts. Such a task is typical
long-horizon manipulation in robotic applications. To complete a long-
horizonmanipulation task, making end-to-end planning would be difficult
due to the large task space and the long-time scale. Alternatively, we can
deploy a task-and-motionplanner (TAMP) to solve this problem,where the
entire task is divided intoprocedureswith specific actions to complete it, and
the planner makes decisions at both levels of task and motion.

Specifically, for each procedure in an assembly task, the robot needs to
make a hierarchical decision before commanding its actuators:
(1) Choosing the target object to be manipulated, denoted as Oþ 2O;
(2) Choosing the object to which Oþ will reach as a reference, denoted

asO? 2 O,O?≠Oþ;
(3) planning a trajectory ξE of robot’s EEF (EEF) to make Oþ reach a

specific pose relative toO?, which is then executed by robot’s actuators
(its joints).

To address the above problem, as shown in Fig. 11, we propose a
framework for learning assembly skills from third-person visual demon-
stration with minimal human intervention. The proposed framework
consists of the following phases: demonstration, representation, imitation,
and reproduction.

To demonstrate how to assemble parts into a product, the human
teacher performs the whole assembly task without any pause. An RGB-D
camera C is mounted statically and records color/depth image sequence
It ¼ ½ Itc Itd �T 2 D, t ¼ Δt � f0; 1; . . . ; Ij j � 1g with an interval of Δt
from a third-person view as the demonstration sampleD. In this work, we
aim at learning robotic assembly skills with one-shot imitation andminimal
human intervention. Thereby, the human only needs to demonstrate the
task once, and only a single unsegmented sequence of the recorded RGB-D
image frames is needed.

To describe the recorded demonstration in the spatial-temporal
domain, we propose an object-centric representation method based on the
offline-trained object detector and 3D pose tracker. Through such repre-
sentation, all the assembly parts ol are identified, labeled with l, and located
with pixel positions ρol ¼ ½ uol vol �T. Sequentially, all parts’ 3D poses
relative to the camera Tol

C are also estimated and tracked from the RGB-D
frames. In the offline training of the object detector, to ease the human effort
in manual annotation, we deployed a fully automatic labeling technique
powered by digital twins (DT), which was able to generate a large training
dataset of photorealistic and physically reasonable images.

After representing the demonstration, the next step is to learn the
manipulation skill by imitating the human teacher. In this paper, we for-
malize such skill as a hierarchical structure, including a high (task)-level skill
that focuses on procedure chaining and a low (motion)-level skill that
handles the procedure-specific motion planning. To imitate the task-level
skill, we propose an automatic changepoints detection algorithm for seg-
menting procedures from the unsegmented demonstration. From these
segments, the procedure features which contain the semantic label of the
manipulated part,Oþ, and the assemble-target part,O?, and their relative

Fig. 10 | Planned trajectories by DA-DMP of
case study.

Table 3 | Case study result

Procedure Case 1 Case 2 Case 3 Case 4 Case 5

gear0 √ √ √ √ √

shaft1 √ √ √ √ √

gear1 √ √ √ × √

shaft2 √ √ √ √ √

gear2 √ × √ √ √

gear3 √ √ √ √ √
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key pose TOþ
O? . Concatenating all the procedures’ features, the procedure

chain is then learned from the demonstration. For motion-level imitation,
we propose an object-centric dynamical movement primitive (DMP)
learning method using a novel trajectory adaptation technique for
improving the efficiency in the new conditions of the procedures.

After imitation, the learned policy can be run to execute robotic
assembly tasks in the skill-reproduction phase. In this phase, the robot not
only receives the same observation as that in the demonstration phase (i.e.,
RGB-D image frames) but also its proprioception, including the position of
its joints, EEF, etc. The execution process follows the steps: (1) inferring the
procedure’s features (Oþ, O?, and TOþ

O? ) based on the learned procedure
chain; (2) planning the object-centric trajectory ξOþ based on the learned
DMPs according to the inferred procedure; (3) planning a EEF’s trajectory
ξE to follow the planned trajectory using visual feedback based on online
object-in-EEFtracking,which is thenmapped into joint’s trajectory ξq as the
controller command by operational space controller (OSC).

Object-centric representation from third-person visual
demonstration
Given a single, unsegmented visual demonstration for multi-procedure
assembly task It2D, to describe the demonstrated assembly task, we deploy
an object-centric representation to extract the spatial–temporal information
of the assembly parts, ignoringhuman-related information.The adoptionof
such a representation is based on our insight that no matter who performs
the task (human or robot), the task-specific objects and their spatial-
temporal relationship are constant. To do so, this work integrates an object
detector and a 3D pose tracker to obtain the representation for each image
frame ofD in a 9-dimensional space, which refers to a 1D semantic label l, a
2D pixel location ρol , and a 3D pose (equal to 6DoFs)Tol

C . To establish such
representation, as shown in Fig. 12, we design an offline learning pipeline of
the object detector and a 3D pose tracker.

Yolox-based object detector. The object detector we deployed is based
on Yolox48, which belongs to the single stage detector with real-time

performance. The Yolox network is developed from the Yolo-v349 net-
work by adding techniques, including Decoupled Head, Anchor free,
SimOTA, etc. Overall, as shown in Fig. 12, the Yolox network can be
divided into three parts: the backbone network, the neck network and the
decoupled detection head, where it simultaneously predicts the class of
the assembly parts, their pixel position via their bounding box (BBox)
coordinates, and the intersection over union (IoU) between prediction
and ground truth from an image.

To reduce themassivemanual effort of data collection and annotation,
we deployed a DT-based dataset generator via physics engine simulation
and photorealistic rendering. The Yolox network, therefore, can be offline
trained solely on a large amount of synthetic dataset. The proposed data
generator is based on Blender, an open-source 3D creation software, and its
workflow is shown in Fig. 13. No specific hypotheses or condition
assumptionswere set for thedata generationprocess, including those related
to lighting, cluttered backgrounds, or occlusions.

In the initialization phase, the intrinsic parameters (resolution, focal
length, principal point, etc.) and the pose relative to the fixed world of the
virtual camera are set to consistent with those of the real physical camera.
Themax simulation step is set to 60 (equal to 2 s), and the dataset size is set
to 3 × 104. In the DT simulation resetting phase, the structural environ-
ment (e.g., the workbench) and the objects (including the assembly
components, and other distracting objects acting as visual occlusion) are
imported from the CAD files. To prevent physically unreasonable
embedding of objects, the collision property of the environment and all
objects is enabled. To improve the diversity of the dataset, the initial
positions and the mass of all objects, as well as the environment gravity
and lighting conditions, are all initialized randomly. In thedata generation
phase, the virtual camera captures the images generated from Blender
render engine. The RGB images and the objects’ semantic masks, which
can be obtained automatically from Blender’s ID Mask Node, are saved
with a frequency of 30 Hz. The obtained objects’ semantic masks are used
to compute their bounding boxes by simply finding the maximum and
minimum values of the uv pixel-axis.

Fig. 11 | The proposed framework.
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ICG-based object 3D pose tracker. To track objects in 3D space and
predicting their 3D poses, we deploy Iterative Corresponding Geometry
(ICG)50, which is a state-of-the-art probabilistic tracker that combines region
and depth features extracted from object geometry. The workflow of ICG is
shown in Fig. 12. Firstly, combing the Yolox network’s output and the depth

image, the object’s rough pose is then estimated. The basic idea behind the
rough pose estimation is to project the predicted pixel position ρo to 3D space
to obtain the object’s translated position toC ¼ ½ x y z �T, computed via Eq.
(2); as for the rotational information Ro

C , we simply initialize the estimated
orientation to coincide with the orientation of the workbench desktop.

Fig. 12 | The offline learning pipeline for object-centric representation.

Fig. 13 | The workflow of DT-based dataset generation.
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Once the rough initial pose is given, a multi-modality pose refinement
is deployed to continuously track the 3D pose in the subsequent RGB-D
image sequences, where the current poses of objects are then updated by
using Eq. (3) with the estimated relative pose in current frame to the pose in
last frame. The pose refinement includes region modality and depth mod-
ality, whose geometry features are off-line extracted from sparse viewpoint
of virtual camera.

For off-line geometry feature extraction, similar to Stoiber et al.51, the
object’s CADmodel is imported to render a large number of RGB-D images
via virtual color-depth camera froma spherical-grid-based sparse viewpoint
shown in Fig. 14. For every renderedRGB-D image, we randomly sample nr
object contour points and nd surface points. These sampled points are then
used to computed the norm vectorN r ¼ ½ nu nv �T 2 R2, jjN rjj ¼ 1 and
Nd ¼ ½ nx ny nz �T 2 R3, jjNdjj ¼ 1.Note that the norm vectors of the
contour points are projected in the pixel space, and those of surface points
are in 3D points. With points and vectors, the object-in-camera pose are
stored for each viewpoint. Given a rough initial pose, the stored information
from the nearest viewpoint is retrieved to calculate the correspondence lines
and correspondence points for pose refinement.

For pose refinement, let the estimated relative pose to be a pose variation
vector ϕ 2 R6. Given the extracted correspondence lines l and correspon-
dence points P, the posterior probability of ϕ can be written as follows50:

pðϕjIÞ /
Ynr
i¼0
ðpðϕjωi; liÞÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

regionmodality from Ic

Ynd
i¼0
ðpðϕjPiÞÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

depthmodality from Id

ð10Þ

where nr and nd are the number of the selected correspondence lines and
correspondence points, respectively; p ϕjωi; li

� �
is the posterior probability

over a specific correspondence line li and its considereddomineωi; p ϕjPi

� �
is the posterior probability over a specific correspondence point Pi.

In the region-based modality, each correspondence line li cross the
object contour on the point ρ ¼ ½ u v �T 2 R2. Using the correspondence
information, the energy function as the probability ofϕ can be computedby

pðϕjωi; liÞ / pðdrðϕÞjωi; liÞð
σ
σr
Þ2 ð11Þ

where σr is the introduceduser-defined standarddeviation; σ is the expected
pixel-wise standard deviation; drðϕÞ is the line distance from the estimated

contour points ρ0 to the correspondence center ρ. The line distance is
calculated by:

drðϕÞ ¼ ðNT
r ðρ0 � ρÞ � ΔrÞ�N r ð12Þ

where �N r ¼ maxðjnuj; jnvj Þ=s is unscaled projection of the closest hor-
izontal or vertical image coordinate with the user-defined scale parameter s;
Δr 2 R is the contour point offset in the pixel location. The estimated
points ρ0 ¼ π X ϕ

� �� �
is the updated correspondence line center calculated

by performing the 3D point transform and projection with pose variation ϕ
and camera intrinsic parameter using and Eq. (2).

In the depth-based modality, each selected surface point X ¼
½ x y z �T 2 R3 has its correspondence point Pi ¼ ½ x y z �T 2 R3.
Using the correspondence information, the distance betweenX andP along
N can be calculated by:

ddðϕÞ ¼ NT
d ðX � PiðϕÞÞ ð13Þ

wherePi ϕ
� �

is the transformed correspondence point using vectorϕ. Then,
the probability of ϕ from depth-based modality can be calculated by

pðϕjPÞ / exp � d2dðϕÞ
2d2zσ

2
d

 !
ð14Þ

where σd is the user-defined standard deviation scaled by the depth value
from depth image dZ ¼ IdðπðPÞÞ.

Then, for maximizing the joint probability in Eq. (10), a Newton
optimization method with Tikhonov regularization is used to calculate the
estimated pose variation vector bϕ. More details about the optimization
procedure can be found in ref. 50. The tracking result of object 3D pose
relative to the camera frame is then updated by Eq. (15).

To
C  To

CToðbϕÞ ¼ To
C

expð½bϕr�Þ bϕt

0 1

" #
ð15Þ

Together with the Yolox detector and ICG tracker, the pixel- and 3D-space
trajectories of all assembly objects in human demonstration are obtained. In
the following section, the pixel-space trajectories are used for the task-level
learning and the 3D-space trajectories are used for the motion-level learning.

Fig. 14 | The spherical-grid-based sparse viewpoint of virtual camera.
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Procedure chain extraction based on procedure changepoints
detection
Given an unsegmented demonstration based on the previously proposed
object-centric representation, breaking down the long-horizon, multi-
procedure assembly task into a chainof procedure and thenmimicking each
procedure based on its characteristics is a more straightforward and
deployable method12. To implement it, the changepoints of procedures
should bedetected as the starting and endingpoints for segmentations.Here
we propose a kinetic energy-based automatic sub-tasks segmentation
algorithm. The proposed algorithm is based on the following assumptions
about the multi-procedure assembly task:
(1) Each assembly procedure is accompanied by the accumulation of

kinetic energy, with the objects of interest (i.e.,Oþ andO?) occupying
the dominant portion.

(2) The kinetic energy of each assembly procedure should be maintained
above a certain threshold for a period of time (such as greater than 0.5 s).

The first assumption is based on observations of assembly tasks, while
the second assumption is derived from observations of the demonstrator’s
behavior. Based on these assumptions, the proposed algorithm takes pixel
trajectories of objects ρ ¼ fðuo1 ; vo1 Þ; . . . ; ðuon ; von Þgt¼0:T as input and
outputs the changepoints for each procedure cp ¼ fðtstart;1; tend;1Þ; . . . ;
ðtstart;n�1; tend;n�1Þg, along with the objects of interest for each procedure
O0 ¼ Oþ;1;O?;1

� �
; . . . ; Oþ;n�1;O?;n�1

� �� �
, where Oþ;i is the target

object tomanipulate andO?;i is the referenced object reached byOi
þ in the

ith procedure. The principle of the proposed algorithm is shown in Fig. 15,
whereW is the total kinetic energy of all objects, calculated by summing the
kinetic energy per object Wjt¼0:T ¼

Pn
i¼1W

oi jt¼0:T . The object-wise
kinetic energy is calculated by

W ¼ R ΔtF � V dt

¼ m
R
ΔtA � V dt

¼ m
R
Δt jj ρ

:: � _ρ>jj2 dt
¼ m

R
Δt jj u

::
_u v

::
_v >

h i
jj
2
dt

ð16Þ

Given a threshold bW, the kinetic energy trajectoryWjt¼0:T canbebinarized,
where the interval with a value of 0 represents the stationary period, while 1
represents the active period. Subsequently, we can determine the change-
pointsof procedures basedon the abrupt changes in the binarized trajectory.
In this process, the rising edge of the trajectory is considered as the starting
point of a procedure tstart;i, while the falling edge is considered as the ending
point of a procedure tend;i. This approach enables to effectively identify

transitions between different procedures in the assembly process, while
trimming away the stationary states in demonstration trajectory. Based on
the obtained start and end points, we can calculate the duration of the
procedure. Considering the duration threshold on procedure t̂ as men-
tioned in the second assumption, we can determine if this segmentation
meets this constraint. If not, the threshold Ŵ can be further progressively
adjusted until the condition is satisfied. Once the above conditions are met,
we can identify the two objects with the highest accumulated kinetic energy
within each recognized procedure interval. The one with the highest
accumulation is labeled asOþ, and the second-highest is labeled asO?. The
above processes can be summarized in Algorithm 1.

Algorithm 1. Procedure changepoints detection algorithm for multi-
procedure assembly task.

Parameter: Threshold for duration of assembly procedure t̂; a set of
objectsO ¼ fo1; . . . ; ong and their massm ¼ fmo1 ; . . . ;mon g

Input: Pixel trajectories of assembly
objects ρ ¼ fðuo1 ; vo1 Þ; . . . ; ðuon ; von Þgt¼0:T

Output: Changepoints per assembly proce-
dure cp ¼ fðtstart;1; tend;1Þ; . . . ; ðtstart;n�1; tend;n�1Þg

Objects of interest per assembly proce-
dureO0 ¼ Oþ;1;O?;1

� �
; . . . ; Oþ;n�1;O?;n�1

� �� �
Declare: cp ½�;O0  ½�; kinetic energy threshold Ŵ ¼ 0
1. Calculate kinetic energy per object W ¼ Wo1 ; . . . ;Wonf gt¼0:T

using ρ by Eq. (16)
2. Calculate total kinetic energyWjt¼0:T ¼

Pn
i¼1W

oi jt¼0:T
3. for i 2 f1; . . . ;max �Wð Þ

min �Wð Þg do
4. Ŵ ¼ i �min �W

� �
5. cp find changepointsð �W; bWÞ
6. for j ¼ 1; j < n� 1; j jþ 1 do
7. if tend;j � tstart;j < t̂ then
8. Reject the found changepoints and Continue to

Line 3
9. end if
10. Oþ;j argmax

o2O
ðPt¼tend;j

t¼tstart;jWjtÞ
11. O?;j arg max

o2OnOþ;j
ðPt¼tend;j

t¼tstart;jWjtÞ
12. end for
13. O0  Oþ;1;O?;1

� �
; . . . ; Oþ;n�1;O?;n�1

� �� �
14. break for
15. end for
16. Return cp, Oþ

Fig. 15 | Schematic diagram of the proposed procedure changepoints detection.
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After identifying all the changepoints, the undivided demonstration
trajectory is segmented into a certain number of procedures, thus extracting
the demonstrated procedure chain. To extract procedure-specific feature for
further motion-level planning, the 3D pose of tool relative to target at the
end of the procedure,TOþ

O? jt¼tend , is retrieved fromdemo representation and
stored as the goal pose during robot execution.

Demonstration trajectory adaptation-enhanced DMP learning
In assembly task, the trajectories of objects and the robot’s EEF are expressed
in the Cartesian space, so the Cartesian version of DMP is used in our work.
The Cartesian DMP handles orientation and position separately, where the
orientation is represented as quaternion q 2 R4 transformed from
the rotationmatrixR, and the position vector is t ¼ ½ x y z �>. Thereby,
the state space of our Cartesian DMP has 7 dimensions. The position
components are handled in the sameway as the basicDMPpresented in the
last section. To make the dynamics system Eq. (11) work in the case of
quaternion components, y is given as a quaternion, g � y is given as the
quaternion difference (expressed as rotation vector), and _y and €y are given
as the angular velocity and acceleration, respectively. More technical details
about quaternion DMP can be found in ref. 52.

To align with the proposed object-centric representation for demon-
stration, we express the Cartesian trajectory in the object’s coordinate sys-
tem, rather than that of robot’s EEF. That is: given the procedure features in
ith procedure obtained from the algorithm presented in the section “Pro-
cedure chain extraction based on procedure changepoints detection”, the
trajectories of the objects of interest, To

C
		
tstart;i: tend;i

; o 2 Oþ;i;O?;i
� �

, are
retrieved from demonstration using the 3D pose tracker presented in the
section “ICG-based object 3D pose tracker”. After the coordinate trans-
formation, the object-centric trajectory is used as demonstration for Car-
tesian DMP imitation, i.e., yDT

Oþ;i
O?;i jtstart;i : tend;i

Given the retrieved single demonstration, as shown in Fig. 16a, the
originalDMP, however, cannot handle the shape trajectory consistencewell
when a new start and goal are configured in the case of Cartesian space,
whichmight reduce the efficiency of task executionand the generalizationof
the learned movement primitives. To address this issue, we propose a
demonstration adaptation-enhanced DMP, named DA-DMP to transform

the given trajectory to the new task configuration, whose principle is shown
in Fig. 16b.

Assuming that the assembly direction is along with the Z axis, namely,
along with the norm vector nz ¼ ½ 0 0 1 �>f , with regard to the con-
figuration in the demonstration (denoted as y0 and g) and the new task
scenario (denotedasy00 and g

0),we canfirst calculate theunit vectorsof their
XY-plane projections, Nz and N 0z , respectively by

Nz ¼ N � n>z N;whereN ¼ y0�g
jjy0�gjj

N 0z ¼ N 0 � n>z N
0;whereN 0 ¼ y00�g0

jjy00�g0 jj

8<: ð17Þ

Then, the rotationangleϕrz and its rotationmatrixRz ϕrz
� �

that bringsNz to
N 0z can be calculated by

Rz ϕrz
� � ¼ cos ϕrz � sin ϕrz 0

sin ϕrz cos ϕrz 0

0 0 1

264
375 ð18Þ

where the Z-axis rotation angle ϕrz ¼ arccos Nz � N 0z
� �

. Applying Rz ϕrz
� �

to the demo trajectory yd by Eq. (19), the adapted trajectory to be imitated
yd can be obtained. Thereby, regarding the new configuration ofy00 and g

0,
the adapted trajectory generated from the DMP of yd can be obtained by
Eq. (20).

yd ¼ yD � RzðϕrzÞ ð19Þ

y0 ¼ dmpðydjy00; g 0Þ ð20Þ

Closed-loop execution based on visual feedback
For reproduction the imitated skills from demonstration, we deploy the
same object-centric representation during robot execution. In the process of
robot assembly, the robot’s gripper to pick up parts and place them in
specific positions. Typically, the robot’s grasping action lacks feedback

Fig. 16 | Schematic comparison between the original DMP and the proposed DA-DMP, with the orange lineindicating the demonstration trajectory, green lines
representing DMP-planned trajectories, and blue lines denoting DA-DMP-planned trajectories. a Original DMP method (b) Proposed DA-DMP method.
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mechanism, meaning that the gripper’s actions do not adjust with changes
in the grasping state (often limitedonly by the grasping force). This results in
uncertainties (e.g., object displacement) during the grasping action, leading
to errors in the subsequent placing action of the object. To compensate for
this uncertainty, we introduce visual feedback to incorporate the post-
grasping pose of the object into the subsequentmotion planning. The high-
level procedure can be summarized in Algorithm 2.

Algorithm 2. Closed-loop execution for assembly task based on visual
feedback

1. for i ¼ f1; . . . ; n� 1g do
2. Take RGB-D image to recognize the 3D pose ofOþ;i;
3. Move robot to graspOþ;i;
4. TakeRGB-D image to recognize the 3Dposes ofOþ;i andO?;i;
5. Make motion planning via the proposed DMP for object-

centric trajectory ξ
Oþ;i
O?;i ;

6. Map the planned trajectory into EEF’s trajectory ξEB and feed to
the robot to execute.

Based on the procedure chain learned through task-level imitation as
introduced in Section 3.4, the robot sequentially executes the procedures
within the procedure chain.

For the execution process of the i-th procedure, the robot first recog-
nizes the 3Dpose of the object of interestOþ;i. Subsequently, itmoves to the
grasping pose ofOþ;i, and then closes its gripper to grasp the assembly part.
To determine the grasping pose of object, we utilize HandTailor53 to esti-
mate the demonstrator’s hand pose at the detected start point tstart;i of each
procedure, as shown in Fig. 17. Based on the estimation, we calculate the
midpoint between hand’s joints 4 and 8 as the grasping point, which is then
transformed to 3D space in the object’s frame using Eq. (3) to obtain the
position for the grasping pose of the object, and we adopt the same orien-
tation as that of the object. These grasping poses are processed and restored
offline, thus during execution, the robot only needs to retrieve the corre-
sponding grasping pose for each procedure, thereby improving efficiency.

After grasping the assembly part Oþ;i, the robot recognizes the 3D
relative pose between the objects of interest as the start state of the proposed

DMP planner, y00 ¼ T
Oþ;i
O?;i . Setting the goal as the pose at the end of the

procedure in the demonstration, the proposed DMP planner will generate

the object-centric trajectory ξ
Oþ;i
O?;i . By Eq. (21), the planned trajectory can be

mapped into EEF’s trajectory ξEB , where the camera-in-base pose TC
B is a

static transform obtained from hand-eye calibration, the objects-in-camera
poseTo

C is estimated from the tracker as introduced in Section 3.3.2, and the
hand-in-base poseTE

B is from the robot’s forward kinematics. After that,we
use MoveIt! as the robot’s operational space controller to transform the
plannedEEF’s trajectory into joints’ trajectory ξq which is then send to robot
controller to execute.

ξEB ¼ TC
BT

O?;i
C ξ

Oþ;i
O?;iT

C
Oþ;i T

B
C T

E
B

¼ TC
BT

O?;i
C ξ

Oþ;i
O?;i ðT

Oþ;i
C Þ

�1
ðTC

BÞ
�1
TE
B

ð21Þ
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