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With the increasingdemand for customizedmanufacturing, human-robot collaborative (HRC) systems
combine human adaptability with robotic precision, offering a promising solution for flexible
production. Unfortunately, real-time scheduling remains a significant challenge due to high demand
variability, frequent disruptions, and complex task allocation. To address these issues, we propose an
evolutionary scheduling framework utilizing a local large language model (LLM). This framework
enhances domain-specific understanding by supervising the fine-tuning of the LLM on scheduling
data. Additionally, we introduce a population self-evolution mechanism that incorporates individual
co-evolution, self-evolution, and collective evolution to improve the generation of heuristic
dispatching rules (HDRs). By leveraging the local LLM, our approach generates dynamic HDRs with
lower computational overhead, facilitating effective task allocation and sequencing in HRC scenarios
while ensuring data privacy. Validated across 54 real-world HRC scenarios, our method achieves a
21.52%averagemakespan reduction, compared to baselinemethods, demonstrating its potential for
flexible manufacturing systems.

Industry 5.0 aims to establish a manufacturing framework that prioritizes
human-centric and efficient processes, fostering seamless collaboration
between humans and robots1. In this paradigm, human-robot collaboration
(HRC) becomes a cornerstone of modern innovative manufacturing
systems2–5. An ideal HRC scenario involves delegating repetitive, low-skill,
and ergonomically challenging tasks to robots, thereby alleviating the
physical strain on humans. At the same time, it emphasizes the importance
of human intelligence and robotic dexterity in both operational and cog-
nitive functions6. In response to increasingly diversified demands, manu-
facturing is transitioning from mass production to customized assembly7,8.
As a result, robots with attributes such as speed, strength, repeatability, and
precision are being integrated intomanufacturing systems9. In this context,
humans, programmable robots, and computer numerical control manu-
facturing systems operate in distinct physical spaces, each performing
specific tasks and leveraging their unique advantages10.

However, the resilience of a manufacturing system extends beyond
robotic operations andmust also be adaptable to fluctuations in orders and
disruptions11. Traditional mass production lacks the flexibility required to

offer small-batch personalized products in response to changes or
interruptions12. Flexible manufacturing systems (FMS), based on HRC,
show great promise in addressing this limitation. In such systems, humans
handle material supply and maintenance, while robots manage the trans-
portation of tools and materials to processing machines, facilitating small-
batch customized manufacturing13. This approach enables multi-variety
mixed-line production and reduces the need for large inventories of
materials and finished products, thereby improving resource utilization, as
shown in Fig. 1.

Existing FMS for HRC often face challenges, such as complex pro-
duction processes, frequent faults, and fluctuating order demands, leading
to complicated management and limited real-time responsiveness14. To
address these issues, current FMS typically rely on simple rule-based
resource scheduling15,16, which works well in specific scenarios but results in
significantly lower equipment utilization rates in others. Moreover, to
ensure timely delivery, substantial quantities of production materials are
preemptively prepared, leading to resource wastage and hindering the
widespread adoption of flexible manufacturing models17.
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Traditional decision-making methods, which rely on workshop
managers, are often inefficient and lead to significant resource waste.
Workshop scheduling plays a critical role as the “brain” of the entire FMS,
responsible for the optimal allocation of resources and task sequencing to
meetproductiongoals.Awell-designed schedulingplan canenhanceoverall
workshop efficiency without increasing resource input18,19. Solutions to
workshop scheduling problems are generally divided into exact18,20–22 and
approximate23–26 methods. Exact methods, such as branch-and-bound and
dynamic programming, can achieve theoretically optimal solutions27.
However, they are computationally intensive and time-consuming, making
them unsuitable for the real-time demands of FMS. Consequently,
approximate methods, including heuristic dispatching rules (HDRs)15,
metaheuristic algorithms28–30, deep reinforcement learning (DRL)24,31,32,
genetic programming (GP)25,33, and genetic expression programming
(GEP)34, have become increasingly widely used. However, metaheuristic
algorithms may struggle to adapt quickly to dynamic changes due to the
dynamic nature and large scale of FMS. HDRs and DRL methods are
favored for their lower computational complexity and faster response times,
but they may not consistently produce satisfactory results35. Although GP
andGEPoffer strong generalization capabilities, they are essentially random
search processes that may not yield high-quality dynamic scheduling
solutions within short time frames36.

In recent years, with the increasing application of large language
models (LLMs) across various domains37–43, manufacturing systems have
increasingly relied on AI to enhance quality, productivity, and overall
performance44. The integration of LLMs with evolutionary algorithms has
opened new opportunities for prompt engineering45 and automated algo-
rithm design36,41,46. Notably, the integration of LLMs with evolutionary
algorithms has introduced new avenues for prompt engineering and auto-
mated algorithm design. Building on recent pioneering work, such as the
early 2024 publication in Nature by the Google team, where LLMs com-
bined with evolutionary algorithms achieved a new benchmark in combi-
natorial optimization41, this research explores the transformative potential
of LLMswithin the domain of FMS. This approach benefits from the ability
of LLMs to generate highly adaptableHDRs throughmeticulously designed
prompts and iterative feedback mechanisms. By leveraging their language
understanding and generation capabilities, LLMs can rapidly acquire
domain-specific knowledge from training datasets and generate high-
quality solutions in testing scenarios in a remarkably short timeframe. For
example, models like ChatGPT and ChatGLM have been successfully used
to evolve HDRs, addressing complex dynamic job shop scheduling
challenges36. However, applying this to flexible manufacturing scheduling
systems in HRC requires tackling specific challenges, such as machine

selection within FMS, which complicates the direct application of such
evolutionary frameworks in these contexts. Moreover, sharing production
data with online LLMs often conflicts with data security requirements in
manufacturing enterprises, making local deployment an essential con-
sideration. While smaller models may lack sufficient inference capability,
larger models demand high-performance hardware, resulting in prohibi-
tively high costs. To overcome these challenges, this paper proposes an
evolutionary framework for flexible manufacturing scheduling based on
LLMs. The framework enhances HDR design through supervised fine-
tuning (SFT) of the local qwen2.5-coder-7b model, built upon the popu-
lation self-evolution (SeEvo) approach. This method enables the training of
multiple cases, gathering the final HDRs, and ensures a high level of
adaptability and efficiency in deployment. In the deployment phase, con-
textual prompts enable the rapid generation of high-quality scheduling
plans for HRC manufacturing systems, ensuring a quick response to
dynamic production environments. By combining the latest advances in
LLMs with evolutionary techniques, this framework opens new opportu-
nities for addressing the complexities of real-time, dynamic manufacturing
scheduling, significantly advancing the field and pushing the boundaries of
AI-driven optimization.

Results
Dynamicflexiblemanufacturingsystemschedulingperformance
testing
In recent years, the application of machine learning in FMS scheduling has
experienced a surge, resulting in the development of rich datasets and
benchmark tests. However, DRL, which is widely used by researchers to
address dynamic workshop scheduling problems, does not consistently
outperform traditional HDRs47,48. Similarly, while evolutionary frameworks
such as GP25 and GEP34 have been employed for automatic algorithm
design, these methods suffer from ineffective guided exploration. Their
reliance on extensive random search limits their development and
exploration capabilities36.

To address this issue, we develop SeEvo, a language-guided heuristic
framework designed to efficiently generate scheduling solutions for
dynamic FMS environments by leveraging the capabilities of LLMs. Using a
local qwen2.5-coder-7b model, we generate evolutionary prompts that
guide the evolution of initial seed heuristic algorithms while continuously
collecting effective datasets. The evolutionary process is inspired by indi-
vidual co-evolution, individual self-evolution, and collective evolution36.
Additionally, unlike online LLMs such as ChatGPT, which are used in the
literature, we further enhance our local qwen2.5-coder-7b through SFT to
improve HDR evolution efficiency and address data privacy concerns.

Fig. 1 | HRC flexible manufacturing system. The
manufacturing system comprises a worker operator
responsible for loading and unloading materials,
with items stored in a line-side warehouse. A flexible
handling robot transports workpieces, materials,
and tools to flexible processing equipment for
machining. After processing, the completed work-
pieces and resources are returned to the line-side
warehouse. The system includes three flexible
computer numerical control machines, each dedi-
cated to machining standard deburring tools for
automotive welding lines. These machines process a
total of 12 types of componentsmade frommaterials
such as cast iron, aluminum alloy, and copper. The
manufacturing processes encompass rough and
finish machining, cleaning, inspection, and
marking.
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Notably, the effectiveness of SeEvo’s outputs depends on the reasoning
capabilities of the LLM and the quality of HDRs accumulated across mul-
tiple cases. For instance, directly using open-source LLMs may result in
limited reasoning capabilities, making it challenging to generate effective
HDRs based on current cases and prompts quickly. This is especially true
when evolutionary reflection prompts produce flawed or nonsensical
inputs, causing both local LLMs and online LLMs like ChatGLM4 to fail to
generate better HDRs. Similarly, inaccurate LLM outputs can lead to
erroneous scheduling plans. For these reasons, we evaluate SeEvo’s per-
formance from three dimensions: (1) the accuracy of the generated HDRs,
(2) reasoning ability, and (3) the quality of rapid inference on the test set.

As shown in Fig. 2a, qwen2.5-sft-7b achieves HDR generation accu-
racy close to gpt3.5. Although not perfectly accurate, this represents a
significant improvement over the pre-fine-tuned qwen2.5-coder-7b. In
Fig. 2b, a comparative experiment of the SeEvo framework is presented
across 50 generations and 10 test cases, benchmarked against traditional
methods such as GP, GEP, as well as online LLMs like gpt3.5 (gpt-3.5-
turbo-ca), glm3 (GLM-3-Turbo), glm4 (GLM-4), the pre-fine-tuned
qwen2.5-coder-7b, and qwen2.5-sft-7b. The results demonstrate that
qwen2.5-sft-7b outperforms both traditional automatic algorithm design
methods and online LLMs, including the pre-fine-tuned qwen2.5-coder-
7b. Additionally, to evaluate the generalization and robustness of the fra-
mework, we conduct a benchmark comparison on a test set of 200 cases
against DRL, GP, GEP, and 10 HDRs. Performance is measured by the
relative deviation of eachmethod’s solution from the current best solution.
The boxplot results (Fig. 2c) indicate that LLM-guided schedulingmethods
consistently outperform traditional approaches. Notably, qwen2.5-sft-7b
demonstrates exceptional performance, with a median relative deviation
close to zero and a Gap ratio below 1% for the majority of cases. This
indicates both high stability and superiority, significantly surpassing other
non-LLM-guidedmethods, and suggests its potential as a valuable assistant
for HRC manufacturing.

Additionally, to validate the effectiveness of the novel individual self-
evolution mechanism in SeEvo, we perform an ablation study. By com-
paring the complete SeEvo strategy with a simplified version (denoted
ReEvo, which lacks the individual self-evolution mechanism), we find that
under the same LLMconditions, the SeEvo strategy outperforms theReEvo,
as demonstrated by a smaller Gap ratio between its solutions and the best
makespan (Fig. 2d). The combination of qwen2.5-sft-7b and the SeEvo
strategy yields the best performance, with the most concentrated distribu-
tion of Gap ratios. In contrast, for any given LLM, SeEvo consistently
outperforms ReEvo. Among the three API-based models, glm3 shows
slightly better results. It isworthnoting thatwhile glm4demonstrates strong
exploration performance in Fig. 2b, its performance significantly decreases
in Fig. 2c–e. This is mainly attributable to our experimental design, where
eachLLMperforms a rapid iterationon the test cases basedon its knowledge
base of 20 HDRs, making the outcome highly dependent on the quality of
that specific knowledge base. We do not explore multiple knowledge bases
further, as the primary focus of this paper is the design of the SeEvomethod
and the localfine-tuningpipeline.OnlineLLMsare includedonly to validate
the effectiveness of our method and framework, as their adoption in
manufacturing is often limited by data privacy concerns. Finally, we further
compare the number of best solutions and the average makespan by dif-
ferent LLM methods across the 200 test cases. The results show that
qwen2.5-sft-7b (SeEvo) not only finds the highest number of best solutions
but also achieves the lowest average makespan, once again confirming its
superior overall performance.

Machining flexible manufacturing system scheduling perfor-
mance testing
To validate the effectiveness of the SeEvomethod in a real-world FMS, tests
are conducted using operational data from theflexible production line at the
headquarters of Guangzhou MINO Equipment Co., Ltd. This production
line consists of seven vertical computer numerical control centers capable of
mixed-line manufacturing. The system processes a variety of mechanical

products, including angle seats, bases, sliding plates, connecting blocks,
three-axis bases, roller bases, tray bases, and manual lubrication tables,
across multiple orders. The line also features a stacker crane, a palletizer,
three flexible handling robots, and two workers (Fig. 3a). In this study, the
workshop processes four types of products, each with multiple orders of
varying quantities. Orders arrive dynamically based on random user
demand and are entered by an operator, who supplies the corresponding
materials to a line-side buffer. Machine faults, captured by sensors, occur
unpredictably.Theoptimizationobjective is tominimize themakespan.The
architecture of the FMS is depicted in Fig. 3b. At its core is an intelligent
management and control systemdriven by the scheduling algorithm, which
enables centralized resource management, intelligent allocation, efficient
process scheduling, and adaptive production in response to dynamic
disturbances.

In 54 test cases simulating a real-world production scenario, the SeEvo
framework is benchmarked against several baseline methods. The results
demonstrate that the SeEvo framework, integrated with the fine-tuned
qwen2.5-sft-7b model, outperforms the others. It achieves the lowest
median Gap Ratio with the most concentrated distribution, indicating
superior solution quality and stability. Moreover, for all tested LLMs, the
SeEvo method consistently outperforms its simplified version, ReEvo
(Fig. 4a).

A comprehensive performance evaluation further confirms this
advantage. On key metrics, such as the number of best solutions obtained
and the average minimum makespan, the qwen2.5-sft-7b configuration
consistently performs better than the others. In contrast, theHDRoriginally
used by the production line (denoted “Before”) achieves the best solution
only once in a scenario (3×13) and performs poorly in the majority of
scenarios, indicating its limited generalization capability (Fig. 4b). A heat-
map analysis visually represents the performance of different methods
across various production scales. The qwen2.5-sft-7b (SeEvo) configuration
maintains the smallest relative Gap (indicated by dark green) in almost all
scale combinations, demonstrating its robust performance (Fig. 4c). Most
importantly, all LLM-generated methods consistently and significantly
outperform the original HDR across all test scenarios, emphasizing the
practical value of the framework (Fig. 4d).

Beyond its quantitative performance advantages, the HDR generated
by qwen2.5-sft-7b (Fig. 4e) is structurally clear and logical, effectively
integrating sub-policies with physical meanings. For example, in workpiece
selection, it combines the principle of selecting the job with the highest
completion percentage while using a forward-looking term for fine-tuning,
thus balancing the current state with future trends. Formachine selection, it
aims to assign a workpiece to a machine with the most balanced load and
stability, taking into account the processing complexity of the workpiece
itself, potentially prioritizing a “long-duration task” for a machine with
greater idle capacity.

In contrast, the HDRs generated by traditional automated design
methods, suchasGEPandGP(Fig. 4f, g),while effective, aremathematically
complex and verbose, with limited interpretability. This black-box nature
complicates understanding and debugging in real-world production
environments. This comparison highlights the unique advantage of the
SeEvo framework: it not only discovers high-performance scheduling
strategies but also ensures these strategies are human-understandable,
facilitating their application in other complex FMS scenarios, such as
aerospace skin manufacturing.

Discussion
This paper presents an LLM-based SeEvo framework for FMS production
scheduling, which integrates three stages: individual co-evolution, indivi-
dual self-evolution, and collective evolution. During the application and
testing phases, we input the prompts and 20 pre-collected HDRs into the
fine-tuned LLM for inference using the SeEvo framework, with the results
directly applied to the FMS. The results significantly outperform existing
HDR-based scheduling approaches. Additionally, the framework demon-
strates the ability to generate high-performance HDRs within just one
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minute, offering a novel solution for the application of LLMs in intelligent
manufacturing. Notably, the fine-tuned LLM requires only a single 4090D
GPU to complete the inference experiments, significantly reducing the cost
of utilizing online LLMAPIs.When twoGPUs are used, the inference speed
is comparable to proprietary closed-source models, such as ChatGLM3.
These findings underscore the considerable potential of the SeEvo method

in FMS scheduling and confirm its effectiveness as a tool for generating
scheduling plans.

Despite its numerous advantages, the SeEvo method faces several
challenges during the inference process. The selection of training cases,
as well as the inherent limitations of the evolutionary logic underlying
large-scale test solutions, complicates the evaluation of the SeEvo

Fig. 2 | Performance evaluation of the schedulingmethod for dynamic FMSbased
on LLMs. a Comparison of the success rates of different LLMs in generating HDRs.
The results show that gpt3.5 achieves the highest success rate, followed by glm-4 and
qwen7b-sft. b Convergence performance curves for various methods in 10 random
cases. The qwen2.5-sft-7bmethod demonstrates stronger convergence, indicating its
powerful search and exploration capabilities. c Box plot of the relative ratio for
different schedulingmethods across 200 test cases. The performance of qwen7b-sft is

significantly superior to all other methods. d Box plot of the Gap ratio for different
LLM methods and their associated evolutionary strategies (SeEvo vs. ReEvo). The
combination of qwen2.5-sft-7b and the SeEvo strategy yields the best performance.
e Comparison of the number of best solutions obtained (bar chart) and the average
makespan (line chart) by each LLM method across 200 test cases. Qwen2.5-sft-7b
(SeEvo) performs best on both key metrics, achieving the highest number of best
solutions and the lowest average makespan.
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method. Furthermore, the model’s dependence on a predefined set of
HDRs may limit its scalability and adaptability in more realistic sce-
narios. Future research should focus on constructing larger-scale
knowledge bases and developing efficient retrieval mechanisms
through a knowledge augmented generation (KAG)49 framework.
Additionally, it will be crucial to explore advanced fine-tuning tech-
niques, such as group relative policy optimization (GRPO), which
could further enhance the model’s performance, particularly in
domains that require more complex and adaptive capabilities.

Method
Evolutionary mechanism based on LLMs
Within the SeEvo framework, LLMs perform two key roles: the Reflector
LLM, which generates guiding prompts for individuals, and the Generator
LLM, which produces individual HDRs. Unlike traditional hyper-heuristic
algorithms such as GP and GEP, which rely on fixed encoding structures
and function sets, each individual in SeEvo is a code block generated directly
by the LLM. These individuals are only required to adhere to a predefined
function signature, including the function name, inputs, and outputs, thus
overcoming the limitations associated with fixed encoding length and
complexity.

The overall evolutionary process of SeEvo (Fig. 5) is implemented
through an iterative loop consisting of three core stages: individual co-
evolution, individual self-evolution, and collective evolution. The specific
implementation details are as follows:

Population initialization. The LLM generates an initial population of
HDRs based on the task specifications and a seed HDR. The prompt
engineering process used for this initialization is depicted in Fig. 6.

Individual co-evolution and crossover. Two parent HDRs are ran-
domly selected from the current population for performance compar-
ison. The evaluation result (e.g., superior or inferior performance on test
cases) is fed back to the Reflector LLM. The system guides the LLM to
analyze the performance differences in depth and to generate instructive
recommendations for improvement. This comparative mechanism
provides feedback akin to a language gradient, even in the absence of a
continuous reward signal. The analysis and recommendations serve as
evolutionary instructions, guiding the Generator LLM to produce two
new offspring HDRs based on this parent pair.

Individual self-evolution and crossover. In this stage (Fig. 5b), the
system feeds the performance trajectory of each individual before and
after co-evolution back to the Reflector LLM. The LLM is prompted to
reflect on the changes in performance: if performance has declined or
stagnated, the LLM analyzes potential causes and generates reverse
prompts to prevent further failures. If performance has improved, the
LLM synthesizes successful experiences to generate optimization
prompts that amplify strengths. These targeted recommendations guide
the individual’s self-optimization, resulting in the generation of a new
offspring. The crossover operation in this stage mirrors that in the co-
evolution stage.

Fig. 3 | Architecture of the FMS. a Schematic of the physical entity (left) and the 3D
virtual environment (right) of the FMS line, including the core components of the
production line: computer numerical control systems, flexible handling robots, and
workers. In a typical process, the worker secures a workpiece onto a pallet, which is
then transported by the robot to a computer numerical control system for
machining. b The cyber-physical integration architecture of the system. An intel-
ligent management and control platform is established under the manufacturing

execution system, with the production planning and scheduling module at its core.
This module generates scheduling plans by integrating inputs such as process
modeling, production tasks, and optimization objectives. Through a data acquisition
gateway and communication interfaces, it dispatches commands to the physical
production line and collects real-time data, thus creating a closed-loop control
system.
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Collective evolution andmutation. This stage (Fig. 5c) providesmacro-
level control over the population’s evolutionary trajectory. Long-term
reflection data from previous iterations, co-evolutionary reflections from
the current round, and self-evolutionary reflections are integrated. The
Reflector LLM synthesizes this global information to generate insights

into the overall evolutionary direction. This high-level guidance directs
the mutation of the best-performing parent individual in the current
population, encouraging a more thorough exploration of the current
optimal solution. The number of HDRs generated depends on the
mutation probability.

Fig. 4 | Performance evaluation and analysis of generated HDRs in real-world
manufacturing scenarios. a Box plot comparing the optimization performance of
different LLM methods across 54 scheduling scenarios. Qwen2.5-sft-7b (SeEvo)
exhibits the best performance, with the smallest median and distribution range for
the Gap Ratio. b Performance of each method across the same 54 real-world sce-
narios on best-known solutions and average makespan. c Heatmap of the Relative
Gap for different LLM methods across various problem scales (from 3 × 10 to
5 × 15). The heatmap shows that qwen2.5-sft-7b (SeEvo) consistently maintains the
lowest relative Gap across most tested scales. d Heatmap comparing the

performance of all LLM-based methods against the HDR originally used by the
factory (Before). The results indicate that all LLM-generated methods significantly
outperform the original HDR. Comparison of HDRs generated by different meth-
ods. TheHDR (e) generated by qwen2.5-sft-7b (SeEvo) is well-structured and highly
interpretable. In contrast, theHDRs generated byGEP (f) andGP (g), while effective,
are mathematically complex, lack intuitive physical meaning, and exhibit poor
interpretability.
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Model training, knowledge base construction, and fast inference
To enhance the LLM’s performance on the specific scheduling problemand
facilitate rapid deployment, a comprehensive pipeline is designed, encom-
passing data generation, cleaning, model fine-tuning, knowledge base
construction, and fast inference (Fig. 7).

Data generation and cleaning. Initially, the SeEvo framework is exe-
cuted using the base qwen2.5-coder-7b model on 200 randomly gener-
ated scheduling cases, with each case iterated for 50 rounds. During this
process, complete interaction records from each evolutionary step are
systematically collected, including all reflective prompts (inputs) and
their corresponding generated HDRs (outputs), which form the raw
dataset (Fig. 7a). Each HDR is evaluated in an isolated subprocess, with
up to 20 subprocesses running in parallel. If any subprocess encounters
an error or times out, it is terminated without affecting the main evolu-
tionary process. The main process then evaluates the outcomes by
reading results from designated text files.

The data is then cleaned by filtering for datasets that result in perfor-
mance improvements. Specifically, when the performance of an offspring
HDRexceeds that of its parent, the corresponding instruction-response pair
is retained (Fig. 7b).Any failedexecutions result in very lowfitness scores for
those HDRs, ensuring that they are excluded during the selection phase.
This process ensures that only high-quality, performance-enhancing
instances are retained in the dataset, contributing to more reliable results
in subsequent evaluations.

Supervised fine-tuning. Using the curated high-quality data, SFT is
performed on the base model. The fine-tuning process is conducted with
the Llama Factory50 (https://github.com/hiyouga/LLaMA-Factory) on a

single A800-80GB GPU. During SFT, successful evolutionary instruc-
tions (reflective prompts) are treated as the “instruction”, and the
improved individual HDRs as the “output”. This process yields the
qwen2.5-sft-7b model, which exhibits enhanced problem-solving
capabilities.

High-quality HDRs knowledge base construction. To provide a high-
quality initial population for the fast inference stage, another 50 rounds of
deep evolution are performed using the fine-tuned qwen2.5-sft-7b on 20
representative training instances. The high-quality HDRs generated
during these iterations are collected to form an elite knowledge base
consisting of 20 HDRs (Fig. 7c). While the current knowledge base is
limited, primarily due to the suboptimal performance of traditional
vector-matching methods in this context, future work will focus on
constructing larger-scale knowledge bases and enabling their efficient
retrieval through a KAG49 framework.

Fast HDR generation. During the online application or testing phase
(Fig. 7d), the system invokes the fine-tuned qwen2.5-sft-7b model and
uses HDRs from the knowledge base as the initial population. A single
complete iteration of the SeEvo framework (i.e., sequential individual co-
evolution, individual self-evolution, and collective evolution) generates a
high-quality solution for a new scheduling problem in under oneminute.

Intelligent HRC flexible manufacturing system
System architecture. The FMS (Fig. 3b) comprises three primary
modules: the flexible production line, the management and control sys-
tem, and the LLM-based scheduling module. The production line
hardware includes multiple computer numerical control systems,

Fig. 5 | The SeEvo framework: an evolutionary process for heuristic algorithms
driven by LLMs. a Individual co-evolution reflection and crossover: The system
randomly selects two parent individuals for performance comparison. This com-
parison then serves as input for the Reflector LLM to generate an in-depth analysis of
their respective strengths and weaknesses. The resulting analysis acts as an evolu-
tionary instruction, guiding the two parents to generate new offspring. b Individual
self-evolution reflection and crossover: The system provides feedback to the
Reflector LLM on the performance trajectory of each individual before and after an

evolution step. Based on this, the LLM generates targeted suggestions for
improvement, guiding the individual to self-optimize and produce a new offspring.
c Collective evolution reflection and mutation: This stage integrates all co-
evolutionary and self-evolutionary knowledge accumulated in stages (a) and (b).
This global information is submitted to the Reflector LLM to generate a macro-level
insight into the overall evolutionary direction. This high-level guidance is specifically
used to direct the mutation of the best parent individual in the current population,
facilitating deeper exploration from the current best-known solution.
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handling robots, an automated warehouse, buffer positions, tools, and
fixtures. The management system is responsible for data coordination,
resource management, and task allocation. The LLM-based scheduling
module acts as the core decision-making unit, receiving inputs such as the
production line model, process flows, production orders, and optimiza-
tion objectives, which are processed through SeEvo to generate sche-
duling solutions.

In our system, we have seven machines, and each workpiece consists of
multiple operations. For many of these operations, multiple alternative
machines are available for processing, and different types of workpieces have
distinct technological routes. These characteristics align closely with the flex-
ible job shop scheduling problem,where jobs (workpieces) require a sequence
of operations, each of which can be performed on one of several alternative
machines. This routing flexibility and the machine assignment decision-
making process are central to the scheduling challenge in our system,making
FJSP a natural fit for modeling our manufacturing environment.

The use of FJSP allows us to efficiently address the complexities of
machine assignment, job sequencing, and processing uncertainties, all of
which are critical inoptimizing theperformanceof our intelligentHRC-FMS.

Scheduling processing. In this flexible manufacturing system, the
production flow for a workpiece involves several steps, including manual
loading, robotic handling, multi-operation machine processing, and
manual fixture changes. This scenario is modeled as a flexible job-shop
scheduling problem characterized by dynamic order arrivals, random
machine faults, and fuzzy processing times. To capture time fluctuations
in real-world production, a processing time ambiguity of 2 min is

introduced for each operation in the dataset. The production cycle is
computed using an event-driven simulation model, where each sub-
sequent operation is only released into the pool of jobs awaiting pro-
cessing after the completion of the previous operation (Fig. 8).

Online scheduling execution framework. The proposed framework is
divided into two phases: the self-evolution phase and the online appli-
cation phase (Fig. 8). During the self-evolution phase, SeEvo undergoes
extensive evolution across multiple training cases to create a high-quality
HDRs knowledge base. In the online application phase, when new pro-
duction tasks or dynamic disturbances (e.g., urgent orders or machine
faults) arise, the system leverages the HDRs from the knowledge base as
an initial individual. A single rapid iteration is then performed to generate
an optimized scheduling plan. The generated HDRs are primarily used
for job selection. When multiple jobs compete for the same machine, the
HDR calculates a selection probability for each candidate job, and the
system assigns the job with the highest probability for processing. This
mechanism enables the system to respond to dynamic events in seconds,
maintaining ongoing operations while rescheduling subsequent tasks in
real-time. This approach effectively mitigates issues such as the creation
of semi-finished products or production disruptions caused by inter-
rupting current operations.

Data generation and experimental design methodology
In the Intelligent HRC flexible manufacturing system, the data generation
process is crucial for creating realistic test scenarios to validate and optimize
the scheduling system. The experiments utilize two types of generated data:

Fig. 6 | Prompt engineering design. The design of the prompt engineering, including individual co-evolution reflection, individual self-evolution reflection, collective
evolution reflection, crossover, and mutation.
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randomly generated cases and simulation data based on actual processing
information.

Randomly generated cases. The random generation process mimics
real-world uncertainties and operational complexities in manufacturing.
Here is the breakdown:

1. Order Quantity: The number of orders is randomly chosen between 3
and 10.

2. Workpiece Quantity per Order: Each order consists of a randomly
generated number of workpieces, ranging from 10 to 20 pieces.

3. Machine Availability: The number of machines is randomly set
between 5 and 10.

Fig. 7 | Data cleaning, fine-tuning, knowledge base construction, and fast
inference framework. a evolutionary data generation: The qwen2.5-coder-7bmodel
is used with the SeEvo framework to run 50 rounds of evolution for each of the 200
random cases. The complete interaction logs from this process, including all suc-
cessful evolutionary instructions andHDRs. bdata cleaning and SFT: The rawdata is
filtered to retain only the lead to performance improvement. Specifically, if an
offspring’s HDR outperforms its parent, the instruction-response pair that
prompted this optimization is selected. These high-quality datasets are then used to

perform LoRA fine-tuning on the qwen2.5-coder-7b. c HDRs knowledge base col-
lection: The qwen2.5-sft-7b is employed to perform another 50 rounds of deep
evolution on 20 training cases. The resulting evolved HDRs are collected to build a
high-quality knowledge base, providing high-quality examples for the subsequent
fast inference stage. d Fast HDR generation: the system calls the qwen2.5-sft-7b and
utilizes the HDRs from the knowledge base as the initial individuals. With just a
single iteration of the SeEvo framework, the system can generate a high-quality
scheduling solution for a new problem within one minute.
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4. Operations per Workpiece: Each workpiece undergoes a random
number of operations, ranging from 5 to 7 steps.

5. Machine Failures: To simulate real-world disruptions, the number of
machine failures is randomly generated between 0 and 3 occurrences.

6. Fuzzy Processing Time: Processing time is assigned with a slight var-
iation ( ± 2min) to introduce some uncertainty and model real-world
fluctuations in time.

7. Machines per Operation: The number of machines available for each
operation is randomly chosen between 0 and 3 machines.

8. Processing Time per Workpiece: Each operation has a random
processing time between 20 and 60 min, represented as a random
integer.

From this methodology, 200 distinct random cases are generated to
cover various possible scenarios that the system might encounter in real-
world conditions.

Simulation data based on actual processing information. This data
type is derived from actual shop floor processing information, ensuring
high fidelity to real-world production environments. It helps validate the
system by matching the simulation closely with actual production data.
1. Number of Orders: 3 to 5 orders are simulated.
2. Workpiece Quantity per Order: Each order contains 10 to 15

workpieces.
3. Machine Failures: Randommachine failures are introduced,mirroring

the unpredictability of real manufacturing systems.
4. Processing Information: The specific processing information for each

workpiece is derived directly from real-world data collected in a
machine shop, ensuring that the simulation accurately reflects actual
operational realities.

By combining both randomly generated and real-world simulation
data, the system can better respond to dynamic, unpredictable manu-
facturing conditions, ensuring that the scheduling solutions are not
only theoretically sound but also practical and reliable in real-world
settings.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
The underlying code for this study is not publicly available butmay bemade
available to qualified researchers on reasonable request from the corre-
sponding author.
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