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Neuromorphic computing is inspired by the human brain’s architecture to develop power-efficient and
optimized neural networks. Different characteristics of synapses and neurons are emulated in the
neuromorphic hardware or software model to mimic the behavior of the synaptic brain. Noise in the
neuromorphic system is an important constraint to evaluate its overall performance. A reliable READ
operationis essential to secure an acceptable performance from a neuromorphic system. In addition, a
memristive synapse is very prone to stochastic behavior. Moreover, a dynamically reconfigurable
READ operation is proposed for our 3T1R synapse to explore the effect of stochasticity on
neuromorphic applications. Our proposed method allows for relevant applications in neuromorphic
computing to utilize the stochastic behavior of the memristive 3T1R synapse. Performance
evaluations show ~8.9x energy optimization with our proposed device. Optimization algorithm (EONS)
is utilized for training and a hardware framework (RAVENS) is used for hardware simulation during

training.

Memristive synapses are very popular building blocks for neuromorphic
computing. Synapses are used to construct circuits and systems such as
neuroprocessors, dot product engines'”, spike-timing-dependent plasticity
(STDP)*”, homeostatic plasticity®, reservoir computer (RC)*'*and so on. All
of these applications require a reliable synapse to confirm performance of
the system. However, synapses are very sensitive to its FORMING, RESET,
SET, and READ variations''. However, READ variation can be utilized as a
feature of these kinds of devices. The distribution of the READ current can
be used for Stochastic computing (SC), which is a popular approach to unite
algorithms with stochastic features of hardware.

SC is a branch of computing that dates back to the late 1960s". It
explores the potential benefits of performing computations with prob-
abilities rather than explicit values"'°. One of the main reasons for the
popularity of this field is due to the inherent unpredictability of the devices
used for traditional computers. These otherwise undesired properties are
mitigated in traditional computers through robust digital designs. SC
instead proposes to utilize these random properties by exploring their
potential for application in mathematical models that require random
distributions'”"*. Previously, SC relied on the randomness observed in signal
noise as well as the randomness due to the fabrication of the devices'*".
Meaning each device had a unique, fixed behavior. Recently with the rise of
new devices and methods of operation, this behavior can be tuned at run-
time as opposed to being fixed over the lifetime of the device. This allows for

much more flexibility in terms of the types of computations that can be
performed and the amount of hardware required.

One such example of a device is that of a metal-insulator-metal (MIM)
memristor. These devices operate by supplying a voltage potential across the
insulator using the metal contacts. If this voltage is high enough, the insu-
lator becomes a conductor through the formation of a filament connecting
the metals. Interestingly for nano-scale fabrication of specific insulator
materials, if this potential is reversed the filament can be broken. As you
might imagine, the formation and destruction of this filament path is very
stochastic. However, if the current during these events is limited, the con-
ductivity of the filament path can be varied with some predictability. The
final conductance of the filament path can be modeled quite reliably through
a normal distribution whose mean value is directly proportional to the
current during the formation of the filament.

Another potential application for SC is that of machine learning (ML)
accelerator circuits. In many ML algorithms, randomness has been shown to
improve performance. For instance, during the initialization of weights in a
neural network. As well as its use in stochastic gradient descent. Further-
more, SC has been utilized in Bayesian neural network circuits which utilize
MIM devices”. Another domain of ML that utilizes stochasticity is neuro-
morphic computing. Neuromorphic computation explores the potential
benefits of a more biologically plausible ML approach. For instance, often
utilizing the much more biologically plausible spiking neuron models as
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opposed to the McCulloch-Pitts neuron used extensively in deep learning.
These methods have been shown to provide large performance benefits in
terms of power consumption which is useful in edge applications. Addi-
tionally, neuromorphic computing could benefit greatly in terms of
increasing the accuracy of the stochastic nature of biological systems such as
those seen in neurons in the brain®.

At the same time, a reliable memory component is necessary to
build a stable system for data storage and neuromorphic computing.
The Forming operation of memristive synapse needs a higher voltage
(~3V) to set the resistance level from higher (HRS) to lower (LRS),
which is also challenging. It can be lowered by proper transistor
sizing. The voltage-controlled synaptic device is sensitive to pulse
width and supply voltage variation’. A current-controlled synapse
shows higher reliability in SET operation than the voltage-controlled
synapse. LRS shows lower inherent variation for SET and READ
operations compared to HRS. In addition, 3T1R synapses show lower
READ power consumption compared to 1T1R configuration.

Moreover, various memristive synapses such as 1TIR*1DIR”,
1S1R*, and 2T1R” are proposed by different research groups. However,
most of the proposed solutions are not fully compatible with CMOS tech-
nology, and expensive pieces of equipment are required to operate the
synapse. On the other hand, our proposed synapse is fully CMOS-
compatible and can be operated by digital signals. Due to that, our proposed
design is economic and lower power. In addition, our proposed design
shows enhanced stability compared to a 1T1R synapse.

In this work, 3TIR memristive synapses are utilized for a runtime
adaptation between a fully deterministic device and a stochastic device.
Figure 1 shows adaptation and its data distribution with energy benefit. It
also illustrates the different application opportunities with stochastic
devices.
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Fig. 1| The opportunities of neuromorphic computing and possible applications
are illustrated. a Shows the dynamic adaptation between conventional and sto-
chastic synapses with proper data distribution. It also shows the possibility of uti-
lizing our proposed synapses with a regular SNN and reservoir computing with
optimized operation costs. Finally, with stochastic synapses, the energy of our
proposed architecture gets optimized at run-time. b Performance of various

The key contributions of this work are as follows.

* A dynamically reconfigurable READ operation is proposed to take
advantage of the stochasticity of READ data.

* This synaptic device also can be used as a reliable memory and crossbar
array for spiking neural networks.

* A complete READ data distribution and their biasing comparability are
presented with proper data distribution analysis, which can be utilized
for various applications.

» Power vs. performance evaluation of data distribution and applications
are illustrated.

¢ Stochasticity is evaluated on Neuromorphic applications such as
classification, control, and reservoir computing,

Our proposed synapse is constructed with three thick oxide transistors
and a HfO, based memristor device. Figure 2a shows our proposed synaptic
circuitry with a 8 x 8 synaptic array. A digital-to-analog converter (DAC) is
utilized to program the synapse at a particular resistance level. This mem-
ristive array is used to READ the weight value of memristor as “Final Read
Current". Finally, a winner-take-all (WTA) circuitry is utilized to solve a
classification problem. A brief explanation of our proposed synapse is
presented here. Our proposed synapse needs a one-time forming operation
to create a filament from the top electrode (TE) to the bottom electrode (BE).
A brief explanation of the memristive device and a Verilog-A model will be
presented in the next subsection, which is used to simulate our synaptic
circuit in Cadence Virtuoso. A pair of CMOS MP1 and MN2 from IBM
65nm are utilized to complete the forming operation of our proposed
synapse, which is current-controlled. Current controlled operations are
more stable than a voltage-controlled operation”. After a successful forming
operation the resistance level of the memristor will be around a few kQ.
Hence, a RESET operation will be initiated to break the filament and set the

Applications

Temporal dataset

Static dataset classification
3 S classification

Control application Reservoir Computing

(b)

applications is observed with regular and stochastic synapses. Static and temporal

datasets are considered for the performance evaluation™”*"*”, In addition, control

applications are considered to observe the perforation at different setups’. Reservoir
computing is also checked with stochastic synapses, which can be a design option

with optimized power"’.
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Fig. 2 | An 8 x 8 synaptic array is illustrated with peripheral circuitry. a Digital to
Analog Circuit (DAC) is utilized to provide SET and READ voltage to the synapse. A
Winner-Take-All (WTA) circuit is used to determine the maximum current con-
tained columns from all active columns. A current-controlled synaptic circuit is
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presented at the right of the synaptic array. Three thick oxide transistors and a HfO,
based memristor are utilized to construct the synapse. b Shows the configuration for
a neuroprocessor. Peripheral circuits control the gate of the synapse and read cur-
rents are sent to the LIF neuron.
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Fig. 3 | Cadence Spectre simulation is performed with 65 nm CMOS 10LPE

process from IBM. A Verilog-A model is used to simulate the memristor devices.
Initially, the memristor of the synapse is unformed. The initial condition shows the
synapse is in a standby condition, where all the signals are disabled. Then a one-time

form operation is applied to the synapse. Later a RESET operation is applied to do the
following SET operation. Finally, a READ operation is applied to sense the READ
current of the synapse with a neuron or a WTA circuitry.

resistance level at around a few hundred kQ. Here, a pair of CMOS tran-
sistors MP2 and MN1 are used to do the RESET operation, which is voltage
controlled. A SET or programming operation is applied to our proposed
synapse to set the memristor at a specific resistance level. Here, a low
resistance state (LRS) is utilized to mitigate the inherent process variation of
the memristor device. In our simulation, we have considered a range of set

variations at different resistance levels. This variation information is utilized
from measured result'. In this work, two resistance values are targeted,
which are 3 kQ and 30 kQ. SET operation requires MP3 and MN2 to pro-
gram the memristor value at our targeted level. Finally, a READ operation
occurs with MP3, MN2 and MN3. The READ operation is folded into two
parts. The READ operation will be explained in detail in the next subsection.
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Fig. 4 | Monte Carlo simulation of our proposed synapse is illustrated to observe
the final READ distribution at different READ voltage. The noise distribution of
our synapse is illustrated with a 30 range. a Shows the READ current distribution at
0.55 V, where the current is distributed from ~14 pA to ~29 pA. About 100% and

93.48% of data ‘0" and ‘1" are overlapped with each other. b Exhibits about 100% of
data ‘0’ and 46.68% of data ‘1’ are contained noise. ¢ Shows much lower noisy data for
both ‘1’ & 0’. Finally, (d) Shows the data noise is minimal at 0.7 V. e Exhibits the data
noise for ‘0’ is increased to 100% from 18% compared to the last test case (d). Hence,
(f) illustrates higher noisy data at 0.8 V. g Shows the noise pattern of data ‘0’ and ‘1’

READ Current (nA)
(h) V_FORM/SET/READ = 0.68V

are 100% and 98.22% respectively. A sensing line is utilized to differentiate the READ
current between data ‘0’ to ‘1’ Finally, an optimal operating region is found at 0.68 V.
h Shows an optimal operating region for READ operation, where data distribution
illustrates a reliable READ operation for a neuromorphic system. Traditionally,
highly noisy data is not useful, but data distributions like (a, b, e, f, g) can be utilized
for applications where a biased dataset can enhance the performance. Moreover, this
kind of stochasticity might be useful for neuromorphic applications. In addition, (c),
(d), and (h) can be used to develop a reliable neuromorphic system.

Figure 2b shows the neuromorphic design with our proposed synapse.
There are different peripheral circuits to control the gates of different
transistors. The forming peripheral circuit will control the gate of the
forming PMOS and gate of the the NMOS for form operation will be
controlled with a DAC. In the same way, the other peripherals also operate
the gate for each operation. The incoming spikes are going to be stored in the
synaptic devices. When the read signal is turned on, each synapse will
produce a read current based on the stored weight. All sixteen synapses will
produce their corresponding read current and send it to the LIF neuron.
Finally, based on the membrane potential and reference voltage the neuron
will produce a spike or wait for the next set of read signals.

When a spike hits the NMOS below the memristor the circuit will then
drive a small current relative to the memristor’s resistance into an integrate
and fire neuron. If there is no spike, there is no current and thus no further
integrated charge on the neuron. The spike amplitude is small enough such
that it does not lead to a large enough current to change the resistance of the
memristor in any significant way. Larger currents are used to (re)write the
memristor’s resistance value, which is useful for programming weights and
online learning.

A Verilog-A model is developed based on testing results from our
probe station. There are many different parameters to model the behavior of
HfO, based memristor such as forming voltage, RESET voltage, boundary
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resistance states for LRS, HRS & RESET failure, curve fitting parameters, std.
dev. at LRS & HRS and so on™. These parameters of the Verilog-A model
help the system-level simulation to illustrate the behavior of the memristor
as closely as possible with the inherent variation of the memristor. At LRS,
the inherent variation of our proposed device is from ~9% to ~31%. This
model can also detect unwanted scenarios like RESET failure. A detailed
explanation of the Verilog-A model and I-V curve are illustrated in our prior
work®. The HfO, based memristive device is constructed with TiN-HfO,-
TiN materials. The oxygen vacancies or defects are utilized to create the
filaments from the top to bottom electrode of the device.

Results

In this work, our main focus is to explore the READ variability at two
resistance levels, which are 3 kQ) and 30 kQ). Our proposed READ operation
is current-controlled and a low-power approach. According to Fig. 2, at first
MP3 and MN2 will be turned on to create an approximately constant
compliance current as 1st stage current from TE to BE. This current will be
converted to a voltage and applied to the gate of MN3. Hence, a Final-
READCurrent will be sensed from the drain of MN3. A timing diagram is
illustrated in Fig. 3 to exhibit the READ operation with other basic opera-
tions of our proposed synapse. At first, the proposed synapse will be in its
initial stage, where the memristor is unformed and all the controlling signals
such as V_FORMB, V_FORM/SET/READ, and so on will be in inactive
mode. The resistance level of our unformed memristor is about 1 MQ. One-
time FORM operation is applied to set the resistance level 1 MQ to ~8 kQ).
V_FORM and V_FORM/SET/READ are set to low and high to do a FORM
operation. About 244 pA current will be illustrated through Ist stage
current.

After a successful FORM operation, the synapse needs RESET opera-
tion to set the resistance at a few hundred kQ. V/_RESET and V/_RESETB
are set at high and low respectively to conduct a RESET operation. Initially,
the 1st stage current is 108 pA during a RESET operation. This results in a
resistance level of ~108 k(). Now, the synapse is ready to do a program at a
new resistance value. V_FORM/SET/READ and V_SET/READ are set at
high and low to do a program operation. The programmed resistance value
will be 3 kQ at 1.2 V. Here, the 1st stage current draws 301 pA current to set
the synapse at 1.2 V. Finally, a READ operation is initiated by setting the
V_FORM/SET/READ and V_READ at 0.6V and 0 V. The 1st and Final-
READCurrent will be 1.49 pA and 21.2 pA respectively. In this work, two
resistance levels are targeted for programming and reading. Moreover, the
synapse will be dynamically tuned to introduce noise inside the dataset. The
next section will focus on the noisy or stochastic data distribution of a
readout dataset at different reading scenarios.

Performance evaluation based on cadence simulation

Figure 4 shows the read data distribution at different read voltages. Addi-
tional information will be discussed in the method section. Table 1 shows
the performance evaluation of our proposed dynamic READ technique. In
this work, the Verilog-A model is utilized to check the simulation results
with CMOS variation. The process variation of memristive devices is con-
sidered based on the measured data in our probe station. The raw wafer is
tested with DC and multi-Z probes with a power supply and signal gen-
erator. At the same time, the process variation of CMOS is considered based
on the 65 nm CMOS process from IBM 10LPe, which is also integrated with
the fabricated circuits. Moreover, the process variation of the thick oxide
transistor (dgxfet) and inherent variation of memristive devices are
responsible for the current distribution. At first, the synapse is READ at
0.55V to observe the READ current distribution and its energy consump-
tion for 1 ps pulse width. Here, both LRS and HRS levels are considered to
calculate the average power and energy of our proposed synapse at different
READ voltages. At 0.55V the average READ power and energy of our
memristive synapse are 20.45 uW and 20.45 p]J respectively. Here, both 1st
stage and Final READ Current are considered to calculate the power and
energy. This operating region or READ voltages are a good fit for a random
number generator with a slight data biasing. Hence, READ voltage is scaled

Table 1 | Targeted applications based on power and data distribution requirement

Comment

Avg. Power (uW) Avg. Energy (pJ) Data ‘0’ (% of noise) Data ‘1’ (% of noise) Targeted Application

READ

READ voltage (V)

Power (uW)

3kQ
20.71

30 kQ
20.19

Better data distribution with bias and high power

Biased coin flip

~93.48%
~48.68%
~0.52%
~0.52%
~18%

~100%
~100%

20.45
20.78
21.07

20.7

20.45
20.78
21.07

20.7

0.55
0.6

Better data distribution with bias and high power

Biased coin flip

19.93
18.40
13.88
10.14
4.83
2.18

21.63
23.74
27.52
31.58
8.71

Almost perfect READ operation

Reliable SNN
Reliable SNN

~0.12%
~0.02%
~100%
~100%
~100%

0.65
0.7

Almost perfect READ operation

Poor data distribution with bias and low power

Biased coin flip

20.86
6.77
2.36

20.86
6.77
2.36

0.75
0.8

Poor data distribution with bias and low power

Biased coin flip

~68.46%
~98.22%

Poor data distribution with bias and low power

Biased coin flip

2.54

0.85
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from 0.55V to 0.6V to observe the data distributions and power con-
sumption. Data ‘1’ biasing is drooped from ~93% to ~49% in this operation
region with an energy consumption is increased from 20.45 pJ to 20.78 pJ
respectively. This type of data distribution is a good fit for applications like
biased coin flips and neuromorphic applications where the biased dataset is
helpful for testing.

After that, READ voltage is varied from 0.60 V to 0.65 V, where the
energy consumption is varied from 21.78 pJ to 21.07 pj. In addition, a
negligible amount of data has noise in the distribution. Almost 100% of the
data can be read perfectly with a sense amplifier, WTA, or a neuron. This
operating region can be utilized to design a reliable SNN. Hence, the READ
voltage is varied from 0.65V to 0.70 V. Here, the data distribution shows
more optimized data distribution than the last test case at 0.65 V with 20.7 p]J
as an average energy per READ operation. After that, the READ voltage
scaled up to 0.75 V, where the data ‘1’ is more biased toward data ‘0’. In the
next test case, the READ voltage is scaled up to 0.8 V, where ~68% of data ‘1’
is biased towards data ‘0’. Here, the READ energy dropped drastically. When
the READ voltage is scaled up, the READ energy is dominated by the 1st
current. In addition, after 0.75 V, both LRS and HRS show lower read power.
Due to that, the overall read power optimized a lot. At the same time, the
read current distribution shows a higher data-biasing probability, which can
be considered as a trade-off with power savings. The power in Table 1 is only
considered the synapse’s power. At 0.85 V, the READ energy shows about 3x
lower value than the last test case with a poor data distribution.

Here, we can define three operation regions for READ, which are
dynamically reconfigurable. The operating regions are: (i) a variable of data
‘1’ is biased toward data ‘0’ with high energy consumption and better data
distribution, (ii) reliable READ operation where almost 100% data ‘0’ and ‘1’
can be differentiated with a higher energy consumption compared with (i),
and (iii) a variable data ‘1’ is biased towards data ‘0’ with lower energy and
poor data distribution compared to (i) and (ii).

Performance evaluation based on neuromorphic applications
Figure 5 showcases the classification results for the Iris, Wine, and Breast
Cancer datasets™”. These are popular datasets from SciKit Learn used
within the machine learning field which provides a strong baseline of
understanding regarding the performance of our implementation. Focusing
on the testing accuracies of the various datasets, the first notable observation
is that default RAVENS behavior is more consistent and results in fewer
outliers as opposed to the stochastic 3T1R devices. This is to be expected
since stochasticity inherently introduces a probabilistic component that
experiences more inconsistencies in the performance of SNNs. Another key
observation is that pairing STDP with stochasticity results in better per-
formance than without STDP for certain situations. This is most promi-
nently seen in the Iris dataset where STDP resulted in better performance for
all device versions including default RAVENS. Another notable example
involves 0.80 V, and 0.85 V versions of the Wine dataset, where the intro-
duction of STDP resulted in a much larger improvement in testing accuracy.
It is also worth mentioning that although default RAVENS (without sto-
chasticity) typically yields better testing accuracies, certain combinations of
stochastic devices and STDP results in similar, and in some cases even better
performance than standard SNN behavior (without STDP and stochasti-
city). Moreover, if the synaptic system can run at stochastic_850 with 0.85 V
and achieve the same accuracy as the synapse was run at 0.65V then the
testing process can save up to 8.93x energy compared to normal_RAVENS.
Additionally, Fig. 6 showcases the timeseries classification results
for the EEG Emotion dataset’”. This dataset captures a subject’s
electroencephalogram (EEG) signals while watching video clips to
classify their emotion. This requires the SNNs to handle timeseries
data in order to gather enough information over time to make a
classification. Note, that the fitness result for the normal RAVENS
implementation has a static value and this is due to it being deter-
ministic and lacking stochasticity. As seen by the results, there is a
large amount of variation in accuracy with similar performance
across the board. However, the 0.85 V implementation without STDP

is far more consistent and performs the best overall, suggesting some
level of stochasticity may be helpful in timeseries applications.

Figure 7 depicts the control results for the Cartpole-v1, Bipedalwalker-
v3, and Bowman applications from OpenAl. These types of applications
control elements of the environment in a time-dependent manner which
lends well to the temporal nature of SNNs. Focusing on the fitness scores of
these applications, we can see a similar trend to that of the classification
results: the default RAVENS behavior typically yields better fitness scores
with fewer outliers compared to the stochastic devices. Typically, the more
stochastic the device, the worse the performance, but slight stochastic
behavior performs similarly or better than default RAVENS as seen by the
0.55 V and 0.85 V devices for Cartpole-v1 and Bowman. On the other hand,
STDP didn’t improve fitness scores as it did for the classification tasks except
for Bipedalwalker-v3. Surprisingly, Bidpedalwalker-v3 had outliers for the
stochastic devices that performed significantly better than the more con-
sistent default RAVENS behavior.

Additionally, the stochastic devices have the added benefit of improved
power efficiency since not only will the neurons be firing less often, but the
circuitry of the stochastic behavior has fewer power demands compared to
accurate READ distributions. To maintain similar performance under sto-
chastic firing patterns, the network training introduces certain network
structures that make them more resilient to these miss-fires. However, this
may require larger networks as seen by the boxplots depicting the number of
edges and nodes of the classification and control networks. Certain com-
binations of the stochastic devices and STDP may require more edges and
nodes to compensate for the miss-firing of the neurons compared to default
RAVENS. Still, certain combinations have relatively similar or even smaller
network sizes compared to default RAVENS; however, they may increase
depending on the complexity of the application. Although these various
characteristics need to be specifically tailored for each application, these
devices provide more options that allow engineers to weigh the pros and
cons of certain attributes (energy vs. accuracy vs. size) to best fit their design
needs for their specific applications.

Reservoir computer evaluation

Additional experiments were also performed on reservoir computers (RC).
Reservoir computers are used to map inputs to a higher-dimensional space
through their highly recurrent network structures. These, usually randomly
initialized RC networks, require the inputs to map to unique outputs while
preventing infinite signal propagation in the network by demonstrating
“fading memory" characteristics causing the signals to eventually die out.
This is performed in SNN-based RCs by utilizing inhibitory synaptic con-
nections to prevent explosive activity while leveraging sparse recurrent
connections with synaptic delays to elevate the inputs to a spatially and
temporally higher dimensional space. The RCs also consist of a readout layer
that is trained, i.e., linear regression, to map the reservoir state to the
application output. This composition creates a non-linear system suitable
for modeling dynamical systems. Furthermore, the SNN structure isn’t
trained which makes it computationally efficient since the readout
mechanism is the only component requiring training within the entire
system.

With that being said, Fig. 8 displays the results for the previously
mentioned classification datasets and Fig. 9 shows the results for the
timeseries application. From the results, we can see that default RAVENS
typically performs better than the stochastic counterparts, with less sto-
chasticity performing better than the more stochastic devices. This makes
sense because the SNN structure isn’t being modified to account for the
stochastic nature. However, like before, paring stochasticity with STDP
improves performance in some situations as seen by the Breast Cancer and
Iris dataset.

We also explored RCs on control applications as well, but training such
systems is more difficult. Reinforcement learning (RL) was utilized to train
the readout layer to translate the SNN outputs to optimum actions to take
for the control application. Proximal policy optimization (PPO) was the
training approach selected due to its ability to incrementally improve
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Fig. 5 | Classification results for Iris, Wine, and Breast Cancer datasets. The first, second, and third rows display results for the Iris, Wine, and Breast Cancer datasets
respectively including the fitness results, the number of network edges, and the number of network nodes.

performance without destructively modifying parameter weights”. This
approach exponentially increases training time and the network size of the
readout layer. The results are depicted in Fig. 10. Note, the Bowman
application was omitted since it wasn’t able to learn the environment and
gain rewards. From the results, we can see that default RAVENS performed
the best with slight stochasticity having comparable performance as seen by
the 0.85V device in Bipedal Walker and 0.85V and 0.80 V in Cart Pole.
STDP slightly helped or drastically decreased performance for both appli-
cations. However, STDP with the 0.80 V device performed the best for
CartPole. This volatility suggests that the training approach, initialization of
the RCs, and STDP results in inconsistent performance since the RL
approach needs to account for both the RC structure, stochasticity, and

synaptic weight changes, which is a more difficult problem. However, sto-
chastic devices show a great possibility for a significant amount of energy
savings with similar performance as normal synaptic devices, where STDP
can boost the overall performance a bit with extra energy and design
footprint.

Discussion

Neuromorphic devices and systems are gaining popularity for their energy-
efficient and bio-inspired features. Digital neuromorphic processors are
more reliable in functionality and use CMOS nodes only. However, a digital
system is not area and power-efficient like an analog neuromorphic pro-
cessor. Analog processor uses emerging materials and can store multi-bits as
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Fig. 6 | Timeseries results for EEG Emotion. The results include the testing accuracy, network edges, and network nodes for the EEG Emotion application.

well. Analog neuroprocessors can do in-memory and near-memory com-
putation, which reduces peripherals and computation power. Emerging
material-based synapses show higher inherent process variation. However,
the synapse shows reliable operation with a lower number of memory states.
In this work, two memory states are targeted for write and read. At the same
time, the read power of synapses is dynamically scaled and the read dis-
tribution is monitored with Monte Carlo simulations. Read voltage scaling
shows read power optimization with stochasticity in the data distribution,
which can be utilized in neuromorphic computation without significant
accuracy degradation. This kind of data distribution is also suitable for
approximate computation, where the system can tolerate a portion of noisy
data to improve the power saving with a reasonable accuracy degradation.

TABLE 2 shows a research group presented the work on stochastic
memory devices for security and neuromorphic computing”. A NbO,
based-stochastic device shows power savings with different applications like
security and neuromorphic computing. Compared to our work, there was
no analysis on the dynamic adaptation of stochasticity of the device, STDP,
network optimization and so on. However, this work shows a lower power
consumption compared to our proposed work. This work uses an isolated
device based design, whereas our proposed design shows full integration
with CMOS devices. In*, the authors presented probabilistic neural com-
puting with scholastic devices. Various device mechanisms like MT] and TD
are evaluated for this work. Probabilistic algorithms are developed to eval-
uate the performance of the device in the neuromorphic domain. However,
there was no information on STDP adaptation, reservoir computing, and
power savings with the proposed devices. In ref. 34, the author proposed an
implementation process of a stochastic neuro-fuzzy system with a mem-
ristor array. they utilized 180 nm CMOS process with HfOx material to
implement the array. They use the stochasticity of the device to implement
the system for robotics and image processing. However, there was no eva-
luation of STDP and reservoir computing with their proposed system.
Another research group claimed work on stochastic devices for computa-
tion and neuromorphic application'’. Here, the author presented a device
based on boron material and included the behavior of STDP. However,
there was no indication of reservoir computing. They utilized the stochas-
ticity of devices for error-tolerant application and analog behavior for
neuromorphic computation. Moreover, this work shows about 5.08x higher
power consumption compared to our proposed work.

In ref. 35, authors proposed a HfO,-based memristive synapse with 65
nm CMOS technology. This device’s stochasticity shows efficient brain-
inspired learning opportunities. Their work focused on the stochastic data
distribution of the device, which is useful for power-efficient operation for
various applications. However, there was no information about the STDP
and reservoir computing with the proposed design. In refs. 1,2,11, author
presented a memristive device, which is built with HfO, and 65 nm CMOS
process. These devices show higher stochasticity at high resistance levels and
lower stochasticity at low resistance levels. They utilized EONS for network
optimization and RAVENS as a hardware framework. They also covered the
inclusion of STDP, reservoir computing, and applications like classification
& control. In addition, these work show about 3.49x, 2.27x, and 7.7x higher
power consumption compared to our proposed work. Another two research
works also show higher power consumption compared to our proposed
work'®*®.One of the research work utilized HfO, as a memristive device with
250 nm CMOS process™ and other one used MIM configuration with
65nm CMOS process'®. On the other hand, our proposed work shows
significant power savings with stochasticity. In addition, our work shows the
trade-off between performance and cost of STDP inclusion.

In this work, a HfO,-based memristive device is utilized to build a
CMOS-compatible synapse, which shows the stochasticity with dynamic
read operation. This device shows the opportunity for a fully functional
device and at the same time, it enables controllable stochasticity with
dynamic read operation. A Monte Carlo analysis showed the different
operating points during the read operation. In addition the stochastic device
shows up to 8.9x energy saving when compared to normal operation. It was
shown that the stochasticity of the device can provide better learning for
neuromorphic computing. Various applications were tested using neuro-
morphic software frameworks EONS and RAVENS while utilizing our
memristive synapse with configurable read operation. These applications
showed performance improvement in some cases while in others the results
remained similar to non-stochastic. Specifically, the STDP learning method
was analyzed with our synapse in these applications as well. Enabling STDP
allowed for the neuromorphic optimization process to utilize the stochas-
ticity more efficiently in some cases. Finally, a reservoir computing analysis
was performed. Since reservoir computing is inherently stochastic, allowing
a tunable stochastic feature in the form of the synapse allowed it to increase
performance in some cases. However, in many cases with RC the
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Fig. 7 | Control results for Cart Pole, Bipedal Walker, and Bowman control applications. The first, second, and third rows display results for the CartPole-v1,
BipedalWalker-v3, and Bowman applications respectively including the fitness results, the number of network edges, and the number of network nodes.

performance dropped. Further exploration in RC with STDP and the
synapse is needed to get the full picture. Additional future work will include
other neuron properties such as leak and refractory which could be bene-
ficial when combined with our 3T1R synapse.

Method

Stochasticity mapping of proposed synapse

In this work, our proposed synapse is targeted to program at 3 kQy and 30 kQ
with programming voltage at 1.2V and 0.77 V respectively. Hence, the
synapse will be READ at different voltages to observe the READ current
distribution. Here, FinalREADcurrent is denoted as READCurrent in Fig. 4.
In addition, Fig. 4 shows the Monte Carlo simulation of READ operation,

where 5000 samples are considered. Here, the READ voltage is varied from
0.55V to 0.85 V to observe the stochastic pattern of read-out data. All the
simulations are observed in Cadence Spectre with a Verilog-A model for
menmristive devices and 65 nm CMOS process by IBM. Figure 4a shows the
READ operation at 0.55 V. The red and green colored distribution shows the
data samples for 30 k(2 and 3 k() respectively. The final READ current of a
3 kQ resistance will be higher than at 30 kQ. Due to that, 3 kQ is represented
as data ‘1’ and 30 kQ) is represented as data ‘0’ in Fig. 4. In this test case, data
‘0’ is 100% overlapped with part of data ‘1’. In addition, 93.48% of data ‘1’ is
overlapped with data ‘0’. If a reference current of a sense amplifier or a
neuron is set at 25 A, then 6.52% data ‘1’ can be read without any noise.
This kind of data distribution can be useful for weighted coin flip or
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Fig. 8 | Reservoir classification results for Iris, Wine, and Breast Cancer datasets. The results include the testing accuracy for the Iris, Wine, and Breast Cancer datasets

using the Reservoir Computing approach.

Fig. 9 | Reservoir timeseries results for EEG
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neuromorphic applications™. Figure 4b exhibits READ current distribution
at 0.6 V. In this test case, about 100% and 46.68% data of ‘0’ and ‘1’ are noisy,
respectively. The mean current of READ operation is decreased with the
increment of READ voltage. Next, Fig. 4c shows about 0.12% and 0.52% of
data ‘0’ and ‘1’ are noisy accordingly, which is approximately stable con-
dition for a READ operation with 5000 operations.

To achieve a more optimized READ current pattern, higher READ
voltages are observed. Figure 4d shows at 0.7 V, the READ noise has reduced
compared to the previous test case. Here, about 0.02% and 0.52% of data ‘0’
and ‘1’ are noisy respectively. Figure 4e shows the Monte Carlo analysis at
0.75 V, where the READ noise for data ‘0 is increased drastically. In addi-
tion, about 1/5 of the data ‘1 is noisy at this READ voltage. The next test case
at 0.8V will show that data ‘I’ can be biased more towards data 0.
According to Fig. 4f shows about 100% and 68.46% of data ‘0’ and ‘1’ are
noisy. Here, the READ current reduced is drastically. At 0.85 V the READ
current is reduced drastically with a poor READ current distribution. About
100% and 98.22% of data ‘0" and ‘1" are overlapped with each other. Finally, a
more reliable READ voltage is identified at 0.68 V for high-performance and
error-free applications. Figure 4h shows a most reliable READ operation
region, where the data noise is almost zero for both data ‘0" and 1".

It can be concluded from the above observation, that there are three
operating regions for this proposed synapse such as (i) higher READ current
and stochastic READ data, which falls between 0.55 V and 0.6V, (ii) opti-
mum READ operation region with lower READ current and negligible
READ noise, which falls between 0.61 V and 0.7 V, and (iii) lower READ
current and poor READ data distribution region, which falls between 0.71 V
and 0.85 V.

Spiking neural network evaluation

Utilizing the Monte Carlo simulation results from Fig. 4, probabilistic
models were created for 0.55V, 0.75V, 0.80 V, and 0.85 V device versions
that were then integrated into the TENNLab neuroprocessor called
Reconfigurable and Very Efficient Neuromorphic System (RAVENS)”. The
RAVENS neuroprocessor is a spiking neuromorphic processor that
implements integrate-and-fire neurons with each neuron having a thresh-
old, whether or not it will leak, or if it will have refractory periods while
synapses have a weight and delay parameter. All these aspects are custo-
mizable to the application at hand with additional support for STDP, which
dynamically modifies the synapse weights based on firing activity. To
explore the impacts of the stochastic behaviors of the 3T1R devices on
spiking neural networks (SNN), the probabilistic models of the devices were
integrated into the RAVENS processor to simulate stochasticity in the
hidden neurons. When a neuron exceeds its threshold value, the 3T1R
device model is sampled to determine if the neuron will fire or not: a value of
0 means the neuron will fire while a value of 1 means the neuron will not fire.
The various device models were evaluated on both classification and control
tasks and compared to default RAVENS behavior to establish a baseline.
Each task was also evaluated with and without STDP to better explore the
dynamics of STDP and stochasticity in conjunction with one another.

Conventional means to introduce stochasticity is to leverage pseudo-
random number generators (PRNG) such as linear-feedback-shift-registers
(LFSR). These RNG units are deterministic, computationally expensive, and
can require more hardware real estate to produce quality numbers. How-
ever, the proposed 3T1R devices utilize physics-based interactions from the
material and device parameters to produce better-quality RNG that can be
tuned for a desired distribution. Additionally, memristors are extremely
popular and well-researched for neuromorphic applications which lend well
for easy adoption.

For our training approach, we leveraged Evolutionary Optimization
for Neuromorphic Systems (EONS)™. EONS optimizes the number of
neurons, synapses, network structure, and other parameters through evo-
lution. It begins with a random initial population of networks with the
appropriate number of input and output neurons depending on the
application. The networks are evaluated on the task and ranked based on
their performance, with top-performing networks used to produce the next
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generation of networks through crossover and mutation. This process is
repeated for a given number of generations with the best performing indi-
vidual of the last generation being the solution.

Data Availability
The data (circuit simulation) generated during this study are available from
the corresponding author (H.D.) upon reasonable request.

Code availability
The codes for application evaluation are available from the author (C.D.S.
and K.P.P.) upon reasonable request.
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