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Classical mean-variance optimization is powerful in theory but fragile in practice, often producing
highly concentrated, high-turnover portfolios. Naive equal-weight (1/N) portfolios are more robust but
largely ignore cross-sectional information. We propose a quantum stochastic walk (QSW) framework
that embeds assets in a weighted graph and derives portfolio weights from the stationary distribution
of a hybrid quantum-classical walk. The resulting allocations behave as a “smart 1/N” portfolio:
structurally close to equal-weight, but with small, data-driven tilts and a controllable level of trading.
On recent S&P 500 universes, QSW portfolios match the diversification and stability of 1/N while
delivering higher risk-adjusted returns than both mean-variance and naive benchmarks. A
comprehensive hyper-parameter grid search shows that this behavior is structural rather than the
result of fine-tuning and yields simple design rules for practitioners. A 34-year, multi-universe
robustness study with rolling re-optimization further demonstrates that the QSW optimizer preserves
these advantages across market regimes. Overall, the QSW framework improves risk-adjusted
performance while maintaining strong diversification and moderate turnover.

Modern investmentmanagement operates in an arena of high-dimensional,
tightly coupled, and rapidly evolving data. Conventional quantitative
techniques—most notably the seminal mean-variance framework of
Markowitz1—encapsulate the trade-off between expected return and risk
through a quadratic objective that minimizes portfolio variance for a target
mean return. While mathematically elegant, this quadratic form becomes
fragile when confronted with today’s realities: estimation error in large
covariance matrices, non-Gaussian return distributions, time-varying cor-
relations, and a proliferation of real-world constraints such as turnover
limits, liquidity frictions, and regulatory capital charges2–6.

The classical foundations of portfolio optimization arewell established.
The work of Markowitz1 introduced the mean-variance framework, which
remains the cornerstone of modern portfolio theory. In this setting,
expected returns μ and the covariance matrix Σ jointly determine the effi-
cient frontier through problems such as minimum-variance optimization
and maximum-Sharpe optimization7–9. Over the decades, numerous
refinements have been proposed: the Black–Litterman model blends equi-
librium returns with subjective views in a Bayesian framework3; robust

optimization formulations introduce uncertainty sets for μ and Σ2,10,11; and
alternative risk measures such as coherent risk and CVaR have been
explored to better capture tail risks12,13.

Despite seven decades of refinement, however, mean-variance
optimization faces severe challenges in practice. Estimation error and
dimensionality are the first obstacles: the covariance matrix for n assets
contains 1

2 nðnþ 1Þ parameters, and for n = 500 this already exceeds 105

parameters, with condition numbers often above 106. With finite sam-
ples, small errors in μ and Σ can produce extreme and unstable
portfolios4,14.Markets are also non-stationary: correlations spike toward
unity during crises15, precisely when diversification is most needed, and
correlation structures exhibit asymmetric behavior between up and
down markets16. Empirical returns display heavy tails, skewness, and
volatility clustering17, making variance alone an incomplete proxy for
risk. Real-world implementation adds further complexity: cardinality
constraints, transaction costs, market impact, and liquidity constraints
turn the convex quadratic program into a mixed-integer nonlinear
program that is NP-hard6,18.
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Perhaps most critically, small perturbations in expected returns can
cause dramatic rebalancing; errors in means dominate those in covariances
by roughly an order of magnitude19,20, leading to concentrated, counter-
intuitive portfolios that often underperform simple equal-weight (1/N)
strategies out of sample14.

To mitigate these issues, a growing body of work has turned to neural
networks (NNs). One line of research follows a predict-then-optimize
paradigm: deep learning models are trained to forecast inputs such as
expected returns or risk premia more accurately than classical econometric
models21, with the forecasts then fed into a conventional optimizer. A sec-
ond, more recent line uses end-to-end deep reinforcement learning (DRL)
to learn portfolio policies directly: agents map market states to portfolio
weights to maximize cumulative reward functions such as the Sharpe ratio
or risk-budgeting objectives22–24. These approaches can, in principle, bypass
some of the sensitivity of mean-variance optimization to input estimates.
However, NN-based approaches introduce their own challenges. The
resulting models are typically highly non-linear and opaque, making it
difficult to understand or audit how they respond to changes in market
conditions25. This lack of interpretability is a serious concern for risk
management, regulatory review, and practitioner trust. Moreover, deep
models are data-hungry and prone to overfitting noisy, non-stationary
financial time series21, and DRL agents can suffer from training instability
and sensitivity to reward specification. In practice, these methods can
behave as powerful but opaque “black boxes”, which limits their adoption in
settings where transparency and stability are as important as raw
performance.

Parallel to these developments, the econophysics literature has high-
lighted a complementary perspective based on financial networks. Early
work showed that a covariance matrix can be filtered into sparse structures
such as minimum-spanning trees or planar maximally filtered graphs,
whose topology reveals hidden economic sectors and contagion
channels26–28. Subsequent studies demonstrated that risk propagation and
systemic fragility travel along these edges much like a diffusion process29,30.
From this viewpoint, the quadratic risk term w⊤Σw can be interpreted as a
diffusion of capital on a weighted network, where assets are vertices, cov-
ariances set edge weights, and self-loops reward each asset’s own risk-
adjusted return. Classical solvers glimpse this structure only indirectly
through dense linear algebra; they do not embed diversification in the
dynamics of the flow.

Recent progress in quantum information science enables this network
view to be dynamic and adaptive. Quantum stochastic walks (QSWs)31,32

and quantum network-ranking algorithms33–36 merge coherent quantum
evolutionwith classical randomwalks on the samegraph. In this framework,
a coherent channel governed by a Hermitian Hamiltonian explores the
network through superposition and interference,while a stochastic channel,
implemented via a Google-type generator, ensures ergodicity and con-
vergence. By tuning a quantum-classical mixing parameter, a QSW inter-
polates between fully quantum exploration and purely classical diffusion,
providing an adaptive mechanism that can respond to both structured
dependencies and stochastic shocks. The coherent channel can survey
multiple highly covariant clusters in parallel, while the stochastic channel
damps cyclic probability within tight clusters and nudges capital towards
under-represented regions of the network.

Building on these insights, we develop a quantum graph-theoretic
framework for portfolio optimization with four main contributions. First,
we map expected returns and covariances to a weighted, directed graph in
which self-loops encode asset-specific Sharpe information and inter-node
edges penalize correlation, providing a network-based representation of the
mean-risk trade-off. Second, we introduce a dual-channel QSW whose
density matrix evolves on this graph and whose diagonal converges to a
steady-stateweight vector; the classical andquantumchannels jointly realize
a “smart 1/N” allocation, structurally close to equal-weight but with small,
data-driven tilts and a controllable level of trading. Third, we provide a
practical implementation of the QSW framework (including GPU accel-
eration for matrix operations), making it feasible to optimize and rebalance

portfolios of order 100 assets in a realistic time. Fourth, we conduct a
comprehensive empirical evaluation, benchmarking QSW-based portfolios
against maximum-Sharpe mean-variance solutions, naive 1/N portfolios,
and the S&P 500 index. The tests span fixed parameter presets, a 625-point
hyper-parameter grid search, and a 34-yearmulti-universe robustness study
across 30 randomly sampled 100-stock S&P 500 universes. Across these
experiments, QSW-based portfolios consistently retain 1/N-like diversifi-
cation while improving risk-adjusted returns and maintaining moderate
turnover. The grid search shows that these gains are structural, not the result
of fine-tuning, and yield simple design rules that link the QSW parameters
to diversification, turnover, and efficiency.

The remainder of the paper proceeds as follows. We first present the
empirical results in the “Results” section, followed by a Discussion of
implications. Finally, we describe the QSW formulation and experimental
design in the “Methods” section.

Results
This section presents a comprehensive empirical validation of the QSW
framework. The experimental design has two phases: (1) a recent-period
parameter exploration (2018–2024) to understand and tune themodel, and
(2) a long-horizon, multi-universe robustness study (1990–2024) to test
generalizability across regimes and universes. The first phase uses a fixed
“top-100-by-market-cap” S&P 500 universe and includes both a preset-
based analysis and a systematic grid search. The second phase runs 30
independent trials on dynamically maintained, point-in-time S&P 500
universes to guard against selection and survivorship bias. Across all
experiments, QSW-based portfolios are compared against three bench-
marks: the maximum-Sharpe MPT portfolio, the naive 1/N portfolio, and
the S&P 500 index.

Experimental overview
Our experimental framework is designed to evaluate theQSWmethodology
under both controlled and realistic conditions.

In Phase 1, parameter exploration (2018–2024), we use daily data from
2018 to 2024 on the top 100 S&P 500 companies bymarket capitalization as
a fixed universe. This phase consists of two experiments. Experiment 1
(preset analysis) defines six QSW strategy presets that represent different
investment philosophies, from ultra-diversified to high-activity trading
styles. Each preset is evaluated across five quantum-mixing values ω ∈{0.2,
0.4, 0.6, 0.8, 1.0} to study the impact of the quantum-classical spectrum.
Experiment 2 (comprehensive grid search) systematically explores a 625-
point grid over the four QSW parameters (α, β, λ, ω) on the same top-100
universe. This grid search identifies robust high-performing regions of the
parameter space and clarifies how the four control knobs interact.

In Phase 2, robustness validation (1990–2024), we test the general-
izability of the approach over a 34-year backtest with rolling 2-year training
windows. Experiment 3 (multi-universe testing) runs 30 independent trials
on distinct 100-stock universes. As described in theMethods section (“Data
and experimental setup”), each universe is constructed point-in-time by
sampling from contemporaneous S&P 500 constituents and is dynamically
maintained to avoid survivorship bias. This design validates that the QSW
results are not dependent on a single, favorable asset selection.

In all experiments, QSW-based portfolios are evaluated against three
benchmarks: themaximum-SharpeMPTportfolio (classicalmean-variance
optimizer), the naive 1/N portfolio on the same universe, and the S&P 500
index as a market-cap-weighted passive benchmark.

Experiment 1: preset-based analysis
This experiment evaluates 30 distinct configurations, which are derived by
crossing the six parameter presets in Table 1 with five quantum-classical
mixes (ω∈{0.2, 0.4, 0.6, 0.8, 1.0}). To test themodel’s sensitivity to the length
of historical data, we evaluate every configuration twice: (i) using a 1-year
(“short-memory”) training window, and (ii) using a 2-year (“long-mem-
ory”) training window. Both sets of models are then out-of-sample back-
tested from 2018-01-02 to 2024-12-31 with quarterly rebalancing.
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A combined analysis of the cumulative wealth trajectories (Fig. 1) and
the detailed performance metrics (Table 2) reveals several critical insights
into the QSWmodel’s behavior relative to the benchmarks.

First, regarding model stability, the “two starkly different regimes”
visible in Fig. 1 are driven almost entirely by the instability of the MPT
benchmark, not the QSWmodel. This highlightsMPT’s extreme sensitivity
to estimation error, a key limitation we identified in the Introduction.With
1-Year Training, MPT produces a poor portfolio (Sharpe 0.86) with
extremely high volatility (31.61%). The short, noisy training window likely
results in a highly unstable covariance matrix, leading to a flawed optimi-
zation. In contrast, all QSW strategy presets (Sharpe ≈ 0.96–0.98) are stable
and easily outperform MPT. With 2-Year Training, with a more stable
window,MPT’s volatility drops to20.94%and its Sharpe ratio jumpsby58%
to 1.36. The QSW and 1/N models, however, are almost completely unaf-
fected by the change in window length, with their Sharpe (0.98) and
Volatility (≈17.2%) remaining rock-solid. This demonstrates the robustness
of the QSW method; its performance is not dependent on a “lucky” or
perfectly stable estimation window.

Second, theQSWmodel converges to a “Smart 1/N”. Themost striking
finding is that the QSWmodel, across all QSW strategy presets, produces a
risk and diversification profile that is nearly identical to the naive 1/N
benchmark. As seen in Table 2, the QSW’s Sharpe (0.96–0.98), Volatility
(≈17%),MaxDrawdown (≈−19%), andHHI (≈0.01) are all in lockstepwith
the 1/N portfolio. This suggests the QSW’s quantum-graph dynamics
naturally find the highly diversified, stable1/N state. The key difference is
that QSW acts as a “smart 1/N”, initiating a very low (2–35%) but non-zero
turnover, in contrast to MPT’s hyper-active 320–480% turnover.

Third, while MPT achieves the highest “paper” Sharpe ratio (1.36) in
the 2-year case, Table 2 shows this is operationally unfeasible. This per-
formance is achieved bymaking an extreme, concentrated bet (HHI ≥ 0.25,
or ≈4–5 effective stocks) and by turning over the entire portfolio 3–5 times
per year (320–480% turnover). The transaction costs from this churnwould
completely erase its “paper” alpha. QSW, by contrast, generates its alpha
with minimal turnover andmaximum diversification (HHI≈0.01, ≈90–100
effective stocks), making it a practical and cost-effective strategy.

Finally, Fig. 1 shows that in both 1-year and 2-year setups, all QSW
configurations (final wealth ≈ 3.0×) and the 1/N benchmark (≈3.0×) con-
sistently and significantly outperform the passive S&P 500 index (final
wealth ≈ 2.2×).

Comparing the 1-year (Table 2a) and 2-year (Table 2b) results reveals
the core weakness of MPT and the core strength of QSW. The MPT
benchmark is fundamentally unstable. When the training window changes
from 1-year to 2-years, MPT’s Sharpe ratio leaps 58% (from 0.86 to 1.36)
and its volatility drops from31.6% to 20.9%. This demonstrates thatMPT is
extremely sensitive to the estimation error in its inputs, a key classical
limitation. In stark contrast, theQSWand 1/Nmodels are rock-solid. Their
key metrics (Sharpe ≈ 0.98, Vol ≈ 17.2%) are almost completely unaffected
by the change in training data. This provides strong empirical evidence that
our QSW framework, like the 1/N benchmark, is structurally robust and

successfully insulated from the parameter instability that plagues classi-
cal MPT.

To understand the behavior within each preset, we analyze the effect of
the quantum-classical mixing parameter, ω, and the portfolio’s concentra-
tion over the 2018-2024 backtest period. We present the results for the
1-year training window here; the corresponding analysis for the 2-year
window, which confirms the same structural conclusions, is provided in the
Supplementary Information. Figure 2 shows the performancemetrics for all
six QSW strategy presets as a function of the quantum-classical balance, ω.
The results reveal a clear and powerful trend: theωparameter acts primarily
as a “turnover dial.” In all six QSW strategy presets, increasing ω (making
the model more “classical”) leads to a near-linear increase in portfolio
turnover. For example, in the “Ultra-Diversified” preset, turnover rises from
4 to 30% as ω goes from 0.2 to 1.0. Crucially, this increase in turnover has
almost no impact on the Sharpe ratio or volatility. These metrics remain
remarkably flat across the entireω spectrum, and always superior toMPT’s
1-year performance. Most importantly, ω does not break the model’s
diversification. The HHI remains at its 1/N floor (≈0.01) in all but the most
active presets, and even then, it stays an order ofmagnitudemore diversified
than MPT. This demonstrates that the QSW model’s core benefits (high
Sharpe, low volatility, and extreme diversification) are structurally inherent
and robust, while the ω parameter provides a simple, interpretable knob to
control the “cost” (i.e., turnover) of the strategy.

A core structural difference between QSW and MPT is revealed by
analyzing their portfolio concentration. We compare the models over the
2018-2024 backtest using four standard metrics, as shown in Fig. 3. The
QSWmodel, across all presets, behaves as a “smart 1/N”. Its concentration is
tunable anddirectly linked to thequantum-classicalmix,ω. As seen inFig. 3,
when ω is low (more quantum), the model’s HHI is locked at around the
theoretical floor of 0.01. As ω increases, the model is permitted to become
slightly more concentrated, and the HHI, effective number of stocks, max
single stockweight, and top 5 holdings all show a small, controlled deviation
from the 1/N state. However, even at its most “classical” (ω = 1.0), the QSW
model remains exceptionally well-diversified. The MPT benchmark (red
line) is defined by its extreme and erratic concentration. Its HHI is dan-
gerously unstable.While its average HHI is≈0.28, the Top 5Holdings chart
shows that MPT’s typical state is to hold ≈87–89% of the entire portfolio in
just five names. This confirms MPT is a structurally unstable and highly
concentrated strategy, while QSW is robustly diversified by design.

Portfolio annual turnover directly translates into implementation costs
that can significantly erode theoretical performance gains. These costs
compoundwith trading frequency,making turnover control a critical factor
in real-world portfoliomanagement. Institutional studies such as37 place the
all-in round-trip cost of trading cash equities at: large-cap stocks (5–15 bp),
mid-/small-cap (15–30 bp), andmarket impact (a further 10–50 bp). In this
work, we apply a conservative 20 bp all-in round-trip cost for large-cap
equities (10 bp commission & spread+ 10 bp market impact). Table 3
converts realized turnover into ex-ante implementation drag using this rate.
Even under themore forgiving 2-year training calibration,MPT forfeits ~64
bp of alpha to dealing costs versus ~7.4 bp for the QSW preset mean.

Is a 64 bp vs. 7 bp gap economically meaningful? Yes. Compare each
strategy’s “paper” alpha (CAGR in excess of the S&P500)with, andwithout,
implementation drag (Table 4).

RetentionMPT ¼
1 155
1 220

� 95%; RetentionQSW ¼
592
600
� 99%:

Even after deducting realistic dealing costs, QSWpreserves virtually all
of its back-tested edge, whereasMPT forfeits about 5 % of its “paper” alpha.
Because the classical maximum-Sharpe solution trades eight to thirteen
times more than QSW, its cost drag–while “only” 64 bp–is still an order of
magnitude larger in proportional terms. QSW’s subdued trading footprint
additionally mitigates price pressure, timing risk, and information leakage,
making its low-turnover profile a structural implementation advantage. In

Table 1 | QSW strategy presets used in phase 1

Preset α β λ Investment philosophy

Ultra-diversified 1.0 100.0 10.0 Prioritizes maximum
diversification

Moderate-
balanced

10.0 10.0 10.0 Balanced emphasis on risk,
return, and turnover

Stability-focused 1.0 10.0 100.0 Emphasizes position stability

Balanced-active 10.0 1.0 100.0 Moderate return focus with stable
positions

Sharpe-
maximizer

100.0 1.0 10.0 Aggressive pursuit of high-
Sharpe assets

High-activity 100.0 10.0 1.0 Maximum rebalancing frequency
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Experiment 3, we show that, even when the QSW parameters are re-
optimized every quarter over 1990–2024, the dynamic QSW optimizer still
trades substantially less than the long-memory MPT benchmark while
preserving its risk-adjusted edge.

In the previous analysis, we demonstrated that MPT is structurally
unstable at the macro level: changing the training window from 1 to 2
years led to dramatic changes in performance and risk profile (a 58%
jump in Sharpe). This section’s Monte Carlo test confirms this fragility
on a micro level. A fundamental flaw of classical MPT is its extreme

sensitivity to input parameters. A small, statistically insignificant
change in the expected return vector μ can cause the optimizer to
produce a radically different portfolio, leading to massive, unforced
turnover. To test the robustness of ourQSWmodel to this, we conduct a
Monte Carlo sensitivity analysis. We take a single period’s data and
apply a 20% random “shock” to the returns of a single, randomly chosen
asset (i.e., ri × random(0.8, 1.2)). We then re-run the optimization for
both QSW andMPT andmeasure the total absolute change in portfolio
weights (i.e.,∑i∣wi,new−wi,old∣). This process is repeated 1000 times for

Fig. 1 | Cumulative value of $1 invested in 2018.Top: 1-year training. Bottom: 2-year training. Red dashed line =MPT benchmark; dotted grey = S&P 500. SolidQSW lines
denote configurations that beat MPT on Sharpe ratio, dotted lines underperform.
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each of the six QSW strategy presets. Figure 4 plots the 1000-run dis-
tribution of this weight change, while Table 5 quantifies the results.

The results are clear and highly suggestive. The MPT benchmark (red
distributions in Fig. 4) exhibits extreme fragility. As quantified in Table 5,
while MPT’s mean weight change (1.72%) is moderate, its standard
deviation (7.82%) is massive–over 2× to 100× larger than any QSW preset.
This highlights how MPT amplifies minor input errors into significant
portfolio changes. The QSWmodel, by contrast, is both structurally robust
and tunable. Its stability is directly governed by its parameters, which
function as an accelerator and a brake: presets with high α (“Sharpe-Max-
imizer”, “High-Activity”) show the highest mean weight change (3.61%), as
they are designed to chase returns, while presets with a high diversification
penalty (β) or holding coefficient (λ) (such as “Ultra-Diversified”) show
exceptionally low mean weight changes (0.07–1.90%). This test provides
clear empirical evidence that the QSW framework not only overcomes the
fragility of MPT but also provides an interpretable, tunable mechanism to
control themodel’s sensitivity to input noise. Thenext experiment broadens
the evidence: a full 625-point grid search pinpoints globally robust para-
meter regions, and a 30-universe robustness study confirms that these
findings generalize beyond this fixed top-100 universe.

Experiment 2: comprehensive grid search
Having established in Experiment 1 that all sixQSWstrategy presets behave
robustly and outperformMPT’s 1-year model, we now search the full four-
dimensional parameter space θ = (α, β, λ, ω) to answer three key questions:
(i) Does an even better configuration exist than the presets? (ii) How sen-
sitive is performance to each hyper-parameter? (iii) Can we extract simple
design rules for practitioners?

This experiment performs a systematic grid search over the 625
parameter combinations defined by: α, β, λ ∈{0.1, 5, 50, 100, 500} and ω
∈{0.2, 0.4, 0.6, 0.8, 1.0}, yielding 625 unique combinations. All 625 com-
binations are evaluated using the Parameter Exploration Setup described in
the “Methods” (2018-2024 backtest, top-100 universe, and quarterly reba-
lancing). The entire 625-point grid search is performed twice: once using the
1-year (“short-memory”) rolling training window, and a second time using
the 2-year (“long-memory”)window.This results in a total of 625×2=1250

full, independent back-tests. For each of the 1250 back-tests, we record the
full set of performance metrics (Sharpe ratio, volatility, MDD, turnover,
efficiency E, and HHI).

The grid search results provide a powerful and conclusive answer to
our three research questions by revealing theQSW’s “smart” hybrid nature.
The model is not a sequential “two-step” process, but a simultaneous dual-
channel optimizer that intelligently balances its classical and quantum
components to achieve a robust, efficient portfolio. As noted, Tables 6 and 7
provide a strong and conclusive answer to our first research question. First,
QSWis structurally robust.Thedescriptive statistics inTable 6 show that the
QSW framework is inherently stable. In the 1-year window, the worst-
performingQSWconfiguration (Sharpe0.85) is still comparable to theMPT
benchmark (0.86). Furthermore, the median QSW Sharpe (≈0.96) is vastly
superior, proving that the model delivers strong performance across the
majority of its parameter space, in stark contrast to the brittleMPT solution.
Second, QSW converges to a smart 1/N-like portfolio. The most critical
finding comes from Table 7. In both the 1-year and 2-year windows, the
Top-10 best-performing QSW configurations are effectively identical: they
all have minimal return-chasing (α = 0.1) and maximal diversification
penalty (β = 500). The QSW model, when allowed to search the entire
parameter space, consistently identifies an almost infinitesimally traded, 1/
N-like portfolio as themost robust solution in this universe. Its performance
(Sharpe 0.989,HHI 0.010, Turnover < 3%) is a near-perfectmatch for the 1/
N benchmark. Third, QSW correctly identifies MPT’s “paper” victory. The
difference between the 1-year and 2-year results perfectly frames theQSW’s
value. In the 1-Year case, MPT (0.86) fails due to estimation error. QSW
(0.989) discovers that 1/N (0.980) is the superior strategy and outperforms
bothbenchmarks. In the 2-Year case,MPT (1.36) stabilizes andfinds ahigh-
turnover, high-concentration “paper” victory. QSW, faced with the same
data, still identifies the 1/N-like state as its optimal solution. It correctly
avoidsMPT’s operationally unfeasible (320% turnover) solution and selects
the most practical and efficient strategy.

Our analysis of the tables has answered our first question: the optimal
strategy is the “smart 1/N” state. To visualize the global impact of each
hyper-parameter, we plot the full 625-run parameter space. The 2D heat-
maps (Fig. 5) and the full correlationmatrix (Fig. 6) answer our second and

Table 2 | Headline metrics for the six QSW strategy presets (best mix ω = 0.2)

(a) 1-year training

Preset Sharpe Vol. [%] MDD [%] Turn. [%] Eff. HHI Eff.# stk

Ultra-diversity 0.9846 17.17 −19.27 4.00 19.64 0.0100 99.96

Moderate-balanced 0.9800 17.10 −19.15 31.92 2.95 0.0102 98.81

Stability-focused 0.9837 17.05 −19.19 35.28 2.65 0.0102 97.37

Balanced-active 0.9803 17.03 −19.12 50.49 1.87 0.0105 94.84

Sharpe-maximizer 0.9615 16.80 −19.56 79.71 1.19 0.0107 92.98

High-activity 0.9615 16.80 −19.56 79.71 1.19 0.0107 92.98

1/N benchmark 0.98 17.17 -19.27 0 ∞ 0.01 100

MPT benchmark 0.86 31.61 −16.03 480.85 (–) 0.18 0.268 3.7

(b) 2-year training

Preset Sharpe Vol. [%] MDD [%] Turn. [%] Eff. HHI Eff.# stk

Ultra-diversity 0.98 17.18 −19.20 2.11 31.68 0.0100 99.98

Moderate-balanced 0.98 17.15 −18.59 17.66 5.25 0.0101 98.80

Stability-focused 0.98 17.10 −18.13 26.06 3.64 0.0102 97.59

Balanced-active 0.98 17.10 −17.75 34.39 2.77 0.0104 95.95

Sharpe-maximizer 0.96 16.99 −18.25 71.24 1.33 0.0109 91.99

High-activity 0.96 16.99 −18.25 71.24 1.33 0.0109 92.00

1/N benchmark 0.98 17.17 −19.27 0 ∞ 0.01 100

MPT benchmark 1.36 20.94 −17.5 320.08 0.42 0.254 4.65

Vol. annualized volatility, MDD max drawdown, Turn. annual turnover, Eff. sharpe/turnover.
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third questions, showing how the model finds this state by using its dual-
channel design. The 2-year data, which are nearly identical, are provided in
the Supplementary Information and confirm that these conclusions are
robust to the training window choice.

Figure 5 makes the QSW’s structural behavior immediately visible.
Most strikingly, the concentration panel in Fig. 5b shows that, across the
entire 625-run grid, the HHI remains confined to an extremely narrow
band: from a floor of 0.010 (dark blue) to a maximum of 0.014 (bright
green). In other words, even the “worst-case” combination of (α, β, λ, ω)
never produces anything close to a concentrated portfolio. By comparison,
theMPT benchmark sits at HHI = 0.268,more than 20 × higher. This gap is
not a tuning artifact but a structural property: the QSW framework is
incapable of generating the kind of brittle, single-bet allocations that MPT
routinely produces. The Sharpe and Efficiency panels (Fig. 5a, c) complete
this picture by revealing how the hyper-parameters act as behavioral knobs

rather than sources of instability. Sharpe ratios remain tightly clustered in
the 0.94–0.99 range over most of the grid, indicating that performance is
remarkably insensitive to moderate perturbations of (α, β, λ, ω). Efficiency,
by contrast, variesmuchmore strongly along the λ andω axes: higher values
of λ (the “holding” parameter) and ω systematically reduce E by lowering
Sharpe and/or increasing turnover, while leaving the underlying diversifi-
cation almost untouched.

These visual impressions are quantifiedby the full correlationmatrix in
Fig. 6. Within our tested range ω ∈[0.2, 1.0], ω exhibits a strong negative
correlation with Sharpe and a positive correlation with HHI, confirming
that it primarily acts as a noise parameter: smallerω values lead, on average,
to more diversified, higher-quality portfolios, whereas larger ω values inject
additional stochasticity that slightly raises concentration and erodes risk-
adjusted returns. In contrast, λ shows a pronounced negative correlation
withEfficiencywhile having only amild effect on Sharpe, confirming its role

Fig. 2 | Impact of the quantum-classical mixing parameter (ω) on key metrics for all six QSW strategy presets (1-year training, 2018–2024 backtest). ω primarily
functions as a “turnover dial” without degrading the portfolio’s Sharpe ratio or diversification.
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as a trade-off knob between turnover and implementability rather than a
driver of raw performance. Together, the heatmaps and the correlation
matrix show thatQSW’s smart 1/N solution is not a single fine-tuned point,
but a broad, structurally robust region of the parameter space.

To visually confirm these findings and answer our second research
question, we analyze the global impact of each hyper-parameter. Figure 7
plots thePearsoncorrelationsbetween the four control knobs (α,β,λ,ω) and
our keymetrics.Wepresent the plots for both the 1-year “noisy” regime and
the 2-year “stable” regime, as their comparison provides insight into the
QSWmodel’s adaptive, structural behavior.

The correlation plots provide four practical design rules for practi-
tioners. First, ω is the main “noise” dial, with a mild impact on concentra-
tion. Among the four knobs, ω shows the strongest andmost stable pattern
across both horizons. Within our tested range ω ∈[0.2, 1.0], it is strongly
negatively correlated with Sharpe (1Y:−0.495, 2Y:−0.556), and positively
correlated with HHI (1Y: 0.225, 2Y: 0.393). In other words, higher ω injects
additional stochastic noise into the walk, which slightly increases con-
centration and systematically erodes risk-adjusted returns. Conversely,
lowerω values tend, on average, to producemore diversified, higher-quality

Fig. 3 | Evolution of portfolio concentration (Herfindahl–Hirschman Index,
HHI) for QSW-based portfolios (blue and purple) compared with the classical
MPT benchmark (red) during the 2018–2024 backtest period. TheMPT portfolio
exhibits structural instability, alternating between highly concentrated and diffuse

allocations, whereas all QSW configurations maintain stable, near-uniform diver-
sification (HHI ≈ 0.01) even through periods of market stress such as the 2020
COVID-19 crash.

Table 3 | Illustrative annual implementation drag assuming a
20 bp round-trip cost

1-year training 2-year training

Strategy/preset Turn. [%] Cost [bp] Turn. [%] Cost [bp]

QSW presets

Ultra-diversified 4.0 0.8 2.1 0.4

Moderate-balanced 31.9 6.4 17.7 3.5

Stability-focused 35.3 7.1 26.1 5.2

Balanced-active 50.5 10.1 34.4 6.9

Sharpe-maximizer 79.7 15.9 71.2 14.2

High-activity 79.7 15.9 71.2 14.2

QSW preset mean 46.9 9.4 37.1 7.4

1/N (naive) 0.0 0.0 0.0 0.0

MPT (max-Sharpe) 480.9 96.2 320.1 64.0

Costs are computed as Turnover × 0.20%. 1 basis point (bp) = 0.01 percentage points.

Table 4 | After-cost alpha retention

Paper α [bp] Cost drag [bp] Net α [bp]

MPT (2-yr calibration) 1 220 65 1 155

QSW (6-preset mean) 600 8 592

1 basis point (bp) = 0.01 percentage points.
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portfolios, although the magnitude of the HHI effect is small relative to the
structural diversification enforced by the QSW dynamics. Second, λ is the
“turnover” knob, trading off implementability against efficiency. As
expected from its construction, λ behaves as a holding/inertia parameter.
Across both windows, it exhibits a moderate positive correlation with HHI
(1Y: 0.225, 2Y: 0.242) and a moderate negative correlation with Efficiency
(1Y:−0.199, 2Y:−0.219), while its correlation with Sharpe is weak. Forcing
the model to “stay where it is” (large λ) suppresses trading and reduces
turnover, but at the cost of higher concentration and lower efficiency. In
other words, λ does not change the core performance level so much as it
controls the trade-off between practical implementability and how aggres-
sively the strategy rebalances back toward its preferred low-HHI state.
Third,α is a regime-dependent return bias, not a standalone source of alpha.

The return-preference parameter α shows only weak and inconsistent
correlations with Sharpe (positive in the 1-year window, slightly negative in
the 2-year window), while maintaining a tendency to reduce HHI and
Efficiency when increased. This indicates that, over the 2018–2024 sample,
classical return signals behave more like a noisy, regime-dependent bias
than a robust source of outperformance: raising α tilts the walk toward past
winners and can slightly improve Sharpe in the short-memory regime, but it
does not produce a reliable, horizon-independent Sharpe uplift. Fourth, β
looks neutral globally, but is decisive in the winning region. At first glance,
the global bar charts in Fig. 7 suggest that the diversification penalty β has
almost no correlationwithHHIor Sharpe (correlations near zero). Taken in
isolation, this would seem to imply that β does not matter. However, the
Top-10 list in Table 7 tells a very different story: every optimal configuration
sets β = 500, its maximum value. This is not a contradiction but a selection
effect: once α and ω are in a favorable regime (low return-chasing, low
noise), the QSW is already close to fully diversified (HHI ≈ 0.01), so further
changes in β have little marginal impact and its global correlation is washed
out. Conditioning on the high-Sharpe region, however, reveals the true
design rule: strong diversification pressure (largeβ) is a prerequisite for
ending up in the structurally robust, “smart 1/N” regime.

The grid search results provide empirical support for the dual-channel
framework introduced earlier. Taken together, the Top-10 list, the full-grid
statistics, and the visual diagnostics reveal a genuinely hybrid design: a
classical channel that pins the portfolio to a structurally robust baseline, and
a quantum channel that fine-tunes how this baseline is implemented in
practice. The Top-10 list in Table 7 is the most direct piece of evidence for
the classical channel acting as a stabilizer. Across both the 1-year and 2-year
windows, every optimal configuration chooses the same classical settings: a
minimal return-chasing coefficient (α = 0.1) and the strongest possible
diversification penalty (β= 500). In other words, themodel “learns” that the
2018–2024 market is effectively noisy from a classical perspective and
responds by turning the accelerator α almost off, while slamming the
diversification brake β to its maximum. The 2D heatmaps in Fig. 5 and the
correlation plots in Fig. 7 confirm this picture: once α is kept small and β is
large, the portfolio is structurally forced into an almost perfectly diversified
“smart 1/N” state (HHI ≈ 0.010) across a broad region of the grid. The
classical channel, therefore, acts as a stabilizer that locks in a robust risk-
return profile by overpowering unstable return signals. Given this stabilized
baseline, the quantum channel, controlled by ω, is then used to fine-tune
how the same robust allocation is implemented. This can be seen most
clearly in Table 7(a) whenwe fix (α, β, λ) = (0.1, 500, 0.1) and only varyω: as
ω decreases from 1.0 to 0.2, the Sharpe ratio remains essentially unchanged
(0.989 → 0.988); turnover decreases (from 2.9% to 1.5%); efficiency

Table 5 | Portfolio stability under a Monte Carlo shock test
(1000 runs)

Strategy/
preset

α β λ Mean % Wt
change

Std. Dev. % Wt
change

QSW presets

Ultra-diversified 1.0 100.0 10.0 0.07% 0.08%

Moderate-
balanced

10.0 10.0 10.0 0.80% 0.69%

Stability-
focused

1.0 10.0 100.0 1.40% 2.22%

Balanced-active 10.0 1.0 100.0 1.90% 2.45%

Sharpe-
maximizer

100.0 1.0 10.0 3.61% 3.76%

High-activity 100.0 10.0 1.0 3.61% 3.76%

MPT (max-
Sharpe)

– – – 1.72% 7.82%

Fig. 4 | Portfolio stability under a 20% random shock to a single asset’s return, repeated 1000 times. Each plot corresponds to a QSW preset (blue) vs. the MPT
benchmark (red).

Table 6 | Descriptive statistics across the full 625-point grid

Metric 1-year window 2-year window

Min Median Max Min Median Max

Sharpe 0.85 0.96 0.99 0.86 0.95 0.99

Turnover (%) 0.03 56.42 248.42 0.01 48.56 212.27

Efficiency
(Sharpe/Turn.)

0.35 1.71 95.72 0.41 1.94 97.50
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increases (from 25.6 to 39.6); while HHI stays fixed at 0.010 in all cases. In
other words, once the classical channel has pinned the portfolio to a highly
diversified, smart 1/N-like state, the quantum channel does not search for a
different target allocation; instead, it searches for cheaper ways to reach and
maintain that allocation. Consistent with the global correlations, lower ω
reduces noisy fluctuations and turnover, improving cost-efficiency without
sacrificing Sharpe or diversification. This is the practical “quantum
exploration” advantage: theQSWsimultaneously exploresmultiple paths to
the same robust state and selects the one with the most attractive imple-
mentation profile.

Experiment 2 shows that, for afixed period (2018–2024), theQSWcan
reliably discover a structurally robust, smart 1/N-like regime and fine-tune

its implementation cost through its hybrid quantum-classical channels. The
natural next question iswhether this behavior is truly adaptive: can the same
mechanism re-learn an appropriate balance between the classical channel
(α, β, λ) and the quantum channel (ω) as market conditions change?
Experiment 3 addresses this question by moving from a static to a fully
dynamic setting. Instead of identifying a single “best” parameter set over
2018-2024, we run the entire 625-point grid search at every quarterly
rebalancing date from1990 to 2024.At eachquarter, theQSWoptimizer re-
estimates its optimal mix of classical and quantum parameters for that
specific market regime. This 34-year, rolling experiment serves as the ulti-
mate test of the QSW’s robustness and “smartness” over multiple cycles,
crises, and structural shifts.

Table 7 | Top 10 QSW configurations from the 625-point grid search, compared against benchmarks

(a) 1-year training (sorted by Sharpe ratio)

Rank α β λ ω Sharpe Final val. HHI Turn.(%) Efficiency

1 0.1 500 0.1 1.0 0.989++ 3.02+ 0.010 2.9 25.6

2 0.1 500 5.0 1.0 0.989++ 3.02+ 0.010 3.3 23.0

3 0.1 500 0.1 0.8 0.988++ 3.01+ 0.010 1.9 33.8

4 0.1 500 0.1 0.6 0.988++ 3.01+ 0.010 1.7 36.3

5 0.1 500 5.0 0.6 0.988++ 3.01+ 0.010 1.9 34.5

6 0.1 500 0.1 0.4 0.988++ 3.00+ 0.010 1.6 37.6

7 0.1 500 5.0 0.8 0.988++ 3.01+ 0.010 2.1 31.5

8 0.1 500 5.0 0.4 0.988++ 3.00+ 0.010 1.7 36.3

9 0.1 500 0.1 0.2 0.988++ 3.00+ 0.010 1.5 39.6

10 0.1 500 5.0 0.2 0.988++ 3.00+ 0.010 1.6 38.6

1/N – – – – 0.980 2.98 0.010 0.0 ∞

MPT – – – – 0.860 4.56 0.268 480.9 0.18

(b) 2-year training (sorted by Sharpe ratio)

Rank α β λ ω Sharpe Final val. HHI Turn.(%) Efficiency

1 0.1 500 0.1 1.0 0.989+ 3.01+ 0.010 1.4 41.6

2 0.1 500 50.0 0.2 0.989+ 2.99+ 0.010 10.4 8.7

3 0.1 500 5.0 1.0 0.989+ 3.01+ 0.010 1.6 38.4

4 0.1 500 0.1 0.8 0.988+ 3.00+ 0.010 0.9 50.7

5 0.1 500 5.0 0.8 0.988+ 3.00+ 0.010 1.1 47.9

6 0.1 500 0.1 0.6 0.988+ 3.00+ 0.010 0.9 53.4

7 0.1 500 5.0 0.6 0.988+ 3.00+ 0.010 0.9 51.6

8 0.1 500 0.1 0.4 0.988+ 2.99+ 0.010 0.8 54.2

9 0.1 500 100.0 0.2 0.988+ 2.98+ 0.010 25.2 3.8

10 0.1 500 5.0 0.4 0.988+ 2.99+ 0.010 0.9 53.1

1/N – – – – 0.980 2.98 0.010 0.0 ∞

MPT – – – – 1.360 5.84 0.254 320.1 0.42

Fig. 5 | Hyper-parameter heatmaps (1-year training). These plots reveal the “design rules” of the QSW model, showing how α, β, and λ control the portfolio’s behavior.
a Sharpe ratio. b HHI (concentration). c Efficiency ratio (Sharpe/Turnover).
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Experiment 3: robustness validation (1990–2024)
This Phase 2 experiment stress-tests the QSW as a dynamic hybrid opti-
mizer over a 34-year period (1990–2024) that spans multiple major crises,
including the Dot-com bubble, the 2008 global financial crisis, and the 2020
COVID crash. Building directly on the insights from Phase 1, we now ask a
harder question: can the same dual-channel mechanism continuously re-

learn an appropriate balance between its classical channel (α, β, λ) and
quantumchannel (ω) asmarket conditions change, and can it do so robustly
across different equity universes? To answer this, Experiment 3 combines a
dynamic dual-channel strategy with multi-universe testing.

The experimental setup involves a dynamic adaptive model that re-
optimizes channels every quarter. At each quarterly rebalancing date from

Fig. 7 |Hyper-parameter correlation bar charts for 1-year (top row) and 2-year (bottom row) training.These plots reveal the “design rules” of theQSWmodel and how its
behavior adapts to the input data. Parameter correlations with Sharpe ratio (a, d), HHI (b, e), and efficiency ratio (c, f) for 1-year (top row) and 2-year (bottom row) training.

Fig. 6 | Full hyper-parameter and metric correla-
tion matrix (1-year training). Note the near-zero
correlation for Sharpe, confirming its robustness,
and the strong, opposing correlations for α and β on
HHI and Efficiency.
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1990 to 2024, themodel runs a full 625-point grid search on themost recent
2-year training window. It then selects the parameter set that best balances
the classical and quantum channels (α, β, λ, ω) under that specific market
regime. In contrast to Experiment 2, which identified a single “best-fit”
configuration for 2018-2024, this experiment allows the QSW optimizer to
re-learn its settings every quarter over 34 years.We performmulti-universe
testing using 30 independent trials. To ensure that the results are not an
artifact of a single, “lucky” 100-stock universe, we repeat the entire 34-year
dynamic backtest 30 times. As described in the Methods (“Data and
experimental setup”), each trial starts from a different, randomly sampled
100-stock subset of thepoint-in-timeS&P500constituents in1990Q1and is
dynamicallymaintained: at each quarterly date, delisted stocks are removed
and immediately replaced by newnames drawn from the contemporaneous
S&P 500 membership. This multi-universe design ensures that our
robustness conclusions do not rely on a particular asset selection or
survivorship bias.

Table 8 reports the cross-universe means and standard deviations.
Threepatterns standout. First,QSWdelivers thehighest averageCAGRand
Sharpe, with markedly lower dispersion than MPT. Second, this is not
achieved by taking more risk: QSW’s volatility lies between 1/N and MPT,
its average maximum drawdown is smaller than both MPT and the S&P
500, and its Calmar ratio is materially higher than all benchmarks. Third,
QSW attains these outcomes with less turnover than MPT, indicating that
the QSW optimizer is not simply “over-trading” its way to higher returns
but improves the overall risk-return-cost profile.

Figure 8 complements Table 8 by showing the full cross-universe
distributions. The Sharpe violins in Fig. 8(a) show that QSWdominates not
only on average but in most individual universes: the bulk of its mass lies
above both 1/N and MPT, with little overlap. Figure 8(b) shows the same
ordering for Calmar ratios, confirming that the advantage persists after
normalizingbymaximumdrawdown. Finally, thefinal-valuedistribution in
Fig. 8(c) illustrates how these differences compound over 34 years: starting
from$1,QSWtypically reaches several times the terminalwealth of 1/Nand
an order of magnitude more than MPT or the index. The medians and
interquartile ranges closely track the means, indicating that the out-
performance is systematic rather than driven by a few outlier universes.

Figure 9 examines how QSW earns its outperformance. On volatility,
QSW sits between 1/N andMPT, indicating that its higher Sharpe is driven
by better risk pricing rather than simply taking more overall risk. On
drawdowns, QSW again occupies the favorable middle ground: its max-
imum drawdowns are consistently shallower than those of MPT and the
index, and are either slightly better or comparable to 1/N. Finally, QSW
strikes a pragmatic balance on trading activity: it trades substantially less
thanMPTwhile, of course, tradingmore than the nearly buy-and-hold 1/N
portfolio. Taken together, these distributions show that the QSWoptimizer
improves the overall risk-return-cost trade-off rather than relying on
extreme leverage, concentration, or turnover.

It is worth noting that the average QSW turnover in Experiment 3
(around 200% per year) is higher than in the static Phase 1 experiments
(typically 20–80% for the best presets in Experiment 1 and a preset mean of
about 40% in Experiment 2). This is an expected consequence of moving
from a fixed parameter configuration to a fully dynamic hybrid optimizer.
At each quarter, the model not only updates the portfolio weights in
response to new returns, butmay also switch to a different point in the (α, β,
λ, ω) grid. Even if the selected configurations are individually low- or

moderate-turnover, the act of re-optimizing and jumping between config-
urations introduces an additional layer of trading. Crucially, however, QSW
still trades substantially less than theMPTbenchmark (about 200%vs. 330%
annual turnover on average) while delivering markedly higher Sharpe and
Calmar ratios. Hence, the higher turnover in Experiment 3 reflects the cost
of adaptivity rather than a loss of control.

Thewin-rate bars in Fig. 10a summarize the robustness of these results.
QSW outperforms MPT, 1/N, and the S&P 500 in the vast majority of
universes across all key metrics (Sharpe, Calmar, CAGR, maximum
drawdown, and final value), with win rates close to 100% in most com-
parisons. Figure 10b shows the same message in risk-return space: QSW
outcomes form a tight cluster along a high-Sharpe ridge, while 1/N sits on a
lower ridge andMPT outcomes are bothmore dispersed and systematically
below the QSW cloud. The index lies at the bottom-left corner, with the
lowest CAGR and Sharpe. This confirms that QSW’s advantage is not the
result of a few extreme outliers, but a stable shift of the entire risk-return
distribution.

Figure 11 shows that the shape of theQSWcurves closely tracks that of
the 1/N benchmark across all 30 universes. Whenever the equal-weight
portfolio delivers a higher final wealth, Sharpe, or Calmar ratio in a given
universe, the QSW strategy tends to sit slightly above it, with a very similar
risk and drawdownprofile and amoderate increase in turnover. In contrast,
theMPT series is both noisier and structurally different, with large swings in
volatility, drawdown, and trading activity. This behavior is exactly what one
would expect from the “smart 1/N” structure identified in Experiment 2: the
dynamic QSW optimizer repeatedly re-discovers an almost equal-weight
allocation—driven by small α, large β, and low-to-moderate ω—and then
adds a thin, data-driven tilt on top of that baseline. Across universes, QSW
therefore behaves not as an unstable maximizer, but as a robust, smart
versionof 1/N: it inherits thediversificationand resilienceof thenaive equal-
weight portfolio, while systematically lifting its risk-adjusted performance.

While the cross-universe results establish statistical robustness, it is also
instructive to inspect a single, representative universe in detail. Figure 12
illustrates the time evolution of the dynamic QSW strategy on a randomly
sampled 100-stock universe, together with the corresponding path of the
optimal hyper-parameters.

Several features are worth noting. First, the dynamic QSW strategy
consistently stays ahead of both MPT and 1/N, with the performance gaps
widening after each major crisis episode (Dot-com, 2008, and COVID-19).
This confirms that the gains observed in the cross-universe statistics are not
confined to a particular bull market regime, but persist across markedly
different environments. Second, the bottom panel shows that the optimizer
does not lock into a single parameter setting. Instead, it repeatedly re-learns
a familiar pattern: α is kept lowmost of the time, β is frequently driven to its
upper bound, and ω toggles between more classical and more quantum
regimes depending on market conditions. During volatile or stressed peri-
ods, themodel tends to reinforce the diversification channel (largeβ, low-to-
moderate ω), while in calmer regimes it allows slightly more classical
exposure. This behavior is fully consistent with the design rules inferred
from the 2018–2024 grid search in Phase 1.

Figure 13 further shows that QSW experiences shallower and faster-
recovering drawdowns than MPT and the S&P 500, while maintaining
volatility in a similar range to the 1/N benchmark. The QSW optimizer,
therefore, doesnot achieve its higherCAGRby leaning intoextreme tail risk;
instead, it improves the balance between return and drawdown over the full

Table 8 | Summary statistics for Experiment 3 (1990–2024), averaged over 30 random S&P 500 universes

Strategy CAGR Volatility Sharpe Calmar Max DD Turnover

QSW 23.3% ± 3.4% 20.6% ± 1.9% 0.979 ± 0.082 0.63 ± 0.20 38.0% ± 5.0% 201.1% ± 11.2%

MPT 14.6% ± 2.4% 25.8% ± 9.7% 0.480 ± 0.114 0.28 ± 0.07 55.1% ± 9.7% 333.1% ± 13.8%

1/N 17.2% ± 3.5% 19.0% ± 2.2% 0.742 ± 0.083 0.41 ± 0.19 43.8% ± 5.5% 0.1% ± 0.1%

S&P 500 8.3% ± 0.0% 18.0% ± 0.0% 0.368 ± 0.000 0.17 ± 0.00 47.7% ± 0.0% N/A
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34-year horizon. For brevity, we only report a representative subset of the
30-universe results and one detailed case study in this section. Additional
diagnostic figures–including per-experiment performance panels for all 30
universes (final portfolio values, Sharpe ratios, CAGRs, Calmar ratios,
maximum drawdowns, and annual turnover), as well as extended single-
universe comparisons–are provided in an online supplementary image

archive at https://github.com/aceest/quantum-stochastic-walk-for-
Portfolio-Optimization-Theory-and-Implementation-on-Financial-
Networks, in the 30_experiments subdirectory. These supplementary
figures are fully consistentwith the results reportedhere andallow interested
readers to visually inspect the behavior of the QSW strategy across all
individual universes and metrics.

Fig. 8 | Distribution of risk-adjusted performance
and final wealth across 30 random S&P 500 uni-
verses (1990–2024). Each violin summarizes the
cross-universe distribution for one strategy; dots
show individual universes, and horizontal barsmark
themean. a Sharpe ratio distribution. bCalmar ratio
(CAGR/Max DD) distribution. c Final portfolio
value (log scale).
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Discussion
This section synthesizes the empirical findings from the Results section,
discusses their implications for portfolio construction, and outlines limita-
tions and directions for future work. Our experiments were designed to
answer three core questions: (i)whetherQSW-based portfolios can improve
on classical MPT and naive 1/N benchmarks; (ii) how sensitive the QSW
performance is to its hyperparameters; and (iii) whether these properties
persist over long horizons and across different equity universes.

Across all Phase 1 experiments on the top-100 S&P 500 universe
(2018–2024), QSW-based portfolios consistently exhibited risk and diver-
sification characteristics closely aligned with the naive 1/N benchmark. In
Experiment 1, all six QSW strategy presets achieved Sharpe ratios around
0.96-0.98, volatilities near 17%, andHHI values≈0.01, nearly identical to 1/
N, while systematically outperforming the MPT maximum-Sharpe

portfolio in the 1-year setting. Beyond raw risk-adjusted returns, theMonte
Carlo shock analysis in Experiment 1 reveals a critical structural advantage
of theQSWframework: intrinsic resistance to the “errormaximization” that
plagues classical optimization. While the MPT benchmark exhibited
extreme fragility at the micro level–amplifying minor input perturbations
into massive weight fluctuations with a standard deviation of nearly 8%—
the QSW allocations remained remarkably stable. This stability is archi-
tectural rather than accidental; theQSWparameters act as tunable dampers,
where the diversification penalty (β) and holding coefficient (λ) effectively
insulate the portfolio from input noise. Unlike classical solvers that require
artificial constraints to prevent extreme rebalancing in response to esti-
mation error, the QSW dynamics naturally suppress unforced turnover,
providing a transparent mechanism to control the model’s sensitivity to
market noise. Experiment 2 generalized this behavior: the full 625-point grid
search showed that the entire QSWparameter space yields HHI in the tight
range [0.010, 0.014], more than 20× more diversified than the MPT
benchmark (HHI ≈ 0.26), and Sharpe ratios that are both high and
remarkably stable. Taken together, these results indicate that the QSW
dynamics are structurally anchored to a highly diversified, equal-weight-like
regime, while still allowing for mild, data-driven tilts.

The grid search in Experiment 2 revealed that the Top-10 config-
urations (by Sharpe) all converge to the same pattern: minimal return-
chasing (α = 0.1) and maximal diversification pressure (β = 500), with
low-to-moderate λ and ω. Heatmaps and correlation analyzes showed
that β acts as a structural “brake” that pins HHI at the 1/N floor across
large regions of the grid, whileω and λ act as behavioral knobs that trade
off turnover and cost-efficiency without destabilizing performance.
Importantly, the Sharpe surface is flat and robust: even the worst QSW
configuration in the grid has a Sharpe comparable to, or better than,
MPT under a 1-year window, and the median QSW Sharpe is sub-
stantially higher. This suggests that the QSW framework does not rely
on a single fine-tuned parameter vector, but instead defines a broad,
robust region of “good” configurations.

Phase 2 (Experiment 3) stress-tested the framework as adynamicQSW
optimizer from 1990 to 2024, with quarterly re-optimization over rolling
2-yearwindowsand30 independent 100-stockuniverses randomly sampled
from point-in-time S&P 500 constituents. Over 34 years and 30 universes,
QSW remains a high-Sharpe, low-fragility strategy. On average, QSW
achieved a CAGR of about 23%, a Sharpe ratio near 1.0, and a Calmar ratio
materially above those of MPT, 1/N, and the S&P 500, while maintaining
volatility between1/NandMPT, andmaximumdrawdowns smaller thanor
comparable to 1/N and well below MPT and the index. The dynamic
optimizer accepts a higher average turnover (around 200%per year) than in
the static Phase 1 experiments (typically 20–80% for the best presets and
about 40% on average in Experiment 2) as the cost of adaptivity, but still
trades substantially less than MPT’s 300–400% levels. Distributional plots,
win-rate charts in Fig. 10a, and risk-return scatter plots in Fig. 10b all
support the same conclusion: QSW shifts the entire risk-return cloud
upward relative to the benchmarks, rather than merely producing a few
lucky outliers.

The single-universe case study in Experiment 3 shows how the rolling
grid search behaves through the Dot-com bubble, the 2008 crisis, and the
COVID shock. The parameter paths exhibit a recurring pattern:α stays low,
β is often at or near its upper bound, and ω toggles between more classical
and more quantum regimes as volatility and market stress change. The
dynamic hybrid optimizer repeatedly re-discovers the smart 1/N regime.
The resulting portfolios retain a near-1/N diversification profile but adjust
turnover and minor tilts to match the current regime. This behavior is
consistent with the design rules inferred in Experiment 2, confirming that
the same “smart 1/N” logic persists when the optimizer is allowed to adjust
itself over three decades.

The empirical results have several implications for practical portfolio
construction and for the role of quantum-inspiredmethods infinance. First,
equal-weight remains a powerful baseline, but can be improved in a
structured way. Our findings reinforce existing evidence that naive 1/N is a

Fig. 9 | Risk and trading-cost profile across 30 universes. QSW achieves higher
risk-adjusted returns than 1/N andMPT while keeping volatility and drawdowns at
moderate levels and trading substantially less than the MPT optimizer. a Annual
turnover distribution. b Annual volatility distribution. cMaximum drawdown
distribution.
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surprisingly effective benchmark in the presence of estimation error.
However, QSW shows that it is possible to systematically improve on 1/N
without sacrificing itskey virtues. By embedding 1/Nas a structural attractor
(via diversification penalties and the QSW dynamics) and then allowing
small, data-driven deviations on top, the QSW framework operationalizes
the idea of a “smart 1/N”: a portfolio that behaves like equal-weight in bad
regimes and noisy environments, but tilts modestly when and where the
data are reliable.

Second, quantum-inspired dynamics provide structure, not “magic”
alpha. The advantage of the QSW framework does not come from exotic
quantum effects per se, but from the structure imposed by the quantum-
walk-inspired evolution: probabilitymass spreads over a graph in away that
naturally favors diversified, low-concentration states, while the decoherence
and mixing parameters control how aggressively the system can deviate
from this baseline. In practice, these dynamics act as a regularization
mechanism that prevents the optimizer from collapsing into fragile,

Fig. 10 | Consistency of QSW outperformance across 30 universes. a QSW win rates by metric, showing the fraction of universes in which QSW outperforms each
benchmark. b Risk–return scatter plot (CAGR vs volatility), with each point corresponding to one universe.
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concentrated portfolios–a failure mode that classical MPT is particularly
prone to, especially under short or noisy training windows.

Third, turnover and implementation constraints must be treated as
first-class citizens. A recurring theme in our experiments is that nominal
Sharpe or CAGR numbers can be deeply misleading if turnover and
implementation costs are ignored. Classical MPT often wins on “paper
Sharpe” but loses in any realistic cost-adjusted comparison due to
extreme turnover and concentration. By contrast, the QSW design rules
naturally push the framework into regions of the parameter space where
efficiency (Sharpe per unit of turnover) is high and diversification is
maintained. The comparison between Phase 1 and Phase 2 makes this
trade-off explicit. In the static 2018–2024 setting of Experiments 1 and 2,
the best QSW presets typically operate with annual turnover in the
20–80% range (around 40% on average), reflecting a low-footprint,
“smart 1/N” implementation. In the dynamic robustness experiment
(Experiment 3), the QSW optimizer accepts a higher average turnover of
roughly 200% per year in exchange for quarterly re-optimization of the
classical and quantum channels over a rolling 2-year window. Even so,
QSW still trades substantially less than the MPT maximum-Sharpe
benchmark (about 330% on average) while delivering markedly higher

Sharpe and Calmar ratios. In this sense, turnover is not eliminated but
budgeted: the extra trading capacity is allocated to regime adaptation
rather than to fragile, high-frequency re-optimization of a highly con-
centrated portfolio.

Fourth, robustness to estimation error is more valuable than local
optimality. From the Monte Carlo shock tests in Experiment 1 to the 625-
point grid search and the 30-universe robustness study, a consistent pattern
emerges: QSW prioritizes stability and robustness over extreme local
optimality. In many institutional contexts, especially where mandates are
sizeable and capital is sticky, such robustness is more valuable than
squeezing out a few extra basis points of back-tested Sharpe from a highly
fragile solution. The QSW framework, therefore, appears particularly well-
suited to applications where estimation error, regime shifts, and market
frictions are unavoidable.

Despite the encouraging results, several limitations of the present study
should be acknowledged. First, our experiments focus on U.S. large-cap
equities (S&P 500 constituents) and a specific 34-year historical period.
While this horizon includes multiple crises and structural shifts, the con-
clusions may not directly transfer to other asset classes (e.g., credit, com-
modities, FX), to strongly illiquid markets, or to regimes with very different

Fig. 11 | Performancemetrics across all 30 universes (1990–2024).Each panel plots onemetric (final value, Sharpe, CAGR,Calmar ratio,maximumdrawdown, and annual
turnover) for QSW, MPT, 1/N, and the S&P 500 as a function of the universe index.

https://doi.org/10.1038/s44335-025-00050-4 Article

npj Unconventional Computing |             (2026) 3:7 15

www.nature.com/npjunconvcomput


microstructure and regulation. Extending the analysis to multi-asset port-
folios and to non-U.S. markets is a natural next step. Second, imple-
mentation costs are treated via stylized turnover-based approximations
(e.g., a constant round-trip rate). In practice, transaction costs depend on
trade size, volatility, depth, and contemporaneous order flow, among other
factors. A more detailed cost model, calibrated to actual execution data,
could refine the comparison between QSW and MPT and may alter the
optimal choice of α, β, λ, and ω in the optimizer. Third, the 625-point grid
search provides a transparent way to explore theQSWparameter space, but
it is not necessarily optimal from a computational or statistical standpoint.
More sophisticated search methods (Bayesian optimization, bandit-style
exploration, or meta-learning across universes) could lead to better para-
meter selection with fewer evaluations. Moreover, we have not explicitly
optimized the re-optimization frequency; quarterly updates are a pragmatic
choice, not a theoretically justified optimum. Fourth, the particular QSW
formulation used here is only one of many possible quantum-inspired
stochastic processes. Other variants—including different graph construc-
tions, alternative decoherence models, or multi-particle walks—may yield

different behavior. Similarly, we have not yet incorporated factor structures,
sector constraints, or more complex risk models into the QSW dynamics.
These design choices could be important in practical settings and warrant
further exploration in future work.

The framework introduced in this paper opens several directions for
further research.Anatural extension is to applyQSW-basedoptimization to
multi-asset portfolios that combine equities, fixed income, commodities,
and alternative investments, potentially with a factor-based representation
(value, momentum, quality, macro factors, etc.). In such settings, the graph
structure could encode both security-level and factor-level relationships,
allowing the quantum-walk dynamics to propagate information across
multiple layers. Future work could also integrate more realistic transaction-
cost models, liquidity constraints, and regulatory or mandate-specific
constraints (e.g., tracking error, sector caps, ESG limits) directly into the
QSW optimization. This would allow a joint design of the quantum and
classical channels that explicitly targets cost-adjusted utility or drawdown-
sensitive objectives. Inparticular, replacing thepure Sharpeobjective used in
the quarterly grid search of Experiment 3 with a cost-aware criterion–for

Fig. 13 | Risk path for the single-universe case study. Left: cumulative drawdowns over time; Right: rolling 8-quarter volatility.

Fig. 12 | Single-universe case study (1990–2024). Top:Cumulative portfolio values (log scale) for QSW,MPT, 1/N, and the S&P 500, withmajor crisis periods highlighted.
Bottom: Evolution of the QSW parameters (α, β, λ, ω) selected by the rolling 2-year grid search at each quarter.
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example, maximizing the efficiency score E or Sharpe subject to an explicit
turnover cap–could reduce the average turnover from its current ~200%
level while preserving most of the adaptive benefit. Another promising
direction is to embed QSW within an online-learning or change-point
detection framework, allowing it to respond more intelligently to sudden
regime shifts–for example, by adjusting the re-optimization frequency or
temporarily increasing diversification pressure when uncertainty is high.
Finally, although our implementation is entirely classical and quantum-
inspired, the QSW framework is designed to be compatible with future
quantum hardware. Exploring hardware-efficient encodings of the QSW
dynamics and co-designing algorithms that leverage early quantum devices
for the most computationally intensive subroutines (e.g., sampling, large-
scale graph propagation) is an interesting avenue as quantum technologies
mature.

In conclusion, this work introduces and empirically validates a QSW-
based framework for portfolio construction that combines the robustness of
naive 1/N with the flexibility of a parameterized, hybrid quantum-classical
optimizer. Across multiple experiments, time horizons, and equity uni-
verses, the QSW model consistently delivers higher risk-adjusted returns
than classical MPT and naive 1/N, while maintaining strong diversification
and moderate turnover. The central message is not that quantum-inspired
models magically generate alpha, but that they can enforce desirable
structural properties—in particular, diversification and robustness to esti-
mation error—in a principledway.Asfinancialmarkets continue to grapple
with noisy data, regime uncertainty, and implementation frictions, such
structurally robust, “smart 1/N” approachesmay offer a valuable alternative
tobothnaive diversification and fragile, high-dimensional optimization.We
hope that the QSW framework presented here can serve as a foundation for
further work at the intersection of quantum-inspired algorithms and
practical portfolio management.

Methods
QSW formulation on financial graphs
Quantum stochastic walks (QSWs) extend classical random walks by
blending coherent quantum evolution with controlled decoherence on the
same graph. The coherent channel, driven by a Hamiltonian, allows
superposition and interference across neighboring nodes, while the sto-
chastic channel, implemented via a Lindblad dissipator, guarantees ergo-
dicity and convergence to a unique stationary state. This dual-channel
design overcomes the shortcomings of purely classical diffusion (no inter-
ference, fragile reliance on local correlations) and purely quantumwalks (no
stationary distribution), making QSWs a natural engine for portfolio allo-
cation on financial networks.

Regarding classical random walks and the PageRank component,
consider a graph G = (V, E) with n nodes representing financial assets. A
simple continuous-time random walk can be described by the master
equation

d p!
dt
¼ ðP � IÞ p!; ð1Þ

ffor a fixed unit of excess return where p!¼ ðp1; . . . ; pnÞ> is the
probability distribution over nodes, P is a row-stochastic transition
matrix, and (P − I) plays the role of an infinitesimal generator. The
PageRank algorithm38 enhances this framework by introducing a
“teleportation” step:

G ¼ αdampP þ ð1� αdampÞ
11>

n
; ð2Þ

where αdamp∈ (0, 1) is the damping parameter (typically ≈ 0.85) and 11⊤ is
the n × n all-ones matrix. This construction mixes graph-based transitions
with a uniform teleportation step, ensuring that G is irreducible and
aperiodic and therefore admits a unique stationary distribution even for
directed graphs with dangling nodes.

A continuous-time quantum walk (CTQW) replaces the classical
distribution p! with a quantum state jψi evolving under the Schrödinger
equation39,40

iℏ
djψi
dt
¼ H jψi; ð3Þ

where H is a Hermitian Hamiltonian. The state evolves as
jψðtÞi ¼ e�iHt=ℏjψð0Þi, and the probability of finding thewalker at node j is
Pj(t) = ∣〈j∣ψ(t)〉∣2. While CTQWs can achieve speedups on certain graph
problems41, they lack a stationary state and are highly sensitive to
decoherence.

QSWs interpolate between the classical master equation (1) and the
Schrödinger-type CTQW (3) via the Gorini–Kossakowski–
Lindblad–Sudarshan (GKLS) master equation36:

dρ
dt
¼ �ið1� ωÞ½H; ρ� þ ω

X
i;j

cijðLijρLyij �
1
2
fLyijLij; ρgÞ; ð4Þ

where ρ is the density matrix, ω ∈ [0, 1] is the quantum-classical mixing
parameter, H is the Hamiltonian, Lij ¼ jiihjj are Lindblad jump operators
representing transitions fromnode j to node i, and cij≥ 0 are transition rates.
The generator consists of two competing terms: a coherent term−i(1− ω)
[H, ρ] that drives unitary evolution, and a dissipative term ω∑i,jcij(⋅) that
introduces decoherence and classical jumps. The mixing parameter ω
controls the balance: ω = 0 recovers a pure CTQW, ω = 1 a classical
stochastic process, and 0 < ω < 1 a hybrid dynamics. For optimization
applications we require convergence to a unique stationary state.
Following42, if we set cij ¼ Gij where G is the Google matrix (2), then for
any ω > 0 the quantum dynamical semigroup generated by Eq. (4) is
primitive: a unique, full-rank stationary state ρ∞ exists and ρ(t) → ρ∞
exponentially fast.We define the final portfolio weights aswi = ρ∞,ii, i.e., the
diagonal of the stationary density matrix.

We encode financial data on the graph by taking n financial assets with
daily returns {ri,t} over a trainingwindowof lengthT. Eachnode i∈ {1,…,n}

is characterized by its mean return μi ¼ 1
T

PT
t¼1ri;t , its mean excess return

μðexÞi ¼ μi � rðdÞf , its volatility σi, and its daily Sharpe ratio SRi ¼ μðexÞi =σ i,

where rðdÞf is the daily risk-free rate. The graph weight matrix W encodes

both individual asset quality and pairwise relationships:

Wij ¼
expðα SRj � βΣijÞ if i≠ j;

expðλ SRiÞ if i ¼ j;

�
ð5Þ

where α > 0 controls the preference for high-Sharpe destinations, β > 0
penalizes transitions between highly correlated assets, Σij is the sample
covariance between assets i and j over the samewindow, and λ is the holding
coefficient for self-loops. Row-normalizingW yields a stochastic transition
matrix

Pij ¼
WijP
kWik

; ð6Þ

which is then embedded into the Google matrix G in Eq. (2). The same
financial information is encoded in the Hamiltonian via

Hij ¼
�γ1 SRi if i ¼ j;

γ2 bΣij if i≠j;

(
ð7Þ

where bΣij is a normalized covariance bΣij ¼ ðΣij � ΣminÞ=ðΣmax � ΣminÞ and
γ1,γ2 are scaling factors chosen fornumerical stability.This constructionyields
a dual-channel encoding of financial data: the coherent channel explores
highly correlated clusters through H, while the stochastic channel enforces
diversification through G and the rates cij ¼ Gij. The steady-state diagonal of
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ρ∞ thendefines awell-behaved, graph-basedmapping fromreturn/covariance
inputs to portfolio weights. Figure 14 summarizes how the QSW operates on
the financial graph. At each step, the portfolio state (represented by node
occupancies on the left-hand graph) is updated by two complementary
channels acting on the same network. The coherent channel (purple arrow)
applies Hamiltonian evolution, allowing the walk to tunnel within highly
correlated clusters and to explore multiple paths in superposition. This
captures nonlinear dependency structure that is invisible to purely classical
diffusion. The stochastic channel (blue arrow) then applies a Google-type
update based on the weighted transition matrix, which damps probability
mass inside tight clusters and redistributes it toward under-representednodes.
Iterating these two channels in alternation drives the system toward a unique
stationary density matrix, whose diagonal elements define the final portfolio
weights on the right-hand graph. In this way, the QSW framework
implements portfolio allocation as a dual-channel process that jointly encodes
return, risk and correlation directly in the dynamics of the walk.

QSW algorithm implementation
We implement the QSW-based portfolio optimizer in four stages, sum-
marized in Fig. 15.

Stage 1: Data processing - Ingest daily adjusted close prices. For each
rebalancing date, compute inputs from a rolling window of Tw trading
days of simple returns ri,t = Pi,t/Pi,t−1 − 1:
• Daily statistics: sample mean μi, sample standard deviation σi, and

the N × N sample covariance matrix Σ over the window.
• Sharpe ratios: daily Sharpe for each asset

SRi ¼
μi � rðdÞf

σ i
;

where we assume an annual risk-free rate of 3% and
set rðdÞf ¼ 0:03=252.

Stage 2: Dual-channel graph—Embed these statistics in a dual network:
• Stochastic channel: construct the weight matrix

Wij / expðα SRj � βΣijÞ, row-normalize it to obtain a transition
matrix P, and form the Google matrix G as in Eq. (2); this favors
moves toward high-Sharpe, low-covariance destinations.

• Coherent channel: build aHamiltonianwithHii∝SRi andHij / bΣij
for i≠ j, where bΣij is the normalized covariance, capturing quantum
interference across correlated assets.

Stage 3: QSW solver—Evolve the density operator under the quantum-
classical mix ω (GKLS generator) until convergence to the stationary
state ρ∞.
Stage 4: Weights—Extract the diagonal of ρ∞ and normalize it to obtain
fully invested portfolio weights w with∑iwi = 1, which are then fed into
the back-test loop.
We use efficient Kraus-operator evolution to integrate the GKLS

master equation (4) because state-vector unraveling increases the state
dimension fromN toN2 and is computationally expensive. To accelerate the
simulation, wemap theHamiltonian and Lindblad operators {H, Lij} to a set
of Kraus operators {K0, Kij} and implement the quantum channel in
operator-sum form:

ρðt þ ΔtÞ ¼ K0ðΔtÞ ρðtÞKy0ðΔtÞ þ
X
i;j

KijðΔtÞ ρðtÞKyijðΔtÞ; ð8Þ
with the trace-preserving condition

Ky0K0 þ
X
i;j

KyijKij ¼ I: ð9Þ

Fig. 15 | Four-stage quantum-stochastic-walk (QSW) portfolio framework employed in all subsequent experiments.

Fig. 14 | Conceptual illustration of the quantum stochastic walk (QSW) as a dual-
channel engine on a financial graph: a coherent channel (purple) explores correlated
clusters through Hamiltonian evolution, while a stochastic channel (blue)

implements Google-type jumps that enforce diversification and guarantee con-
vergence to a unique stationary state.
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Discretizing Eq. (4) yields

ρðt þ ΔtÞ ¼ ρðtÞ � ið1� ωÞ½H; ρðtÞ�Δt þ ω
X
i;j

cijðLijρðtÞLyij �
1
2
fLyijLij; ρðtÞgÞΔt þOðΔt2Þ:

ð10Þ

Comparing Eqs. (10) and (8) leads to the approximate Kraus operators

Kij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�ωcijΔt

p
Lij; K0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I �

X
i;j

KyijKij

s
e�ið1�ωÞHΔt : ð11Þ

In our setting each Kij has the form γij jiihjj and is therefore extremely
sparse. The double-sided product simplifies to

KijρK
y
ij ¼ γ2ij ρjj jiihij; ð12Þ

so the dissipative term only involves the diagonal of ρ. Defining P ¼
ðρ11; ρ22; . . . ; ρNN Þ> and a matrix Γ with entries Γij ¼ γ2ij, we obtainX

i;j

KijρK
y
ij ¼ ΓP; ð13Þ

and the operator-sum update can be written as

ρ0 ¼ K0ρK
y
0 þ ΓP: ð14Þ

Thus, the expensive sumofmanymatrix-matrix products reduces to a single
matrix-vector multiplication.

An iterative solver initializes the densitymatrix at themaximallymixed
state ρ(0) = I/n, chooses a time step Δt and tolerance ϵ, and iterates Eq. (14)
until convergence.Algorithm1 summarizes the implementationused inour
experiments.

Algorithm 1. GPU-accelerated QSW portfolio optimizer
Require: Historical returns, QSW parameters {ω, α, β, λ}
Ensure Portfolio weights w
1: Compute μi, σi, SRi, Σij from the training window
2: ConstructweightmatrixW andHamiltonianH; formGooglematrixG
3: Initialize ρ(0) = I/n, choose Δt, tolerance ϵ
4: repeat
5: Build Kraus operators K0, Kij from Eq.(11)
6: eρ K0ρ

ðtÞKy0
7: P diagðeρÞ
8: ρðtþ1Þ  eρ� diagðPÞ þ diagðΓPÞ
9: Normalize ρðtþ1Þ  ρðtþ1Þ=Trðρðtþ1ÞÞ
10: until ∥ρ(t+1) − ρ(t)∥1 < ϵ or t reaches a maximum
11: Set wi ¼ ρð1Þii =

P
jρ
ð1Þ
jj for i = 1,…, n

12: return w

The computational efficiency is ensured by GPU acceleration. The
implementation leverages cuPyNumeric43 for linear-algebra kernels, an
NVIDIA-developed library that serves as a drop-in replacement for CPU-
based NumPy. It accelerates all core primitives in the QSW solver, including
matrix exponentials for unitary evolution, element-wise operations for tran-
sition rates, and diagonal extraction and reconstruction. In practice, a single
NVIDIAA100GPUcanevaluate the full 625-parameter grid ofExperiment 2
in roughly three hours of wall-clock time (about 17 s per configuration),
including data loading, graph construction, QSW convergence, and metric
computation. This enables real-time or near-real-time portfolio optimization
for universes of order 102–103 assets on modern GPU hardware.

Data and experimental setup
For the asset universe and data collection, we consider two types of equity
universes. In Phase 1 (parameter exploration), we use the 100 largest U.S.

stocks by market capitalization (“top-100” universe), including technology
names (e.g., AAPL,MSFT, GOOGL, AMZN, NVDA), financials (e.g., JPM,
BAC, WFC), healthcare (e.g., JNJ, UNH, PFE), and other sectors. This
universe provides sufficient cross-sectional diversitywhile keeping theQSW
simulations computationally tractable. To assess robustness to stock selec-
tion, Phase 2 employs a multi-universe design based on 30 random subsets
of the S&P 500. Each trial defines a distinct 100-stock universe that is
maintained in a point-in-time fashion to avoid survivorship bias: at the
initial date (1990Q1) we draw 100 constituents from the S&P 500members
active at that time; at eachquarterly rebalancewe remove anydelistednames
(e.g., due to mergers or bankruptcies) and replace them by randomly
sampling from the S&P 500 constituents active on that date. Historical daily
adjusted close prices from 1988-01-01 to 2024-12-31 are obtained from
Yahoo Finance.

All strategies are evaluated in a common backtesting framework with
quarterly rebalancing. The specific backtest horizon and training window
depend on the experiment:
• Phase 1: parameter exploration (2018–2024).

Backtest period: 2018-01-02 to 2024-12-31 on the top-100 universe.
Training window: rolling 1–2 years of daily data (252, 378, or 504
trading days) to study the impact of lookback length.

• Phase 2: multi-universe robustness (1990–2024).
Backtest period: 1990-01-02 to 2024-12-31.
Training window: fixed 2-year (504 trading days) rolling window.

In both phases the rebalancing frequency is quarterly (every three
months), and transaction costs are incorporated indirectly via portfolio
turnover statistics. This frequency reflects common institutional practice,
balancing responsiveness to changing market conditions against
implementation costs.

Regarding computational performance, all QSW simulations and grid
searches are implemented in Python using GPU-accelerated linear algebra
(see above). On a single NVIDIAA100GPU, the full 625-parameter grid of
Phase 1, Experiment 2 can be evaluated in roughly three hours of wall-clock
time (about 17 s per configuration), including data loading, graph con-
struction, QSW convergence, and performance metric computation.

In Phase 1: parameter exploration, we use two complementary
approaches on the top-100 universe over 2018-2024. First, we define six
QSW strategy presets that capture different investment styles (Table 1) by
fixing (α, β, λ):

Each preset is combined with ω ∈{0.2, 0.4, 0.6, 0.8, 1.0} to explore the
quantum-classical spectrum. Second, we perform a comprehensive grid
search over the four QSW parameters: α, β, λ ∈ {0.1, 5, 50, 100, 500} and ω
∈{0.2, 0.4, 0.6, 0.8, 1.0}, yielding 625 parameter combinations per training-
window choice. This grid is used to identify robust high-performing regions
of the parameter space.

In Phase 2: multi-universe robustness, to ensure that our find-
ings are not artifacts of a particular stock universe, we run the full
625-point grid search on each of the 30 point-in-time 100-stock
universes over 1990–2024. For each trial we (a) construct the initial
universe at 1990Q1 from contemporaneous S&P 500 constituents, (b)
maintain the universe through quarterly replacement of delisted
names, and (c) backtest all QSW configurations and benchmarks. We
then analyze the cross-universe distribution of performance and risk
metrics. This multi-universe design mitigates survivorship and
selection bias and demonstrates that the observed “smart 1/N”
behavior and robustness of the QSW optimizer are not driven by a
single favorable sample.

Performance metrics and evaluation
We evaluate portfolio performance using a set of complementary metrics
that capture returns, risk, drawdown behavior, concentration, and trading
efficiency.

For return and risk metrics, we track both level and risk-adjusted
returns.
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1. Cumulative return.

VT ¼ V0

YT
t¼1
ð1þ rp;tÞ; ð15Þ

where rp;t ¼
Pn

i¼1wi;t ri;t is the portfolio return at time t.
2. Compound annual growth rate (CAGR). Let Y denote the invest-

ment horizon in years. The CAGR is defined as

CAGR ¼ VT

V0

� �1=Y

� 1; ð16Þ

which measures the long-run average growth rate of portfolio wealth.
3. Annualized Sharpe ratio. We compute the Sharpe ratio using daily

excess returns and annualize it with 252 trading days:

SR ¼ μðexcessÞp

σp

ffiffiffiffiffiffiffi
252
p

; ð17Þ

where μðexcessÞp and σp are the mean and standard deviation of daily portfolio
excess returns (portfolio return minus the daily risk-free rate). In all
experiments we assume a constant annual risk-free rate of 3%.

4. Maximum drawdown (MDD).

MDD ¼ max
t2½0;T�

maxs2½0;t�Vs � Vt

maxs2½0;t�Vs
; ð18Þ

which captures the worst peak-to-trough loss in percentage terms over the
evaluation period.

5. Calmar ratio. To relate long-run growth to downside risk, we use the
Calmar ratio,

Calmar ¼ CAGR
MDDj j ; ð19Þ

which measures annualized return per unit of worst drawdown. Unless
otherwise noted, MDD is computed over the full evaluation horizon of the
experiment (e.g., 1990–2024 for Experiment 3); rolling Calmar ratios in the
figures are defined analogously using window-specific MDD values. This
metric is used extensively in Experiment 3 to compare strategies on a
drawdown-adjusted basis.

For portfolio concentration metrics, we quantify how capital is dis-
tributed across names using three standard measures.

1. Herfindahl-Hirschman Index (HHI).

HHI ¼
Xn
i¼1

w2
i ; ð20Þ

where wi is the weight of asset i. A higher HHI indicates greater
concentration.

2. Effective number of stocks.

Neff ¼
1

HHI
; ð21Þ

which can be interpreted as the number of equally weighted assets that
would yield the same HHI.

3. Top-5 concentration.

C5 ¼
X5
i¼1

w½i�; ð22Þ

wherew[i] denotes the i-th largest portfolio weight. C5 measures howmuch
of the portfolio is concentrated in the five largest positions.

We also track trading and efficiency metrics. Portfolio turnover
represents the frequency of rebalancing activity and directly impacts
implementation costs, market impact, and strategy scalability. High-
turnover strategies face substantial transaction costs, price impact during
execution, and capacity constraints that can erode theoretical performance
gains in practice44,45.

1. Average annualized turnover.

�TOann ¼ 4 ×
1

Nquarters

XNquarters

q¼1

Xn
i¼1
jwi;q � wi;q�1j; ð23Þ

which expresses the proportion of portfolio value traded per year. In buy-
side practice, annual turnover above roughly 200% is often considered
prohibitively expensive because of spread andmarket-impact costs, whereas
turnover below about 50% is usually viewed as readily implementable46.
Classical mean-variance optimization frequently produces 300–500%
annual turnover, posing significant implementation challenges14,19.

2. Sharpe-turnover efficiency ratio.

E ¼ SR

TOann þ 0:01
; ð24Þ

which captures the trade-off between risk-adjusted returns and trading
intensity bymeasuringhowmuchSharpe ratio is achievedperunit of annual
turnover45. The small constant 0.01 prevents division by zero for extremely
low-turnover strategies. Higher efficiency ratios indicate strategies that
deliver superior risk-adjusted performance without excessive trading
activity–a critical requirement for real-world implementation, where
transaction costs, market impact, and capacity constraints dominate
practical considerations44,47. For example, a strategy achieving a Sharpe
ratio of 1.0 with 20% annual turnover (E � 5:0) is significantly more
valuable than one achieving 1.2 with 400% turnover (E � 0:3) once
implementation frictions are taken into account46.

Benchmark strategies
We compare QSW-based portfolios against three primary benchmarks.

The classical benchmark is the maximum-Sharpe (MSR) portfolio
based on Modern Portfolio Theory (MPT). While the MSR is defined as a
non-convex ratio, it can be computed via an equivalent convex quadratic
program. Since our inputs μ are excess returns (over the risk-free rate), we
solve48

y? ¼ argmin
y

1
2
yTΣy ð25Þ

subject to yTμ= 1 and y ≥ 0. This finds the portfolio thatminimizes variance
for a fixed unit of excess return. The fully invested MPT weights are then
wMPT ¼ y?=

P
iy

?
i . We implement this using the PyPortfolioOpt

library, feeding it the same sample mean μ and sample covariance Σ esti-
mated from the rolling window as for the QSW optimizer.

The naive diversification (1/N) strategy assigns an equal weightwi = 1/
N to each of the N available assets at every rebalance. It completely avoids
estimating μ and Σ and is therefore immune to the estimation errors that
plagueMVO, especially in high dimensions14. Despite its simplicity, 1/N is a
strongbenchmark and serves as thenatural reference for evaluatingwhether
QSW provides a genuinely robust improvement.

Finally, the capitalization-weighted S&P 500 index serves as a passive
market benchmark, representing the opportunity cost of active manage-
ment in large-cap U.S. equities.

Analysis framework
We analyze QSW performance along several complementary dimensions.
First, we study parameter sensitivity by analyzing correlations between
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QSWparameters (α, β, λ,ω) and key performancemetrics (Sharpe, Calmar,
turnover, concentration), and identify robust regions of the parameter
space. Second, we examine concentration-performance trade-offs by ana-
lyzing the efficient frontier in Sharpe-HHI space, comparing concentration
levels versus MPT and 1/N, and assess how effective diversification varies
under different parameter settings.

To ensure robust conclusions, we use simple but informative diag-
nostics. We perform a win-rate analysis by computing the percentage of
QSW configurations that outperform each benchmark on a given metric
(e.g., Sharpe, Calmar, final value). We also examine cross-universe con-
sistency. In the multi-universe setting (Experiment 3), we examine the
distribution of performance across all 30 random 100-stock universes,
focusing on how often and by how much QSW dominates MPT, 1/N, and
the index on risk and return metrics.

Summary of methods
The implementation and evaluation methodology is designed to bridge the
gap between theoretical innovation and realistic portfolio practice. In par-
ticular, it:
1. adopts a two-phase design: a short-horizon parameter exploration

(2018–2024, top-100 S&P 500) and a long-horizon robustness phase
(1990–2024, rolling 2-year windows);

2. combines three complementary experiment types: fixed strategy pre-
sets, a full 625-point hyper-parameter grid search, and a dynamic,
multi-universe study;

3. uses quarterly rebalancing and Sharpe ratios computed on excess
returns over a 3% annual risk-free rate, in line with institutional
practice;

4. evaluates portfolios with a rich set of metrics, including Sharpe, Cal-
mar, maximum drawdown, turnover, and multiple concentration
measures (HHI, effective number of stocks, top-5 weights);

5. benchmarks QSWagainstmaximum-SharpeMPT portfolios, naive 1/
N portfolios on the same universe, and the S&P 500 index;

6. validates robustness through extensive parameter-sensitivity analysis
and a 34-year, 30-universe experiment based on point-in-time S&P
500 constituents.

Together, these elements provide a rigorous framework for evaluating
the QSW framework as a quantum-inspired portfolio construction tool,
ensuring that the reported results are not an artifact of a particular sample,
universe, or parameter choice but reflect stable behavior under realistic
market and implementation conditions.

Data availability
All numerical results in this study are generated by simulating the QSW
optimizer on equity return series as described in the “Methods” section.
Daily adjusted close prices for S&P 500 constituents over 1988–2024
were obtained from Yahoo Finance (https://finance.yahoo.com); no
proprietary or restricted datasets were used. The raw price data can be re-
downloaded from the same public source, and all preprocessing steps
(return calculation, training windows, universe construction) are fully
specified in the text. Aggregated backtest outputs (CAGR, Sharpe, Cal-
mar, drawdown, turnover, and concentration metrics for all configura-
tions and universes), as well as the per-universe diagnostic figures shown
in the Results and Supplementary Information, are available from the
corresponding author upon reasonable request.

Code availability
All algorithms and parameter settings required to reproduce the results are
described in the Methods section. The custom code used to implement the
QSWoptimizer and run the backtests is not publicly archived at this time, as
it is part of an ongoing research project. Results from specific simulations, as
well as pseudo-code and representative implementationdetails, are available
from the corresponding author upon reasonable request for academic and
non-commercial purposes.
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