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The rapid increase in cell biology techniques, combined with high-throughput technologies and
improved computing, has yielded complex data that classical methods struggle to analyze. The
question arises, can a machine overcome human performance to identify and predict distinct
biological scenarios? Here, we review the mechanotransduction of extracellular matrix mechanical
cues and how Atrtificial Intelligence-based methodologies are or can be used to predict cell states

based on morphological and genetic signatures.

Mechano-sensing of extracellular matrix (ECM) biochemical and biophy-
sical properties dictates various cellular behaviors including proliferation,
migration, and differentiation'”. One major mechanism whereby ECM
mechano-sensing proceeds is through the formation of adhesion complexes,
which are multi-protein structures with ECM linking, ECM property sen-
sing, and downstream signaling functions*’. Adhesion complexes and most
other biological systems comprise a huge number of components with
complex interactions. Because of recent technological advancements over
the past two decades, there is now a large number of available affordable
tools that can help unravel these complex interactions and reveal bio-
mechanical insights into mechanisms, leading to the discovery of targets for
new drugs. These tools have helped extract vast RNA and protein level
information, which has helped gain a broader and more accurate picture of
these complex systems. However, there is a need for better analysis tools that
can extract useful information from these huge datasets and distinguish
signaling connections that are difficult without computational methods. In
this regard, artificial intelligence approaches may enable several transfor-
mative advances in research, such as advanced data analysis (e.g. live-cell
imaging, cellular pattern recognition), predictive modeling (e.g., mechanical
properties of tissue and cells), automation of experimental procedures (e.g.,
atomic force microscopy, tweezers), integration of multi-scale data (from
cells to tissues), or new insights into mechanotransduction pathways (e.g.,
gene networks, protein interactions, and cellular pathways). Recently,
machine learning (a subfield of artificial intelligence) and several artificial
intelligence-based methods have been used to analyze and extract useful
information from large datasets”®. In this review, we highlight the
approaches that have either been employed in the mechanobiology field, or
that could potentially be applied to extract information from raw images,
amino acid sequences, and other raw measurements to extract and predict
biologically meaningful quantities.

Forces experienced by cells

Cells inside tissues exist within a complex and highly organized micro-
environment, the ECM, which is primarily comprised of proteins such as
collagens, fibronectin, and elastin, glycoproteins such as proteoglycans,
laminin and glycosaminoglycans™>'’. The specific composition and
arrangement of this ECM determines the stiffness and solid stresses that
cells experience (Fig. 1a). These physical cues include both endogenous
forces, primarily resulting from cytoskeletal contractility within the cells,
and exogenous forces from the surrounding microenvironment, includ-
ing gravity, shear stress, and tensile and compressive forces'"'>. Mechano-
sensing of these external physical forces leads to morphological changes
and downstream signaling events'*'"". Various ECM proteins also alter
their structure and interactions depending on extrinsic forces: ECM
sensitivity to tensile forces leads to fibronectin unfolding', the enzymatic
resistance of collagen fibers'’, and the interactions between fibronectin
and collagen fibers". The mechanical properties of the ECM, such as its
rigidity and viscoelasticity, mediate the forces transduced to the cells,
which play a crucial role in influencing tissue organization (Fig. 1a) and
cell behavior'*™.

Tissue rigidity and solid stresses

Solid stresses, or the mechanical forces contained in and transmitted by
cell ECM, range from < 100 Pa in glioblastomas to ~10 kPa in pancreatic
adenocarcinomas™. Solid stresses can increase in normal tissues due to
excessive proliferation, cell infiltration, and a dense matrix™'. Other direct
effects of solid stress include the promotion of invasiveness of cancer
cells” and the stimulation of tumorigenic pathways in colon epithelia™.
ECM stiffness increases, e.g., during embryonic development because of
increased deposition and crosslinking of collagen and hyaluronic
content™. An increase in tissue rigidity is also observed in tumor
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progression (Fig. 1a), where higher levels of matrix crosslinking occur,
leading to enhanced integrin signaling”**’. Morphologically, a stiffer
ECM leads to increased cell spreading area, planar motility polarization,
increased matrix adhesion formation, disrupted cell-cell adhesion, and
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- Gene Expression

pseudopodia formation™. ECM stiffness also leads to changes in the
nuclear morphology, such as nuclear elongation, malformations of the
nuclear envelope, and rupture of the nuclei, which further affects nuclear
stability due to Lamin-A and gene regulation”*.
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Fig. 1 | Understanding the cell and ECM mechanics through biophysical tech-
niques as inputs for AI-based approaches to use in mechanobiology. a Schematic
representing cellular and ECM changes in normal versus malignant epithelial tis-
sues. Malignancy in the epithelial tissues is accompanied by disruption of homeo-
static balance between ECM mechanical properties and fibroblast and epithelial
cells. During tumor progression, tumor and transformed stromal cells (CAF)
interact with the ECM, increasing its mechanical properties (e.g., elasticity, viscoe-
lasticity), leading to changes in cellular actomyosin tension, phenotypes (e.g., size,
shape), mechanosignaling and the genetic landscape. b Cellular and ECM
mechanical properties are measured at the single protein level using molecular
tension detection probes, or at the cellular level using force spectroscopy or traction
and monolayer stress microscopy. Molecular tension probes can be based on DNA
unfolding by force or FRET sensors, proving a readout of the transduced forces.
Force spectroscopy can be based on physical force application using cantilevers

(such as AFM) or using optical or magnetic force tweezers. The force-response
curves can then be used to measure the physical properties of cells or tissues. Force
application on the substrate can be measured using traction force microscopy by
either fluorescently labeling gels of different stiffness or using pillar deflections as a
force readout. ¢ Measurements of forces from different techniques, either at the
multi-cell level (such as fluorescence and light microscopy or AEM curves) or at the
bulk and single-cell level (such as DNA/RNA sequencing or genomic enrichment)
are used as inputs for machine learning (ML) or artificial intelligence (AI)-based
algorithms, which are then trained to provide outputs and predictions such as the cell
and ECM mechanical properties, cell states and heterogeneity, or protein structure
and gene expression. Here, ML/AL-based methods are denoted by a brain, and the
color code of the dots indicates a different type of network or layers in the networks.
Images in (c) adapted from Refs. 6,7,117.

Box 1 | Definitions of commonly used terms in this review

® Cell morphology: Cell morphology refers to the shape, size, form, and
structural features of a cell, encompassing both its external
appearance and internal organization. Some of the morphological
features used for quantification include cell area, perimeter, cell width,
height, major axis, minor axis, circularity, aspect ratio, roundness,
solidity, cell angle with respect to a reference, nuclear area, nuclear
aspect ratio, and nuclear angle.

* Cell genotype: Cell genotype refers to the complete set of genetic
information within a cell, encoded in its DNA. It comprises all the genes
and their allelic variations inherited from an organism’s parents,
determining the cell’s potential characteristics and functions.

® Cell phenotype: Cell phenotype refers to the observable characteristics
and functional traits of a cell, resulting from the interaction of its
genotype with environmental factors. This includes the cell’s
morphology, behavior, biochemical activity, and response to extemal
stimuli.

Shear/Fluid flow stress

Fluid shear stress, primarily at the interface between blood and the endo-
thelial cells lining the blood vessels, affects various cellular functions such as
cell elongation, cell polarization, nuclear shrinkage, and suppresses pro-
liferation, and expression of anti-inflammatory genes*~"'. The magnitude of
shear stress depends on the blood velocity, viscosity, and diameter of the
vessel. Mechano-sensing of fluid shear stress can lead to the activation of
pathways that promote nitric oxide (NO) and prostacyclin (PGI,) pro-
duction, a known vasodilator in endothelial cells””. Morphological changes
due to shear flow include cell elongation and the appearance of stress fibers
aligned with the direction of flow in aortic and umbilical vein endothelial
cells™*. Cyclic pulsatile hydraulic pressure due to sheer flow has also been
shown to stimulate smooth muscle cells while inhibiting proliferation™.

ECM topography

Mechanisms of cell interaction with the ECM differ significantly between
two-dimensional (2D) and three-dimensional (3D) microenvironments. One
of the most apparent differences between 2D and 3D ECM-cell interactions is
the structural organization of the ECM, wherein 2D culture systems such as
tissue culture plates or coverslips coated with ECM proteins like collagen or
fibronectin lack the complex 3D architecture found in native tissues, because
of which cells experience limited spatial constraints and encounter a uniform
mechanical microenvironment. In contrast, 3D ECM environments, such as
hydrogels or scaffolds, mimic the natural architecture of tissues more closely
with varying degrees of porosity, stiffness, and topographical features. This
structural complexity influences cell morphology (Box 1), migration, and
differentiation, leading to distinct cellular responses compared to 2D cultures.
Such an in vivo environment allows cells to retain many of the differentiated

Cell behavior: Cell behavior refers to the various activities and responses
a cell exhibits in its environment, driven by both internal genetic
programs and external cues. This includes processes like proliferation,
migration, differentiation, adhesion, apoptosis, and communication with
other cells or the extracellular matrix. Cell behavior is tightly regulated by
signaling pathways, cytoskeletal dynamics, and interactions with
surrounding tissues.

® (Cell state: Cell state refers to the specific condition or status of acell at a
given time, characterized by its gene expression profile, metabolic
activity, functional properties, and interaction with its environment. The
cell state is influenced by intrinsic factors like genotype and epigenetic
modifications, as well as extrinsic factors such as nutrient availability,
signaling molecules, and mechanical forces.

features of their native tissue including their viability, apical-basal polarity,
cell-cell contact, metabolism, gene expression, and resistance to exogenous
stress such as hypoxia or chemotherapy'***™*".

Cells interacting with a 3D ECM have decreased cortical tension,
leading to increased protrusions and higher protein secretion, which reg-
ulates ER stress and viability”’. A 3D ECM microenvironment also promotes
the activation of signaling pathways such as enhanced activation of focal
adhesion kinase (FAK) and Rho GTPases, which play key roles in regulating
cell motility, cytoskeletal dynamics, and cell-matrix remodeling'*”". Fur-
thermore, the 3D architecture of ECM can modulate growth factor sig-
naling, such as transforming growth factor-beta (TGF-P) and epidermal
growth factor receptor (EGFR), leading to differential cellular responses as
compared to 2D cultures”*’. Morphologically, cells in 2D culture display
flattened morphologies and polarized arrangements due to the planar
nature of the substrate, while a 3D ECM microenvironment promotes the
formation of multicellular structures, such as spheroids or organoids, that
better mimic tissue-level organization and function’.

The forces experienced by cells, such as tension, compression, and
shear stress, play a crucial role in regulating cellular behavior (Box 1).
However, analyzing how cells respond to varying mechanical environments
and predicting their behavior under different force conditions involves large
and complex datasets. Machine learning (ML) and Al offer powerful tools to
unravel these complexities by analyzing large-scale experimental data,
identifying patterns in cell mechanics, and integrating diverse datasets such
as force maps, imaging, and gene expression profiles. ML/AI can help in
improving the accuracy of mechanistic models, predicting cell responses to
mechanical forces, and uncovering new insights into how mechanical sig-
nals drive biological processes.
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How these physical properties impact cell response
and how cells adapt to them

Normal and cancer cells have mechano-sensitive machinery, such as cell-
ECM", cell-cell adhesions®, and stretch-sensitive ion channels™, that allow
them to respond to applied forces. In this process, known as mechan-
otransduction, extracellular mechanical cues are translated into biochemical
signals, which in turn affect various cellular processes“. Mechan-
otransduction requires the sensing of the mechanical properties of the ECM,
which depends upon the formation of multi-protein complexes called focal
adhesions’. Various components in these adhesion complexes have been
implicated in the sensing of specific ECM properties. For example, a myosin
IIA-tropomyosin 2.1 complex is responsible for rigidity sensing***, and an
integrin-talin-FHOD1-actomyosin complex formation is required for
sensing the density of ligand nanoclusters™. A theoretical model involving
talin as a clutch has also been shown to sense the spatial organization of
ligands on varying stiffness'®". This sensing is then translated into bio-
chemical signals, which can be either activation of signaling pathways
through kinases or phosphatases™, or the nuclear translocation of proteins
such as paxillin, FAK, or YAP***, which then affects genome unfolding and
hence gene regulation. These cascades further regulate the cell state and
induce quantifiable changes in survival, cell shape morphology, migration,
and invasion. For example, it has been shown that stiffer tissues lead to the
nuclear translocation of TWIST1 in breast cancer cells, which in turn
promotes cell invasion by inhibiting the expression of E-cadherin™. These
morphological and genetic changes, which are inferred from various
experimental methods, can then be used as inputs to train ML or different AI
models to predict cell state and other useful information.

Mechanical cues affect diverse fundamental cell processes, which
manifest as modifications in cell state and morphology (Box 1). For
example, stiff matrices induce high cellular contractility and a high cellular
aspect ratio, which are necessary for mesenchymal stem cells to differentiate
into an osteogenic lineage®”’. Conversely, adipogenic differentiation is
favored by reduced forces and polarization, both of which are fostered by
low rigidity and or high cell compliance®”’. The tension induced effects are
mediated via Rho GTPases, which activate actomyosin contractility
downstream of the FAK/Src pathway as well as G-Protein coupled receptor
signaling™. Cell morphology and spreading are also linked with cell survival
since cells spread on very soft substrates remain small and round, triggering
the death-associated protein kinase (DAPK) and activating apoptosis™.
Forcing cells into specific shapes using micropatterning was shown to alter
cellular contractility and plasma membrane topography, which were found
to affect cellular differentiation, thus underlining the role of cell shape and
morphology in cellular fate”. ECM topography also profoundly influences
cell morphology since cells tend to align along the direction of fibers or
grooves in the ECM. This alignment has been shown to induce distinct cell
morphologies depending on the organization features of the ECM organi-
zation within the tissues as has been documented for spindle-shaped cells in
connective tissues”. Topography can also direct cell migration through
contact guidance. ECM topology can induce cells to preferentially migrate
along ECM fibers or ridges and can additionally influence their migration
speed and directionality®. The dimensionality of the ECM further alters cell
morphology and behavior since cells typically spread out and adopt a flat-
tened morphology on 2D environments compared to 3D ECMs, in which
cells assume a more rounded or elongated morphology, depending on the
matrix composition and stiffness”. A 3D extracellular matrix micro-
environment also promotes polarized migration or amoeboid-like move-
ment in some cell types, a phenotype that is typically not observed when cells
interact with a 2D extracellular matrix microenvironments®'. Differences in
cell morphology and motility are also observed because of ECM porosity®,
fiber architecture”’, and ECM degradability®, thereby implying there are
pivotal roles played by the physical properties of the ECM in determining
cell fate and phenotype (Box 1).

Understanding how the physical properties of the ECM impact cell
responses and how cells adapt to these mechanical cues is central to
mechanobiology. However, deciphering these adaptive responses is

challenging due to the nonlinear and multiscale nature of mechan-
obiological processes. This is where machine learning (ML) and artificial
intelligence (AI) can come into play. ML/AI tools can analyze vast datasets
from imaging, force measurements, and gene expression studies to identify
hidden patterns and relationships between mechanical stimuli and cellular
responses.

Experimental tools to measure forces

Force spectroscopy techniques

The development of force spectroscopy techniques (Fig. 1b), such as optical
and magnetic tweezers, atomic force microscopy (AFM), and nanoinden-
tation methods have provided fundamental information about the
mechanical properties of the ECM and tissues at the molecular and tissue
level>. AFM has become a gold-standard technique to measure the
mechanical properties of the ECM and cells. In the static AFM mode, a tip
indents the sample, creating deformation that is acquired and translated into
a force versus indentation curve. The force-indentation curves are then
fitted to mathematical models such as the Hertz model to ultimately extract
the elastic modulus®. Using this approach, extensive mechanical char-
acterization of the elasticity of distinct tissues, including brain®”’, breast™®,
lung”, or pancreas’, in normal, benign, and malignant scenarios, has been
performed”. On the other hand, in the dynamic model, the cantilever
oscillates for a varied range of frequencies. Alterations in the oscillatory
amplitude are associated with the dissipation between tip and sample,
reflecting the viscoelastic properties. Models such as Kelvin-Voigt, power
law, and Standard linear solid models are then mostly used to retrieve
viscoelastic parameters”. For instance, studies revealed that human prostate
tissue showed a more compliant and less viscous response as a function of
tumor progression’*. Similarly, viscosity in malignant thyroid tissue was
found to serve as a good predictor of malignancy’”. Interestingly, viscoelastic
properties of the brain tissue and distinct cell types have also been retrieved
from conventional AFM curves by taking benefit of the intrinsic hysteresis
associated with the equipment or redefining previous mathematical
models™””. Nevertheless, AFM is time-consuming, not affordable for every
lab and a low throughput technique, and the method additionally requires a
well-trained user. It is also difficult to compare results between labs and
studies because of the different tips and mathematical models employed to
extract the values of the mechanical properties.

Single-molecule force measurements

The force spectroscopy techniques mentioned above have also been used at
the single-molecule level. Single-molecule approaches allow interrogation of
the required mechanical forces for folding and unfolding transitions of
proteins or molecular bond forces, amongst others’. In these systems, the
tip of the AFM is functionalized with a limited number of ligands. The
functionalized tip thus binds to the single receptor, which is attached to silica
glass. The AFM retracts with a given velocity to subsequently clamp a force
to measure mechanical interactions between ligand and receptors molecule.
Seminal work using this approach showed that the interaction between
integrin asB, and fibronectin follows a catch-bond relationship”. Similarly,
AFM techniques or tweezers have been used to experimentally address the
role of mechanical forces in unfolding proteins such as titin, tenascin, talin,
or fibronectin®*.

Another suitable tool for measuring forces at the molecular level is
molecular tension probes™*. In the past years, there has been an increase in
the usage of these sensors, which are based on fluorescence energy transfer
(FRET) due to the force transduced (Fig. 1b). The distance between the
fluorophore and the quencher (or other FRET pairs) attached to different
sites thus determines the force readout. These FRET-based molecular ten-
sion probes have been attached to integrin-binding ligands*', ECM proteins
such as fibronectin'/, and force transducers such as talin*’. This approach
has been used to reveal that integrin tension is highly dynamic and increases
with integrin recruitment during focal adhesion formation®. These sensors
have also been used to measure forces for other focal adhesion proteins such
as vinculin and talin®*" as well as cell-cell junctions such as E-cadherin and
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VE-cadherin®*®. The first FRET sensor for measuring compressive forces
revealed high compression on the glycocalyx protein mucin induces reci-
procal tension on integrin adhesions™. Similarly, CD3-mediated adhesion at
the cell edge of T-cells revealed an increment of the ligand-receptor com-
pressive forces’.

Traction Force Microscopy (TFM)
TFM was one of the first techniques to measure intrinsic cellular forces at the
cell-substrate interface. The forces measured using this technique are pri-
marily actomyosin-mediated, thereby providing an indirect measurement
of cellular contractility””. Recently, refined methods employing label-free
approaches have also been developed™”. Additionally, new fashions for
measuring cellular tractions in 3D have been implemented”. A com-
plementary technique to traction force microscopy is monolayer stress
microscopy, which measures the intracellular and intercellular tension
within a given cluster of cells using the fact that traction forces generated by a
group of cells must be balanced by the forces transmitted within cells'*”.
Traction forces have also been measured using elastic micropillar
arrays”. Micropillar setups are based primarily on photolithographic
techniques that allow the creation of nano- or micropatterned master molds
to create topographically patterned surfaces, mostly in elastomers (Fig. 1b).
The pillar bending stiffness can be computed with traditional mechanics
equations from the diameter and the height of the micropillars™. A very
elegant study exploring the impact of bending stiffness, cell spreading, and
post density on traction forces and focal adhesion showed that spread area
and substrate stiffness follow opposite trends; cells on stiffer substrates
generate higher average forces, but cells with larger spread areas create lower
average forces”. These studies also showed that for different stiffness,
traction forces mirror focal adhesion area, indicating a close relationship

between cellular forces and focal adhesion formation™.

Other methods

Tissues in vivo are subjected to compressive forces either from their
extracellular surroundings or cell-cell crowding, which translates into
mechanical stress propagation. One elegant technique to measure this stress
propagation is to use oil droplets with defined mechanical properties in
which local mechanical stresses can be extracted from changes in the droplet
shape. This technique was first used in 3D aggregates of premalignant
mammary epithelial and embryonic tooth mesenchyme cells and, more
recently, during incisor growth’”*. One of the drawbacks of this approach is
that it can only provide information on anisotropic stresses. A similar
approach has been developed, introducing elastic beads of known elasticity
into 3D aggregates. In contrast to oil microdroplets, the beads are com-
pressible, allowing the quantification of mechanical stress under external
isotropic stress. In multicellular aggregates of malignant murine colon
cancer cells, measurements revealed that the mechanical stress is non-
uniformly distributed and that the stress profile is associated with the ani-
sotropy of the cellular shape™. The nano- and micro-patterned biomaterials
have further enabled the control of cell structure and function by patterning
growth factors, ECM proteins, and other bioactive molecules onto surfaces.
Specifically, engineering topographical, chemical, and/or mechanical cues in
defined geometries have allowed to directly regulate cell adhesion, mor-
phology, cytoskeletal organization, and cell-cell interactions™*"'*~'**. Other
methods, such as microchannels, ECM-functionalized polymer substrates,
laser ablation, and drugs targeting actomyosin contractility, have also been
used to modulate forces experienced by cells and understand cellular
responses in various contexts'.

With a wide variety of methods used to collect data to make sense of the
cellular response to ECM properties, there is an urgent need for proper
analysis tools that can not only be used to obtain useful unbiased infor-
mation but also can identify connections between datasets. Analyzing these
massive datasets manually is not only time-consuming but also impractical
for data storage and computational power. ML/AI tools can handle and
process large datasets efficiently, identifying patterns and insights that might
be missed by human analysis. These connections (usually correlations) can

then allow us to perform further experiments in a more meaningful way by
understanding the hidden connections and the interplay between various
pathways.

Analysis and predictions in mechanobiology using
Machine Learning/Artificial Intelligence

Al-based methods were first envisioned in the early 50 s by Alan Turing,
who is considered one of the fathers of Al Turing wondered: ‘Can machines
think?"'”. A few years later, John McCarthy responded to this question and
coined the term “Artificial Intelligence,” defining it as “the science and
engineering of making intelligent machines”. (We refer to the reader to these
publications to an extensive review of Al models'**'”). Over the past decade,
various Al tools have been used to enhance the ability to handle complex
data, automate routine tasks, and gain deeper insights into cellular pro-
cesses, ultimately accelerating research and improving outcomes in cell
biology. These tools can also automate manual repetitive analysis, enhance
imaging analysis, integrate diverse data types, and uncover new biological
insights, thereby accelerating and improving outcomes.

Particularly, ML methods have taken the lead over the last couple of
decades. Four different types of models have been used: supervised, unsu-
pervised, semi-supervised, and transfer learning. Briefly, supervised
machine learning models use labeled data to train the model while unsu-
pervised models identify unknown patterns from collected data. Semi-
supervised machine learning is a hybrid combination that uses both labeled
and unlabeled data. Reinforcement models consist of evaluating the optimal
behavior in an environment to obtain maximum reward. These models can
use a variety of input data, such as brightfield or fluorescence images,
traction force or other measures of forces experienced by the cells, gene
expression, or various other downstream effects.

Machine learning tools for mechanobiology

Machine learning methods have been employed to predict the mechanical
properties of soft materials and mechanical forces (Fig. 1¢). For instance, by
using phase contrast images of the wrinkles of the substrate when cells
adhere to a soft substrate, traction forces can be measured'”. Studies
determined that traction forces and wrinkles could be used as an input to
train generative adversarial networks, which can then be used to predict
cellular forces using phase contrast images of the wrinkles'”. More recently,
traction forces were assessed by using fluorescence images of diverse cellular
markers’. This work found that the adhesion protein zyxin was the best
predictor of the overall magnitude of cellular forces and direction®. These
approaches are not restricted to single cells but have also been used to
measure forces in groups of cells. In a recent study, a generative adversarial
network was used to predict traction forces in cell colonies of distinct sizes
and seeded on different stiffnesses'”. Importantly, the network was able to
predict the classical pattern of asymmetry on the traction cell forces dis-
tribution when cells were adhered to a stiffness gradient, which prior work
has shown plays a crucial role in directed cell migration'”". Similarly, another
study used cell morphological features from brightfield images to train and
predict both tractions and stresses in a cellular monolayer'®. Similarly, data
has revealed that areas of high cellular tension favor BMP4-dependent
mesoderm differentiation by facilitating the release of B-catenin to promote
Whnt signaling'”. Potentially, such models can be used in combination with
immunofluorescence images to explore how different markers correlate
with cellular forces, thereby revealing the fundamental interplay between the
spatial location of mechanical forces and cellular markers.

ML models have also been employed to predict tissue stiffness without
the use of direct force measurements. Recently, a convolutional neural
network named STIFMap was developed to predict tissue elasticity in the
context of breast tissue using only fluorescence images’. The supervised
model combined force curves collected with atomic force microscopy with
fluorescence images of collagen and a nuclear marker. This model permitted
the spatial resolution of tissue elasticity values and captured the intrinsic
heterogeneity of tissue elasticity’. Intriguingly, the activation of mechanical
markers such as active integrin 3, or phospho-myosin light chain was found
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to coincide with regions of high elasticity’. Another technique to test the
mechanical properties of tissues at the nanoscale is nano-indentation. Load-
displacement curves from a nano-indenter were used by AI-Dente to predict
neo-Hookean (non-linear stress-strain behavior) and Gent models'”’. AI-
Dente uses an inverse or forward approach to obtain mechanical properties
to overcome classical approaches using the Hertzian model beyond the
linear strain regime and the reduction of computational usage and time.
Another study used machine learning to retrieve viscoelastic properties of
different Newtonian fluids'". The model was trained by employing simu-
lated data of the trajectories of the beads. The model predicted viscoelastic
properties using shorter trajectories and high accuracy compared to classical
methods'"". This approach is particularly suitable when measuring highly
viscous materials such as cells, paving the way to use micro-rheology with
optical tweezers in living systems. In the future, it is conceivable that these
models could be expanded to be tissue/cell agnostic to obtain different
mechanical properties such as elasticity, non-linear elasticity, or viscoelas-
ticity simultaneously. For instance, while elasticity is usually associated with
collagen, viscoelastic tissues contain more glycosaminoglycans. This sug-
gests that combining the current models with additional ECM or cell
markers may facilitate the identification of tissue phenotype while simul-
taneously predicting different physical properties of the tissue. This may
permit the segmentation of tissue images based on micromechanical entities
and, therefore, permit the dissection regarding which physical parameter
plays a major role during biological processes in each specific tissue, which
are not necessarily identical. However, the use of additional markers for
tissue identification may require multiplexing imaging which is not a
common technique, and the prediction of different physical properties may
require additional training. To reduce the training phase and experimental
procedures, these new models could apply data augmentation methods to
subsequently retrieve the physical properties of other tissue.

Finally, ML models can be used to analyze ECM morphology. For
instance, In the context of the breast, tumor-associated collagen signature
(TACS) is a model that describes three layers of collagen that radiate out-
ward from the tumor’s main body. ML models can be trained based on these
geometric features to help faster and more accurate diagnosis. Potentially,
using a classification like TACS can be employed in any tissue. Also,
mammographic density is strongly influenced by ECM composition, being
a known risk factor for breast cancer. ML can analyze mammograms to
detect subtle textural changes in the ECM that precede tumor formation,
potentially identifying patients at high risk based on ECM-related density
patterns. The classification of these different patterns in combination with
medical history, presumably may be used as a predictive tool in the context
of cancer recurrence and metastasis''’. In the context of the brain, brain
tumors tend to have diffuse and irregular borders. ML-enhanced imaging
could map ECM density to help distinguish tumors from healthy tissue
more precisely, providing surgeons with clearer boundaries for tumor
removal. Additionally, these can be used for analyzing ECM fragments in
Blood and cerebrospinal fluid (CSF)'”. The levels of tenascin in CSF
increase in astrocytic tumors. ML models could identify these new bio-
markers to classify molecular changes in CSF samples associated with early-
stage brain cancer, potentially offering a non-invasive diagnostic option for
a disease.

Machine learning in genomics

Several techniques have emerged to explore enriched regions in the genome
for regulatory elements or changes in chromatin accessibility, such as ChIP-
seq (Fig. 1c) and ATAC-seq, amongst others''*"'°. Classical approaches are
based on the detection of peaks, which ultimately allow for the creation of
annotation data sets after human visual inspection. This approach, however,
is time-consuming and impractical when analyzing large datasets. To
overcome this, machine learning approaches using a supervised learning
model to identify ChIP-seq peaks have been employed. After training the
model with ChIP-seq annotated data, CNN-peaks could predict peaks
within previously unknown genomic regions with unprecedented
resolution'”. More recently, following a similar approach LanceOtron was

developed. This deep learning model is not only able to predict accurate
peaks in ChIP-seq but also in ATAC-seq and DN Ase-seq data''®. These new
studies demonstrate the versatility of using these approaches to handle large
and complex datasets efficiently to uncover complex genetic interactions
and regulatory mechanisms.

To our knowledge, current developed methods for these analyses have
not been applied in the context of mechanobiology but clearly merit dis-
cussion for future applications. Several studies for instance have shown how
chromatin accessibility changes, for instance, during stem cell differentia-
tion or in response to alterations in tissue mechanical properties'”. The
current challenge therefore is to be able to integrate the abovementioned
models with either tissues that have distinct mechanical properties or
contain specific cellular phenotypes. To address this issue one possibility
would be to use a reduced amount of the training data and employ data
augmentation techniques to retrain new models. We speculate that these
new models should be able to predict different regulatory elements or
chromatin modifications that subsequently can be used to categorize cellular

genotypes.

Machine learning for cell phenotypes and states

Classical approaches for identifying cellular phenotypes and states rely on
the usage of microscopy images (Fig. 1c). While few techniques have
emerged to generate multiplex imaging, routine microscopy images utilize
only three to four channels. From these channels, features such as cell area,
nuclear geometry, and pixel intensity can be extracted to detect cellular
states or phenotypes'”’. The question arises- can machine learning predict
cell states or phenotypes (Box 1) using simple images such as transmitted
light or immunofluorescence images?

Various supervised machine-learning models have been used to ana-
lyze cell morphology from fluorescence imagines™. For example, In Silico
Labeling (ISL) uses unlabeled images to predict cell nuclei. Cell nuclei are
altered in malignant scenarios. Therefore, ISL could be a rapid and easily
applied approach to obtain a robust amount of data to further analyze
nuclear shape. ISL has also been used to predict cell viability, cell type, and
subcellular process type with high accuracy. For example, ISL was able to
identify neurons when mixed with astrocytes and immature dividing cells’.
One challenge that arises is whether this model can predict the cell types of
different tissues. If so, a potential application is to identify cellular hetero-
geneity. Cellular heterogeneity is a hallmark of cancer and has been mea-
sured using the intra-tumor heterogeneity classification. If ML models can
distinguish between different cellular types’, potentially they can be used to
provide an objective heterogeneity score that ultimately can help during
cancer diagnosis or tumor aggressiveness. Another image-based application
can be to analyze the tumor microenvironment to elucidate how immune
cells and tumor cells interact. Recently, an immune infiltration score has
been defined in contrast to the “cold/hot” classification'”'. ML models can be
trained for several tissues and tumor stages to predict immune infiltration
scores. This information may be used to classify how aggressive the cancer is
likely to be or how to respond to therapies.

A self-supervised residual neural network with squeeze-and-excite
blocks (SE-RNN) uses multi-channel fluorescence microscopy images to
classify cell morphometric phenotypes to depict cell state®. More recently, a
supervised trained model with nuclei and cell physical properties was
designed to predict cellular state using as an output the transcription
factor'””. The model used fluorescence images of a nuclear marker and cell
morphology. While it is arguable that nuclear YAP translocation is an
indicator of any particular “cellular state”, YAP translocation into the
nucleus has been shown to increase in response to more aligned fibers and
increased tissue rigidity'”. Therefore, using such models could potentially
provide indirect information on the properties of the mechanical environ-
ment. Also, in breast cancer loss of Scribble disrupts 3D acinar formation
and promotes tumorigenesis. Loss of Scribble is accompanied by YAP
mislocation into the nucleus. Therefore, YAP nuclear prediction can be used
to further explore other important regulators in biological processes. Such
models could also be used to detect various conditions such as cancer or
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senescence. For instance, chromatin features and nuclear morphologies
have been classified using an AI model for cancer diagnostics from liquid
biopsies'**. Another study used nuclear features as the input of machine-

learning classifiers to predict cellular senescence'”.

Key opportunities for ML/Al in mechanobiological
research

A well-known limitation of a number of mechanobiological assays is the size
of the datasets analyzed. In a number of cases, only a few cells (typically ~50
cells) are analyzed because of the experimental setup. ML/AI tools trained
on these small datasets can be used to extrapolate the results, making
broader connections and correlations at the physiological level. A model
pre-trained on large-scale image data (e.g., microscopy images of a specific
cell type from a particular context) could be adapted for studying cell
mechanics or tissue stiffness in a new experiment with a different cell type.
This allows the model to leverage previously learned patterns onto new data,
making analysis easier and more automated.

Image and data analysis plays a crucial role in mechanobiology.
Extracting quantitative information from microscopy images and their
accurate analysis is essential for advancing mechanobiological research.
Various Al tools which can be integrated into microscopy or analysis
software to remove blur in images, to enhance signal, to denoise, and to
segment images. Such post-processing of microscopy images can improve
their analysis. ML/AI can further automate the analysis of complex datasets,
including image processing, morphological analysis, segmentation, and
feature extraction, thus eliminating manual image analysis, which can be
time-consuming and prone to human error. This can further lead to the
development of integrated pipelines for data analysis, including data inte-
gration from multiple sources, fully automated analysis and data visuali-
zation, and real-time data analysis.

ML/AI can also be used to generate predictive models, which can
predict how cells or tissues will respond to mechanical stimuli based on
extracted features or experimental inputs. Al algorithms can use extracted
features (e.g., cell stiffness, migration speed, force generation) to predict
outcomes such as cell differentiation, proliferation, or migration in response
to mechanical stimuli. AT algorithms can also classify cellular behaviors and
cell states based on the extracted features, leading to quick identification of
distinct subpopulations of cells or tissues based on mechanical properties.
For example, an Al algorithm can be used to link or correlate a particular
phenotype or genotype with known mechanisms of the same phenotype/
genotype in literature and suggest related pathways or mechanisms, thus
revealing hidden patterns in experimental data that suggest new mechanistic
hypotheses. AI can also be used for the smoother implementation of
mechanistic modeling through mathematical frameworks. ML/AI offers
ways to enhance and complement traditional mechanistic modeling
approaches by improving predictive accuracy, simplifying complex pro-
cesses, and integrating various data types. ML/AI can also be used to learn
from simulation data, creating faster and more efficient models.

ML/AI predictions can further be used to predict mechanical responses
in the case of an unexplored condition. In vivo mechanical conditions are
usually a complex integration of multiple factors, which are studied using a
reductionist approach. To understand the system as a whole requires a
bottom-up approach, integrating multiple ECM and cellular mechanical
phenotypes and conditions. ML/AI can be used to predict how biological
systems will respond under complex conditions that have not yet been
experimentally tested (for example, increasing dimensions with stiffnesses,
strains, or viscoelasticity). This can be further investigated for complex
perturbations, disease states, engineered tissues, or drug treatments. ML/AI
models can also be used to extrapolate beyond available experimental data,
predicting mechanical behaviors or cellular responses under extreme con-
ditions (e.g., very high forces, long-term exposure to mechanical stimuli)
that may be difficult to explore experimentally.

Finally, ML/AI can be used to integrate multimodal data fusion
approaches thus, combining data from imaging, blood biomarkers, genetic
profiles, and physical properties of cells and tissues. Such strategies could

improve early detection of diseases and predicting disease outcomes by
identifying complex patterns that can be missed if each data type were
considered in isolation, or for a better understanding of a therapy’s response.

Challenges for the integration of Al/ML algorithms with
mechanobiology

Using ML/AI in mechanobiology poses a significant challenge due to the
high level of expertise required to develop, implement, and interpret Al tools
effectively. While ML/AI technologies have proven to be powerful in
automating data analysis and identifying patterns in vast datasets, harnes-
sing their full potential requires a combination of domain-specific knowl-
edge and technical expertise in AL These include various complex
algorithms such as decision trees, logistic regression, deep learning and
neural networks. Implementing these models effectively requires a deep
understanding of the strengths, limitations, and underlying mathematics of
each approach. Misapplying a model can result in inaccurate predictions,
false correlations, or overlooked insights. This complexity often acts as a
barrier for many research labs. Effective ML/AI deployment also requires
access to computational resources, such as powerful processors (GPUs) and
high-performance computing environments, which are not readily acces-
sible to all mechanobiology labs.

While large datasets are crucial for training robust and accurate Al
models, the unique nature of mechanobiology often limits the availability of
such extensive data, creating several obstacles for researchers. For example,
measurements using techniques such as FRET, AFM, TFM, or live-cell
imaging often produce data from a limited number of samples or condi-
tions, which can lead to poor model performance, including overfitting,
where the model ‘memorizes’ the training data but fails to generalize to new,
unseen data, thus producing unreliable predictions. To overcome the small
dataset problem, data augmentation or the generation of synthetic data has
been used. Data augmentation includes rotating or flipping images, artifi-
cially increasing the size of the dataset, but these methods may not fully
capture the complexity of mechanical forces and cellular responses. This can
lead to incorrect conclusions or pursuing unproductive research directions.
The limitation of small datasets can be further approached using ML fra-
meworks, such as few-shot learning, which can make predictions by training
on a very small dataset. Transfer learning models trained on larger datasets
from related fields can also be adapted for mechanobiology-specific appli-
cations, which can leverage pre-existing knowledge and patterns learned
from other domains and apply them to mechanobiology.

The performances of both machine learning and deep learning
approaches hinge strongly on the amount of training data. Because of the
sheer size of the experimental data that is acquired, there is a need to store
and share huge amounts of raw data. This becomes especially difficult when
the size of individual data files is in gigabytes, such as single-molecule
localization microscopy (SMLM) raw files or RNA-seq files. Thus, open
platforms that can store and provide easy access to these raw files are
required, consistent with the FAIR (findability, accessibility, interoper-
ability, and reusability) principles'*”. This has led to the advent of platforms
and databases such as BioStudies, Image Data Resource, and ShareLoc to
share different types of biological data'”’~'*. Such databases can provide raw
data for training deep learning algorithms and help accelerate the devel-
opment of new quantification methods in numerous applications in the life
sciences.

AI/ML algorithms can detect patterns and relationships between
variables in large datasets. For instance, an algorithm might correlate a
certain gene expression with a particular cell behavior. This, however,
should not be confused with causation, which requires demonstrating that
changes in one variable directly cause changes in another. Al tools might
identify correlations that are not biologically meaningful. These false posi-
tives can be misleading, wasting time and resources. Large datasets often
contain coincidental correlations. It is therefore feasible that Al tools may
highlight these correlations as being significant, leading to misinterpretation
of the underlying biological processes. Causation requires controlled
experiments and deeper biological understanding, which AI/ML tools alone
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cannot provide. AT models, especially complex ones, can overfit the data
they are trained on, capturing noise rather than true underlying patterns.
This reduces their ability to generalize findings to new data or different
biological contexts.

Conclusions

Since the first observation of the adhesion complexes in the early 70 s' to
the recognition of the importance of the instructive signals provided by the
ECM to regulate many biological processes there has been an increased
interest in the field of mechanobiology. This interest has led to the devel-
opment of techniques and tools to understand how physical properties and
parameters impact cellular behavior. Recently, the implementation of high-
throughput methods has permitted the acquisition of large amounts of data.
With the goal to “generalize” and gain a better knowledge of the experi-
mental findings, there is an urgent need to use better and more compre-
hensive techniques.

AI/ML have emerged as powerful tools to address these challenges.
Nevertheless, AI/ML approaches face many challenges, particularly with
respect to the creation of fraudulent data”'. Noam Chomsky stated that
technology “is basically neutral. It is like a hammer. The hammer doesn’t
care whether you use it to build a house or whether for torture, using it to
crush someone’s skull, the hammer can do either”'”, if this premise is true,
the proper use of AI/ML tools can be a breakthrough in many research fields
and its misuse can compromise progress.

In this regard, Al tools are indispensable in modern cell biology for
their ability to handle and analyze large, complex datasets efficiently. While
Al excels at identifying patterns and correlations in large datasets, distin-
guishing these from true causal relationships requires careful experimental
design, validation, and integration with domain knowledge. By addressing
this issue, researchers can harness the power of AI while ensuring robust,
meaningful, and biologically relevant insights. In this age of big data, Al tools
need to be used together with traditional experimental methods to combine
both computational power and biological insight. Such tools are paving the
way for more personalized and precise approaches in medicine and fos-
tering a deeper understanding of cellular processes.
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