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Accurate registration of vascular shapes is essential for comparing anatomical geometries, extracting
reliable measurements, and generating realistic models in cardiovascular research. Conventional
surface registration methods often face limitations in efficiency, scalability, and generalization across
shape cohorts. In this work, we present AD–SVFD, a deep learning framework that simultaneously
performs deformable registration of vascular geometries to a pre–defined reference anatomy and
enables the synthesis of new shapes. AD–SVFD represents each geometry as a point cloud and
models ambient deformationsas solutions at unit timeof ordinary differential equations (ODEs),whose
time–independent right–hand sides are parameterized by neural networks. Registration is optimized
by minimizing the Chamfer distance between deformed and reference geometries, while shape
generation is achieved by integrating the ODE backward in time from sampled latent codes. A
distinctive auto–decoder architecture associates each anatomy with a low–dimensional embedding,
jointly optimized with the network parameters during training, and fine–tuned at inference, reducing
computational overhead. Numerical experiments on healthy aortic anatomies demonstrate the
capability of AD–SVFD to yield accurate approximations at competitive computational costs.
Compared to existing approaches, our model offers an efficient, unified framework for processing
multiple shapes and robustly generating plausible geometries.

Over the last two decades, the deformable registration of three-dimensional
images has become increasingly important in a wide number of computer
graphics and computer vision applications. In broad terms, the deformable
—or non-rigid—registration problem consists of aligning and locating
different shapes within a shared coordinate system, to enable meaningful
comparisons and analyses1–3. Besides industrial and engineering applica-
tions, deformable registration nowadays plays a crucial role in several
medical imaging tasks, such as multimodal image fusion, organ atlas crea-
tion, and monitoring of disease progression4,5. Unlike rigid registration,
which involves only global scaling, rotations, and translations, deformable
registration must estimate complex, localized deformation fields that
account for natural anatomical variability. This challenge is enhancedby the
presence of noise, outliers, and partial overlaps, which are very common in
clinical data. Furthermore, exact point-to-point correspondences between

different anatomies are rarely available in practice, which requires the
adoption of alternative metrics to evaluate data adherence.

The challenge of developing efficient, reliable, and computationally
tractable registration methods is of paramount importance for improving
medical imaging workflows, healthcare technologies, and patient care.
Manual alignment of images in subject-specific clinical contexts is often
infeasible or impractical, due to the complexity and variability of biological
structures, aswell as to the differences in imagingmodalities and acquisition
times. To address this limitation, several automatic registration approaches
have been developed. Among the most widely employed ones, we can
mentionDARTEL3, Diffeomorphic Demons6, and LDDMM7–9. Notably, all
these methods share remarkable robustness characteristics, since they are
based on a deformation of the ambient space, which is guaranteed to be
smooth, differentiable, invertible, and topology preserving.
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While traditional image and shape registration approaches can yield
extremely accurate results, they nonetheless entail non-negligible compu-
tational costs that may hinder their use in real-time clinical practice. To
mitigate this issue and improve the overall performance, deep learning (DL)
techniques have been exploited in various ways. A non-exhaustive list of the
most popular state-of-the-art DL-based registration methods includes the
probabilisticmodels developed in refs. 10,11,Voxelmorph12, Smooth Shells13,
Neuromorph14, Cyclemorph15, Diffusemorph16 and Transmorph17. We refer
to refs. 5,18–20 for comprehensive literature reviews on the topic.

In our study, we are specifically interested in the registration of
vascular surfaces. The latter can be seamlessly extracted from volumetric
data, acquired through traditional imagingmodalities, such as CT-scans
or MRI. Furthermore, novel techniques like photoacoustic scanning21–23

are rapidly gaining traction in clinical practice, since they provide a low-
cost radiation-free alternative, particularly well-suited for superficial
vascular anatomies, located up to 15 mm beneath the skin. A review of
the classical techniques for surface registration can be found in ref. 24. In
this scenario, DL-based approaches can be subdivided into two major
groups, depending on how surfaces are represented. On the one hand, we
have methods that treat shapes as 3D point clouds25, such as the ones
introduced in refs. 26–28. On the other hand, instead, there exist several
methods that represent 3D geometries by means of Deep Implicit
Functions—namely continuous signed distance functions, expressed
through neural networks29–31—such as the ones presented in refs. 32,33.
Notably, the models described in refs. 27,32,33 encapsulate learnable
latent shape representations, which enable the simultaneous registration
of multiple geometries to a common reference, as well as their use as
generative AI tools.

In this work, we present a DL-based model for the deformable regis-
tration and synthetic generation of vascular anatomies, named AD-SVFD
(Auto-Decoder Stationary Vector Field Diffeomorphism). The general
structure of AD-SVFD, reported in Fig. 1, is inspired by the models intro-
duced by Amor et al. in ref. 28 (ResNet-LDDMM), by Kong et al. in ref. 33
(SDF4CHD), and byCroquet et al. in ref. 27. Analogously to refs. 27,28, AD-
SVFD treats geometries as three-dimensional point clouds and employs ad
hoc data attachment measures to compensate for the absence of ground-
truth point-to-point correspondences. The vascular shapes registration is
achieved by deforming the ambient space according to an optimizable
diffeomorphicmap.The latter is approximatedas the solutionatunit timeof
an ordinary differential equation (ODE), whose time-independent right-
hand side, representing a velocity field, is expressed through a fully-
connected artificial neural network (ANN) (Neural ODE paradigm34).
Another major feature of AD-SVFD is its auto-decoder (AD) structure,
introduced in a similar context in ref. 31 (DeepSDF) and then further
exploited, e.g., in ref. 33. In fact, AD-SVFD enables the simultaneous
registration of a cohort of source shapes to a pre-defined common reference
by introducing low-dimensional learnable latent codes that are provided as
input to the model and that condition its weights. As such, AD-SVFD
configures as a self-conditional neuralfield35, since the conditioning variable
is part of the model trainables. Compared to the more widely employed
auto-encoders (AEs)36–38, that obtain latent input representations through a
trainable encoding network, ADs entail faster and lighter optimization
processes. Indeed, they roughly halve model complexity, at the cost of a
cheap latent code inference procedure to be performed at the testing stage.
Other than featuring improved generalization capabilities and favoring
efficientweight sharing, implicit neural representations through latent codes

Fig. 1 | General structure of the AD-SVFD model. The proposed approach
leverages deep learning techniques to perform the diffeomorphic registration of
vascular anatomies to a reference. Invertible ambient space deformations are
modeled as solutions at unit time of ODEs, whose right-hand sides are parametrized
by neural networks. The source and template geometries, represented as point
clouds, are provided as input to AD-SVFD. The direct (top part of the image) and
inverse (bottom part of the image) transforms are obtained by integrating the flow
equations forward and backward in time, respectively. Geodesic paths can be

visualized by morphing the input shapes at intermediate stages during the ODE
integration. Generalization capabilities are enabled by associating each source shape
with a trainable latent code (in green). The baseline model is optimized by mini-
mizing the Chamfer distance (CD) between the mapped and the target geometries.
Pointwise errors are quantified through the forward local distance (FLD), expressed
in cm, namely the distance of each point in the mapped geometry from the closest
one in the target.
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also enable generative AI applications39. Indeed, synthetic anatomies can be
crafted by drawing samples from empirical distributions, defined over the
low-dimensional latent space, and by applying the associated inverse
transforms to the reference geometry.

We remark that AD-SVFD introducesmajormethodological novelties
compared to the approaches presented in refs. 27,28,33. First, the adoption
of an auto-decoder structure distinguishes AD-SVFD from both ResNet-
LDDMM,which does not employ latent codes, and ref. 27, which relies on a
convolutional variational autoencoder. Second, unlike ResNet-LDDMM,
AD-SVFD represents the diffeomorphic map through a stationary vector
field parametrization embedded in a Neural ODE, rather than through a
variable velocity field approximated via residual connections. Third, in
contrast to SDF4CHD, AD-SVFD does not rely on signed distance func-
tions (SDFs) for geometry representation, but operates directly on three-
dimensional surface point clouds, which are better suited to vascular ana-
tomies. Finally, unlike all three prior approaches, AD-SVFD incorporates a
loss penalizationonboth thedirect and inversemappings, thereby favouring
the learning of diffeomorphic maps with numerically stable inverses. It is
worth noting, however, that AD-SVFD does not include the Atlas learning
capabilities of SDF4CHD, hence requiring the availability of a pre-defined
reference shape. We refer to theMethods section for a detailed discussion.

For clarity of presentation and to support the interpretation of the
numerical results reported in the following section, we provide a brief
description of the proposed methodology. Let T denote the template (or
reference) geometry and let fSigN

s

i¼1 denote the cohort of available patient-
specific vascular anatomies; the latter will be referred to as the source cohort
in the following. In particular, T and Si identify three-dimensional closed
surfaces that are represented as weighted point clouds of the form:

T :¼ xtj ;w
t
j

� �n oMt

j¼1
; Si :¼ xsi;j;w

s
i;j

� �n oMs
i

j¼1
for i ¼ 1; . . . ;Ns :

ð1Þ

Here, xtj ; x
s
i;j 2 R3 are, respectively, the template and source points, and

wt
j ;w

s
i;j 2 Rþ are the associated weights, which add up to one. In general,

theweights associatedwith isolatedpoints in the cloud shouldbe large,while
those in regions of high local density should be lower. In this work, we
construct the point clouds from available triangular surface meshes by
selecting the cell centers as points and computing the weights as the cor-
responding (normalized) cell areas. To facilitate training, we perform a
preliminary rigid registration of the source shapes to the template, based on
the coherent point drift algorithm40, and we apply an anisotropic rescaling.
In this way, we embed every geometry in the unit cube Ω≔ [0, 1]3 and we
can assume that xtj ; x

s
i;j 2 Ωwithout loss of generality. It is worth remarking

that a tailored template shape can be estimated from the set of available
anatomies, as done e.g. in refs. 33,41–43. However, for simplicity, in this
work, we simply select one patient-specific anatomy to serve as a reference.

In mathematical terms, our goal is to find a set of diffeomorphisms
f φ!ig

Ns

i¼1 that solves the following minimization problem:

φ!�1 ; . . . ; φ!
�
Ns

� �
¼ argmin

φ!1 ;...; φ
!

Ns

� �
1
Ns

XNs

i¼1
D φ!iðSiÞ; T
� �þD Si; ð φ!iÞ

�1ðT Þ
� �� �

;

ð2Þ

whereD : RM1 × 3 ×RM2 × 3 ! Rþ is some discrepancymeasure between
two three-dimensional point clouds of cardinalities M1;M2 2N. Hence,
we want to learn a family of invertible ambient space deformations, whose
elements allow to optimally (i)map the source shapes to the template via the

direct transforms f φ!�i g
Ns

i¼1 and (ii)map the template shape to the sourcesvia

the inverse transforms fð φ!�i Þ
�1g

N s

i¼1. As discussed before, the AD-SVFD
model features an auto-decoder structure, through the use of low-
dimensional latent codes fz igN

s

i¼1; z i 2 RNz , associated with the source

shapes. The ambient space deformation associated toSi can be expressed as

φ!iðxÞ ¼ φ!ðx;Θ; z iÞ, entirely encapsulating the input dependency into the
shape code. Therefore, the optimization problem in Eq.(2) can be
conveniently rewritten as follows: find Θ� 2 RNΘ ; z�i 2 RNz

for i ¼ 1; . . . ;Ns, such that

Θ�; z�1 ; . . . ; z
�
Ns

� � ¼ argmin
Θ; z1;...;zNsð Þ

1
Ns

XNs

i¼1
E Si; T ; φ!ð � ;Θ; z iÞ
� �

;

where EðS; T ; ϕ
!Þ :¼ Dð φ!ðSÞ; T Þ þDð φ!�1ðT Þ;SÞ denotes the bidir-

ectional mapping error between two point clouds S and T , through the
diffeomorphism φ!. In this setting, the latent codes can be interpreted as
low-dimensional embeddings of the source shapes, obtained through the
application of an encoder-like operatorPðΘÞ : RM × 3 ! RNz , whereM 2
N denotes the point-cloud cardinality, such that z i ¼ PðSi;ΘÞ;
i ¼ 1; . . . ;Ns. We remark that in a standard AE setting P would be
explicitly parametrized by a neural network (encoder) and jointly optimized
with the decoder. Here, instead, it configures as a by-product of the small
optimization problem on the shape code entries, and it is implicitly defined
through the decoder.

Adopting the stationary vector field (SVF) parametrization of
diffeomorphisms3,44 (as done in refs. 27,33), we exploit the Neural ODE
paradigm 34 to express themapφi as the solution at unit time to the following
learnable ODE:

∂ φ!iðx; tÞ
∂t

¼~v ~φiðx; tÞ;Θ; z i
� �

such that ~φiðx; 0Þ ¼ x ; ð3Þ

where the vectorΘ 2 RNΘ collects the trainable parameters of anANN. As
demonstrated in ref. 45, if the ANN that expresses the velocity field~v is fully
connected and features ReLU or Leaky-ReLU activation functions, then v!
is Lipschitz continuous and Eq. (3) admits a unique solution. Consequently,
the inverse transform ð~φiÞ�1, which deforms the ambient space so as to
overlap the template point cloud T to the source one Si, can be found by
integrating Eq. (3) backward in time. In this work, we employed the first-
order forward Euler and modified Euler schemes to numerically integrate
the diffeomorphic flow equations forward and backward in time,
respectively, considering K = 10 discrete time steps, as in ref. 28.

Our approach is developed under the assumption that all shapes share
the same topology. Conversely, it is not possible to guarantee the existence
(and uniqueness) of a diffeomorphicflowfield that exactly deforms one into
the other. In fact, non-rigid registration under topological variability
remains an open challenge46.

To train the AD-SVFDmodel, we employ the following loss function:

LðΘ;ZÞ :¼ 1
Ns

XN s

i¼1
E Si; T ;~φð�;Θ; z iÞ
� �� �þ wzk Z k22 þ wΘk Θ k22 þ wv LregðΘÞ ;

ð4Þ
where wz;wΘ;wv 2 Rþ are scalar weight factors, Z 2 RNz ×Ns is a matrix
collecting the shape codes associated with theNs training shapes, andLreg is
a regularization term that constrains the velocity field learned by the ANN.
In the numerical experiments, we explore multiple alternatives for the data
attachment measure D that appears in the definition of the bidirectional
mapping error E. Specifically, we consider the Chamfer distance (CD)47, the
point-to-plane Chamfer distance (PCD)48, the Chamfer distance endowed
with a penalization on the normals’ orientation scaled by the factor wn 2
Rþ (denoted as NCD), and the debiased Sinkhorn divergence (SD)49.
Furthermore,we exploit the availability ofweights (seeEq. (1)) toderivedata
adherence measures that should be better able to deal with unevenly
distributed point clouds. The training procedure is carried out with the
Adam optimizer50, considering E = 500 epochs, a batch size B = 8, and
setting the same learning rate λ 2 Rþ to update the ANN parameters and
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the shape codes. At each epoch, sub-clouds made of M = 2000 points are
adaptively sampled to limit computational efforts and memory require-
ments. More details on both the data attachment measures and the training
pipeline are provided in the “Methods” section. During testing, we can
combine Adam with higher-order memory-intensive methods, such as
L-BFGS51, since only the latent code entries have to be optimized.
Specifically, we first run 100 epochs using Adam, and then we fine-tune
the predictions using L-BFGS for 10 epochs. Additionally, preliminary
numerical results suggestedusing a learning rate 50 times larger than theone
employed for training with Adam, as this facilitates and speeds up
convergence.

Results
We present the numerical experiments conducted on the AD-SVFDmodel
and briefly discuss the obtained results. All tests have been performed

starting from a dataset containing 20 healthy aortic anatomies, which have
been segmented from medical images (CT-scans and MRIs) using
SimVascular52 (see Fig. 2a) and are publicly available in theVascular Model
Repository53. As depicted in Fig. 2b, we underline that all the geometries
share the same topology, which comprises the aortic vessel (ascending
chunk (AA) and descending chunk (DA)), the brachiocefalic artery (BA),
the left and right subclavian arteries (LSA, RSA), and the left and right
common carotid arteries (LCCA,RCCA). To generateweighted point cloud
representations of the shapes, we created volumetric tetrahedral computa-
tional meshes and extracted triangulations of the external surfaces. This
allowed us to choose the surface cell centers as the cloud points, and the
surface cell areas as the associated weights (see Eq. (1)).

The number of available anatomies is evidently too low to train a
DL-basedmodel, whose performances drastically depend on the amount of
data at disposal. Therefore, we implemented an ad hoc data augmentation

Fig. 2 | Healthy aortic shapes dataset overview. In particular: a original dataset of patient-specific anatomies, b topology of the considered geometries, with nomenclature of
the different branches, c original shape and three synthetic samples, generated by deforming four anatomies with the implemented data augmentation pipeline.
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pipeline, based onCoherent Point Drift (CPD) rigid registration40 and thin-
plate spline (TPS) interpolation54.We refer to SupplementaryNotes 1 and 2
for a detailed description. This allowed us to assemble a datasetmade of 902
anatomies, out ofwhich 882 have beenartificially generated.A few synthetic
anatomies are reported inFig. 2c.Weperforma train-test splitting, reserving
38 shapes solely for testing. In particular, 2 of the test geometries belong to
the original dataset, and their corresponding augmented versions are not
taken into account for training; the remaining 36 test geometries are instead
augmented versions of the 18 original anatomies included in the training
dataset (2 augmented shapes per patient). Except for the cross-validation
procedure, all the numerical tests are carried out considering the same
training and testing datasets. They have been obtained by reserving patients
P#093 and P#278 for testing, which results in employing 780 geometries for
training.We remark that patient P#091 serves as a reference in all test cases.

Most hyperparameters of the ANN model have been calibrated in a
simplified single shape-to-shape registration scenario, using the Tree-
structured Parzen estimator (TPE) Bayesian algorithm55,56. We refer to
Supplementary Note 3 for a complete list of the hyperparameters and for a
detailed description of the tuning procedure. Besides dictating the specifics
of the ANN model architecture, the calibration results suggested to set the
learning rate λΘ = λz = λ = 10−3, and the lossweightswv = 10−4 andwz = 10−3

(see Eq. (4)). Unless differently specified, the loss is computed considering
the standard (i.e. not weighted) CD as a data attachment measure. The
model accuracy is quantified through the forward and backward local dis-
tances (FLD and BLD), expressed in cm. The former identifies the distance
of each point in the mapped geometry from the closest one in the target,

while the latter is the distance of each point in the target from the closest one
in the mapped geometry.

All computations were performed on the Sherlock cluster at Stanford
University, employing an AMD 7502P processor (32 cores), 256 GB RAM,
HDR InfiniBand interconnect, and a single NVIDIAGeForce RTX 2080 Ti
GPU.The reported average testing timeswere obtainedon theKumacluster
at EPFL, considering a single NVIDIA H100 SXM5 GPUs, 94 GB RAM
(HBM2e), memory bandwidth of 2.4 TB/s, Interconnected with NVLink,
900 GB/s bandwidth. We note that the exact reproducibility of the results
cannot be guaranteed, owing to the use of non-deterministic algorithms
provided by the PyTorch library to enhance efficiency.

Test 1: Latent shape codes
We investigate the effect of shape codes on the AD-SVFD model results,
focusing in particular on the latent space dimension Nz. We point out that
the training errors are computed only on the 18 original shapes.

Figure 3 reports the average (a) andmaximal (b) FLDandBLDforboth
the direct and the inverse deformation, considering different values of Nz.
On the one hand, the results demonstrate that the latent space dimension
should be taken sufficiently large in order to effectively condition themodel
weights towards accurate approximations of the diffeomorphic maps. On
the other hand, we notice that model accuracy stalls for large values of Nz,
suggesting redundant information in the shape codes. Ultimately, we select
Nz = 256 as the latent dimension, since it appears to optimally balance
accuracy and efficiency. In terms of generalization power, we note that
training and testing errors are comparable forNz ≥ 256, thus indicating that

Fig. 3 | Deformable mapping results of the baseline AD-SVFD model. In parti-
cular, we report the average (a) and maximal (b) pointwise errors—quantified
through the forward and backward local distances FLDandBLD, in cm—on training
and testing datapoints, obtained for different shape code dimensions Nz; in c, we

show the geodesic paths between two source shapes (P#090 for training, P#093 for
testing) and the reference shape (P#091), generated by numerical integration of the
diffeomorphic flow equations by the forward Euler method at K = 10
intermediate steps.
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no overfitting phenomenon occurs. Incidentally, we remark that no major
discrepancy between the registration errors on the original and augmented
testing geometries can be observed. For instance, only marginally lower
maximal FLDs are obtainedon the augmented geometries, bothconsidering
the direct and the inverse map (direct map errors: 0.2774 vs. 0.2822 cm;
inversemap errors: 0.2562 vs. 0.2613 cm). In Fig. 3c,we appreciate howAD-
SVFD smoothly and gradually warps the source shapes into the reference
one, through the forward-in-time numerical integration of the learnable
diffeomorphic flow equations (see Eq. (3)) by the explicit Euler method.

Test 2: Data attachment measures
We analyse the AD-SVFD model performances considering the different
data attachment measures mentioned in the section “Introduction”. We
refer to the “Methods” section for a detailed description of the different
options and of their specifics. Table 1 reports the maximal pointwise errors
on both training and testing datapoints. To quantitatively compare the
results, we evaluate the maximal pointwise FLD and BLD, even when
metrics different from the (unweighted) CD are used in the loss. Since this
approach may introduce a bias in the analysis, we also provide a qualitative
accuracy assessment through Fig. 4.

From both a quantitative and a qualitative standpoint, the best results
are obtained considering the baseline model, which employs unweighted
CD as a data attachment measure. Indeed, this model yields precise geo-
metry reconstructions on both training and testing shapes, and it is asso-
ciatedwith the lowest training time (equal to7 h40min) andwith anaverage
testing time of just 1 min 28 s per shape. Incorporating a penalization of the
normals’ orientation in the loss (with wn = 10−2) allows for marginal

accuracy improvements, but at the cost of amuch larger training time (equal
to 16 h07 min), due to the increased number of model evaluations. Inci-
dentally, the larger memory requirements induced by the normals’ calcu-
lation prevent the use of L-BFGS at inference. To mitigate this issue, we
replace NCD with unweighted CD at testing; this allows us to retain
acceptable accuracy levels, even though worse than the training ones, at
equivalent inference times. Neither leveraging the weights associated with
the point clouds nor adopting PCD improves the mapping quality; in fact,
both approaches are substantially outperformed by the baseline model.
With a specific focus on PCD, from Fig. 4, we can observe marked dis-
crepancies at the upper branches, which, in the case of patient P#093 tend to
squeeze into unrealistic flat morphologies. Lastly, we remark that the
registration quality gets considerably worse when using debiased SD.
Indeed, the deformed geometries take unlikely convoluted shapes, which
become twisted and almost flat in the upper branches region. From a
quantitative point of view, this translates into errors that roughly double the
ones obtained with CD. Furthermore, compared to the baseline model, the
heavier costs associated with the calculation of SD entail drastic increases in
the durations of both training (from 7 h40 min to 27 h15 min) and testing
(from 1 min 28 s to 3 min 08 s per shape on average).

Test 3: Comparison with state-of-the-art methods
To fairly assess the capabilities of AD-SVFD, we run a comparison test with
five alternative shape registration models. Specifically, we evaluate the
mappingquality for twodifferent source shapes:P#090 (training) andP#278
(testing).We investigate the followingmodels: coherent point drift (CPD)40,
thin-plate spline (TPS) interpolation54 (see Supplementary Note 1 for

Table 1 | Registration results of AD-SVFD considering different data attachment measures

Train errors (in cm) Test errors (in cm)

Direct Inverse Direct Inverse

Loss FLD BLD FLD BLD FLD BLD FLD BLD

DCD 0.2162 0.2175 0.2686 0.2297 0.2777 0.2253 0.2562 0.2642

DW
CD

0.2412 0.2497 0.2869 0.2564 0.4088 0.2479 0.2952 0.4283

DPCD 0.3195 0.2165 0.3225 0.2611 0.3138 0.2516 0.2749 0.3540

DW
PCD

0.2515 0.2510 0.2958 0.2579 0.3489 0.2439 0.3043 0.3686

DNCD 0.2033 0.2166 0.2628 0.2396 0.2965 0.2260 0.2497 0.3090

DSD 0.4887 0.3795 0.5355 0.3923 0.4519 0.4695 1.1094 0.4384

DW
SD

0.5866 0.3861 0.5155 0.3917 0.4156 0.4155 0.8275 0.4420

In particular, we report themaximal pointwise errors on training and testing datapoints, obtained for six different data adherencemetrics. The errors are quantified through the forward and backward local
distances (FLD and BLD), expressed in cm. The best value for each performancemetric is shown in bold. For reference, the template shape inlet diameter is 1.31 cm, while the average inlet diameter in the
dataset is 1.45 cm. CD: Chamfer distance; PCD: point-to-surface Chamfer distance48; NCD: Chamfer distance with normals penalization; SD: debiased Sinkhorn divergence49. Notation: theW superscript
denotes the use of a weighted measure.

Fig. 4 | Registration results of AD-SVFD con-
sidering different data attachment measures. In
particular, we show the direct and inverse mapping
pointwise errors, obtained on a training (P#090) and
a testing (P#093) datapoint, for four different data
adherence metrics. The errors are quantified
through the forward local distance (FLD), expressed
in cm, namely the distance of each point in the
mapped geometry from the closest one in the target.
For reference, the inlet diameters are 1.31 cm for the
template shape, 1.21 cm for P#090, and 1.32 cm for
P#093. CD Chamfer distance, PCD point-to-surface
Chamfer distance48, NCD Chamfer distance with
normals penalization, SD debiased Sinkhorn
divergence49.
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details), LDDMM9, SDF4CHD33 and ResNet-LDDMM28. Furthermore, we
also consider the SVFD model, namely the AD-SVFD model, lacking the
auto-decoder structure. We note that all deformable registration models
operate on anatomies that have been rigidly pre-aligned using the CPD
method, whose registration errors therefore identify a baseline. A few
aspects deserve attention.
• Except for SDF4CHD, all the approaches perform single shape-to-

shape registrations, without leveraging any form of implicit geometry
representation.Hence, for thesemodels, there is nodistinctionbetween
training and testing shapes.

• UsingCPD, TPS andLDDMM,we can only estimate a one-directional
map, warping the source shape into the reference one or vice versa.
Therefore, the direct and inverse maps are retrieved by running two
independent optimization processes. While this approach may
improve registration accuracy, it comes at the cost of increased
computational efforts and does not guarantee that the two maps
compose to the identity.

• As reported in ref. 28, despite learning a diffeomorphism between two
shapes, theResNet-LDDMMmodel is solely optimized considering the
source-to-template map result. To enhance inverse mapping quality,
we introduce the I-ResNet-LDDMMmodel. Compared to the baseline,
the latter solves amulti-objectiveoptimizationproblem, includingboth
direct and inverse mapping results within the loss. To provide a fair
comparison with AD-SVFD, we employ CD as a data attachment
measure, rely on the modified Euler scheme to integrate the
diffeomorphic flow ODE backward in time, and equally weigh direct
and inverse errors.

Regarding themodels’ specifics, for ResNet-LDDMMand SDF4CHD,
we employ the “optimal” model structures and hyperparameter sets, as
identified in refs. 28,33, respectively. Furthermore, with SDF4CHD, we do
not exploit theDeepSDFmodel31 to learn the SDF representation of anAtlas
shape; instead, we use the pre-computed SDF of patient P#091 to serve as a
reference. For LDDMM,we rely on theDeformetrica9 software, andperform
single shape-to-shape registration employing L-BFGS as optimization
algorithm and the varifold distance as data attachment measure, with a
Gaussian kernel ofwidth 0.8. This last value,which leads to the optimization
of roughly 1, 500 control points and momenta vectors, has been manually
calibrated to balance efficiency and accuracy. For SVFD, we consider the
optimal set of hyperparameters found during the calibration tests (see
Supplementary Note 3).

Table 2 reports the maximal pointwise errors of the direct and
inverse mappings obtained on the two considered source shapes, for the
different registration models. Figure 5 displays the results for four of the
models. In summary, we observe that SVFDand LDDMMoutperform all
the other approaches, while AD-SVFD trades a small accuracy dete-
rioration for improved efficiency and generalization properties. Indeed,
by direct comparison with SVFD, a registration error increase of 20% on
P#090 and 30% on P#278 is counterbalanced by a drastic reduction of
inference times—from roughly 12 min to 1 min 30 s —and by the cap-
ability of providing a unified framework to process an entire cohort of
shapes. We note that LDDMM yields very precise approximations of the
direct map, but its performances deteriorate and falls behind ones of AD-
SVFD on the inverse map, particularly because of discrepancies at the
inlet/outlet faces. A similar considerationholds for the SDF4CHDmodel,
which is capable of producing anatomies that closely match the target
ones, but that often feature artifacts and/or completely miss the final
portion of the smallest branches. In contrast with the results reported in
ref. 28, the residual neural network structure of ResNet-LDDMM does
not allow it to outperform the canonical LDDMMmethod. Nonetheless,
we acknowledge that fine-tuning the model hyperparameters to the
present test case may sensibly improve the results. Additionally, we
underline that the introduction of a penalty on the inverse mapping in
ResNet-LDDMM determines minor but tangible improvements on all
metrics.

Test 4: Robustness assessment
To save computational resources, all numerical experimentsdescribed so far
were conducted in a “fixed” scenario, namely, for the same random initi-
alization of the trainable parameters and reserving the samepatients (P#093,
P#278) for testing. This way of proceeding prevents a thorough assessment
of robustness,which is of paramount importance inDLapplications. To this
aim, we perform a 10-fold cross-validation, designed with respect to the
“original” geometries in the dataset. This means that, if the anatomy of a
given patient is reserved for testing, then all the augmented versions of such
anatomy are not considered for training. For each fold, we run three
independent training processes, considering different random seeds. For
this test, both training and testing errors are computed solely accounting for
original anatomies.

Table 3 reports the obtained results, in terms of training and testing
FLDandBLD, for both the direct and the inversemapping.We observe that
all models yield precise approximations of the diffeomorphic maps on the
training datapoints, withmaximal pointwise errors that always lie below the
0.30 cm threshold.However,markedly larger errors are produced at testing,
in particular for folds #1, #2, #8, and #10. This phenomenon can be
explained by considering that these folds, respectively, reserve for testing
patientsP#275,P#207,P#188,P#205, whose geometriespresent features that
are uniquely representedwithin the dataset. For instance (see Fig. 2): patient
P#207 is characterized by the only anatomywhose RSA bends towards (and
not away from) RCCA; patient P#205 is the only one whose horizontal LSA
chunk could not be segmented.Hence, the drop in precision can be ascribed
to data paucity.

To further evaluate the robustness of AD-SVFD, we exploit the cross-
validation results to compare its performance on 10 testing patients (one per
fold, see underlined values in Table 3) to those of LDDMM, I-ResNet-

Table 2 | Comparison test of AD-SVFD with seven alternative
registration methods

Method Multi
shape

DL Max. errors (in cm)

Direct Inverse

FLD BLD FLD BLD

P#090 CPD ✗ ✗ 1.4321 2.0983 1.3985 2.9714

TPS ✗ ✗ 0.2918 0.2615 0.4305 0.3674

LDDMM ✗ ✗ 0.1813 0.1227 0.2625 0.3332

ResNet ✗ ✓ 0.2470 0.2806 0.4393 0.6520

I-ResNet ✗ ✓ 0.1948 0.2269 0.2139 0.2466

SVFD ✗ ✓ 0.1339 0.1479 0.1674 0.1659

SDF4CHD ✓ ✓ 0.3861 1.7831 0.6250 0.4207

AD-SVFD ✓ ✓ 0.1693 0.1923 0.2071 0.1719

P#278 CPD ✗ ✗ 1.5265 1.1772 1.3802 2.0471

TPS ✗ ✗ 0.5092 0.3521 0.7974 0.7104

LDDMM ✗ ✗ 0.1281 0.1681 0.5160 0.5441

ResNet ✗ ✓ 0.3085 0.2720 0.3546 0.3594

I-ResNet ✗ ✓ 0.2805 0.2498 0.2986 0.3367

SVFD ✗ ✓ 0.1343 0.1614 0.2248 0.2259

SDF4CHD ✓ ✓ 0.2598 1.2918 1.0277 0.2754

AD-SVFD ✓ ✓ 0.2166 0.1807 0.2817 0.2933

In particular, we report the maximal pointwise errors on patients P#090 and P#278, obtained
considering CPD40, TPS54, LDDMM9, ResNet-LDDMM 28 (optionally endowed with a penalty of the
inverse deformation, I-ResNet-LDDMM), SVFD (i.e., our model without auto-decoder structure),
SDF4CHD33, and AD-SVFD. The errors are quantified through the forward and backward local
distances (FLDandBLD), expressed in cm.ThecolumnMulti Shape identifiesmethods that allow for
the simultaneous registration of multiple shapes; the column DL identifies deep learning models.
The best results for single-shape approaches are shown in bold; the best results for multi-shape
approaches are underlined. For reference, the inlet diameters are: 1.31 cm for P#091 (template);
1.22 cm for P#090; 1.52 cm for P#278.
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LDDMM and SVFD. We refer to Supplementary Note 4 for the details.
From a general standpoint, the obtained results highlight the good gen-
eralization capability of AD-SVFD. Although its average accuracy is slightly
lower than that of LDDMM(+5%and+16%on the direct and inversemap
errors) and I-ResNet-LDDMM (+22% and+5% on the direct and inverse
map errors), this drawback is largely offset by a substantial reduction of the
inference time (−85% compared to LDDMM, from 10 to 1.5min, and
−81% compared to I-ResNet-LDDMM, from 8 to 1.5min). Moreover, we
note that the SVFD model outperforms the two competing single-shape
registration approaches, achieving 56% and 33% lower direct and inverse
map errors compared to LDDMM, and 39% and 49% lower direct and
inverse map errors compared to I-ResNet-LDDMM. Additionally, it pro-
vides accurate predictions even for the “critical” patients, P#205 and P#207.
These findings confirm that the use of latent shape codes, albeit enabling
faster inference and generative applications, inevitably entails accuracy
losses and performance pitfalls, largely attributable to data scarcity.

Test 5: Latent space analysis and generative modelling
Theuse of low-dimensional latent codes, belonging to the learnable spaceZ,
makesAD-SVFD suited for generativemodelling. Indeed, once themodel is

trained, new anatomies can be generated by sampling shape code instances
from Z and applying the corresponding inverse maps to the template
geometry. We highlight that the robustness of the generative process is
intimately related to the latent space regularity. For this reason, we include a
penalization of the shape code entries in the loss, weighted by the positive
constant ωz (see Eq. (11)).

Figure 6 reports a sketch of the latent space learned by the AD-SVFD
model. We show the projections of the shape codes associated with the
training source anatomies onto a two-dimensional subspace, obtained
through principal component analysis (PCA). Furthermore, we display 10
entries that are randomly sampled fromN ð0;ΣzÞ—whereΣz is anunbiased
estimate of the covariance matrix computed from the training shape codes
(red and black circles)—and we report their physical counterparts. Finally,
we illustrate the results stemming from interpolation in the latent space; in
particular, we display 3 synthetic anatomies generated via linear inter-
polation betweenP#090 andP#141, and 3 synthetic anatomies generated via
spherical linear interpolation (SLERP)57,58 between P#139 and P#188
(red&black squares). Based on the obtained results, we can claim that the
learned latent space exhibits satisfactory smoothness and regularity prop-
erties, at least from a qualitative standpoint. Indeed, with reference to Fig. 2,

Table 3 | Cross-validation procedure results

Train errors (in cm) Test errors (in cm)

Direct Inverse Direct Inverse

Fold # Test P# FLD BLD FLD BLD FLD BLD FLD BLD

1 090, 275 0.2439 0.2367 0.2775 0.2401 0.5000 0.3153 0.3708 0.5747

2 091, 207 0.2406 0.2174 0.2692 0.2397 0.6429 0.2690 0.2512 0.6902

3 139, 143 0.2232 0.2171 0.2704 0.2259 0.3091 0.2687 0.2710 0.2638

4 093, 187 0.1984 0.2125 0.2641 0.2252 0.3485 0.2458 0.2400 0.4382

5 272, 277 0.2390 0.2418 0.2702 0.2312 0.3119 0.2281 0.2856 0.3770

6 092, 201 0.2351 0.2210 0.2748 0.2291 0.2236 0.2350 0.2429 0.2745

7 144, 278 0.2307 0.2166 0.2675 0.2360 0.3484 0.2328 0.2950 0.3608

8 094, 188 0.2252 0.2228 0.2639 0.2267 0.6567 0.3454 0.3602 0.4967

9 142, 145 0.2120 0.2046 0.2525 0.2225 0.2901 0.2867 0.3414 0.2676

10 141, 205 0.2205 0.2170 0.2628 0.2260 0.5114 0.4143 0.3124 0.3639

Avg. 0.2269 0.2208 0.2673 0.2302 0.4143 0.2841 0.2971 0.4107

Std. 0.0134 0.0104 0.0067 0.0060 0.1448 0.0564 0.0455 0.1340

In particular, we report the maximal pointwise errors on training and testing datapoints, solely considering original anatomies, obtained with the AD-SVFD model for the 10 different folds during cross-
validation. The errors are quantified through the forward and backward local distances (FLD and BLD), expressed in cm. The reported results are averages that stem from three independent training
procedures, conductedby settingdifferent randomseeds.Underlined IDs inTestP#columndenotepatients that havebeenconsidered for comparison testswith alternative shape registrationmethods;we
refer to Supplementary Note 4 for details. For reference, the template shape inlet diameter is 1.31 cm, while the average inlet diameter in the dataset is 1.45 cm.

Fig. 5 | Registration results obtained with AD-
SVFD and three alternative approaches. In parti-
cular, we show the direct and inverse mapping
pointwise errors, obtained with LDDMM9,
SDF4CHD33, ResNet-LDDMM28 and AD-SVFD on
a training (P#090) and a testing (P#278) datapoint.
The errors are quantified through the forward local
distance (FLD), expressed in cm, namely the dis-
tance of each point in the mapped geometry from
the closest one in the target. For reference, the inlet
diameters are 1.31 cm for the template shape,
1.21 cm for P#090, and 1.52 cm for P#278.
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geometries that are similar in the physical space are characterized by close
embeddings in Z (e.g., P#090 and P#094 or P#092 and P#142). On the
contrary, shape codes associated with anatomies that feature unique traits
within the dataset lie in more isolated areas at the boundary of Z (e.g.,
P#207). The interpolation results provide additional evidence on the reg-
ularity of Z. Indeed, both in the case of linear and spherical linear inter-
polation, we observe a smooth variation of the anatomies without major
artifacts: branch count is preserved, lumenarea stays positive, and centerline
curves evolve smoothly. From a quantitative perspective, we noted that the
Chamfer distance from the target patient (i.e., P#141 and P#188 in the
reported experiments) regularly varies over the path.

Additional numerical tests show that noisy versions of the shape codes
of the original patients, obtained by adding white Gaussian noise, result in
synthetic anatomies whose discrepancy with respect to the target is small
andproportional to the noise level. For instance, in the case of patientP#094,
shape codes with different signal-to-noise ratios (SNR) yield anatomies
characterized by the following FCD and BCD values: 0.2089 and 0.1993 cm
for SNR = 1%, 0.2118 and 0.2022 cm for SNR = 2%, 0.2212 and 0.2117 cm
for SNR= 5%, and 0.2389 and 0.2283 cm for SNR = 10%. For reference, the
FCD and BCD between P#094 and P#090, whose codes differ by 16% in
Euclidean norm, are 0.1921 and 0.2544 cm, respectively. Also, the FCD and
BCD between P#094 and its mapped version through AD-SVFD, namely
what stems from setting SNR= 0%, are 0.0367 and 0.0354 cm, respectively.
These results provide empirical evidence on the stability of the latent space.

Discussion
We introduced AD-SVFD, a deep learning model for the non-rigid regis-
tration and synthetic generation of three–dimensional surfaces, tailored to
vascular anatomies and, in particular, to healthy aortas.

Analogously to refs. 27,28, the AD-SVFD model performs 3D point
cloud registration, leveraging shape representations in the form of weighted

point clouds, whose weights are proportional to the nearest neighbours
distance (see Eq. (1)). In this regard, AD-SVFD differs from deformable
registration models based on continuous signed distance functions (SDFs),
such as the ones presented in refs. 32,33. As empirically demonstrated in
Test 3 through a comparison of the performances of AD-SVFD and
SDF4CHD, this approach enables more precise reconstructions, at least for
vascular anatomies. Indeed, as shown in Fig. 5, AD-SVFD clearly outper-
forms SDF4CHD33, whose deformed anatomies either omit or severely
distort most of the smallest branches. This phenomenon can plausibly be
attributed to the use of SDFs, whose resolution must remain limited for
computational efficiency reasons, thereby hindering the accurate capture of
the finest details. Notably, the outcomes of Test 3 also reveal two additional
key aspects. On the one hand, AD-SVFD demonstrates superior perfor-
mance, in both accuracy and efficiency, compared toDL-based single-shape
3D point cloud registration methods such as ResNet-LDDMM28. On the
other hand, traditional approaches like LDDMM9, not rooted in DL tech-
niques, exhibit comparable accuracy metrics but are significantly more
computationally demanding at inference. In fact, the most accurate single-
shape registration approach in the context of interest is SVFD, namely, our
model lacking the auto-decoder structure. This result suggests that the
adoption of shape embeddings allows for faster inference and generative use
cases, but also implies precision losses.

Dealing with point clouds in the absence of ground-truth point-to-
point correspondences required the consideration of alternative data
attachment measures, both to construct an effective loss function and to
design informative error indicators. This aspect was analysed in Test 2,
where multiple data adherence metrics were investigated. Although repre-
senting the baseline alternative, the canonical (i.e., unweighted) Chamfer
Distance outperforms all other options, delivering the most precise geo-
metry reconstructions at the lowest computational costs and memory
requirements. In the test case at hand, neither incorporating the normals’

Fig. 6 | Latent space learned by the AD-SVFD
model and generated synthetic anatomies. We
show the projection of the shape codes onto the two-
dimensional subspace obtained through PCA on the
whole set of training codes. We report the latent
codes of the original patients (stars), and, for each of
those, the latent codes of 20 associated augmented
geometries (circles). Furthermore, we report 10
entries sampled from N ð0;ΣzÞ, where Σz is an
unbiased estimate of the covariance matrix com-
puted from the training codes (red& black circles);
their synthetic counterparts in the physical space are
displayed at the bottom of the image. Finally, we
report the results obtained through interpolation in
the latent space. On the top margin, we show 3
entries generated via linear interpolation between
P#090 and P#141; at the bottom margin, we show 3
entries generated via spherical linear interpolation
between P#139 and P#188. The black arrows map
shape code instances to their physical counterparts.
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orientation nor exploiting the point cloud weights resulted in improved
precision, while instead inducing moderate to substantial increases in
complexity. Notably, the performance achieved using the debiased Sink-
horn divergence in the loss proved unsatisfactory in terms of both accuracy
and efficiency, as also observed in ref. 28 on non-elementary geometries.

As in the model proposed in ref. 27, AD-SVFD expresses diffeo-
morphic maps through the stationary vector field parametrization. Speci-
fically, the ambient space deformation is defined as the solution at unit time
of a system of ODEs, whose learnable right-hand side does not explicitly
dependon time (see Eq. (3)). In particular, the right-hand side ismodeled by
a fully-connected and Leaky-ReLU activated ANN, so as to ensure well-
posedness. By numerically integrating the diffeomorphic flow equations
over time, it becomes possible to reconstruct the geodesic paths connecting
source anatomies to the template. As illustrated in Fig. 3 (bottom), this
procedure gives rise to a collection of synthetic shapes, exhibiting a smooth
and gradual transition from the source characteristics to the reference ones.

Extracting the intermediate stages of numerical integration is not the
only means of generating artificial geometries with AD-SVFD. Indeed, a
crucial feature of the proposed model, distinguishing it, for instance, from
ResNet-LDDMM28, is the internalization of latent embeddings for the
source anatomies. Similar to the models presented in refs. 32,33, this is
accomplished by introducing low-dimensional shape codes, which serve as
trainable input variables within an auto-decoder architecture. Conse-
quently, the available geometries aremapped onto a low-dimensional latent
space,where convenient randomsampling routines can be implemented for
generative purposes. Further details regarding the definition and treatment
of shape codes are provided in the “Methods” section. In Test 1, it was
demonstrated that the dimension of the latent space, denoted asNz, should
be carefully calibrated to optimally balance precision and performance. As
illustrated in Fig. 3 (top), accuracy is significantly compromised when
excessively small shape codes are employed, while it plateaus for large values
of Nz, where model complexity and memory demands become prohibitive
instead.

In addition to controlling the latent space dimension, monitoring its
regularity is of paramount importance to ensure the robustness and relia-
bility of downstream generative AI applications. To this end, a suitable
penalization term was included in the loss function (see Eq. (4)), with its
weight wz = 10−3 carefully fine-tuned. As discussed in Test 5 and illustrated
in Fig. 6, this strategy ultimately enables the construction of a smooth latent
space that can be robustly queried to generate customizable, realistic, syn-
thetic anatomies. It is worth noting that a well-established and widely
adopted technique to enforce latent space regularity consists of variational
training. Accordingly, several exploratory experiments were conducted in
this direction, updating both the model structure and the loss function to
implement a variational auto-decoder formulation for AD-SVFD59. How-
ever, no substantial improvements in regularity or robustness were
observed, while approximation quality was markedly degraded.

Despite exhibiting highly promising results, the current work none-
theless presents certain limitations. First and foremost, as with many DL-
based models, data availability imposes non-negligible performance con-
straints,which couldonlybepartiallymitigated throughdata augmentation.
This issue becomes particularly evident from the cross-validation results
reported in Test 4. Specifically, AD-SVFD accuracy on unseen anatomies
declines for folds containing testing shapes featuringunique traitswithin the
dataset, such asP#205 andP#207 (see Fig. 2). It is noteworthy that additional
aortic anatomies from the Vascular Model Repository were also considered
during preliminary stages. However, they were subsequently discarded due
to incompatibility with the adopted data augmentation pipeline, which
produced undesired non-physiological artifacts. Incidentally, although the
conducted tests were limited to healthy aortas, it is important to emphasize
that the proposed registration approach is general and can be seamlessly
extended to a wide range of challenging applications. Secondly, to reduce
computational effort, most hyperparameters were fine-tuned within a
simplified single shape-to-shape registration setting, as detailed in Supple-
mentary Note 3. In practice, only the hyperparameters associated with the

shape codes (Nz,wz, and λz) were calibrated using the full AD-SVFDmodel.
Consequently, at least marginal performance improvements may be
achievable through hyperparameter configurations specifically tailored to a
multi-shape context. Lastly, the present analysis focused on the size and
regularity of the latent space, but it did not address its interpretability.
Investigating this aspect may enhance the generative pipeline and will
therefore be the subject of future studies.

In conclusion, AD-SVFD can serve as a valuable tool for engineering
applications involving physical problems in complex geometries. The pro-
posed approach introduces potentially distinctive elements for facilitating
geometry manipulation, notably by simultaneously providing compact and
portable representations and by learning accurate, smooth, invertible, and
topology-preservingmappings to a pre-defined reference. Notwithstanding
improvements of its generalization capabilities, AD-SVFD is envisioned as a
pre-trained module within physics-aware machine learning frameworks,
enabling the incorporation of realistic geometrical variability in the simu-
lation of complex physical processes60–64.

Methods
We provide a more detailed analysis of the AD-SVFD model, specifically
focusing on the shape codes, the ANN architecture, the numerical inte-
gration of the flow equations, the data attachment measures and the opti-
mization procedure.

Latent shape codes
AD-SVFD provides a unified framework for the simultaneous registration
of the source anatomies to a pre-defined template, leveraging implicit neural
representations. Indeed, every source shape Si is associated with a shape
code z i 2 RNz , so that the diffeomorphism φ!i mapping Si to T configure
as the specialized version of a “generic” diffeomorphism ~φ, i.e.
~φiðxÞ :¼~φðx; z iÞ, with x 2 R3.

Instead of directly providing the latent codes in input to the model, we
borrow from ref. 33 the use of a position-aware shape encoding strategy65.
Given a shape code zi, we define the associated shape code grid Zi 2
Rgz × gz × gz × ðNz=g

3
z Þ as Zi ¼ Rzðz iÞ, whereRz : R

Nz ! Rgz × gz × gz × ðNz=g
3
z Þ

is a suitable reshaping function. Here, we suppose that the shape code
dimensionNz is a multiple of g3z ; in this work, we always select gz = 2. Then,
for a given point x ∈ Ω, the position-aware shape code �z iðxÞ 2 RNz=g

3
z ,

associated with the source shape Si, is obtained by evaluating the trilinear
interpolation of Zi at x, i.e. �z iðxÞ :¼ Lerpðx;ZiÞ, being Lerp( ⋅ , ⋅ ) the
trilinear interpolation function. This approach comes with two major
advantages. On the one hand, the positional awareness of the latent codes
helps the model in better differentiating the deformation flow field,
depending on the locationwithin the domain.On the otherhand, even if the
total number of trainable parameters is unchanged, only ðNz=g

3
z Þ-dimen-

sional vectors are provided as input to theANN.Hence,model complexity is
(slightly) reduced compared to the naive approach, ideally at no loss in
representation power.

Artificial neural network architecture
To learn the diffeomorphisms between the source anatomies and the
template, we exploit the Neural ODE approach34, employing an ANN to
approximate the right-hand side of Eq. (3). More specifically, we consider a
DL-based structure comprising three modules:
• Feature augmentation network (FA-NN): The first part of the model

performs a data-driven feature augmentation of the input locations. It
consists of a fully connected ANN that takes as input a spatial location
x∈Ω and the associated position-aware shape code �z iðxÞ and yields a
setof latent featuresxi;FA 2 RNFA as output. SinceFA-NNsolely acts as
a feature augmentation compartment,we donotwant it toweighdown
model complexity. So, we consider shallow networks with few neurons
per layer. We highlight that the learned features are anatomy-
dependent, thanks to the conditioning effect of the shape code on the
model weights. We can summarize the FA-NN action via the function
F FA : R3 ×RNz=g

3
z ! RNFA , such that xi;FA ¼ F FAðx; �z iðxÞ;ΘÞ.
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• Fourier Positional Encoder (FPE): In the second module, the learned
latent features xi,FA undergo a further augmentation step via a deter-
ministic Fourier positional encoding66, adopting a base-2 logarithmic
sampling strategy in the frequency domain. This step is crucial for
mitigating the spectral bias of ANNs67. We can summarize the FPE
action via the function F FPE : RNFA ! RNNPE , such that
xi;FPE ¼ F FPEðxi;FAÞ, where NNPE≔ (2Ne+ 1)NFA.

• Diffeomorphic flow network (DF-NN): The last chunk of the ANN
model is responsible for the approximation of the stationary velocity
field at the spatial location x— the right-hand side of Eq.(3)—given the
augmented features xi,FPE and the position-aware shape code �z iðxÞ. As
for FA-NN, we use a fully connected ANN. However, since DF-NN is
the core part of the model, we consider deeper architectures with a
largernumberof neurons in each layer.Weunderline that the outputof
DF-NN depends on the source anatomy, thanks to the external
conditioning effect of the shape codes.We can summarize the DF-NN
action via the function FDF : R

NFPE ×RNz=g
3
z ! R3, such

that vi ¼ FDFðxi;FPE;�z iðxÞ;ΘÞ.

Ultimately, we can express the action of the entire ANNmodel by the
functionF : R3 ×RNz=g

3
z ! R3, defined asF :¼ F FA � F FPE � FDF.As

resulting from the hyperparameter tuning procedure (see Supplementary
Note 3), we consider: (i) Leaky-ReLU activation functions, with negative
slope of 0.2, for both FA-NN and DF-NN; (ii) FA-NN with 3 layers of
dimension64; (iii)DF-NNwith 5 layers of dimension256; (iv)Ne = 3 for the
FPE. Neglecting the latent codes’ contributions, the ANN model counts
~278k trainable parameters. To ease the notation, in the following, we omit
the explicit spatial dependency of the shape codes.

Numerical integration of the flow equations
For the numerical integration of the diffeomorphic flow equations (see
Eq. (3)), we rely onfirst-ordermethods. Specifically, for the forward-in-time
direct mapping, we employ the explicit forward Euler method. Let xs;ð0Þi;j ¼
xsi;j 2 Ω be a point of the source point cloud Si, where the superscript (0)
denotes the initial iteration count. Also, let K 2N be the number of time
steps; in all tests, we set K = 10. Then, for k <K, the time marching scheme
proceeds as follows:

xs;ðkþ1Þi;j ¼ xs;ðkÞi;j þ
1
K
F xs;ðkÞi;j ; �z i;Θ
� �

¼ xs;ðkÞi;j þ
1
K
vs;ðkÞi;j : ð5Þ

The point corresponding to xsi;j in the template space is then the result of
Eq. (5) at k =K−1, i.e xs;ðKÞi;j .

To compute the inversemap,whichdeforms the ambient space so as to
overlap the template anatomy with the source, we integrate the flow
equations backward in time, given a final condition. In particular, we want
the discrete inverse map to be the “true” inverse of the discrete direct map,
defined in Eq. (5). So, let xt;ðKÞi;j ¼ xtj 2 Ω be a point of the template point
cloud T . The time marching scheme at step k > 0 proceeds as follows:

xt;ðk�1Þi;j ¼ xt;ðkÞi;j �
1
K
F xt;ðk�1Þi;j ;�z i;Θ
� �

: ð6Þ

Even thoughEq. (6) allows to invert Eq. (5) exactly, its usemay be difficult in
practice, being an implicit scheme. Indeed, the nonlinearity ofF entails the
use of ad hocnumerical techniques, such asNewton iterations, to compute a
solution. Despite the Jacobian of F can be efficiently computed by auto-
matic differentiation, the whole procedure is likely to slow down both the
forward and the backward pass. For this reason, we rely on a first-order
explicit approximation of Eq. (6)—known as the modified Euler scheme—
that writes as follows:

xt;ðk�1Þi;j ¼ xt;ðkÞi;j �
1
K
F xt;ðkÞi;j �

1
K
F xt;ðkÞi;j ;�z i;Θ
� �

;�zi;Θ

� �
¼ xt;ðkÞi;j �

1
K
vt;ðkÞi;j : ð7Þ

The point corresponding to xtj in the source space is then the result of Eq. (7)
at k = 1, i.e xt;ð0Þi;j .

Data attachment measures
As reported in Eq. (1), we represent three-dimensional surfaces as
(weighted) point clouds, and we assume not to know exact point-to-point
correspondences. Therefore, suitable data attachment measures to quantify
the discrepancy between point clouds have to be considered. The simplest
alternative is offered by the Chamfer Distance (CD) DCD : RM × 3 ×
RM0 × 3 ! Rþ, which is defined as

DCDðY ;Y 0Þ :¼
1
M

XM
i¼1

min
c02Y 0
jjYi � c0jj22 þ

1
M0

XM0
i0¼1

min
c2Y
jjc � Y 0i0 jj22 : ð8Þ

In particular, the CD comprises the sum of two terms: the forward CD
(FCD), which compares the points in Ywith the closest ones in Y 0, and the
backwardCD(BCD), which compares the pointsY 0 with the closest ones in
Y. Considering both components is crucial to obtain a meaningful
goodness-of-fit measure. CD has proven to be an effective metric for
diffeomorphic registration, particularly in the computational anatomy
framework, as shown, e.g. in ref. 28. However, in ref. 47 it has been
demonstrated that using CD is also likely to yield low-quality gradients. To
mitigate this issue, we consider the earth mover’s distance (EMD)
DEMD : RM × 3 ×RM0 × 3 ! Rþ68,69:

LEMDðY;Y 0Þ ¼ min
ξ2MðY ;Y 0Þ

X
y2Y
jjy � ξðyÞjj22 ;

whereMðY;Y 0Þ denotes the set of 1-to-1 (bipartite)mappings fromY toY0.
In anutshell, EMDis aWassersteindistance that seeks the optimal transport
plan that orders the points in Y 0 to match the ones in Y. In practice, we
approximate EMDwith the debiased Sinkhorn divergence (SD)DSD

49. The
latter is the solution to an optimal transport problem with entropic
constraints, and it can be estimated using the iterative Sinkhorn’s
algorithm70. We refer the reader to ref. 47 for the precise definition of
DSD; further details and a state-of-the-art literature reviewondiffeomorphic
registration using SD can be found in ref. 71. In all numerical tests
conducted using SD, we consider a quadratic ground cost point function, a
temperature scalar ε = 10−4, and a linear ε-scaling with factor 0.9. This
combination of hyperparameters should be sensible for inputmeasures that
lie in the unit cube, providing a good trade-off between accuracy and
efficiency72.

According to Feydy et al.47, SD is a good overlappingmetric only if the
points are roughly equispaced. However, SD can be effectively extended to
unevenly distributed point clouds if the latter are weighted, i.e., if each point
is associated with a quantity proportional to its distance from the closest
neighbours. In fact, such weights appear in the entropic regularization term
and in the entropic constraints of the associated optimal transport problem,
awarding more “importance” to the most isolated points in the cloud. As
reported in the “Introduction” section, in this work, we extract the cloud
points as the cell centers of available surface triangulations and we compute
the weights as the corresponding cell areas, normalized to add up to one. In
the following, we denote byDSD the standard SD, where all the weights are
assumed to be equal, and byDW

SD the weighted SD. A similar reasoning can
also be extended to the CD, even if the latter is not related to any optimal
transport problem73. In this work, we define a weighted CD DW

CD :
RM × ð3þ1Þ ×RM0 × ð3þ1Þ ! Rþ as follows:

DW
CDððY;wÞ; ðY 0;w0ÞÞ :¼ 1

N

PM
i¼1

wi min
c02Y 0
jjYi � c0jj22

þ 1
N 0
PM0
i0¼1

w0i min
c2Y
jjc � Y 0i0 jj22 :

ð9Þ
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Alternatively to the use of SD, we also try to mitigate the low-quality
gradient issue bydeveloping variants ofCDthat exploit information coming
from the source and template surface normals. In fact, CD is agnostic of the
closed surface structure of themanifold fromwhich the points are sampled,
as it solely relies on point-to-point distances. In particular, we consider two
surface-aware corrections of CD. The first one—denoted asDNCD —simply
consists of adding a regularization term that penalizes the discrepancy
between the normals, i.e.

DNCDðY ;Y 0Þ :¼ DCDðY ;Y 0Þ þ wn
2M

PM
i¼1

1� ni � nc0i
� �2

þ wn
2M0

PM0
i0¼1

1� ni0 � nc0i
� �2

;

ð10Þ

where c0 i :¼ min
c02Y 0
jjYi � c0jj22, ci0 :¼ min

c2Y
jjc � Y 0 i0 jj22, and wn 2 Rþ is a

scale factor. Here ni; ni0 ; nc0 i ; nci0 2 R3 denote the (supposed known)
outward unit normal vectors to the target surface, evaluated at Yi;Y

0
i; c
0
i; ci0 ,

respectively. Also, a ⋅ b≔∑j aj bj is the standard inner product. Preliminary
numerical tests suggested to set wn = 10−2, which results in the normals’
penalization term to account for roughly 10% of the loss value. The second
variant ofCD, instead, is offered by the point-to-planeCD (PCD)48, denoted
as DPCD and defined as

DPCDðY;Y 0Þ :¼
1
N

XM
i¼1

min
c02Y 0

Yi � c0
� � � ni� �2 þ 1

N 0
XM0
i0¼1

min
c2Y

c � Y 0i
� � � ni0� �2

;

where ni; n
0
i are as in Eq. (10). The PCD computes the error projections

along the normal directions, thus solely penalizing points that “move away”
from the target local plane surface. For point clouds that are sampled from
surfaces, this distance is better aligned with the perceived overlapping
quality than the canonical CD. Analogously to DW

CD defined in Eq. (9),
weighted versions of DNCD and DPCD, respectively denoted as DW

NCD and
DW

PCD, can be constructed.

Algorithm 1. AD-SVFD model training pipeline
1: procedure Train_AD_SVFD (S1; . . . ;SNs ; T ; E;B;M)
⊳ Si: ith source point cloud; T : template point cloud; E: # epochs; B:

batch size;M: # sampled points
2: Initialize ANN parameters Θ
3: for alli 2 fi1; . . . ; iNsgdo
4: Ls

i ; Lt
i  0M ; 0M ⊳ Initialize pointwise loss functions

5: Sample zsi � N 0; 2
Nz
I

� �
⊳ Initialize shape code

6: Lt  0M
7: e← 0
8: while e < Edo ⊳ Loop over epochs
9: b; B 0; ½ �
10: whileb < dNs

B edo ⊳ Loop over batches
11: �B Bþ 1 if b < ðNs%BÞ else B ⊳ Define batch size
12: Sample i1; . . . ; i�B � Uðf1; . . . ;Nsg n BÞ
13: T b  PointSampleðT ;Lt ;MÞ ⊳ Sample template points
14: for alli 2 fi1; . . . ; i�Bgdo
15: Sb

i  PointSampleðSi;Ls
i ;MÞ ⊳ Sample source points

16: �z i CodeSampleðz i;Sb
i Þ ⊳ Sample shape code

17: Sb;ðKÞ
i  DSVFðSb

i ; �z i;ΘÞ ⊳ Direct mapping
18: T b;ð0Þ

i  I SVFðT b; �z i;ΘÞ ⊳ Inverse mapping
19: Ls

i  LðSb;ðKÞ
i ; T Þ ⊳ Direct mapping loss

20: Lt
i  LðT b;ð0Þ

i ;SiÞ ⊳ Inverse mapping loss
21: Ltot  1

�BM

P�B;M
i;j¼1ðLs

i;j þ Lt
i;jÞ þ Lreg ⊳ Total loss

22: Θ Update ANNðΘ;LtotÞ ⊳ Update ANN parameters
23: for alli 2 fi1; . . . ; i�Bgdo
24: z i Update Codesðz i;Ls

i ;Lt
iÞ ⊳ Update shape codes

25: b; B bþ 1; ½B; i1; . . . ; i�B�
26 Lt  1

Ns

PNs

i¼1 Lt
i ⊳ Average template loss

27: e← e+ 1

Training procedure
The training pipeline of AD-SVFD is reported in detail in Algorithm 1.
Hereafter,weonlydiscuss a few relevant aspects.Algorithm1 features a two-
stage sampling procedure over the training epochs. Firstly, since we employ
a batched stochastic optimization algorithm, we sample uniformly at ran-
dom (without replacement) B-dimensional batches of source shapes with
the associated shape codes (line 12). Then, for each of the selected point
clouds, we sampleM-dimensional sub-clouds (line 15); we also sample an
M-dimensional sub-cloud for the template anatomy (line 13). In all tests, we
set B = 8 andM = 2000. The motivation behind point clouds resampling is
two-fold. On the one hand, it makes the training algorithm complexity
independent of the level of refinement in the data, which is of paramount
importance if the cardinality of the original clouds is large. Indeed, the
complexity of all considered data attachment measures is quadratic in the
number of points. On the other hand, resampling can be interpreted as a
form of data augmentation and, as such, it allows improving robustness.
Furthermore, we remark that the trilinear interpolation to compute the
position-aware shape codes is repeated at every epoch (line 16), and it is also
recurrently performed during time integration of the diffeomorphic
flow ODE.

To further improve model performance, when using data attachment
measures that allow for a pointwise evaluation (such as the ones based on
CD),we implement a simple adaptive samplingprocedure.This explains the
presence of the template and source pointwise loss functions as input
arguments to PointSample in lines 13 and 15, respectively. Specifically, at
each training epoch, we sample ⌈(1−a)M⌉ points uniformly at random,
whereas the remaining ⌊aM⌋ points are retained from the previous epoch,
being the ones associated with the highest loss values. In this way, we
oversample regions featuring larger mapping errors, tentatively driving the
model towards homogeneously accurate predictions in space. In all tests, we
consider a = 0.15, as resulting from the calibration procedure reported in
Supplementary Note 3.

The joint optimization of the ANN parameters Θ (line 22) and of the
latent shape codes fz igN

s

i¼1 (line 24) is achieved by minimizing the loss
function reported in Eq. (4). Notably, to limit the kinetic energy of the
system that connects the source to the target, thus encouraging minimal
deformations and reducing the risk of overfitting, we introduce the reg-
ularization term Lreg:

LregðΘÞ :¼
XNs

i¼1

XM
j¼1

XK�1
k¼0
k vs;ðkÞi;j ðΘÞk22þ k vt;ðkþ1Þi;j ðΘÞk22

� �
; ð11Þ

where vs;ðkÞi;j , vt;ðkÞi;j are defined as in Eqs. (5) and (7), respectively. For bothΘ
and the latent codes,we perform random initialization, drawing values from
a Kaiming normal distribution74, and we rely on the first-order Adam
optimizer50 for the update step. Hyperparameter calibration tests suggested
adopting the same learning rate λ = 10−3 for all the trainable parameters.
Finally, we run E = 500 training epochs, which guarantees convergence of
the optimization procedure.

Two remarks are worth following. First, if the chosen data attachment
measure does not allow for a pointwise evaluation, because it yields a
cumulative discrepancy value, adaptive sampling cannot be performed. For
instance, this is the case with SD. In Algorithm 1, the point sampling rou-
tinesno longerdependon the loss at theprevious epoch (lines13,15), andno
averaging over the points in the clouds is necessary to compute the total loss
(line 21). Second, during inference, a pipeline similar to Algorithm 1, but
much cheaper, is performed. Indeed, the optimization problem to be solved
is much smaller, since just theNz latent code entries associated with a single
unseen shape have to be optimized. Remarkably, the low memory
requirements enable the use of more advanced and memory-intensive
optimizers, such as L-BFGS51, to fine-tune Adam predictions, attaining
superlinear convergence rates.

https://doi.org/10.1038/s44341-025-00029-z Article

npj Biological Physics and Mechanics |            (2025) 2:26 12

www.nature.com/npjbiolphysmech


Data availability
The dataset employed for the current study is publicly available at https://
doi.org/10.5281/zenodo.15494901. All patient-specific anatomies are pub-
licly available on the Vascular Model Repository (https://www.
vascularmodel.com/dataset.html).The underlying code for this study is
currently not available, but may be provided to qualified researchers upon
request to the corresponding author. Future publications of the software are
being considered to support transparency and reproducibility.

Code availability
The underlying code for this study is currently not available, but may be
provided to qualified researchers upon request to the corresponding author.
Future publications of the software are being considered to support trans-
parency and reproducibility.
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