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Opportunities and challenges of artificial
intelligence in hepatology

M| Check for updates
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Artificial intelligence (Al) is reshaping modern medicine and offers huge potential in hepatology, where
late presentation and limited treatments are major challenges. However, real-world adoption remains
limited, hindered by regulatory uncertainty, technical hurdles, and ethical considerations. This review
examines recent advances, persistent obstacles, and the potential of Al to redefine the future of

liver care.

Global burden of liver disease

Chronic liver disease (CLD) is an escalating global health crisis, causing ~2
million deaths annually, rising disproportionately in working-age popula-
tions with far-reaching socio-economic impacts'. Increasing prevalence is
largely driven by steatotic liver diseases (metabolic dysfunction-associated
steatotic liver disease, MASLD; alcohol-related liver disease, ALD; and
metabolic dysfunction and alcohol-related liver disease, MetALD). Chronic
hepatitis B and C virus (HBV/HCV) remain major global contributors,
while autoimmune and cholestatic disorders (such as autoimmune hepa-
titis, AIH; primary biliary cholangitis, PBC; and primary sclerosing cho-
langitis, PSC), although less common, cause significant chronic liver injury.
Across these diverse aetiologies, disease progression converges on major
adverse liver outcomes such as compensated/decompensated cirrhosis,
primary liver cancers (hepatocellular carcinoma, HCC; intrahepatic cho-
langiocarcinoma, iCCA), and liver-related death.

Most patients first present with advanced CLD in emergency settings’,
reflecting the silent nature of early disease, lack of systematic community
screening, and inequalities in access to timely care. Late presentation
undermines opportunities for prevention and contributes to rising health-
care expenditure’. Addressing these challenges requires more effective risk
stratification to target surveillance and treatment resources, individualise
care pathways, and develop therapies for advanced disease. Artificial intel-
ligence (AI), harnessing multidimensional data, predicting risk, and opti-
mising clinical decision-making, may be transformative and usher in a new
era in hepatology.

Al taxonomy

Large-scale patient data and Al are catalysing advances in translational liver
research. Al is an umbrella term referring to computational methods per-
forming complex tasks, supporting or enhancing human perception, rea-
soning, learning, and decision-making. Machine learning (ML) is a subset of
Al that recognises patterns in complex data through supervised (input-out-
put mapping) or unsupervised (discovering hidden structures) learning.

Deep Learning (DL), using neural networks (NN), detects features in images
and videos via computer vision (CV) or speech and text via natural language
processing (NLP)*’ [Fig. 1]. Table 1 summarises key algorithms most fre-
quently referenced in this review. Overall, the development of AI/ML models
relies on extensive data preparation and processing for training and robust
evaluation, before potential clinical adoption [Fig. 2]. Al promises a paradigm
shift toward proactive, personalised, and equitable management.

This narrative review focuses on recent advances (2023-2025), high-
lighting emerging diagnostic, prognostic, and therapeutic applications for
Al in hepatology and examining challenges that must be addressed for
implementation in clinical practice.

Data sources
Al depends on large, diverse “Big Data” to generate clinically meaningful
insights, although each data type presents unique challenges.

Health record systems

Electronic health records (EHRs) contain longitudinal patient information,
including sociodemographic details, diagnostic and procedural codes,
laboratory results, imaging reports, medications, and administrative data.
Structured data (e.g., laboratory results, codes) are generally more stan-
dardised, whereas unstructured data (e.g., free-text clinical notes) exhibit
greater variability and pose additional challenges for Al integration. EHRs
are now near universal in the US and EU, enabling large-scale studies.
However, missing information, data entry errors, and inconsistencies
between records are common. Patient-generated health data from smart-
phones, wearables, or applications offers the potential to integrate granular
lifestyle insights with EHRs, but a lack of standardisation and accuracy
concerns are barriers to immediate utilisation.

Imaging data
Expert evaluation remains the reference standard for assessing histo-
pathological features. However, biopsies are invasive, limited by sampling

'Centre for Inflammation Research, Institute for Regeneration & Repair, University of Edinburgh, Edinburgh, UK. 2Edinburgh Pathology, University of Edinburgh,
Edinburgh, UK. *NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK.

“Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK.

e-mail: Jonathan.Fallowfield@ed.ac.uk

npj Gut and Liver| (2026)3:3


http://crossmark.crossref.org/dialog/?doi=10.1038/s44355-025-00052-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44355-025-00052-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44355-025-00052-w&domain=pdf
mailto:Jonathan.Fallowfield@ed.ac.uk
www.nature.com/npjgutliver

https://doi.org/10.1038/s44355-025-00052-w

Review

Collection of mathematical formulas and logical instructions
forming the core framework of intelligent computational learning
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Any type of information (numbers, text, images,
videos) than can be processed by a computer

Al-driven process where algorithms analyse data, learn patterns, and make predictions or decisions without explicit programming
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error, and susceptible to inter-/intra-observer variability inherent in sub-
jective assessment. In contrast, non-invasive imaging modalities such as
ultrasounds, computed tomography (CT), and magnetic resonance imaging
(MRI) technologies allow quantitative whole-liver assessment. Digitalised
histology whole-slide images (WSIs) also produce structured, high-
resolution datasets for Al analyses. ML enables objective and reproducible

Deep Neural Networks

GPT-4/5 = Gemini

Recurrent Neural Networks

Feedforward Neural Networks

Large Language Models (LLMs)

Claude ~ Sora DALL-E Agentic Al Autonomous thinking/decision taking

scoring of features while reducing interpretative variability. Nevertheless,
heterogeneity in acquisition protocols and image reconstruction parameters
limits standardisation. Additional varjability can also arise from differences
between instrument manufacturers, although contemporary AI models
often incorporate normalisation or domain adaptation strategies to mitigate
such effects.
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Fig. 1 | Simplified framework of artificial intelligence relevant to healthcare.
Conceptual overview illustrating the relationships between Artificial Intelligence
(AI), Machine Learning (ML), Deep Learning (DL), and Neural Networks (NN). AI
refers to a wide range of algorithms to simulate human-like reasoning and perform
complex data handling tasks, while ML is one of the fundamental machineries.
Framework highlights core ML learning strategies (e.g., supervised, unsupervised,
semi-supervised, reinforcement, self-supervised, transfer) and representative algo-
rithms. DL is a significant and popular subset of ML, which uses NN for a variety of
tasks, such as computer vision (CV) and natural language processing (NLP).

Generative Al and Agentic Al are advanced NLP and/or CV-based large AT models
which can handle user interaction, including media of text, image, audio, and even
video. NOTE: Some algorithms may span multiple categories depending on the
nature of the data, task formulation, or implementation context (i.e., supervised or
unsupervised). The hierarchical ordering and clustering shown in this figure are
illustrative rather than prescriptive. The example algorithms listed are non-
exhaustive and reflect a rapidly evolving field in which models are continuously
emerging, refined, or replaced over time.

Multiomics

As ‘omics data proliferate (Supplementary Table 1), their integration is
delivering system-level insights to identify candidate biomarkers and ther-
apeutic targets. AI/ML is essential to manage these complex datasets,
although high heterogeneity, dimensionality, and processing variability
challenge reproducibility and clinical translation.

Opportunities of Al

As the volume of multimodal data expands, so does the potential for
identifying novel diagnostic, prognostic, and therapeutic tools. Large-scale
data commons (e.g, UK Biobank, NHANES) and focused liver-specific
initiatives (e.g., SteatoSITE®) support both conventional hypothesis-driven
and data-driven, hypothesis-free analyses to uncover patterns beyond
conventional clinical paradigms.

Diagnostic opportunities

Current diagnostic pipelines combine patient history with isolated ser-
ological, radiological, and histological assessments. Applied to non-invasive
tests (NITs), AI/ML approaches could uncover more subtle, multimodal
signatures preceding symptoms, enabling earlier diagnosis, scalable
screening, and more informed clinical decision-making. A comprehensive
overview of diagnostic applications of Al in hepatology is provided in
Supplementary Table 2.

Image-based feature detection

AI/ML is being widely applied to radiological assessments of liver health. For
example, Convolutional Neural Network (CNN) pipelines applied to CT
images accurately segmented whole livers’ and detected malignancies®,
offering a potential tool for rapid triage. Similar approaches on ultrasounds’
and MRIs" delivered accurate fibrosis staging. Assigning histological fea-
tures of disease activity, such as steatosis grading from CT images' or
predicting hepatocyte ballooning scores from ultrasounds', has also been
possible. Other CNN-based models have characterised features such as
vasculature'’, ascites", and body fat".

Histology remains the gold standard for some disease assessment.
Multiple AI/ML computational histopathology pipelines were developed to
provide reproducible, granular, and interpretable feature quantification
from biopsies. Ercan et al'’. developed a CNN-based tool for AIH diagnosis
using Haematoxylin and Eosin (H&E) and Sirius Red-stained WSIs, suc-
cessfully classifying biopsies with 88.2% accuracy. Similar models were able
to detect other features, such as portal tracts'” and microvascular invasion
(MVD)'®. Digital histopathology for MASLD is extensively reviewed
elsewhere"’.

Disease signatures and stratification

AI/ML approaches allow identification of latent disease-associated patterns
within EHR datasets. Addressing diagnostic delays presented by chronic
HCV’s asymptomatic onset, Sharma et al.* stacked ML models to detect
HCV infection from standard biochemistry laboratory tests, suggesting a
path toward scalable, low-cost screening. In MASLD, a 17-variable Random
Forest (RF) classification model outperformed standard NITs for biopsy-
defined staging across four US centres’’. Other DL models identified
increased steatosis risk from unstructured data sources using NLP?,
showcasing the potential of text mining for case identification at
population scale.

Some diseases may benefit from nuanced spatial and systemic mole-
cular assessment for earlier diagnosis and finer stratification. Oh et al.”’
analysed MASLD biopsy-anchored multiomic data via Support Vector
Machine-based feature selection and used a generalised linear regression
model to derive a six-gene signature which generalised across independent
cohorts. The model distinguished healthy from MASLD, and simple stea-
tosis from metabolic dysfunction-associated steatohepatitis (MASH),
identifying a blood signal in cell-free RNA suggesting non-invasive trans-
lation. Other studies implicated cell death™, oxidative stress”,
inflammation”’, and metabolic”’ gene signatures as potential biomarkers for
MASLD. Tavaglione et al.** applied a Feedforward NN to data from over
~218,000 participants, finding that individuals with hypertriglyceridemia
exhibited a 3-to-4-fold increased prevalence of MASLD and MASH,
whereas hypercholesterolemia conferred only marginal risk, underscoring
lipid profiling as a robust clinical signal to prompt targeted screening.
AI/ML applied to urinary proteomics”’, MRI-based fat content”, and cir-
culatory extracellular vesicle (EV)*'-based biomarkers have also shown
promise.

Although HCC diagnosis remains radiological, AI/ML-driven
transcriptomic”, cell-free DNA methylation™, serum metabolomics™, and
oral/gut microbiome assays” are emerging as credible molecular comple-
ments. Notably, Li et al.” isolated fucosylated EVs from serum and trained a
Logistic Regression (LR) model on five EV-miRNAs for HCC detection,
rescuing >80% of previously misclassified cases.

Differential diagnosis

Liver diseases often present with non-specific features, making the chal-
lenges of diagnosis and accurate management amenable to assistance by Al/
ML. Huang et al.”” developed a gut-microbiome-based strategy to distin-
guish simple steatosis from MASH, mapping pathway shifts in glucose
metabolism and flavonoid biosynthesis. A similar approach differentiated
ALD from MASLD metagenomically™, suggesting stool-based signatures as
non-invasive diagnostic options. Using routine laboratory parameters,
Wang et al.” validated a Gradient-Boosted Decision Tree to differentiate
idiosyncratic drug-induced liver injury (DILI) from AIH. Similarly, AI/ML
supported the differentiation of PBC and AIH from saliva proteomics'’ and
histology™'.

For patients with combined HCC-iCCA, Calderaro et al.** developed a
self-supervised CNN to re-classify tumours as HCC-like or iCCA-like, with
attention maps showing that iCCA-like areas drove discrimination. Similar
work used multiparametric MRI radiomics to classify HCC-iCCA® and
inflammatory pseudotumours* pre-operatively. Wei et al.”’ created LilNet, an
automated detection system for hepatic lesions from multiphased-enhanced
CT, successfully distinguishing focal nodular hyperplasia, haemangiomas,
and cysts with 88.6% accuracy and highlighting AI/ML potential as a clini-
cally deployable tool in radiological resource-limited settings.

Prognostic opportunities

Prognostication in MASLD largely depends on fibrosis severity. Existing
non-invasive tests (such as Fibrosis-4 index (FIB-4), Enhanced Liver
Fibrosis test, and vibration-controlled transient elastography (VCTE))
assess fibrosis, but their performance in population-level screening remains
suboptimal®. Improved risk stratification may be achieved through earlier
recognition of anthropometric, genetic, and metabolic risk factors, as
opportunities for intervention diminish once significant fibrosis is
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Fig. 2 | End-to-end artificial intelligence workflow in healthcare. Data preparation
begins with privacy safeguards (anonymisation/pseudonymisation), systematic
cleaning, standardisation and cross-site harmonisation to mitigate batch effects.
These steps are challenging due to heterogenous data sources of variable quality,
which can introduce bias or limit generalisability. Metadata tagging enables audit-
ability, while imputation and imaging-specific pre-processing (e.g., resizing,
patching) reduce bias and variance; though improper handling may distort signals.
Data processing includes image segmentation and ROI selection (radiology/
pathology), data augmentation, dimensionality reduction, and feature ranking
(‘omics) to enhance model learning. Biological knowledge is incorporated via label
definitions, feature engineering, and model constraints to ensure biological plausi-
bility and clinical relevance. Model evaluation involves appropriate algorithm
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selection, robust internal/external validation (ideally multi-centre), interpretability,
and bias/fairness analyses across sex, ethnicity, age, or sociodemographics. Eva-
luation may be limited by small or unrepresentative datasets, risking hidden bias.
Performance metrics include AUC/AUROC (discrimination), C-index (survival
prediction), F1-score (class imbalance), and Dice coefficient (imaging accuracy).
Clinical adoption requires more than accuracy: transparency, end user training,
usability, cost management, post-deployment monitoring (e.g., model drift and
recalibration), and regulatory compliance are essential. Poor monitoring or usability
can impede clinical adoption despite strong performance. Together, these stages
define an evidence-based pathway from raw data to clinically dependable AI tools,
aligned with emerging best-practice guidelines and expert consensus.

established. A comprehensive overview of prognostic applications of Al in
hepatology is provided in Supplementary Table 3.

Risk prediction
Using routine EHR data, AI/ML models can deliver high-throughput,
individualised risk estimates for liver disease across the general population.

In MASLD, multiple large cohort studies have identified optimal predictors
of CLD incidence and progression”’"*. Yu et al.” constructed a model using
a RF with recursive feature exclusion from ten routine clinical variables,
outperforming traditional risk indicators with body mass index, waist-to-
hip ratio, triglycerides, and fasting glucose among the top predictors, all
potentially actionable via weight loss and glycaemic control. Njei et al.”
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developed an Extreme Gradient Boosting (XGBoost) classifier to identify
MASLD individuals at high risk of MASH based on alanine amino-
transferase (ALT), gamma-glutamyl transferase (GGT), platelets, waist
circumference, and age, surpassing NITs and demonstrating an approach to
triage without FibroScan®. Complementing phenome-derived findings,
transcriptomics™, metabolomics™, and proteomics™ studies support ML-
based risk prediction and stratification of MASLD, often demonstrating
lipid-centred signatures as dominant risk signals.

HCC risk stratification, prognosis, and recurrence

HCC annual incidence rate in patients with cirrhosis is ~2-3%", but risk is
heterogeneous. Guo et al.” developed a metabolomic risk model of end-stage
cirrhosis (including HCC) from UK Biobank participants. Based on eight
serum metabolites, the model outperformed polygenic risk scores and, when
integrated with routine clinical variables, accurately predicted 10-year out-
comes. In a different cohort, CNN modelling predicted HCC occurrence
from tumour-free baseline WSIs with ~82% accuracy in validation; saliency
maps highlighting nuclear atypia, high hepatocellular nucleus-to-cytoplasm
ratio, immune cell infiltrates, and lack of large fat droplets as predictive
histopathological signals beyond fibrosis”. Further AI/ML prognostic studies
identified liver fibrosis™, angiogenesis”, and glycosylation mechanisms® as
important features for risk stratification, but mainly in already diagnosed
HCC patients. AI/ML also enhanced HCC surveillance in viral hepatitis. In
chronic HBV, Wu et al®'. trained an Artificial NN that accurately estimated
10-year risk in antiviral therapy (AVT)-treated patients, while in cured HCV,
Nakahara et al”. applied Random Survival Forests to routine laboratory tests
to define four 5-year risk strata. Strikingly, many events fell outside guideline
cut-offs, underscoring AT’s value in calibrating surveillance.

Studies of HCC recurrence after transplant”, ablation®, or
immunotherapy have also supported the use of AI/ML-derived risk scores
to guide surgical decision-making. For example, single-cell mapping of
primary and early-relapse HCC revealed rewired tumour-immune crosstalk
dominated by MIF-CD74/CXCR4 signalling and malignant CD8" T-cells,
yielding a LASSO/Cox-derived 7-gene relapse score that outperformed
clinical covariates and identified high-risk tumours*. MV1?, elevated alpha-
fetoprotein®, peritumoural radiomic** and pathomic® features were addi-
tional predictors of recurrence.

Other complications

Accurate prognostication is also important in predicting decompensation
and liver failure. In PSC, Singh et al. trained CNNs on portal-venous phase
CTs to predict decompensation. Half-volume experiments” and body
composition quantification” suggested diffuse signal contribution, support-
ing whole-organ phenotyping as a biomarker of deterioration. In MASLD,
ML models showed that a combination of routine laboratory tests with some
imaging modalities dominated decompensation prediction”"””. In HBV-
related cirrhosis, a RF combining GP73 and al-microglobulin with age,
aspartate aminotransferase, ALT, and platelets best predicted decompensa-
tion. Interaction analyses showed that non-linear ML models captured
transition risk better than linear indices like FIB-4”. In surgical settings,
multimodal DL models accurately predicted pre-operative post-hepatectomy
liver failure’ while peri-operative EHR-based monitoring enabled early post-
operative detection”, collectively supporting AI/ML’s value across the sur-
gical timeline. Models predicting non-liver outcomes have also been devel-
oped. Veldhuizen et al.” used a self-supervised Transformer NN to predict
major cardiovascular events from liver MRI. Saliency maps implicated
hepatic veins, inferior vena cava, and abdominal aorta health as key predictive
features. MASLD also predisposes to renal complications. Sun et al” used
ML-driven qFibrosis” digital histopathology quantification to track collagen
remodelling around pericentral/central veins, which predicted estimated
glomerular filtration rate and outperformed conventional histology.

Liver transplantation
AI/ML may help improve outcomes following liver transplantation (LT)
by predicting graft survival and guiding clinical management. Sharma

et al”® developed GraftlQ, a clinician-informed multi-class NN inte-
grating clinicopathological data from the 30 days pre-biopsy to accurately
classify graft injury aetiologies. Using t-SNE unsupervised clustering,
Chichelnitskiy et al.”” profiled soluble immune mediators from a pro-
spective paediatric cohort, identifying a high CD56"" NK-cell plasma
signature detectable two weeks post-LT associated with higher rejection-
free survival, suggesting actionable, non-invasive markers to guide
immunosuppression. Further immune® and metabolome®'-based AI/ML
approaches have assessed drivers of LT dysfunction/rejection and their
potential prognostic value.

Mortality

Mortality risk in CLD has long relied on the Model for End-stage Liver
Disease (MELD) score, but AI/ML may allow greater discrimination. To
predict HCC-related mortality, multiple studies integrated CNN auto-
segmentation and regression-driven feature selection of pre-treatment CT
scans combined with clinical variables, and most models outperformed
traditional prognostic risk scores, emphasising image-derived features as
powerful predictors of overall survival (OS)****. Complementing radiomics,
Sun et al.** derived a 3-gene epithelial-mesenchymal transition immune risk
score that stratified OS prediction over 5 years. Generalisable HCC prog-
nostic modelling from clinical registries has also been shown to accurately
predict O™,

In MASLD, Drozdov et al.¥” used a Transformer NN to predict all-
cause mortality at 12-36 months, with age, type-2 diabetes, and prolonged
prior hospitalisation among key predictive factors. Huang et al.” built a
metabolome-derived score that accurately identified patients with biopsy-
proven MASH and predicted liver-related mortality more accurately than
clinical covariates.

AI/ML also improved prognosis prediction in acute settings. In ALD,
interpretable ML outperformed legacy scores for short-term mortality, from
intensive care unit parameter-based models in alcoholic cirrhosis® to the
global ALCHAIN ensemble in alcohol-associated hepatitis”, providing
explainable risk factors and a bedside web tool that can inform steroid triage.

Therapeutic opportunities

Clinical outcomes in hepatology remain unpredictable with current man-
agement, with some patients progressing to end-stage liver disease despite
removal of the underlying cause and others showing heterogeneous treat-
ment responses’’. A comprehensive overview of therapeutic and other
applications of Al in hepatology is provided in Supplementary Table 4.

Drug discovery and repurposing

AI/ML is enabling the discovery of therapeutic targets across the CLD
spectrum. Combining Cox Regression with Gradient Boosted Machine,
Wen et al.” generated a multiomic Consensus Al-derived Prognostic Sig-
nature (CAIPS) from HCCs. When integrated with pharmacological
databases, the model recommended irinotecan and the PLK1 inhibitor BI-
2536 for high-CAIPS profiles, subsequently validated in vitro. In MASLD-
related HCC, Sun et al.” derived metabolic dysfunction scores from public
genomic databases and identified CACNBI as a putative druggable target,
with molecular docking analysis highlighting calcium-channel agents as
testable inhibitors. Similarly, Venhorst et al.”* fused phenotypic and tran-
scriptomic profiling to propose an EP300/CBP bromodomain inhibitor,
inobrodib, as an anti-fibrotic strategy in MASH. Finally, through proteomic
profiling of serum samples associated with PSC progression to cirrhosis,
Snir et al.”* described a CCL24-defined druggable chemokine axis; a clinical
trial for anti-CCL24/CM-101 immunotherapy is ongoing, with positive
Phase 2 signals (NCT04595825)™.

Al tools are also becoming embedded within therapeutic pipelines. Ren
et al.” integrated an Al-based platform for therapeutic target prioritisation
(PandaOmics) with generative chemistry (Chemistry42) to investigate
CDK20 inhibition in HCC, discovering a nanomolar hit in just 30 days using
an Al-driven protein-structure prediction system (AlphaFold), later con-
firmed in vivo.
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Fig. 3 | Use of artificial intelligence across the clinician-patient journey. Con-
ceptual flowchart illustrating where patients and clinicians interface with Artificial
Intelligence (AI) across the care continuum, from pre-visit planning and triage,
through admission, consults and interventions, to at-home support, applied bio-
medical research and clinical trials, and finally communication. Throughout the

journey, clinician-directed co-intelligence intakes all or selected inputs, executes
routine or targeted tasks, and returns outputs to care teams or patients under clinical
oversight, thus supporting, not supplanting, clinical judgement. SDoH social
determinants of health, EHRs electronic health records (EHRs), Q&A question and
answer.

Treatment response

AI/ML supports a response-adaptive therapeutic approach, guiding drug
choice for optimised personalised care whilst preventing toxicity. Using
images of human liver organoids, Tan et al.”” created a spatiotemporal DL
model which performed ternary DILI grading, identifying toxic compounds
that standard spheroid assays miss. Other models were developed to
anticipate hepatotoxicity™, differentiate animal-only toxicities™, prioritise
synergistic drug combinations'”, or assess treatment efficacy in population
subsets in silico. For example, clinical benefits of atezolizumab plus bev-
acizumab (AB) immune checkpoint inhibitors have been observed in
patients with unresectable HCC'". Zeng et al.'"”” used H&E pathomics to
derive an immune AB response signature and identify patients with longer
progression-free survival, while Vithayathil et al.*’ externally validated a
model incorporating pre-treatment CT radiomics and clinical features
predicting 12-month mortality risk on AB, successfully stratifying response
rates and outperforming traditional risk scores.

Beyond cancer, Fan et al.'” developed a novel tool for AVTs assess-
ment by turning longitudinal serum quantitative HBV surface antigen
trajectories into individualised antigen-loss probabilities, identifying
~8-10% of patients with high probability of viral clearance. External vali-
dation in clinical trials confirmed that “favourable” patients had markedly
higher treatment response'*. Finally, Yang et al.'” constructed a multiomic
model predicting suboptimal biochemical response in PBC/AIH variant
syndrome, highlighting dysregulated lipid metabolism and immune (e.g.,
IL-4/IL-22) pathways as key pathogenic factors, enabling timely escalation
in likely non-responders.

Lifestyle interventions

AI/ML has the potential to identify effective and actionable lifestyle changes.
While an independent audit of ChatGPT meal plans for MASLD found
plausible weight loss advice but frequent mistakes and guideline
omissions'”, Joshi et al."” showed in a 1-year randomised trial that an Al
“digital twin” delivering personalised nutrition, physical activity, and sleep
schedule recommendations improved MASLD liver-fat and fibrosis scores
more than standard care.

Other opportunities

Al is increasingly integrated into routine healthcare workflows, often
functioning as a support tool or “co-pilot” for clinicians or patients (Fig. 3),
thereby maintaining human oversight.

Clinical co-pilots

LiVersa, a liver-specific large language model (LLM) built from ~30 AASLD
guidance documents, correctly answered a trainee HBV/HCC knowledge
set, generating more specific outputs than ChatGPT'®. Related, LiVersa
could also accurately extract structured elements from HCC imaging
reports in a head-to-head comparison with manual reviewers'”. A more
generalist domain-specific vision language model for pathology, PathChat,
was also recently introduced'’. Beyond text extraction, Xu et al.'
demonstrated that LLMs (GPT-4, Gemini) achieved near-expert accuracy
in predicting immunotherapy response for unresectable HCC. Parallel work
developed a radiomics-DL-LLM agent for personalised HCC treatment
planning'”. In the operating room, LiverColor, a smartphone app using
CNN architecture for colour and texture analysis, could classify steatosis in
liver grafts in <5 s, outperforming surgeons for >15% steatosis, although

performance at >30% remained limited by sample size'".

Clinical trials

AI/ML is also helping to reshape clinical trials. NASHmap, an EHR-based
XGBoost model using 14 routine variables, accurately predicted biopsy-
confirmed MASH and, when applied to ~2.9 million at-risk adults, identi-
fied 31% as probable MASH, representing a pragmatic pre-screening
recruitment tool'**. Within digital histopathology, AIM-MASH automated
eligibility and endpoint scoring with agreement comparable to expert
consensus, also detecting a greater proportion of treatment responders than
central readers'"”. In February 2025, the European Medicines Agency issued
a Qualification Opinion allowing AIM-MASH as an aid to single central
pathologists for Phase 2/3 enrolment and histology-based endpoint
evaluation''®. Across ~1400 biopsies from four trials, Al-assisted patholo-
gists outperformed independent manual readers for key histological com-

ponents while remaining non-inferior for steatosis and fibrosis'"’.
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Social determinants of health

AI/ML is increasingly able to capture social determinants of health (SDoH)
from clinical notes, helping identify access gaps, support model fairness, and
build more diverse cohorts. In MASLD, factors such as education, food
insecurity, and marital status are linked to higher disease burden**""*'*,
underscoring the need for equity-aware study design. For example, Wang
et al.””' showed that Black-White performance gaps in 1-year mortality
prediction across chronic diseases (including CLD) disappeared once SDoH
were balanced. In LT, Robitschek et al.' used a LLM to extract 23 psy-
chological/SDoH factors from evaluation notes, improving prediction of
listing outcomes and elucidating drivers of transplant decisions.

Challenges of Al
Despite promising results for the use of AI/ML to improve care in hepa-
tology, there are limitations to address before real-world clinical adoption.

Technical challenges

Most Al models in hepatology are built on retrospective, single-centre
cohorts or public registries with narrow demographics and limited follow-
up, making them prone to overfitting, with poor generalisability and limited
transparency .

Data quality remains a major bottleneck, as label noise (e.g., biopsy
sampling errors, inter-observer variability) and inconsistent preprocessing
pipelines (e.g., imaging protocols, EHR completeness) undermine reliability
and standardisation'*". Furthermore, the addition of high heterogeneity of
real-world hepatology populations (i.e., variable aetiologies, disease pre-
valence, demographics), evolving clinical practice guidelines, and limited
adherence to evaluation and reporting standards (e.g., TRIPOD + AT,
CONSORT-AI'*, DECIDE-AI'”) all complicate model reproducibility.
Additional challenges are posed by dataset and concept shifts, where dif-
ferences between training datasets and real-world populations may degrade
model performance'”. Multi-centre validation and continuous post-
deployment monitoring for calibration drift (the gradual loss of accuracy
in measurements or predictions over time) are therefore essential to
maintain long-lasting clinical reliability.

Clinical credibility of AI depends on rigorous evaluation and trans-
parency. Where possible, prospective or “Al-in-the-loop” randomised trials
comparing Al-assisted and standard care are essential to determine true
clinical benefit. Such studies have been piloted in liver imaging but remain
uncommon. Assessing model interpretability and explainability helps
explain which features drive predictions and whether models rely on
spurious or biased patterns. For example, outputs may be influenced more
by fibrosis stage or demographic factors than by disease biology itself.
Techniques such as SHapley Additive exPlanations (SHAP) or Local
Interpretable Model-agnostic Explanations (LIME) provide post hoc insight
into model reasoning, while attention or saliency maps visually highlight
image regions most influencing a prediction'”.

Overall, when data are limited, simpler models may outperform deep
networks, which often sacrifice transparency for marginal accuracy gains’.
Beyond architecture, reliable Al deployment requires quantifying uncer-
tainty and the ability to “abstain” in low-confidence cases, a critical safe-
guard for clinical integration'*’. No single modelling approach is universally
superior. Robust feature selection, transfer or self-supervised learning, and
systematic sensitivity analyses are essential for producing interpretable and
reproducible biomarkers'”'. Equally, LLMs introduce additional risks,
including hallucinations, prompt sensitivity, and over-confident errors'”,
underscoring the need for task-specific evaluation, transparent data sour-
cing, and human oversight.

Regulatory complexity

Regulation of medical Al is progressing but remains uneven across regions.
In the EU, the AT Act introduces rules in stages, with bans on unacceptable
uses and Al literacy measures from 2024, general-purpose Al rules from
2025, and “high-risk” medical device standards phased in through
2026-2027"". In the US, the FDA’s Predetermined Change Control Plans

(PCCPs) allow pre-authorised post-market model updates for Al-enabled
software, supporting safer iteration and adaptation'*. In the UK, MHRA’s
“Software and Al as a Medical Device” framework defines expectations for
development and post-market monitoring'”’.

Data privacy remains a major challenge for multi-centre research.
Under the EU GDPR, secondary use of health data requires clear legal
grounds. The European Health Data Space aims to streamline data
sharing'®, although coordination remains complex. Privacy-preserving
approaches, such as federated learning, may help, particularly for rare and
paediatric liver diseases where cohorts are small'””. Despite these efforts,
uncertainty persists about when AI/ML tools qualify as medical devices and
how best to assess their safety, effectiveness, and fairness. Divergent reg-
ulations slow adoption and deter investment'*.

Finally, data privacy and patient safety are closely linked. US and EU
regulators now emphasise “secure-by-design” Al systems to counter
growing cyber risks"**'*’. Demonstrations that manipulated medical images
can mislead both clinicians and algorithms'"', underscores the need for
verification tools and secure data pipelines.

Ethical limitations

Without safeguards, AI/ML can amplify existing inequities in hepatology.
Minority ethnic groups, women, and non-represented cohorts have been
systematically disadvantaged by MELD-based LT prioritisation'?, HCC risk
modelling'®, and other predictive tools. Bias mitigation requires diverse
training across ethnicity, sex, and socioeconomic strata, subgroup calibra-
tion, transparent equity reporting, and post-deployment audits'*.

Importantly, accountability for AI-driven decisions is still unclear. The
EU AI Act assigns responsibilities to developers and users of high-risk
medical AT, but US PCCPs leave liability unresolved'*, often defaulting to
clinicians. Clearer rules on who is responsible are needed in governance and
public communication.

Al also has an environmental impact. Data centres already account for
~1.5% of global electricity use, projected to more than double by 2030'*.
Training GPT3 alone was estimated to consume ~700,000 litres of cooling
water'”. With health systems like the NHS beginning to mandate disclosure
of environmental costs'**, sustainability must become integral to medical AI
deployment.

Clinical integration

Two main barriers hinder clinical integration: an evidence gap (few large,
prospective, multi-centre trials) and a deployment gap (limited integration
of Al into workflows). Without transparency, clinicians often revert to
familiar statistical tools or user-friendly chatbots valued for convenience
over accuracy. A recent EASL consensus identified key requirements for
adoption, including demonstrated clinical benefit, rigorous prospective
validation, and benchmarking against best statistical baselines. Despite
enthusiasm, only ~4% of EASL 2024 abstracts used AI/ML, reflecting early
adoption in hepatology'®’. Ongoing concerns include clinician distrust,
regulatory uncertainty, and poor system interoperability. Facilitators
include interdisciplinary collaboration, shared data resources, sustainable
funding, and improved Al literacy. Positioning Al as “assistive” rather than
“autonomous” may also reduce workforce anxiety. However, lessons from
EHR adoption warn that poorly integrated systems can add to clinician
workload"’.

Beyond these structural challenges lies a more subtle concern: pre-
serving clinical expertise amid growing algorithmic support. Senior clin-
icians increasingly question how future specialists will develop skills if AT
shortens traditional learning pathways. In a recent multi-centre study,
continuous exposure to Al-assisted polyp detection led to reduced perfor-
mance during subsequent unassisted colonoscopies'™', suggesting early
signs of deskilling. Mitigation requires deliberate integration strategies,
embedding Al as a co-pilot rather than a replacement, maintaining unas-
sisted practice, and ensuring ongoing skill calibration. Targeted education
and hybrid training (with/without AI support) are essential to preserve
sound clinical judgment.
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Health economics

Cost-saving claims for AI/ML tools in hepatology remain largely spec-
ulative. Existing evaluations are scarce, methodologically inconsistent, and
rarely patient-centred'”. The potential system-level value lies in earlier
detection, workflow automation (e.g., radiology/histopathology quantifi-
cation), and risk-based triage using EHR data. Of note, while commercial
models (e.g, ChatGPT, Claude) may incur licensing costs, the main
financial burden of medical Al stems from infrastructure, integration,
validation, and governance rather than model access itself.

Experts emphasise early involvement of health economists to design
robust cost-effectiveness studies that capture true implementation costs,
effects on clinician time and workflow, and downstream resource reallo-
cation, while avoiding costs from misclassification. Such evidence is
essential to establish both financial and clinical viability, particularly in

resource-limited settings'*’.

Conclusion

Centred on the patient, the AI/ML lifecycle (spanning purpose, popu-
lation, data, model development, validation, and deployment) offers a
pragmatic framework for hepatology. Applied responsibly, multimodal
data integration and assistive algorithms can enable earlier diagnosis,
more accurate prognosis, and personalised therapy. Successful clinical
translation will depend on generalisability, transparency, and long-
itudinal performance monitoring to detect drift, alongside robust privacy,
security and equity safeguards, clear demonstration of health economic
value, and workflow-embedded human oversight, to shift liver care from
reactive to proactive.
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