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Across generations, sizes, and types,
large language models poorly report self-
confidence in gastroenterology clinical

reasoning tasks
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This study evaluated confidence calibration across 48 large language models (LLMs) using 300
gastroenterology board exam-style multiple-choice questions. Regardless of accuracy, all models
demonstrated poor self-estimation of certainty. Even the best-calibrated systems (o1 preview, GPT-
40, Claude-3.5-Sonnet) exhibited substantial overconfidence (Brier scores 0.15-0.2, AUROC ~ 0.6).
Models maintained high confidence regardless of question difficulty or response correctness. In their
current form, LLMs cannot be relied upon to communicate uncertainty, and human oversight remains

essential for safe use.

Reliable communication of uncertainty is essential for safe clinical care.
Large Language Models (LLMs) can generate fluent, clinically relevant
answers, but they can also present incorrect information with unwarranted
certainty'”. In patient care, misplaced trust in such outputs can lead to
dangerous outcomes™. To be safe for clinical use, an LLM must not only
provide accurate answers but also convey confidence levels that reflect the
likelihood of being correct. Without this calibration, even highly accurate
models can pose risks in clinical contexts.

Several techniques can estimate uncertainty in LLM outputs, but most
are difficult to apply in routine clinical practice. They require access to
internal model computations or involve complex procedures such as gen-
erating and comparing multiple responses, training additional models, or
applying statistical calibration after the fact™”. In addition to being unpro-
ven, these approaches demand significant computing resources, technical
expertise, and interpretation skills that are not widely available in healthcare
settings. As a result, there is a need for uncertainty estimation strategies that
are both reliable and practical for clinicians.

Self-reported confidence is one such practical alternative. In this
approach, the model is asked how certain it is about its answer, often on a
simple numerical scale®"". It is intuitive, easy for clinicians to interpret
alongside the clinical information already provided, and requires no special

access to the model’s internal workings or substantial computing power.
However, because the confidence statement is itself generated language, it
presents an additional opportunity for an incorrect output. Its value
therefore depends on two related properties: calibration, the agreement
between the stated confidence and the actual probability of being correct,
and discrimination, the tendency to assign higher confidence to correct than
to incorrect answers. Both properties reflect an aspect of language-based
metacognition, or the ability to recognize and communicate the limits of
one’s own knowledge. If this capability is weak or absent, verbalized con-
fidence may mislead rather than guide clinical decision-making. Although
previous studies have found evidence of poor calibration in general medical
tasks'>", it remains unclear whether this limitation is confined to certain
systems or represents a universal property of current LLMs.

We addressed this question with a systematic, cross-model evaluation
in a high-stakes clinical subspecialty. We evaluated self-reported con-
fidence for 48 commercial and open-source LLMs across local, web, and
API-based environments using 300 multiple-choice, board-style questions
from the 2022 American College of Gastroenterology self-assessment
examination. Gastroenterology was selected as our test domain primarily
because the senior author (AS) is a practicing gastroenterologist, providing
direct clinical insight into the impact of LLM confidence miscalibration.
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Fig. 1 | Study workflow for eliciting and extracting
self-reported confidence from large language
models. Schematic overview of the pipeline used to
present 300 gastroenterology board exam-style
multiple-choice questions to 48 LLMs, record their
selected answers and self-reported confidence scores
on a 0—10 scale, and process raw text outputs
through a structured parsing pipeline. The pipeline
combines rule-based and LLM-based extraction to
identify sentences containing confidence state-
ments, extract numeric scores or flag missing con-
fidence, and produce a curated dataset of
question-answer—confidence triplets for down-
stream analyses.
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Subspecialty domains like gastroenterology also present unique challenges
for clinical reasoning that make them ideal test environments since they
require integration of diverse knowledge sources to formulate diagnoses
and involve procedures with significant risks, where diagnostic or treat-
ment errors can lead to serious patient harm. We used standardized board
exam-style questions because they offer an objective benchmark for eval-
uating model performance across a range of clinically relevant scenarios.

We employed a systematic approach where models were instructed
to select the correct answer choice to each board exam question and
explicitly report their confidence on a 0-10 scale (from least to most
confident). Using our established methodology, we optimized model
parameters including prompt instructions (the specific phrasing of text
input), temperature settings (degree of model output randomness), and

token limit (maximum allowable text received and generated by the model
in a single response) to maximize response accuracy'*. A semi-automated
extraction pipeline with human verification (99% accuracy, Supplemen-
tary Fig. S1) was used to process the responses and confidence scores for
subsequent analysis.

We extracted 13,362 answers and 12,307 confidence scores (Fig. 1).
The difference between these counts resulted primarily from non-
compliance with prompt instructions (n = 846) or from reasoning models
that exhausted their token limits because of their internal reasoning dialo-
gues (n=209) (Supplementary Fig. S2). Mean confidence scores ranged
from 7.99 (95% CI: 7.89-8.09) for Claude-3-Opus to 9.58 (95% CI:
9.45-9.71) for Mistral-7b, while accuracy varied substantially from 30.3%
(Llama3-8b-Q8) to 81.5% (o1 preview) (Table 1). All models demonstrated
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Table 1 | LLM accuracy, discrimination, calibration, and confidence scores, sorted from best calibration (lowest Brier score) to

worst for each model family

Model Model name and parameter Date accessed Calibration Discrimination Accuracy Self-reported
family (quantization) confidence score
Brier ECE AUROC Percent Mean (95ClI)
score

Llama
Llama-3.3-70b December 2024 0.260 0.199 0.563 65.66 8.46 (8.36-8.56)
Llama 3.1 405B August 2024 0.273 0.211  0.592 64 8.47 (8.38-8.57)
Llama3.2-90B December 2024 0.302 0.269 0.600 60.00 8.49 (8.34-8.62)
Llama 3.1 70B August 2024 0.313 0.283 0.538 58.19 8.51(8.39-8.62)
Llama 3 70B May 2024 0.334 0.301 0.572 54.66 8.38 (8.28-8.48)
Llama 3 8B May 2024 0.422 0.450 0.478 43.33 8.54 (8.41-8.68)
Llama-3.2-11b December 2024 0.400 0.390 0.519 48.65 8.59 (8.46-8.69)
Llama 3.1 8B August 2024 0.433 0.441 0.512 43.14 8.67 (8.54-8.80)
Llama-3.2-3b December 2024 0.465 0.487 0.534 35.66 8.32 (8.18-8.45)
Llama 2 70B April 2024 0.481 0.493 0.529 37.71 8.70 (8.58-8.81)
Llama-3.2-1b December 2024 0.500 0.511  0.455 30.61 8.13(7.96-8.31)
Llama 2 13B (Q5) April 2024 0.525 0.546 0.5 35.16 8.98 (8.92-9.04)
Llama 3 8B (Q8) April 2024 0.527 0.613 0.472 30.35 8.65 (8.28-9.02)
Llama2 7B April 2024 0.528 0.587 0.47 30.87 8.66 (8.47-8.84)
Llama 2 13B April 2024 0.531 0.558 0.52 33.11 8.89 (8.82-8.95)
Llama 2 7B (Q8) April 2024 0.559 0.582 0.458 32.45 9.07 (8.98-9.15)

Qwen
Qwen-2.5-72b September 2024  0.326 0.304 0.549 61.48 8.39(8.15-8.63)
Qwen-2-72B September 2024  0.364 0.360 0.583 57.00 9.10(8.98-9.20)

Phi
Phi-3 Medium 14B (Q6) April 2024 0.389 0.377 0.588 48.66 8.57 (8.48-8.67)
Phi-3 3B FP16 April 2024 0.458 0.464 0.486 43.79 8.96 (8.84-9.07)
Phi-3.5-4b December 2024 0.558 0.578 0.465 31.86 8.96 (8.90-9.02)

Google
Gemini Advanced Web March-April 2024  0.297 0.247  0.561 58.49 8.20 (8.07-8.33)
Gemma 2 27B July 2024 0.374 0.352 0.557 50 8.52 (8.41-8.63)
Gemma 2 9B (Q8) July 2024 0.397 0.392 0.543 45.33 8.40 (8.30-8.50)
Gemma 2 9B July 2024 0.398 0.390 0.592 44.59 8.33(8.20-8.45)
Gemini Web March 2024 0.421 0.420 0.563 44.44 8.61 (8.53-8.70)

Mistral
Mistral Large April 2024 0.282 0.224  0.602 60.53 8.13 (7.98-8.28)
Mixtral 8x7B April 2024 0.359 0.336 0.547 54.33 8.79 (8.72-8.87)
Mistral v2 Q8 April 2024 0.506 0.527 0.554 39.06 9.11 (8.90-9.32)
Mistral 7B April 2024 0.547 0.551 0.519 40.66

Claude
Claude 3.5 Sonnet July 2024 0.207 0.122 0.6 74 8.60 (8.54-8.67)
Claude 3 Opus March-April 2024  0.229 0.150 0.575 70.35 8.54 (8.44-8.63)
Claude 3 Opus Web March-April 2024  0.246 0.154  0.578 65.66 7.99 (7.89-8.09)
Claude 3 Sonnet Web March-April 2024  0.326 0.284 0.551 55.33 8.37 (8.29-8.45)
Claude 3 Sonnet March-April 2024  0.361 0.336  0.559 51.17 8.48 (8.39-8.58)
Claude 3 Haiku March-April 2024  0.373 0.357 0.522 53.76 8.88 (8.80-8.96)
Claude 3 Haiku Web March-April 2024  0.398 0.385 0.523 50 8.85 (8.80-8.90)

GPT
o1 preview September 2024  0.157 0.100 0.576 81.57 9.15(9.10-9.20)
GPT-40 May 2024 0.208 0.148 0.604 74 8.86 (8.80-8.92)
GPT-4 Web March 2024 0.267 0.221 0.588 66.22 8.79 (8.70-8.87)
GPT-4 March 2024 0.278 0.237 0.605 66.53 9.02 (8.92-9.13)
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Table 1 (continued) | LLM accuracy, discrimination, calibration, and confidence scores, sorted from best calibration (lowest

Brier score) to worst for each model family

Model Model name and parameter Date accessed Calibration Discrimination Accuracy Self-reported
family (quantization) confidence score
Brier ECE AUROC Percent Mean (95ClI)
score
o1 Mini September 2024  0.278 0.257 0.626 66.33 9.20 (9.12-9.27)
GPT-40 Mini July 2024 0.342 0.309 0.572 56.61 8.75 (8.67-8.83)
GPT-3.5 Web March 2024 0.394 0.375 0.546 47.66 8.56 (8.48-8.63)
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Fig. 2 | Average response accuracy versus mean self-reported confidence across
large language models. Scatterplot of mean accuracy and mean confidence scores
(0—10 scale) for models with more than 150 valid responses, with each point representing

asingle model. The dashed line denotes perfect calibration, where mean confidence equals
mean accuracy. Models above this line are overconfident, whereas models below are
under-confident. A subset of closely clustered models is magnified to improve readability.
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Fig. 3 | Distributions of self-reported confidence by model and correctness of
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(0—10 scale) for each model, with star markers indicating mean response accuracy
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for that model. Right panel: distributions of self-reported confidence scores stratified
by response accuracy, showing separate curves for correct and incorrect answers for
each model.

systematic overconfidence, with average confidence consistently exceeding
average accuracy (Fig. 2).

We observed a substantial overlap in confidence distributions between
correct and incorrect responses, indicating limited discriminative capacity
(Fig. 3). Models expressed high certainty regardless of whether their answers
were right or wrong—a critical safety issue in clinical settings. We quantified
this observation with discrimination metrics. Even the best-performing
model (01 mini) achieved an Area Under the Receiver Operating Char-
acteristic (AUROC) of only 0.626, well below the 0.7 threshold typically
considered meaningful for clinical applications (Table 1; Supplementary
Fig. $3). This pattern was consistent across all model families.

Calibration analyses corroborated these results. Only 5 of 48 models
demonstrated better-than-random calibration. The best Brier scores were
observed for ol-preview (0.157), followed by Claude-3.5-Sonnet (0.202) and
GPT-40 (0.206) (Supplementary Fig. S4). Brier score quantifies the mean

squared gap between predicted confidence and the observed outcome; lower
values indicate better calibration. Calibration curves (Fig. 4, Supplementary
Fig. S5) likewise confirm a consistent pattern of overconfidence. Expected
Calibration Error (ECE), defined as the weighted average absolute difference
between predicted confidence and empirical accuracy across confidence
bins, shows the same trend, with even the best models (o1-preview: 0.100;
Claude-3.5-Sonnet: 0.122) deviating meaningfully from perfect calibration
(Supplementary Fig. S6).

Most alarming, we found that models maintained high confidence
even as their accuracy significantly decreased on the most challenging
questions for humans (Fig. 5). Even the best-calibrated models (Fig. 5a—c)
showed similar overconfidence on difficult questions as poorly calibrated
models (Fig. 5d-f). We also investigated whether question length affected
confidence assessments, finding that confidence scores remained stable
regardless of text complexity and had no meaningful relationship with
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Fig. 4 | Calibration of self-reported confidence across best- and worst-calibrated
large language models. a-i show calibration curves for each LLM, plotting observed
model accuracy (y-axis, %) against mean normalized self-reported confidence (x-
axis) within 15 quantile-based bins of the original 0—10 confidence scale. The
dashed diagonal line indicates perfect calibration. Points represent confidence bins,
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with adjacent numbers indicating the number of questions contributing to each bin;
bins containing fewer than three responses are not displayed. Panels are ordered by
Brier score from best- to worst-calibrated models, with the six lowest Brier-score
(best calibrated) models in a-f and the three highest Brier-score (worst calibrated)
models in g-i.

actual performance (Supplementary Fig. S7). This suggests models lack the
awareness to recognize that longer, potentially more complex questions
could reduce their response certainty.

Looking at differences between model families, we observed genera-
tional improvements in self-assessed confidence. Newer versions con-
sistently outperformed their predecessors. For example, o1 showed better
calibration than GPT-40, which in turn outperformed GPT-4 (Table 1).
Commercial models generally demonstrated superior uncertainty estima-
tion compared to equivalent open-source alternatives, though this pattern
had notable exceptions. We also found that quantization, while enabling
deployment on less powerful hardware, typically degraded calibration (as
seen when comparing Llama 3 8B with its quantized counterpart).

Additional analysis of middle-performing models further confirmed these
trends (Supplementary Fig. S5).

Our findings confirm previous research describing the limitations of
LLM self-reported confidence and provides three additional
contributions'""”. First, we present the most comprehensive cross-
architectural evaluation to date, testing 48 LLMs—from 7B to 175B
parameters—across commercial, open-source, and quantized deploy-
ments. Second, by using gastroenterology board-style questions, we deliver
key domain-specific insights. Third, we show quantitatively that all models
suffer a common metacognitive deficiency, in which even the best-
calibrated LLMs remain systematically overconfident, regardless of ques-
tion difficulty. This pervasive overconfidence transcends architecture,
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Fig. 5 | Accuracy and self-reported confidence across question difficulty for nine
large language models. a—i show smoothed model accuracy (blue solid line, left y-
axis, %) and smoothed self-reported confidence (orange dashed line, right y-axis,
0—10 scale) as a function of question difficulty. Question difficulty is defined as the
percentage of human test-takers answering correctly (lower values indicate more
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difficult questions), and questions were grouped into 5-percentage-point difficulty
bins on the x-axis. Panels are ordered by Brier score from best- to worst-calibrated
models, with the six lowest Brier-score (best calibrated) models in a—f and the three
highest Brier-score (worst calibrated) models in g—i.

scale, and deployment environment, pointing to a fundamental limitation
of current neural language models.

While we observed that newer model generations (for example, 01 and
Claude 3.5) achieve modestly better calibration metrics', this improved
calibration tracks closely with higher overall accuracy (Table 1). These gains
appear to reflect the decreased chance of inaccurate responses, rather than
an improved ability to communicate uncertainty’. Supporting this conclu-
sion, we observed high, unvarying self-reported confidence scores, irre-
spective of question difficulty (Fig. 5), model generation (Fig. 2), or
correctness (Fig. 3). This suggests that confidence outputs are simply sta-
tistically generated text outputs, rather than true reflections of model
uncertainty. In other words, the models are generating the most probable
text for a confidence estimate, rather than reflecting on their own knowledge
boundaries. Future improvements in model training and calibration may
improve uncertainty self-awareness, but it is unclear if LLMs are structurally
capable of this functionality.

Several limitations temper our conclusions. While our use of multiple-
choice gastroenterology board exam style questions offers a clear, objective
benchmark, this approach may not generalize to open-ended or multi-turn
clinical reasoning or to other medical specialties. Our standardized prompt
engineering approach, which was designed to maximize accuracy, could

itself have biased model responses toward overconfident “expert” language.
Also, we did not examine potential biases in self-reported confidence across
demographic variables such as age, gender, or race, which may influence
outcomes and have important real-world implications. Finally, while the
ACG self-assessment questions are proprietary and only accessible to paying
subscribers or via direct request, we cannot rule out that the LLMs we tested
may have been trained on this data.

Despite these limitations, our findings highlight critical Al safety con-
cerns. Across architectures, scales, and deployment settings, LLMs con-
sistently overestimated certainty and failed to differentiate between easy and
difficult questions. In high-stakes clinical settings, such miscalibration can
undermine safe human-AI collaboration. While newer LLM generations
demonstrate improvements in response accuracy, they continue to struggle
with conveying uncertainty, reflecting a broader technological limitation in
language-based metacognition. Until this gap is addressed, self-reported
confidence should not be relied upon as a standalone LLM safety signal.

This comprehensive evaluation of 48 LLMs reveals that poor self-
reported confidence calibration is an intrinsic limitation across all tested
language models. The observed high confidence scores, regardless of
accuracy, question difficulty, or model architecture, suggest verbalized
confidence reflects statistically generated text patterns rather than true
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self-assessment. These findings, combined with similar observations in
general medical tasks, indicate that self-reported confidence should not be
relied upon as a standalone indicator of response reliability in gastro-
enterology and likely other clinical domains. Human oversight of LLM
outputs remains essential. Future research should determine whether these
calibration deficits extend to other medical specialties, open-ended clinical
reasoning, and models specifically trained for uncertainty quantification.

Methods

Reference dataset

The 2022 American College of Gastroenterology (ACG) self-assessment
consists of 300 questions, of which 138 contain images. These questions
were developed by a committee of gastroenterologists to reflect the
knowledge, skills, and attitudes required for excellent patient care, covering
a broad range of topics, including liver, colon, esophagus, pancreaticobili-
ary, and endoscopy. The questions were designed to assess higher-order
thinking skills and were primarily case based. They were validated through
statistical analysis of test-takers’ performance, with an average correctness
rate of 74.52% + 19.49% on the 2022 assessment, indicating a moderate
level of difficulty. Only the text portions of the questions and answers were
used in this study. Questions were categorized by length (token count),
difficulty (percentage of correct answers by test-takers), and patient care
phase (treatment, diagnosis, or investigation). Additional details are pro-
vided in the Supplementary Section 1.

Response generation and confidence score elicitation

For response generation and confidence score elicitation, we built upon our
established methodology'”, using 60 questions from the 2023 self-
assessment exam and GPT-3.5 to select the model settings (temperature,
maximum input, and output token count), prompt structure, and output
format of all models. The configuration that maximized response accuracy
was a temperature of 1, maximum token count of input token count + 512
output tokens, structured output approach, and prompt (Fig. 1). Among the
various prompt engineering techniques evaluated, the following were
identified as having a positive impact on the outcomes: expert mimicry,
contextual embedding, Answer and Justify, Chain of Thought, confidence
scoring, and direct questioning (explained in Supplementary Section 1). The
OpenAI Web interface, OpenAl API, Claude Web interface, Claude API,
Gemini Web interface, Poe Web interface, Firework API, and locally hosted
hardware configurations such as RTX4090Ti and H100 systems were used
for response generation and confidence score elicitation.

Output parsing

To efficiently extract response and confidence data from the LLM outputs,
we developed a structured output pipeline using GPT-40 (Fig. 1). Our
hybrid methodology combined regex-based rules to reduce the number of
input tokens and LLM-based extraction to effectively parse the key portions
of the LLM outputs. The pipeline identified sentences containing “confid”
for further LLM-based parsing to either extract the certainty score (0-10) or
define the score as “not_mentioned”. Sentences classified as “not_men-
tioned” in the first pass were passed through the LLM-based parsing step a
second time to maximize the extraction performance. The complete output
parsing methodology is described in Supplementary Section 2. To validate
the output parsing pipeline, we compared it against manually extracted
confidence scores from five randomly selected questions per model,
achieving 98.9% accuracy (Supplementary Fig. S1).

Because some models did not reliably generate confidence scores, we
excluded models that were missing confidence scores for more than 50% of
questions (Medicine-Chat Q8, OpenBioLLM-7B Q8, Qwen Qwq-32b, and
GPT-3.5 Turbo). Supplementary Fig. S2 describes the distribution of
missing confidence scores, with 30 models having missing confidence
scores. Supplementary Fig. S8 illustrates a stratified analysis of response
accuracy by confidence score missingness for models with missing scores for
more than one-third of the questions.

Statistical analysis

We evaluated each model’s performance from two perspectives: dis-
crimination, the ability to distinguish between correct and incorrect
responses, and calibration, the alignment between predicted confidence and
actual accuracy.

Discrimination was quantified using AUROC. Specifically, we desig-
nated each response as 1 (positive) if it was labeled “correct” and 0 (negative)
otherwise. The confidence scores of the model ranged from 0 to 10 and
served as the continuous predictor variable. We employed the roc_auc_-
score function from sklearn.metrics to calculate the AUROC. In practical
terms, AUROC measures how well confidence scores can separate correct
from incorrect answers, with 0.5 indicating random performance and 1.0
indicating perfect discrimination. Conceptually, this involves varying the
decision threshold over all possible confidence values, thereby classifying the
responses as positive or negative at each threshold.

Calibration was evaluated using calibration plots, Brier score, and
ECE. Calibration plots were generated by dynamic based on data
quantiles, creating 15 bins across the range of confidence scores, and
plotting the mean predicted confidence against the observed accuracy
in each bin. Bins containing fewer than three predictions were excluded
to ensure the reliability of the results. Bootstrap resampling (n = 1000
iterations per bin) was used to derive 95% confidence intervals for each
calibration point.

The combination of these metrics provided comprehensive
assessment of model uncertainty estimation. The ECE complements the
Brier score by directly quantifying the aggregate discrepancy between
predicted probabilities and observed outcomes across bins, whereas the
Brier score measures the mean squared error between predictions and
true labels. As a result, the Brier score reflects both calibration (how
closely predicted probabilities match observed frequencies) and refine-
ment (the sharpness of predictions), whereas ECE focuses more directly
on calibration quality. Calculating both metrics provides a more com-
prehensive evaluation of model performance, capturing not only how
well models are calibrated, but also the overall predictive accuracy of
their probability estimates.

Our development and analysis were performed using Python 3.10.
LLM answers were generated and extracted using the OpenAl Python
library, Ollama application (v0.4), LM studio, and Langchain (v0.2 and
v0.3). Statistical analyses were conducted using SciPy (v1.13.1) and Scikit-
learn (v1.5.1), with data manipulation and visualization implemented
through Pandas (v2.2.2), Matplotlib (v3.9.2), and Seaborn (v0.13.2). Addi-
tional methodological details and code are available in our repository (see
Code availability).

Ethical approval

This study did not require ethical approval, as it did not involve human
subjects or human data. We ensured data protection by confirming that the
utilized LLM services did not retain or use our queries for model training

purposes.

Data availability

The data supporting this study’s findings were obtained from the American
College of Gastroenterology (ACG) under license agreement. While these
data are not publicly available owing to licensing restrictions, they may be
obtained from the authors with the ACG’s permission upon reasonable
request. ACG self-assessment questions and answers are accessible to
members through https://education.gi.org/.

Code availability
The underlying code for this study is available at https://github.com/

narimannr2x/confidence_scorin g.
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