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Assessing MMR vaccination coverage gaps 
in US children with digital participatory 
surveillance
 

Eric Geng Zhou    1,2,3  , John S. Brownstein4,5 & Benjamin Rader    4,6 

Recent measles outbreaks in the USA have emerged despite the availability 
of the highly effective measles–mumps–rubella (MMR) vaccine. Current 
surveillance systems rely primarily on telephone surveys with provider 
verification or school-entry data, methods prone to incompleteness 
and systematic exclusion of vulnerable populations. Here, to address 
these limitations, we used a validated digital participatory surveillance 
platform to collect parental reports of ≥1-dose MMR vaccination among 
children under 5 years of age. Applying Small Area Estimation methods to 
generate granular, county-level coverage estimates nationwide, we found 
substantial geographic variation, including areas with MMR coverage 
<60%. Analysis of spatial clustering revealed hotspots of undervaccination 
overlapping closely with recent measles outbreaks, particularly in Texas 
and New Mexico—where our model estimates substantially lower vaccine 
coverage than official data. These findings underscore the urgent need 
for surveillance systems to include more granular and timely data that 
accurately identify undervaccinated communities, enabling targeted, 
timely public health interventions.

The USA is experiencing a resurgence of measles1, despite the wide-
spread availability of the safe and effective measles–mumps–rubella 
(MMR) vaccine. Multiple states reported cases in 2025, notably con-
centrated in western Texas and New Mexico. Declining MMR cover-
age, fuelled by multifaceted vaccine hesitancy2 and pandemic-related 
disruption3, has left national coverage below thresholds required to 
prevent sustained transmission4,5. Differences in vaccination coverage 
by geographic, socioeconomic and demographic factors have further 
contributed to pockets of vulnerability6–8, particularly in communities 
with lower MMR vaccine rates.

Effective public health interventions require timely, spatially 
granular surveillance data. However, existing US vaccination surveil-
lance systems face notable limitations, including reporting delays, 

coarse geographic resolution (often reported only at the state level4) 
and reliance on milestones assessment at 24 and 36 months or kin-
dergarten entry. These estimates typically depend on healthcare 
provider-verified, school or health department records4,5,9,10, which 
systematically underrepresent children who are homeschooled, unin-
sured or foreign-born, or face structural barriers to care—groups that 
historically have shown undervaccination11–13. Consequently, the exist-
ing system provides an incomplete picture of the true vaccine coverage, 
omitting key subpopulations and underestimating local vulnerability14.

Most official vaccination estimates focus on kindergarten-entry 
requirements, subject to state-exemption policies4, leaving younger 
children—who are more vulnerable to severe measles complications—
poorly presented. In Texas, for example, the statewide kindergarten 
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closely aligned with that of direct survey data at both the county 
and state levels. SAE-predicted MMR uptake showed strong agree-
ment with direct survey estimates at both the county level (n = 932; 
Pearson r = 0.84, Spearman ρ = 0.86, R2 = 0.71; all P < 2.2 × 10⁻¹⁶) and 

MMR uptake for the 2024–2025 school year was reported at 93.2%, 
near the herd-immunity threshold15, yet West Texas is currently expe-
riencing a measles outbreak. Such aggregated figures may obscure 
local immunity gaps, especially among children too young for school 
entry or those facing barriers to care. National case reports from the 
Centers for Disease Control and Prevention (CDC) echo this concern: in 
2025, nearly 30% of US measles cases occurred among children under 
5 years of age, who also had the highest hospitalization rate (21%), while 
over 90% of all cases were in unvaccinated individuals1. The reliance on 
school-based reporting and state-specific data systems makes it diffi-
cult to construct a timely, unified national picture of measles immunity.

To address these gaps, we used a validated digital participatory 
surveillance platform OutbreaksNearMe (ONM)16,17 and Small Area 
Estimation (SAE) framework18,19 methods to generate publicly avail-
able county-level estimates of MMR vaccination coverage (≥1 dose) for 
children under 5 across the contiguous USA. We then leverage a geo-
graphic artificial intelligence (AI) foundation model to super-resolve 
these findings to a finer spatial scale.

Our approach complements existing surveillance systems, includ-
ing recently published county-level reports of two-dose MMR cover-
age20, by better capturing populations who might otherwise be absent 
from official reporting, including homeschooled and uninsured chil-
dren. The analysis identifies clusters of undervaccination that aligned 
closely with recent measles outbreaks, offering actionable insights for 
targeted immunization strategies and outbreak preparedness.

Results
In a nationally representative sample of 22,062 US adults with children 
under 5 collected via the ONM participatory surveillance platform 
(fielded between July 2023 and April 2024), the survey-weighted estimate 
of MMR vaccine uptake (≥1 dose) was 64.0% (95% confidence interval (CI) 
63.2–64.9%, representing approximately 71.1% (70.2–72.1%) of the MMR 
eligible population (children >6 months). As reported previously, uptake 
differed substantially by parental characteristics, including age, race/
ethnicity and coronavirus disease 2019 (COVID-19) vaccination status16.

County-level vaccine uptake and geographic clustering
We applied a multilevel SAE framework to predict county-level MMR 
(≥1 dose) coverage across the contiguous USA. The estimates revealed 
substantial geographic variation in MMR uptake, with distinct patterns 
of spatial clustering, as shown in Fig. 1. For interpretability, counties 
were grouped into five risk categories based on predicted coverage: very 
high risk (<60%), high risk (60–69%), medium risk (70–79%), low risk 
(80–84%) and lowest risk (≥85%). Higher coverage was observed across 
the Northeast, Midwest and Northwest and along the Pacific coast. Spatial 
autocorrelation was strong (global Moran’s I = 0.53, P < 0.0001), indi-
cating statistically significant geographical clustering of counties with 
similar vaccination rates. Local Moran’s I analysis identified statistically 
significant clusters of low coverage—hot spots—in West Texas, in south-
ern New Mexico, in parts of Mississippi and across the rural Southeast. 
By contrast, cold spots—clusters of high coverage—were concentrated 
in the Northeast and Upper Midwest. Notably, several high-risk hot spot 
counties were located in states experiencing active measles outbreaks.

At the state level, county-aggregated estimate ranges from 61.6% 
(95% CI 58.9–64.5%) in New Mexico to 79.1% (95% CI 76.5–81.6%) in 
Massachusetts, with a median of 71.3% (95% CI 69.4–73.4%). County-
level estimates showed even greater variation, with a median MMR 
uptake of 71.4%, ranging from 35.8% (95% CI 35.8–42.0%) to 86.8% 
(95% CI 85.1–88.4%). Counties with the lowest modelled coverage were 
primarily in Georgia, Texas and Mississippi, while the highest coverage 
appeared in parts of New York, Indiana and Oregon (Fig. 2).

Model validation and local discrepancies
Multiple validation analyses supported our model-based coverage 
estimates. Shown in Table 1, the distribution of model-based estimates 

Measles risk level
(estimated

vaccination rate):

Very high risk (<60%) High risk (60–70%)

Medium risk (70–80%) Low risk (80–85%)

Very low risk (85%+)

County-level measles risk classi­cation based on estimated MMR vaccine
uptake (≥1 dose)

LISA cluster: Low–low Low–high High–low

High–high Not significant

Spatial clustering of MMR vaccine uptake based on LISA

a

b

Fig. 1 | County-level estimates of MMR vaccine uptake and spatial clustering 
among US children under age 5. County-level estimates of ≥1-dose MMR vaccine 
coverage among US children under age 5 were generated using a multilevel 
regression with poststratification (MRP) framework, based on digital surveillance 
data (ONM) collected between July 2023 and April 2024 (n = 3,109 counties; one 
modelled estimate per county). a, Modelled vaccine uptake categorized into five 
risk levels based on estimated vaccination rate: very high risk (<60%), high risk  
(60–69%), medium risk (70–79%), low risk (80–84%) and lowest risk (≥85%), relative 
to the herd-immunity threshold for measles. Because these estimates include 
children under 6 months who are not yet vaccine-eligible, the upper threshold 
appears lower than the 92–95% benchmark typically cited for herd immunity. b, 
Results from a spatial clustering analysis using local indicators of spatial association 
(LISA), which identifies counties with vaccination rates statistically significantly 
higher or lower than their geographic neighbours (two-sided permutation test, 
499 permutations, P < 0.05 after Benjamini–Hochberg correction). LISA cluster 
labels denote: high–high (counties with high uptake surrounded by high-uptake 
neighbours), low–low (low uptake surrounded by low-uptake neighbours), high–
low (high uptake surrounded by low-uptake neighbours) and low–high (low uptake 
surrounded by high-uptake neighbours). Statistically significant clusters are 
highlighted; counties shown in white did not exhibit statistically significant spatial 
clustering. Figure adapted from TIGER/Line Shapefiles, US Census Bureau (2022).
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state level (n = 49; Pearson r = 0.88, Spearman ρ = 0.91, R2 = 0.77; 
P = 7.0 × 10⁻¹⁶), with substantial R2 values in corresponding bivariate 
regressions. The estimated coverage and spatial clustering analysis 
are not sensitive to various alternative model specifications or spatial 
aggregation procedures.

Lastly, we compared state-level model estimates with the CDC’s 
provider-verified 36-month one-dose MMR coverage data to assess over-
all coherence. Modelled and CDC estimates clustered closely along the 
45° line, with modest differences (5–10 percentage points) and no signs 
of systematic differences (Fig. 3). However, only two states—Texas and 
New Mexico—were positioned well above the diagonal line, with model-
based estimates substantially lower than the CDC-reported figures (New 
Mexico: 61.6% versus 90.3%; Texas: 62.9% versus 93.7%). These two states 
were also the only states experiencing substantial initial measles out-
breaks during the study period. To better understand this discrepancy, 
we examined county-level patterns in Texas (Supplementary Informa-
tion section 2.3.3) and found that measles cases were more than twice 
as likely to occur in ‘low–low’ counties (areas with both low estimated 
vaccination coverage and low-coverage neighbours), suggesting that 
spatial vulnerability and suboptimal vaccination rates among young 
children may help to explain the elevated risk of outbreaks.

AI super-resolution
Although public health surveillance typically aggregates data at the 
county level, measles outbreaks in the USA often emerge from tight-
knit local communities. To extend our findings to a finer geographic 
scale, we leveraged Google’s Population Dynamic Foundational Model 

(PDFM)21 to produce MMR vaccination estimates at the ZIP Code Tabu-
lation Area (ZCTA) level (see details in Supplementary Information 
section 2.4). PDFM is a multimodal AI system trained on privacy-pre-
serving data sources (for example, search trends, map interactions, 
mobility and environmental signals) that captures neighbourhood-
level context beyond standard census variables. Our subcounty esti-
mates revealed similar regional patterns to the county-level model but 
identified more compact clusters of vaccine behaviour (Extended Data 
Figs. 1 and 2). The distribution of Local Indicators of Spatial Association 
(LISA) categories shifted slightly, preserving most low–low clusters 
in Texas, New Mexico and the southern and southeastern USA, as well 
as high–high clusters in parts of the Midwest, while diluting other 
mixed patterns.

Discussion
Our study provides the nationwide county-level MMR vaccine coverage 
among US children under age 5, leveraging a digital surveillance tool 
and advanced spatial modelling methods. These granular estimates 
reveal substantial gaps in coverage, highlighting the critical role of local 
variation in vaccine-induced immunity in shaping measles vulnerability. 
Importantly, by drawing on a digital participatory surveillance platform 
rather than administrative records, our approach captures children who 
are often absent from official reporting systems, including those who 
are homeschooled, uninsured or otherwise outside traditional health-
care and school-based surveillance. Despite long-standing national 
recommendations for routine childhood vaccination, our findings show 
that MMR uptake remains low in many counties—particularly those 
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Fig. 2 | County-level estimates of MMR vaccine uptake (≥1 dose) among US 
children under age 5 by state. The box plot presents SAE-predicted county-
level MMR vaccine uptake (≥1 dose) among children under age 5, grouped by 
the 48 contiguous states and the District of Columbia (n = 3,109 counties). 
Each box represents the interquartile range of county-level estimates, with the 
central line indicating the median. The horizontal lines extend to the minimum 
and maximum values within a typical range; counties with values far outside 

this range are plotted individually. The dashed vertical line at 85% denotes the 
threshold for the lowest measles risk category used in Fig. 1. Because these 
estimates include all children under 5, including those under 6 months who are 
not yet vaccine-eligible, the upper threshold appears lower than the 92–95% 
benchmark typically cited for herd immunity. No formal hypothesis testing was 
performed; all values represent model-derived county-level estimates from a 
single fitted model.
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with disadvantaged socioeconomic profiles—highlighting overlooked 
vulnerabilities within this at-risk population.

Notably, our model identified substantial clusters of undervac-
cination in locations across the US South and Southwest, including 
areas currently experiencing active measles outbreaks. These areas 
show sizable discrepancies between our model-based coverage esti-
mates and official state-level data9, which probably reflect both age-
composition differences (children under 5 years versus 36 months) and 
the exclusion of select populations in traditional surveillance methods 
(parent-reported coverage versus provider-verified records)4,22. For 
example, Texas and New Mexico fall well below the national average 
in our county-level estimates, despite high reported state-level cov-
erage at kindergarten entry. Both states subsequently reported early 
measles activity in early 2025, consistent with our model’s identifica-
tion of lower effective coverage and suggesting that official figures (at 
kindergarten entry) might have not fully represented the community-
level MMR vaccine uptake at that time. Recent analyses of electronic 
health records from Truveta23 similarly document pandemic-related 
declines in MMR vaccination, although their data, derived solely from 
children with consistent healthcare access, suggested somewhat higher 
coverage among children engaged in routine care. These findings 
suggest that some children may be delaying rather than forgoing vac-
cination. Together, these differences underscore the critical need for 
surveillance systems capable of capturing delayed vaccinations and 
more comprehensively monitoring younger, harder-to-reach children.

Our spatial clustering analyses further identified considerable 
concentrations of low MMR vaccine uptake, counties with persistently 
low coverage surrounded by similarly undervaccinated areas, in regions 
such as West Texas, southern New Mexico, Mississippi and the rural 
Southeast. These clusters signal areas vulnerable to future outbreaks, 
even in the absence of current transmission. Given this elevated risk, 
public health officials may wish to revisit vaccination guidance for 
children aged 6–12 months9 residing in these regions24. Although coun-
ties vary substantially in size and population density, they remain a 
central unit for public health planning and monitoring. Here, we were 
able to leverage an AI foundation model to produce MMR vaccination 
estimates at the ZCTA level. The finer-scale modelling revealed more 
compact local clusters and subtle shifts in LISA category distributions, 

reflecting both improved precision from AI-enhanced local contextual 
factors and the inherent sensitivity of LISA statistics to spatial aggrega-
tion. However, the overall consistency of results across scales (county 
versus ZCTA; Supplementary Information section 2.4) suggests that 
county-level clustering captures broader underlying patterns of vac-
cine behaviour, while ZCTA-level maps provide complementary insight 
into smaller, community-based clusters that may be more relevant for 
localized behavioural dynamics. These maps do not define transmis-
sion boundaries but serve as practical tools to inform resource alloca-
tion and identify vulnerable regions. More systematic and inclusive 
data collection efforts at subcounty levels would greatly strengthen the 
ability to monitor undervaccination and design targeted interventions.

Beyond identifying spatial patterns of vaccination, an important 
contribution of this study lies in combining digital participatory surveil-
lance with advanced statistical methods to improve the measurement 
of vaccination coverage, particularly among vulnerable populations. 
This methodology offers a timely and scalable complement to conven-
tional immunization monitoring systems, such as vaccine registries 
and national surveys, by enhancing the detection of localized immu-
nity gaps and increasing geographic granularity and inclusiveness to 
reach populations often missed by the existing systems. While digital 
surveillance data cannot replace traditional monitoring approaches, 
they can significantly improve timeliness, geographic resolution and 
representativeness via leveraging digital technology to enhance con-
venience, anonymity and outreach, features that are increasingly vital 
as social and economic interdependence accelerates and infectious-
disease risks transcend local and national boundaries25,26.

Several limitations should be acknowledged. First, parent-
reported MMR uptake may be subject to recall bias; however, our esti-
mates align closely with direct survey results, correlate strongly with 
official benchmarks and are consistent with findings from independent 
studies. Second, survey response volume was low in some counties; 
however, our modelling strategy addresses spatial sparsity through 
aggregation and hierarchical smoothing, with resulting uncertainty 
reflected in the CIs and robustness of results demonstrated in multiple 
analyses. Third, our estimates are based on ≥1-dose coverage and do 
not reflect full completion of the two-dose MMR schedule as usually 
reported in other data sources. Moreover, because our study popula-
tion includes children under age 5, many had not yet reached the age of 
routine MMR eligibility (12 months generally; but 6 months for excep-
tions such as travel). As such, our coverage estimates are expectedly 
lower than administrative data, in part because we are capturing the 

Table 1 | Summary statistics and agreement between SAE-
predicted and survey-based MMR vaccine uptake estimates

Descriptive 
statistics

Min First 
quartile

Median Mean Third 
quartile

Maximum

County-levela estimates (n = 932)

Survey 
estimate 
(unweighted)

0 0.6 0.7 0.69 0.8 1

Survey 
estimate 
(weighted)

0 0.54 0.67 0.66 0.8 1

SAE estimate 0.44 0.66 0.71 0.71 0.76 0.87

State-levelb estimates (n = 49)

Survey 
estimate 
(unweighted)

0.59 0.67 0.7 0.7 0.74 0.85

Survey 
estimate 
(weighted)

0.54 0.62 0.66 0.66 0.7 0.82

SAE estimate 0.62 0.69 0.71 0.71 0.74 0.79
a‘County’ refers to county-like geographic units used in estimation. b‘State’ (n = 49) includes 
the 48 contiguous US states and the District of Columbia. Survey estimates are based on 
self-reported MMR vaccination status among parents of children under age 5, with and 
without survey weights applied. SAE estimates are derived from a SAE model using multilevel 
regression with poststratification (MRP). All values represent descriptive statistics only and 
were not derived from formal hypothesis testing.
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Fig. 3 | Discrepancies between model-predicted and official MMR coverage at 
the state level, with measles outbreak case counts overlay. Points represent 
the 48 contiguous states and the District of Columbia (n = 49 states), with 
values corresponding to state-level SAE-predicted MMR vaccine uptake among 
children under age 5 (x axis) and CDC-reported 36-month MMR coverage for ≥1 
dose (y axis). Point size and colour indicate the number of confirmed measles 
cases in each state as of 11 April 2025. The dashed diagonal line indicates perfect 
agreement between model-based estimates and reported coverage. States 
above the line have higher reported coverage than predicted by the model, while 
those below the line have lower reported coverage. Statistical comparisons were 
descriptive; no formal hypothesis testing was applied.
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age group least likely to be fully vaccinated. These differences demon-
strate how digital participatory surveillance and traditional monitoring 
approaches capture complementary populations and timeframes, 
and together could form a more robust, integrated monitoring sys-
tem adapted to evolving population and disease dynamics. They also 
reinforce the urgency of adapting surveillance and outreach efforts to 
better include high-risk, undermonitored populations.

In summary, our work provides an innovative resource for improv-
ing immunization strategies and mitigating measles outbreaks through 
geographically targeted interventions. We developed an interactive 
website (https://healthmap.org/measles/) that enables users to explore 
county-level MMR vaccination estimates across the USA. Model-based 
surveillance can complement traditional systems by identifying at-risk 
communities earlier, guiding geographically targeted interventions 
and strengthening local preparedness, ultimately advancing national 
vaccine equity and disease prevention goals.

Methods
In a retrospective cohort study, we leveraged ONM, a previously vali-
dated digital health surveillance platform that collects anonymous, 
self-reported health information from a national sample of US adults. 
In brief, ONM utilized non-probability river sampling techniques to 
randomly deliver a survey to individuals in SurveyMonkey’s diverse, 
multi-million-person user pool. From July 2023 to April 2024, partici-
pants provided demographics, residential ZIP code and information on 
children under 5, including parental report of MMR vaccine status (≥1 
dose versus none). For households with multiple eligible children, one 
child was randomly selected at the time of survey completion to avoid 
intrahousehold clustering. We constructed a nationally representa-
tive analytic sample of 22,062 parents with children under 5 using a 
weighting procedure calibrated to US Census benchmarks (including 
age, gender, race/ethnicity, education and geography). This study is a 
quantitative analysis only. Additional methodological details on the 
ONM platform and survey design have been published previously16 
and validated for various public health applications17,27.

SAE with poststratification
To generate county-level MMR vaccine uptake (≥1 dose), we imple-
mented a spatial multilevel logistic regression with poststratification 
(MRP) framework18,19. The regression model included both individual- 
and county-level variables, with random intercepts for county-like 
areas and states to account for unobserved contextual variation in 
vaccination decisions. To address sparsity in counties with limited 
direct survey data, we implemented an iterative spatial aggregation 
algorithm that merged counties into larger county-like areas until each 
area contained a minimum of five valid observations. The distribution 
of direct survey responses and sensitivity analyses of the aggregation 
procedure are shown in the Supplementary Information section 2.2.

The outcome was parent-reported receipt of at least one dose of 
the MMR vaccine among children under 5. Individual-level controls 
included parent age group (18–29, 30–39, 40–49 and 50-59), gender 
(male or female) and race/ethnicity (Asian, Black, Hispanic, white or 
other). County-level covariates were selected on the basis of prior 
literature28 and LASSO regression, and included: median household 
income, percentage of white residents, percentage of single-parent 
households, percentage enrolled in Medicaid from the American Com-
munity Survey (5-year estimates 2019–2023)29, percentage of adults 
completing the primary COVID-19 vaccine series30, and Democratic 
vote share in the 2020 US presidential election31.

Model predictions were then poststratified using US Census 
microdata32 to produce population-weighted county-level estimates 
of ≥1-dose MMR coverage among children under 5. The fitted model 
was applied to all combinations of demographic strata (age group × 
race/ethnicity × gender) within each county. Poststratification ensured 
that estimates were aligned with the demographic and geographic 

distribution of the US population, thereby generating population-
representative county-level estimates, including for counties without 
direct survey responses. To calculate the 95% CIs, we used Monte Carlo 
simulation to generate 1,000 replicates of MMR uptake estimates for 
each county, state and demographic subgroup. State-level estimates 
were computed as population-weighted averages of county-level esti-
mates based on US Census counts.

Benchmarking against traditional surveillance and  
outbreak data
To further evaluate alignment with established data sources, we com-
pared our state-level estimates with CDC-published one-dose MMR 
coverage at 36 months33. In parallel, we incorporated publicly reported 
measles case counts as of April 2025, corresponding to the initial phase 
of the current outbreak, to assess whether states with lower predicted 
coverage and larger gaps relative to official statistics overlapped with 
regions experiencing elevated outbreak activity. This benchmarking 
step enabled us to assess concordance between small area estimates 
and existing surveillance systems while examining the potential added 
value of our approach for identifying areas of public health concern.

Spatial clustering analysis and visualization
Given the central role of social and geographic clustering in measles 
transmission, we conducted spatial clustering analysis using LISA to 
detect statistically significant patterns of MMR uptake across counties. 
Although counties vary substantially in size and population density, 
this scale remains the most relevant administrative unit for many 
public health agencies. We used LISA to examine whether modelled 
undervaccination was geographically isolated or clustered across con-
tiguous counties, providing descriptive insight into potential pockets 
of outbreak risk. This method identifies geographic clusters—such 
as counties with high or low uptake surrounded by neighbours with 
similar values—potentially indicative of localized outbreak risk. To 
support public health interpretation, we categorized counties into 
five risk groups based on predicted MMR vaccine coverage thresholds, 
informed by the herd immunity threshold for measles (typically esti-
mated at 92–95%). Counties with estimated uptake below 60% were 
classified as very high risk, followed by high risk (60–69%), medium risk 
(70–79%), low risk (80–84%) and lowest risk (≥85%). These thresholds 
reflect increasing proximity to the herd immunity benchmark and help 
prioritize areas for intervention. While the highest group cut-off (≥85%) 
may appear low relative to the 92–95% herd immunity benchmark, 
this reflects the inclusion of infants under 6 months who are not yet 
eligible for MMR vaccination in the denominator of our estimates. Map 
boundaries are based on 2022 US Census Bureau TIGER/Line shapefiles, 
accessed via the R package tigris (version 2.1).

AI-based super-resolution with PDFM embeddings
Building on the county-level analysis, we extended our framework to 
the ZCTA scale to examine patterns of undervaccination across local 
communities, where measles transmission is shaped by social interac-
tions and health behaviour. This extension was enabled by embeddings 
from PDFM21, an AI system pretrained on large-scale, multimodal data 
sources—including Google search and map activity, trends of mobility 
and busyness, geospatial data and environmental conditions—that 
capture fine-grained neighbourhood context while preserving privacy 
(Supplementary Information section 2.4). By incorporating these 
high-dimensional embeddings into our SAE framework, we applied an 
AI-based super-resolution approach to assess the consistency between 
county- and ZCTA-level estimates and to demonstrate how subcounty 
resolution can support more targeted public health strategies.

To further assess the robustness of our results, model perfor-
mance was evaluated by comparing model-based estimates with direct 
survey estimates at both the county and state levels. In addition, we 
conducted extensive analyses evaluating model fit, the sensitivity 
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of results to alternative specifications and the stability of estimates 
across subgroups. We also validated predictions using independent 
external data sources and additional statistical tests. These steps 
were designed to show that our conclusions are not dependent on 
any single alternative analytical choice. Full methodological details 
and supplementary results are provided in the Supplementary Infor-
mation. All analyses were conducted in R version 4.4.3 (RStudio). 
The study adheres to the STROBE reporting guideline, was approved 
by the institutional review board (IRB-P00023700) and received a 
waiver of informed consent. Use of the data in this study complied fully 
with the terms of use of the SurveyMonkey platform and associated 
data-use agreements.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
For privacy, individual-level survey data cannot be made publicly 
available. Researchers affiliated with academic or public health institu-
tions may request access to these data for non-commercial research 
purposes. Requests should be submitted to the corresponding author. 
Requests will typically be processed within 4–6 weeks. All derived data 
products from this study, including county- and ZCTA-level predicted 
MMR vaccination coverage, will be deposited in a public data repository 
and are also accessible through the interactive dashboard at https://
healthmap.org/measles/

Code availability
All analyses were conducted in R (version 4.3.2). The code used to gen-
erate the estimates and figures is publicly available at Github (https://
github.com/eric-gengzhou/MMR_vaccine_estimates)34.
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Extended Data Fig. 1 | ZIP Code Tabulation Area (ZCTA)–Level Estimates of 
MMR Vaccine Uptake Among U.S. Children Under Age 5. Note: ZCTA-level 
estimates of ≥1-dose measles–mumps–rubella (MMR) vaccine coverage among 
U.S. children under age 5 were generated using the same multilevel regression 
with post-stratification (MRP) framework as in the county-level analysis, 
extended with contextual embeddings from Google’s Population Dynamics 
Foundation Model (PDFM). Embedding components derived from principal 
component analysis were included as auxiliary covariates. Modeled vaccine 

uptake is categorized into five risk levels—Very High Risk (<60%), High Risk 
(60–69%), Medium Risk (70–79%), Low Risk (80–84%), and Lowest Risk (≥85%)—
relative to the herd-immunity threshold for measles. Because estimates include 
children under 6 months who are not yet vaccine-eligible, the upper threshold 
appears lower than the 92–95% benchmark typically cited for herd immunity. 
(n = 29,971 ZCTAs; one modeled estimate per ZCTA.). Figure adapted from TIGER/
Line Shapefiles, US Census Bureau (2022).
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Extended Data Fig. 2 | Spatial Clustering of Predicted MMR Vaccine Uptake 
at the ZCTA Level. Note: Results from a Local Indicators of Spatial Association 
(LISA) analysis applied to modeled MMR vaccination rates at the ZCTA level 
(n = 29,971). LISA identifies ZCTAs with statistically significantly higher or lower 
uptake than their geographic neighbors using queen contiguity weights (two-
sided permutation test, 499 permutations, p < 0.05 after Benjamini–Hochberg 
correction). Cluster categories include High–High (ZCTAs with high uptake 

surrounded by high-uptake neighbors), Low–Low (low uptake surrounded 
by low-uptake neighbors), High–Low, and Low–High. Statistically significant 
clusters are highlighted; areas shown in white did not exhibit statistically 
significant spatial clustering. Patterns largely mirror those at the county level, 
though with finer spatial resolution and more localized cluster boundaries. 
Figure adapted from TIGER/Line Shapefiles, US Census Bureau (2022).
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