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Asilent trial’ refers to the prospective, noninterventional testing of
artificial intelligence (Al) modelsin the intended clinical setting without
affecting patient care or institutional operations. The silent evaluation

phase hasreceived less attention than insilico algorithm development or
formal clinical evaluations, despite its increasing recognition as a critical
phase. There are no formal guidelines for performing silent Al evaluations
inhealthcare settings. We conducted a scoping review to identify silent Al
evaluations described in the literature and to summarize current practices
for performing silent testing. We screened the PubMed, Web of Science and
Scopus databases for articles fitting our criteria for silent Al evaluations,

or silent trials, published from 2015 to 2025. A total of 891 articles were
identified, of which 75 met the criteria for inclusion in the final review. We
found wide variance in terminology, description and rationale for silent
evaluations, leading to substantial heterogeneity in the reported informa-
tion. Overwhelmingly, the papers reported measurements of area under
the curve and similar metrics of technical performance. Far fewer studies
reported verification of outputs against an in situ clinical ground truth;
whenreported, the approaches varied in comprehensiveness. We noted less
discussion of sociotechnical components, such as stakeholder engagement
and human-computer interaction elements. We conclude that thereis an
opportunity to bring together diverse evaluative practices (for example,
from data science, human factors and other fields) if the silent evaluation
phaseis to be maximally effective. These gaps mirror challengesin the
effective translation of Al tools from computer to bedside and identify
opportunities to improve silent evaluation protocols that address key needs.

Despite theincreasing deluge of papers describing the development of
artificial intelligence (Al) models for healthcare applications, strikingly
few of those models have proceeded to clinical use'. A translational gap*
remains, partially due to the substantial difference between building a
model that worksinsilico (thatis, validation within a dataset) and cre-
ating one thatis clinically useful, actionable and beneficial to patients
or the healthcare system’.

One mechanism for bridging the translational gap is conducting
anevaluation following algorithmic validation, but before the clinical
evaluation of the modelin practice. This phaseis knownasa‘silent trial’

(a term with many variants, including ‘shadow evaluation’ or ‘silent
testing’) and iscommon practice among many healthcareinstitutions
with advanced internal Al teams*”. ‘Silent’ traditionally refers to the
notion that the model’s outputs are produced in parallel to (and thus
separate from) the standard of care; therefore, they do not influence
clinicians (Table 1).

Primarily, the silent phase of Al development is used to ascertain
whether the model will maintain its performanceinalive context®. The
value of this phase is that it allows teams not only to test a model for
potential utility (data pipeline stability and model drifts, among other
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Table 1| Range of definitions and nomenclature given to
silent trials

Study type Definition

A prospective algorithmic validation
involving an assessment of the model’s
predictions against live expert annotations to
verify facts about the patient or outcome of
interest. Separation is maintained between
care and model evaluation.

Prospective clinical validation
study (modern silent
evaluation)

Prospective algorithmic
validation (traditional silent
trial)

Running the model live while maintaining
a separation between care and model
evaluation; assessing model performance
but not assessing against live annotations
of real-world information beyond the data
obtained

Prospective validation study
(internal validation)

Conducting a cross-sectional assessment of
amodel’s performance

Integrated into the clinical system; may or
may not be observable to clinical users

Prospective observational
study

Temporal validation Prospective algorithmic validation with a
particular focus on the model’s performance

over time

concerns; see the glossaryin Box 1) butalso to assess the financial sus-
tainability of models in real-world evaluations without affecting care
or operation’. During this stage, teams can make informed decisions
aboutwhether todiscard amodel, iteratively improveits performance
or move to deployment based on local evidence®.

Theimportance of local evidence is perhaps more relevant to Al
tools than to historical healthcare interventions. While we would not
expect the performance of adrug or device to change substantially
when tested in a hospital across the street with the same patient
population, this is indeed the case for Al models®*’. Even for mod-
els that have received regulatory clearance or approval based on
clinical evidence, substantial differences may be apparent in local
performance such that their reliability may vary across settings'*".
Researchers have noted the challenges of bringing Al systems to
market based solely on retrospective evidence'>**. The silent evalu-
ation stage may represent a low-risk bridge between retrospective
and clinical evidence that may help developers decide whether a
clinical trial is warranted. The regulatory science of Al involves the
important consideration of which types of evidence are acceptable
for determining the safety of Alas amedical device. The silent phase
of translation offers a low-risk testing paradigm that reflects real-
world conditions by which one might judge the performance of an
algorithm. This may be a critical step before determining whether
(and what type of) clinical trials should be pursued—a judgement
that may be made by regulatory professionals, ethics committees
or Aloversight bodies.

Given that the silent phase of Al testing offers an opportunity to
evaluate performance locally using precise metrics relevant to the
population and institution, yet does not affect care (thus minimizing
risk to health institutions and patients alike), it is perhaps surpris-
ing that this key phase does not receive more attention. Silent trials
have equivalentsin other fields (for example, beta testing in software
engineering, silent review in aviation, and simulations in training,
which are standard practices), but, to the best of our knowledge, no
reporting guidelines or authoritative publications have addressed
the silent phase in medical Al. Our project group, the Collaboration
for Translational Al Trials (CANAIRI), has a particular focus on building
knowledge and best practices around the silent phase to facilitate local
capacity-building in Al evaluations and to demonstrate accountable Al
integration'. We conducted a scoping review and critical analysis" to
explore the literature around the following key points: (1) How is the
silent phase defined, described and justified? (2) What practices are

BOX1

Glossary of terms

Algorithmic bias: a systematic discrepancy in a model’s
performance based on a feature that would be considered unfair
in relation to non-clinically relevant constructs

Automation bias: over-reliance of human decision-making on an
Al model or system, leading to preventable consequences

Contextualized subgroups of interest: a group of individuals

with shared relevant attributes that have known or suspected
associations with disparate health outcomes related to the intended
use of an Al health technology

Data drift: a usually unanticipated change in the statistical
properties of a model that affects its performance

Data pipeline: the complete pathway by which information flows
from its point of entry into a system to the output of that system

Data preprocessing: methods for addressing consistency and
quality among data elements before training

Failure modes: systematic patterns of error in relation to a specific
metric (for example, false positives)

Feature selection: the choice of model inputs

Human adaptation: a change in human behaviour in response to the
presence of an Al system

Human factors: aspects pertaining to the user of technology that
can affect how the technology is perceived, integrated, vetted for
errors and used in a wider system

Incidental findings: the identification of an imminent and potentially
harmful error in relation to a specific patient, which could prevent
harm if acted on

Model downtime: the time when the model is unavailable
unexpectedly due to technical issues

Scalability: whether an algorithm’s use can be expanded to the
entire context of its intended use

Silent: the model’s outputs do not influence the act of care for
patients or operational systems

Sociotechnical system: the wider system in which algorithms exist—
involving human expertise; the coordination of different healthcare
professionals, infrastructures and technical systems; and patient
considerations

Sociotechnical: the interdependence between technology
and humans

Temporal generalizability: an algorithm’s applicability to new,
incoming data prospectively

Verification: the process of manually or computationally
assessing individual model outputs against a ‘ground truth’
label—whether a label captured in the health record or another
clinical system—by expert evaluation (for example, reader
studies), or an expert or group of experts selected to conduct a
manual review

being undertaken during this phase? (3) What are the implications
of the latter in relation to the larger goal of responsibly translating Al
into healthcare systems? Scoping reviews map the existing literature
onatopic, identify knowledge gaps and clarify concepts. We find this
method valuable because we are addressing a nascent paradigm in
Al with the goal of synthesizing and reflecting on the available litera-
ture. This Analysis aims to bring clarity and consistency to the silent
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Studies from databases and registers (n = 891)
Scopus (n = 805)
Web of Science (n = 68)
PubMed (n =15)
Citation searching (n = 3)

References from other sources (n = 7)
Hand search (n =5)
Snowball search (n = 2)

Identification

References removed (n = 29)
Duplicates identified manually (n = 9)

Duplicates identified by Covidence (n = 20)

Title and abstract screening (n = 869)

Studies excluded (n = 339)

I

Studies sought for retrieval (n = 530)

I

Full-text screening of studies (n = 530)

Screening

Studies excluded (n = 401)
Not in English (n=1)
Retrospective (n =79)

Not healthcare-related (n = 7)

No Al component (n = 55)

Robotics study (n = 27)

Unable to determine (n =7)
Irrelevant to a silent trial (n =115)
Directly affects patient care (n =109)
Duplicate (n=1)
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Studies excluded after extraction (n = 54)
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Studies included in review (n = 75)

Fig. 1| PRISMA diagram showing the identification of evidence sources from database searches and hand search methods. Following the data charting process, a

further 54 papers did not meet the criteria.

phase while considering the implications of current practices for Al
translation efforts.

Results

From September 2024 to October 2025, we scoped the published lit-
erature for primary research studies published in English that describe
testing an Almodelin amanner closely mimickingitsintended use but
without modifications to the standard of care, to validate the model
ina‘live’ context. From a total of 898 papers, we removed duplicates
(n=29) and screened 530 full-text articles for inclusion (Fig. 1). After
excluding papers that did not describe atruelive validation study, those
involving substantial alterations to patient care, those with insufficient
detail for us to assess the silent component of their study and those that
did notinvolve an Al tool, we finally included 75 studies.

We then looked for papers related to the Al tools evaluated in
that set of 75 studies. We identified six additional studies that pro-
vided further details about the silent evaluation. Of these, two'*"”
contained information about the original silent phase evaluation that
wasincluded in data charting, while four others'®* explored the later
clinical, stakeholder or human factors impacts of the algorithm after
the silent evaluation, during its integration into patient care. As our
unitof analysis is the silent phase itself, we combined only the informa-
tionretrieved about the practices undertaken during the silent phase,
excluding postdeployment work. Therefore, we incorporated the
information extracted from the first two papers and did not include
thelatter four, as they were conducted while the model was not silent
(that is, live), thus falling under the exclusion criteria. The results of
data charting are summarized in Table 2.
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Table 2 | General information about the included silent studies

Study Aim and rationale Model type and Model evaluation Additional considerations  Categorization
intended use
Aakre et al. To assess an Predictive - Agreement between automated SOFA Interviewed clinicians Compared model
(2017)* automated SOFA machine learning  scoring and manual scoring calculation over  about interface features outputs with clinician
score calculation a1-month period to visualize SOFA annotations
for patients in the « Comparison of 215 ICU inpatients’ SOFA subcomponents
ICU scores at 3 hospital sites, with 5,978 total
scores compared
134 random spot checks on 27 unique
patients to assess the real-time accuracy of
automated SOFA score calculation
« Manual scoring performed independently
by research team members, with a chart
review for comparison
Afshar et al. To assess the Al Predictive deep « Algorithm performance: sensitivity and « Interview guide and survey  Framework for
(2023)* tool's predictive learning specificity to assess user acceptability  the design and
performance and « Observed 100 random encounters with of the tool implementation of
evaluative human adult patients « Determined barriers and the model
factors « Described data flow from and to the EHR facilitators to using the tool
« Described scalability and computational
infrastructure
Alrajhi et al. To assess a real- Predictive « Algorithm performance: AUC/ROC, F1 Clinician feedback related Algorithmic
(2022)” time severity machine learning +185 cases for the prospective validation set  to class imbalance issue validation study
prediction tool « Imputed missing data; addressed class
for COVID-19 imbalances
management
Aydin et al. To validate Diagnostic « Algorithm performance: AUC, sensitivity, « Specified separation of Algorithmic
(2025)" and compare machine learning specificity, PPV, NPV care and model validation validation,
an ML-based « Applied to 3,036 paediatric patients across - Assessed feature comparative study
scoring system 13 hospitals and 13 paediatric centres interactions and ranked
for paediatric « ML-based diagnosis assessed against importance
appendicitis histopathological examination (gold
standard)
« Compared ML model performance against
existing scoring methods
Bachelot et al. To compare model  Predictive « Algorithm performance: AUC, sensitivity, Assessed feature Algorithmic
(2023)” performance for machine learning  specificity importance across models  validation study
testicular sperm « 26 patients for the prospective validation
extraction set
« Described data processing
Bedoya et al. To validate asepsis  Diagnostic deep  + Algorithm performance: compared with Stakeholder engagement Comparison of the
(2020)* prediction model learning standard EWS, compared multiple models with clinical teams used model with the
with the standard process standard-of-care
« 1,475 encounters over a 2-month silent trial algorithm
« Model development team tracked alarm
volume, resolved technical issues and
identified label leakage
« Calculated alarm volume
Berg et al. To assess an Predictive Al « Algorithm performance: AUC, specificity, Compared
(2023)® Al software NPR diagnostic
for classifying « 758 masses in breast tissue performance with
palpable breast « A single radiologist reader reviewed Al- and human readers
masses in a low- radiologist-assigned malignancies
resource setting - Minimal training for users to mimic the
conditions of intended use
Brajer et al. To assess the Predictive « Algorithm performance: ROC, PR, AUROC « Partnered with clinical Compared
(2020)* model’s ability machine learning -« 5,273 hospitalizations, 4,525 unique adult and operational leaders algorithmic
to predict the patients in the ICU to design the model and prediction with
risk of in-hospital - Assessed subgroup-specific performance evaluation human annotations
mortality for adult for sensitivity, specificity and PPV « Clinical partners provided
patients « Assessed threshold setting in different feedback into the interface
environments » Model fact sheet
« Described data and model availability; iteratively designed with
updated predictions daily stakeholder input
Butler et al. To clinically Triage machine « Algorithm performance: sensitivity, Simulated workflow run Compared
(2019)”° validate an Al tool learning specificity within a research laboratory  algorithmic
for triaging brain « 104 patients with brain cancer prediction with
cancer « Outcome assessment was blinded to the independent

algorithm
« Some subgroup-specific analysis of under-
represented cancer cases

clinician diagnosis
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Table 2 (continued) | General information about the included silent studies

Study Aim and rationale Model type and Model evaluation Additional considerations  Categorization
intended use
Campanellaetal. Toconducta Predictive « Algorithm performance: AUC, PPV, NPV, Assessed the attention Prospective silent

(2025)*

prospective silent
trial of a model
for lung cancer

machine learning

sensitivity, specificity
« Application of an open-source foundation
model with local fine-tuning

areas of the model trial

detection « 4-month trial period
« Subgrouped analysis by sample type,
failure mode testing of false negatives
- Assessed different thresholds against
primary metrics
« Described data pipeline and real-time
stream
Chenetal. To evaluate Predictive « Algorithm performance: AUC, sensitivity, DCA for utility Clinical validation
(2025)* the utility of machine learning  specificity, accuracy, DCA
aradiomics « 251 cases
nomogram « Ground truth was reviewed by a pathologist
to predict and compared and combined with the
oesophageal model for overall clinical utility
pathological « Described the need for preprocessing due
progression to equipment differences
Cheng et al. To prospectively Predictive « Algorithm performance: AUC, precision, Clinician-focused app Algorithmic
(2025)* validate a machine learning sensitivity, specificity, calibration curves to provide clinicians an validation
hypertension risk « 961,519 cases opportunity to assess
model - Assessed fairness across age and sex, prediction utility and risk
BMI across different risk levels, model factor contributions
performance, and socioeconomic factors in
the high-risk group
« Discussed managing data missingness
and shift
Chiang et al. To prospectively Predictive « Algorithm performance: AUROC, AUPRC, Algorithmic
(2025)% validate an machine learning  precision, recall, specificity, false alarm rate validation
early warning and missed alarm rate
haemodynamic risk « 18,438 patient cases
model - Assessed sex and age, as well as
respiratory, cardiovascular, gastrointestinal
and trauma groups on AUROC and AUPRC
« Model updates hourly
Chufal et al. To prospectively Predictive « Algorithm performance: AUC Discussion of threshold Prospective
(2025)* and temporally machine learning -« 47 patients setting based on clinical algorithmic
validate a model « Compared model prediction with clinical impact to patients and risk validation with
predicting decision on a case-by-case basis, with assessment clinical verification
ineligibility for only the research team seeing the model
radiotherapy predictions
treatment « Noted fairness concerns by
sociodemographic groups; stated that these
were addressed through consistency in the
assessment method
Coley et al. To assess an Predictive « Algorithm performance: sensitivity, Temporal validation,
(2021)® algorithm's machine learning  specificity, PPV, NPV internal algorithmic
predictive « Prospective algorithmic validation validation
accuracy of suicide concurrent with the testing set
attempt within 90
days
Corbin et al. To conductasilent  Predictive Algorithm performance: AUROC, ROC, Prospective
(2023)%° trial of the model's  machine learning calibration, net benefit, expected utility algorithmic
prospective +10,000-20,000 unique patients validation
performance « Bias assessed across protected
demographic classes
« Mapping of data inputs to outputs across
the data stream workflow
Dave et al. To evaluate Predictive deep « Algorithm performance: AUROC, F1 Compared
(2023)* the accuracy learning «100 patients, sample size rationale algorithmic

of a real-time
model detecting
abnormal lung
parenchyma

provided

- Analysed by sex, race, ventilation strategy
and BMI

« Functionality embedded into an ultrasound
machine

- Assessed different classification and
contiguity thresholds

« Human assessment independent from
predictions

prediction with
human annotations
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Table 2 (continued) | General information about the included silent studies

Study Aim and rationale Model type and Model evaluation Additional considerations  Categorization
intended use

El Moheb et al. Tovalidate amodel Administrative « Algorithm performance: precision, recall, Prospective

(2025)* for automated deep learning F1, AUPRC algorithmic

billing coding

« 268 operative notes

« Trained to predict 19 CPT codes for
automated coding, compared with expert
medical coders

- Assessed overcoding and undercoding, as
well as discrepancies against ground truth

validation study

Escalé-Besa et al.

(2023)*

To validate a
model’s diagnostic
accuracy for skin
diseases

Diagnostic deep
learning

« Algorithm performance: accuracy,
sensitivity, specificity per disease; TP, FP,
TN or FN based on the top 3 most likely
diagnosis

«100 patients

« Failure care analysis

« Clinician diagnosis and offered Al
prediction

Satisfaction of GPs with
Al as decision support for
each case

Compared
diagnostic
performance with
human readers

Fagar-Uz-Zaman
etal. (2022)*°

To evaluate

the diagnostic
accuracy of an app
in the ED

Diagnostic (N/A)

« Algorithm performance:

« 450 patients

« Compared diagnostic accuracy for the top
4-5 diagnoses between the Al tool and the
ED physician (matched between candidate
diagnoses)

Compared
algorithmic
prediction with
human annotations

Felmingham et To evaluate an Al Diagnosticdeep  « Algorithm performance: AUROC, Compared
al. (2022)*° tool’s diagnostic learning sensitivity, specificity, FNR algorithmic
accuracy for skin « 214 cases, 742 lesions prediction with
cancer detection « Trained on the use of a camera and independent
software before the study clinician diagnosis
« Compared diagnostic accuracy
with independent diagnoses by
teledermatologists
« Analysis of Al errors
Feng et al. To validate a Diagnostic « Algorithm performance: ROC, DCA, Described a training Prospective clinical
(2025)"" diagnostic model machine learning sensitivity, specificity process for radiologists validation (silent trial)
for distinguishing « 23 patients
thymomas from « Expert evaluation panel provided ground
other nodules truth
« Performance of 3 radiologists (mixed
experience levels) compared with model
performance using AUC
« No clinical information provided to the
radiologists
Hanley et al. To evaluate an Al Triage machine « Algorithm performance: AUROC, Compared
(2017)* tool for predicting learning sensitivity, specificity, NPV, PPV; clinical algorithmic
the need fora CT utility prediction with
scan in patients « 720 patient CTs across 11 ED sites human annotations
with TBI « Assessed model outputs against clinical
annotations as determined by laboratory
reading and imaging specialist readers
according to a prespecified statistical plan
« Failure mode analysis of false negatives
Hoang et al. To evaluate SAFE- Predictive « Algorithm performance: recall, specificity,  Utility value calculation Silent trial
(2025)* WAIT in asilenttrial machine learning accuracy, precision, NPV, FPR, FNR, F1score  articulated in terms of (algorithmic
« Bias assessment conducted by sex (male, clinically relevant decisions  validation)
female) and age bracket (young, middle- and outcomes
aged, older adult)
Imetal. (2018)**  To validate an Al Diagnosticdeep -« Algorithm performance: specificity, Computational time and Independent

tool for diagnosing
aggressive
lymphomas before
deployment to
LMICs

learning

sensitivity, efficiency, size measurements,
staining, reproducibility

« Described data quality controls

« Equipment detailed

« 40 patients

system components,
cost, computational
infrastructure

verification of Al
labels against
clinician assessment

Jauk et al.
(2020)*

To evaluate a
delirium prediction
modelin its clinical
setting

Predictive
machine learning

« Algorithm performance: AUROC,
sensitivity, specificity, FPR, FNR, PPV, NPV

« Rated against nurse assessment of the
delirium risk score and the Confusion
Assessment Method

« Reported failure modes and exclusions

« Independent assessment by nurses on 33
patients, 86 with exposure to the Al output

« Expert group of senior
physicians, ward nurses,
technicians, employees

« Offered training for users

Compared outcomes
with expert ratings

Nature Health


http://www.nature.com/NatHealth

Analysis

https://doi.org/10.1038/s44360-025-00048-z

Table 2 (continued) | General information about the included silent studies

Study Aim and rationale Model type and Model evaluation Additional considerations  Categorization
intended use
Kimetal. (2023)° Tovalidatea Diagnostic Al « Algorithm performance: AUROC, Compared
commercial Al sensitivity, specificity diagnostic accuracy
tool for detecting « Assessed pathologies on 3,047 radiographs with and without Al
chest radiographic with and without Al output across two assistance

abnormalities

centres

« CE marking by the Ministry of Food and
Drug Safety of Korea

« 4 first- and third-year radiology residents as
target users

« Reading times and failure care analysis

Korfiatis et al.

To evaluate an Al

Diagnostic deep

« Algorithm performance: AUROC,

« Reported substantial

Radiologist-verified

(2023)* tool detecting PDA  learning sensitivity, specificity, F1 impact to clinical workflow  diagnostic accuracy
from CT scans « Simulated a screening sample of 297 « Used heat maps during the
consecutive abdominal CTs for validation by  review process
radiologists
- Assessed failure modes using tumour-
related parameters
Kramer et al. Tovalidate a Predictive « Algorithm performance: AUROC, Compared
(2024)%*° model predicting machine learning  sensitivity, specificity, accuracy algorithmic
malnutrition « 159 patients prediction with
in hospitalized - Dieticians assessed malnutrition in human annotations
patients admitted patients, compared (masked) with
real-time ML predictions
Kwong et al. To evaluate a Predictive deep « Algorithm performance: AUROC, AUPRC « Measured clinician Verification of the
(2022) model predicting learning - Assessed failure modes by age, laterality, engagement model against the

hydronephrosis in
utero

changes in image processing and
ultrasound machine

- Assessed bias for sex and postal code

« Looked for potential causes of drift

« Recorded model downtime

« 1,234 cases with prediction at the desired
implementation care point and compared
with later decision to proceed with surgery
« Reported data stream for model evaluation
related to patient data confidentiality and
security

- Assessed usability and
disruption to workflow

« Used activation maps

« Conducted patient and
family surveys to assess
receptivity

outcome label

Liu et al. (2023)%*

To validate a
model predicting
postoperative pain

Predictive deep
learning

« Algorithm performance: ROC, AUC, RMSE,
correlation

« Compared algorithmic prediction

of maximum pain score with clinician
preprocedure prediction in adult inpatients
undergoing noncardiac surgery with general
anaesthesia

« Included patient race in the model but did
not report performance subgrouped by race
« Reported dataset drift

Compared
algorithmic
prediction with
independent
clinician rating

Liu et al. (2024)%°

To evaluate an Al
model estimating

Decision support
deep learning

« Algorithm performance: RMSE, MSE
- Assessed performance by patient age and

» Measured time to
completion of reading,

Clinical validation
study comparing Al

bone age sex, as well as radiography vendor human versus Al with gold standard
« 973 radiographs across 9 hospitals « Per-bone k values to
- 3 expert reviewers as gold standard; inter- indicate disagreements
rater reliability calculated
Luoetal. To validate a Diagnosticdeep -« Algorithm performance: AUC, ROC, PPV, Measured processing time Algorithmic
(2019)"°° model detecting learning NPV, sensitivity, specificity validation with
gastrointestinal - Reviewed false negatives plus a random verification of a
cancers subset assessed against an independent random subset
assessment by experts
« 175 patients, 4,532 images collected from
5 hospitals
« Noted the presence and location of
tumours
Lupei et al. To evaluate Predictive « Algorithm performance: AUC, ROC, PPV, Opted out of research Prospective
(2022)" the real-time machine learning NPV, sensitivity, specificity requests, noted in the chart  algorithmic
performance « 13,271 symptomatic patients with COVID-19  and honoured by the team validation
of aCOVID-19 « Evaluated sensitivity and specificity across

prognostic model

sex and race
- Assessed label drift as a result of improved
outcomes for patients
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Table 2 (continued) | General information about the included silent studies

Study Aim and rationale Model type and Model evaluation Additional considerations  Categorization
intended use
Mahajan et al. To assess a Predictive « Algorithm performance: AUC, ROC, PPV, SHAP values applied to Prospective
(2023)* model’s predictive  machine learning NPV, sensitivity, specificity retrospective test only algorithmic
accuracy « 206,353 patient cases validation study
for 30-day « Compared performance with an algorithm
postoperative already used in care
mortality and
major adverse
cardiac and
cerebrovascular
events
Major et al. To validate amodel Predictive « Algorithm performance: descriptive « Clinical stakeholders Prospective
(2020)"°® predicting short- machine learning statistics (n patients meeting the primary selected 75% PPV as the algorithmic
term in-hospital outcome) desired threshold for the validation
mortality « 9-month trial with 41,728 model
predictions+12-week silent test in which « Experimented with
hospitalists reviewed 104 alerts to determine  different thresholds, varied
whether the alert was actionable and across sites to reflect
appropriate population needs
« Assessed bias by comparing algorithmic
fairness approaches
Manz et al. To validate Predictive « Algorithm performance: AUC, AUPRC, Brier  Use of a nudging strategy Prospective
(2020)" an algorithm machine learning  score, PPV, NPV, sensitivity, alert rate tested described in a companion algorithmic
predicting 180-day at different risk thresholds paper validation
mortality risk in a « 24,582 patient cases over a 2-month period
general oncology « Calculated performance metrics across
cohort different groups (disease site, practice type,
self-reported race, sex, insurance, stage of
cancer); reported performance to be better
for women or at a later stage of cancer for
men
« Described the model being locked; no
updates made
Miro Catalina et To validate Diagnosticdeep  « Algorithm performance: TP, TN, FP, FN, Compared
al. (2024)** a diagnostic learning sensitivity, specificity diagnostic
algorithm in « 278 cases of 471 participants performance with
radiology « Researchers interpreted reference human readers
radiology reports before inputting to Al to
obtain a diagnosis for comparison
« Error testing for certain pathologies
Morse et al. To evaluate a Evaluative « Algorithm performance: AUROC Prospective
(2022)”" model detecting machine learning  « ML model draws data directly from the EHR algorithmic
CKD in a paediatric in near real time validation
hospital « 1,270 patient admissions over ~6 months
Nemeth et al. To validate amodel Predictive « Algorithm performance: AUC, PPV, NPV - Codesign using interviews ~ Compared model
(2023)% for detecting septic machine learning 5,384 hospital admissions in 4,804 patients ~ with multiple stakeholders outputs with clinician
shock during a 6-month silent test, comparing « User acceptance testing annotations
predictions with a clinician’s independent « Alignment of model use
judgement with practice guidelines
« Extensive failure case analysis
« Tested different time horizons
« Described data flow and infrastructure for
the model
O’Brien et al. To evaluate an Predictive « Algorithm performance: PPV, sensitivity, « Alert risk presented using Algorithmic
(2020)"°° EWS for patient machine learning thresholding red, yellow and green validation study
deterioration « 4,210 encounters, 97 patients colour codes
« Set up data analytics to reflect real-time « Nursing consult on
streaming of live data visualization
Ouyang et al. To validate a Predictive deep « Algorithm performance: AUC, RMSE, R? Compared model
(2020)* segmentation learning « Measurements of cardiac function in 1,288 outputs with clinician
model assessing patients annotations
cardiac function « Compared model measurements with
those by human annotators, with manual
blinded re-evaluation by 5 experts for cases
with a large discrepancy between the model
and annotations
Pan et al. To validate amodel Predictive « Algorithm performance: AUC, accuracy, « SHAP values Prospective clinical
(2025)"°° predicting the machine learning sensitivity, specificity, PPV, NPV, F1, DCA « DCA to assess clinical validation (silent trial)

utility of CT for
mTBI

- 86 patients

« ML model compared with serum
biomarkers for TBI and a statistical
regression model

utility
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Table 2 (continued) | General information about the included silent studies

Study

Aim and rationale

Model type and
intended use

Model evaluation

Additional considerations

Categorization

Pou-Prom et al.

To validate an early

Predictive

« Algorithm performance: AUC, PPV,

Weekly check-ins with

Real-time algorithmic

(2022)* warning system in machine learning  sensitivity stakeholders during the validation
inpatients « Determined a composite outcome label silent phase
« Described the shift needed to
accommodate changes due to onset of the
COVID-19 pandemic
« Described a detailed preprocessing plan
« Evaluated the processing stream
« Initially planned a 4-month trial, which was
extended to 6 months
« Conducted training with users
Pyrros et al. To validate amodel Predictive deep « Algorithm performance: AUROC, PPV, Used an animated Algorithmic
(2023)”" detecting type learning sensitivity, specificity, F1, Youden's J index, technique through an validation study
2 diabetes from PR, NPV, odds ratio, demographics autoencoder for feature
chest radiographs « 9,943 chest radiographs highlighting
and EHR data « Noted the potential for health disparities;
planned subgroup analysis by race/
ethnicity; mentioned the need for fine-
tuning due to fairness and robustness issues
« Data stream and infrastructure described
Qian et al. To validate amodel Predictive deep « Algorithm performance: AUC, accuracy, Algorithmic
(2025)'%8 predicting surgical  learning NPV, F1, ROC validation
intervention need « 50 patients
for paediatric « Reported consistent performance across
intussusception different patient populations by age
Rajakariar et al. Tovalidate a Diagnostic « Algorithm performance: sensitivity, Compared device

(2020)*

smartwatch device
for detecting atrial

machine learning

specificity, TP, TN, Cohen'’s k for agreement
« Failure case analysis for unclassified

output with clinician
diagnosis

fibrillation tracings assessed by 2 electrophysiologists
« Described the data pipeline
« 200 consecutive patients over 6 months,
439 ECGs
« Cardiologist diagnosis as the reference
standard
Rawson et al. To validate a Predictive « Algorithm performance: AUROC, Prospective pilot test
(2021)%° model detecting machine learning  descriptive analysis of the algorithm
secondary

bacterial infection
during COVID-19

Razavian et al.

To validate a

Predictive

« Algorithm performance: AUROC, AUPRC,

« Review with medical

Prospective

(2020)* model predicting machine learning PPV, thresholded sensitivity, confidence students to assess 30 observational study
outcomes for intervals patient encounters for (unclear of impact)
hospitalized « Integration through the EHR; data flow impact on clinical decision-
patients with described making from model
COVID-19 « Described the cleaning process, feature prediction

minimization, threshold selection and time « Interface described

horizon « Feature-level XAl

« 445 patients over 474 admissions (109,913

prediction instances)

« Medical students and practicing physicians

assessed face validity, timing and clinical

utility
Ren et al. To evaluate a Diagnosticdeep - Algorithm performance: AUC, ROC, Clinical validation
(2025)"° smartphone-based learning sensitivity, specificity, precision, F1 score

Al for classifying
auricular
deformities

« 272 cases

« Ground truth established by two
independent professionals

« Compared human and model performance
« Scalable and low-cost diagnostic support
« Guidance for proper image acquisition

« Failure analysis identified discrepancies
between retrospective and prospective
validation sets

« Described the data pipeline and inference
process

Schinkel et al.
(2022)"

To validate a
model predicting
a positive blood
culture result

Predictive
machine learning

« Algorithm performance: AUROC, AUPRC,
calibration, feature contributions, DCA

« Described data processing in a live context
« 3-month period of real-time validation

Real-time
prospective
algorithmic
validation
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Table 2 (continued) | General information about the included silent studies

Study Aim and rationale Model type and Model evaluation Additional considerations  Categorization
intended use
Shah et al. To validate amodel Predictive « Algorithm performance: AUPRC, AUROC, Algorithmic
(2021)" predicting clinical ~ machine learning PPV, NNE validation study
deterioration « Preplanned subgroup analysis by race, sex
and age revealed discrepancies
146,446 hospitalizations in 103,930 unique
patients
« Described data processing steps and
feature importance calculations
Shamout et al. To validate a Predictive « Algorithm performance: AUC, PR, PPV, NPV Prospective
(2021)™ model predicting machine learning  + 375 examinations algorithmic
deterioration from « Real-time extraction; addressed validation (silent trial)
COVID-19 computational resources
Shelov et al. To validate a Machine learning - Algorithm performance: Littenberg « Some interfaces included  Prospective
(2018)*® model predicting decision support  Technology Assessment in Medicine « Designincluded a verification of the
clinical acuity ina framework multidisciplinary team model against
paediatric ICU - Approximately 6-month verification phase ~ comprising physicians, clinical judgement
before going live nurses, informaticians,
» Measured the impact of the modelin EHR respiratory therapists and
on processing time improvement advisors
« Validation done through a survey for
project team clinicians to complete (315
forms for 182 patients)
« Retrospective analysis of data quality and
patients meeting the at-risk criteria
« Reported on the availability of the
algorithm
Sheppard et al. To validate Triage machine « Algorithm performance: sensitivity, Advised patients with Comparison of
(2018)* an algorithm learning specificity, PPV, NPV, AUROC hypertension history on algorithmic triaging
for triaging « Compared the accuracy of the triaging the design of the project, approach against the
patients with strategy across subgroups (by setting, recruitment and study standard
suspected high age, sex, smoking status, BMI, history of literature before ethics
BP for ambulatory hypertension, diabetes, CKD, cardiovascular  submission
pressure disease and BP measuring device)
monitoring - 887 eligible patients with 3 same-visit BP
readings
« Described the rationale for excluding cases
based on data missingness
Shietal. (2025)" Toevaluate a Predictive « Algorithm performance: ROC, DCA, « DCA to assess clinical Prospective

model predicting

machine learning

sensitivity, specificity

utility

algorithmic

the risk of « 166 patients - Demonstrated the user validation study
colorectal polyp interface
recurrence
Smith et al. To evaluate a Al decision « Algorithm performance: recall or norecall ~ Regions of interest available Compared
(2024)™ model for breast support decision during reviews diagnostic
cancer screening « Assessed concordant and discordant cases performance with
« 8,779 patients aged 50-70 years human readers
« Trained film readers verified the results
« Assessed multiple features of patients and
scan results
Stamatopoulos Tovalidate a Predictive « Algorithm performance: sensitivity, Inferred a lack of clinical Prospective

etal. (2025)"°

model predicting
miscarriage risk

machine learning

specificity, PPV, NPV

« Assessor had access to ground truth and
compared algorithm predictions against
short-term outcomes

utility due to unreliable
predictions

algorithmic
validation study

Stephen et al.
(2023)*°

To validate a
model detecting
paediatric sepsis

Predictive
machine learning

« Algorithm performance: AUC, PPV

« 8,608 cases (1-year period)

« Thresholding for alerts to consider false
alerts, alert fatigue, resources for sepsis
huddle

Team of clinicians, data
scientists, improvement
experts and clinical
informaticians; regular
meetings throughout the
project

Real-time algorithmic
validation

Swinnerton et al.
(2025)"

To prospectively
validate a
prediction tool for
severe COVID-19
risk

Predictive
machine learning

« Algorithm performance: AUC, calibration
« 51,587 infections
- Assessed subgroup performance

Feature importance

Prospective
algorithmic
validation study
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Table 2 (continued) | General information about the included silent studies

Study

Aim and rationale

Model type and
intended use

Model evaluation

Additional considerations

Categorization

Tan et al. (2025)*

To clinically
validate Al-based
multispectral
imaging for burn
wound assessment

Classification
deep learning

« Algorithm performance: sensitivity, « Reported evaluator

specificity, accuracy training
« 40 patients, 70 burn images « Described the user
« Failure mode analysis affecting interface

overdiagnosis

- Bias assessment by skin pigmentation and
tattoo presence

« Reported on availability, feasibility and time
to diagnostic result

« Described the user interface

« UKCA class | medical device, 1ISO 13485

Prospective clinical
validation study

Tarig et al. To validate amodel  Screening « Algorithm performance: image label, Heat maps for regions of Algorithmic
(2023)"® screening for low machine learning precision, recall, F score, AUROC interest validation study
bone density « For 2 consecutive days, curated 344 scans
(with and without contrast) from patients
aged >50 years
« Some analysis of lower-performing areas
Titano et al. To simulate Triage deep « Algorithm performance: AUC, sensitivity, Prospective
(2018)"™ the clinical learning specificity, accuracy, time to notify about simulated trial with
implementation of critical findings, runtime human readers
atriage algorithm 180 images reviewed by a radiologist and
for radiology a surgeon (50/50 split); 2 radiologists and
a neurosurgeon reviewed images without
access to the EMR or prior images
Vaid et al. To validate Predictive « Algorithm performance: AUROC, AUPRC, SHAP scores Prospective
(2020)"*° an outcome machine learning  F1, sensitivity, specificity algorithmic
prediction model « 21-day trial validation (silent trial)
for COVID-19 - Assessed race as a potential contributing
variable to outcome prediction
Wall et al. To evaluate Predictive « Algorithm performance: prediction error, Prospective
(2022)” a model for machine learning ROC, concordance validation including
supporting « VQA application provides failures for comparison with the
radiation therapy features, top 5 features and ‘total gain’ standard of care
plans « Reported runtime and compute power
« Physicists measured 445 VMAT plans over
3 months
« VQA predictions recorded alongside PSQA
measurements
Wan et al. Tovalidate a Predictive « Algorithm performance: AIC, ROC, PPV, DCA to assess potential Clinical validation
(2025)* model predicting machine learning NPV, DCA, calibration clinical benefit
neoadjuvant « 76 patients
treatment response « Compared the performance of a clinical-
radiomics model to that of a radiomics
model, a clinical model and a radiologist’s
subjective assessment
Wang et al. To validate amodel Predictive « Algorithm performance: AUC, ROC, PPV, Algorithmic
(2019)'* predicting new- machine learning sensitivity, specificity validation study
onset lung cancer « Performance within each risk category
- 836,659 patient records
Wang et al. Tovalidate amodel Diagnosticdeep  «Algorithmic validation: AUC, sensitivity, SHAP values Algorithmic
(2025)"* for cardiovascular learning specificity, F1, accuracy validation with
disease diagnosis « 62 patients clinical verification
« Ground truth established by 3 emergency
physicians reviewing the data, compared
with algorithm outputs
Wissel et al. To validate an Decision support  « Algorithm performance: AUC, sensitivity, Interpretability analysis Algorithmic
(2020)* NLP application machine learning specificity, PPV, NPV, NNS, number of revealed wording validation with
to assign surgical prospective surgical candidates associated with surgical verification of a
candidacy for « Retrained the model weekly on the most candidacy random subset
epilepsy recent training set based on free text notes
« Verification on 100 randomly selected
patient cases
« Tested the inter-rater reliability of clinicians’
manual classifications versus the algorithm
Wong et al. To temporally Predictive « Algorithm performance: AUROC, AUPRC, Temporal validation
(2021)*° validate a model machine learning  sensitivity, specificity, PPV, NPV study

predicting acute
respiratory failure

« Event horizon
122,842 encounters, 112,740 controls
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Table 2 (continued) | General information about the included silent studies

Study Aim and rationale Model type and Model evaluation Additional considerations  Categorization
intended use
Xie etal. (2025)”° Tovalidateamodel Diagnosticdeep - Algorithmic validation: AUC, accuracy, SHAP values Algorithmic
diagnosing axial learning sensitivity, specificity, F1, precision validation
spondyloarthritis « 209 patients
« Diagnostic accuracy compared with
accepted clinical classification criteria for
each patient
Yeetal. (2019)”  To validate a real- Predictive « Algorithm performance: sensitivity, Top 50 important features Algorithmic

time early warning
system predicting
high risk of

inpatient mortality

machine learning

specificity, PPV, ROC, C-statistic, hazard
ratios
« 11,762 patients with an assigned EWS

validation study

Ye et al. (2020)'*®

To validate a
nomogram for
predicting liver
failure

Predictive
machine learning

« Algorithm performance: precision, recall,
accuracy, F1
«120 patients undergoing hepatectomy

Algorithmic
validation study

Yu et al. (2022)'*°

To validate a sepsis
prediction model

Predictive
machine learning

« Algorithm performance: F1, sensitivity,
specificity, AUROC, AUPRC

« 3,532 alerts; 388 met the sepsis criteria

« Analysed model successes and failures
« Considered scalability through compute
requirements

SHAP values for a ‘lite’
version of the model

Algorithmic
validation study

Zhang et al.
(2025)"°

To validate a model
identifying atrial
fibrillation after
ischaemic stroke

Diagnostic deep
learning

« Algorithm performance: AUC, sensitivity,
specificity, PPC, NPV

« 73 patients

« Assessed model performance by patient
age bracket

« An independent researcher conducted a
blinded review of predicted atrial fibrillation
status and actual diagnosis after clinical
workup

« Described data cleaning and patient

Algorithmic
validation

inclusion criteria

AIC, Akaike information criterion; AUC, area under the curve; BMI, body mass index; BP, blood pressure; COVID-19, coronavirus disease 2019; CKD, chronic kidney disease; CPT, Current
Procedural Terminology; CT, computed tomography; DCA, decision curve analysis; ECG, electrocardiogram; ED, emergency department; EMR, electronic medical record; EWS, early warning
score; FN, false negative; FNR, false negative rate; FP, false positive; GP, general physician; ICU, intensive care unit; ISO, International Organization for Standardization; LMICs, low- to middle-
income countries; ML, machine learning; MSE, mean square error; mTBI, mild traumatic brain injury; N/A, not applicable, NLP, natural language processing; NNE, number needed to evaluate;
NNS, number needed to screen; NPR, negative prediction rate; NPV, negative predictive value; PDA, pancreatic ductal adenocarcinoma; PPV, positive predictive value; PR, precision-recall;
PSQA, patient-specific quality assurance; RMSE, root mean square error; ROC, receiver operating characteristic; SOFA, sequential organ failure assessment; TBI, traumatic brain injury; TN, true
negative; TP, true positive; UKCA, UK Conformity Assessed; VMAT, volumetric modulated arc therapy; VQA, virtual quality assurance; XAl, explainable Al.

Composition of silent evaluations

The geographical locations and institutions of the included silent
evaluations were extracted. From the 75 final papers (excluding sister
studies, asthey share the same characteristics), we found silent evalu-
ations performed in Australia, Austria, Canada, China, France, India,
Germany, Mexico, the Netherlands, Saudi Arabia, Spain, South Korea,
Taiwan, Turkey, the UK and the USA, with demographic information
obtainable for 74 of the 75 papers (as shown in Fig. 2, generated using
R software” and RStudio®). Most silent evaluations were conducted
in the USA (48%), China (19%) and the UK (7%). A list of institutions
(hospitals and research centres) where silent evaluations were per-
formed is provided in Table 3. Nine studies reported the evaluation of
acommercially available Al system. Four of the nine studies reported
the approval regime'®?*2 (for example, CE-marked, cleared device, or
approved device and class rating), while the remaining papers did not
provide details about the system.

Study design and purpose
Our eligibility criterialed us to papers that self-identified as silent
trials, as well as to model validations under other names and forms
that paralleled the silent trial methods. Importantly, only 15 studies
explicitly used the term silent to describe their evaluation, highlight-
ing that similar methodologies exhibit substantial variation in their
nomenclature and conceptualization.

Definitions varied along a spectrum, ranging from technical valida-
tionof the algorithmin alive clinical environment to broad, multistage

silent evaluations of the clinical setting. We note that algorithmic valida-
tion, clinical validation, temporal validation and prospective validation
were often used interchangeably to describe similar methodologies but
with varying scopes of evaluation (Table 2). Variationin the clinical veri-
fication of the model (human or automated annotation of ground truth
for model comparison) was less predictive of the breadth and depth
of clinical evaluation than the purpose of the trial itself. For instance,
some papersaimed to prospectively validate the technical performance
of amodel (for example, “...to evaluate the ability of three metrics to
monitor for areduction in performance of a CKD model deployed ata
paediatric hospital.” (ref. 27)), while others purported to evaluate the
potential clinical utility of the algorithm across awider array of elements
(for example, “...to assess the Al system’s predictive performanceina
retrospective setting and evaluate the human factors surrounding the
BPA before initiating the quasi-experimental clinical study.” (ref. 28)).

While we only included papers for which we could be relatively
confident that there was a separation between model evaluation and
clinical care, this core component of the silent phase was often not
clearly articulated. When not articulated as such, we inferred separa-
tion from contextual information within the paper (for example, “Clini-
cians assessed patients as per usual practice.”), grammatical tense (for
example, “This algorithm would have identified X patientsin practice.”)
and minor methodological cues (for example, “The research team did
notintervene in the clinical management of these patients.”).

The length of the evaluation phase was consistently reported,
either as aspecified date range or as a quantitative number of patients
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Fig. 2| World map showing the number of silent trials identified by country.
The countries of silent trials were counted once for each paper, if available
(74 of 75 papers). The USA was the most represented country (36 trials),

followed by China (14 trials), the UK (S trials) and Canada (3 trials). In total,
16 countries were represented in the silent trials. Figure created using R software
and RStudio (2025).

or cases; however, a justification or rationale for these choices was
rarely provided. The total time period for silent evaluations ranged
from 2 daysto18 months.

Model evaluation during the silent phase

Most studies described the input data and their form (for example,
tabular dataand images), and more than half described how the inputs
were selected during the development stage. Some studies focused
explicitly ontechnical performance-related reasons for feature selec-
tion, while others reported clinical justifications for specific variables,
including the feasibility of using these variables relative to theintended
use environment (and thus their relevance to evaluation during the
silent phase).

Metrics of model performance included AUROC (area under the
receiver operating characteristic curve), sensitivity, specificity, nega-
tive predictive value and positive predictive value, with all studies
describing at least one of these. Some studies, often predominant in
medicalimaging, examined model performancein greater depthand
included an assessment of failure modes—for example, descriptive
performance on subgroups within disease categories or an explora-
tion of a specific class of suboptimal performance, such as describing
all false-negative cases.

Few studies that reported feedback to recalibrate the model
included changing model thresholds toimprove sensitivity or specificity,
aswell as updating the model based on changing demographics or fea-
tures of the prospective patients. Some papers'®***° reported not updat-
ing the model during the evaluation (for example, “Models were not
retrained for both validations for fair assessment.” (ref. 30)). Rarely did
studies describe data shifts or the steps taken to address performance
shifts; often, these were simply observed during the evaluation period.

Aminority of studies addressed potential algorithmic biases. Typi-
cally, this meant exploring model performance among contextualized
subgroups of interest (that s, algorithmic bias), which involves assess-
inganalgorithm’s performance againstidentified clinical (for example,
specific health conditions) or demographically defined (for example,
age, sex, race and ethnicity) subgroups at risk of disparate health out-
comes based on the intended use of the Al tool (that is, marginalized,
vulnerable or under-represented groups)®'. Race and sex were the
most common subgroups of interest; rarely was a link made to health
inequities or other structural issues as a rationale for conducting this
testing, and whenjustified, itincluded only ageneral appeal.

In addition to subgroup analyses, a subset of studies examined
algorithmicbias that appeared at test time when development and eval-
uation settings did not match. Some reported drops in performance
linked to noisy or incomplete data and inconsistencies in electronic
health record (EHR) coding, while others noted reduced accuracy
dueto differencesin dataacquisition, patient populations and clinical
practices. Some studies specifically linked these issues to temporal or
distributional shifts between training and deployment data. Acommon
conclusionacross all studies was that a performance drop is apparent
whenmoving fromretrospective to live evaluation, showing that mod-
els often performless reliably during silent or prospective evaluation.

A key process during the silent phase is verifying the correctness
ofthemodel’s predictionsin alive environment, which we have termed
‘verification of model outputs’. Such verification could refer to any of
the following: agreement betweenamodel’s prediction and information
noted or codedinthe medical record; anexpert evaluator’s (for example,
aphysician’s or nurse’s) assessment of the model prediction; or a case-
by-case evaluation by expertsindependently compared with the model’s
outputsto determine agreement, conducted blind to the model output
for comparison purposes. We categorize verification in our papers as
human annotation versus automatic annotation, in which trials used
either automated annotation of ground truth (obtaining algorithm per-
formance (AUROC) by comparing with atest set of clinical information
thatwas not transparently defined) or live human annotation (compar-
ing the algorithmwith clinical ground truth obtained through expert or
novice consensus panels during the trial). When humanannotation was
used, only asmallminority of these studies described the characteristics
of evaluators, such as qualifications, role or whether they received any
formalinstructions for review. However, the evaluator of the algorithm—
who was responsible for comparing the model with annotations and for
viewing the system during the trial—-was often invisible and was rarely
reported. When alluded to, evaluators were used either to provide an
independent assessment of the same outcome the model was predicting
(for example, “Variance between performance of senior sonographers
and Almeasurements was compared.” (ref. 32)) or to evaluate aspects of
thetoolitself, such as establishing clinical utility (for example, “assessed
the face validity, timing, and clinical utility of predictions” (ref. 33)).In
some cases, it was not clearly described whether the evaluator’s role was
toconductanindependent (blind) assessment of the same outcome the
model was meant to predict or whether they were viewing the model
output and meant to verify its accuracy.
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Table 3 | Demographic information of the included final 75 papers

Trial Country Institutions
Organ failure: Aakre et al. (2017)” USA Mayo Clinic hospitals in Rochester, MN, and Jacksonville, FL
NLP for opioid use: Afshar et al. (2023)% USA University of Wisconsin Hospital

COVID-19: Alrajhi et al. (2022)"

Kingdom of Saudi Arabia

King Faisal Specialist Hospital and Research Centre

Appendicitis: Aydin et al. (2025)”° Turkey 13 tertiary paediatric hospitals across Turkey

Sperm: Bachelot et al. (2023)” France Assistance Publique-Hopitaux de Paris, Sorbonne University, Paris

Sepsis: Bedoya et al. (2020)*° USA A hospital in the Duke University Health System

Breast: Berg et al. (2023)”® Mexico Hospital Valentin Gomez Farias and Hospital General de Tijuana

Mortality: Brajer et al. (2020)*° USA Duke University Health System

Brain cancer: Butler et al. (2019)"° UK Western General Hospital, Edinburgh

Lung cancer: Campanella et al. (2025)*° USA N/A

Neoplasia: Chen et al. (2025)' China N/A

Hypertension: Cheng et al. (2025)*? China 4 Taklamakan Desert-adjacent regions in northwest China

Haemodynamic instability: Chiang et al. (2025)%* Taiwan Taipei Veterans General Hospital

Breast cancer: Chufal et al. (2025)% India Rajiv Gandhi Cancer Institute & Research Centre

Suicide risk: Coley et al. (2021)*° USA HealthPartners, Henry Ford Health System, Kaiser Permanente

DEPLOYR (also a framework): Corbin et al. (2023)%° USA Stanford Health Care, Stanford, CA

Lung: Dave et al. (2023)% Canada London Health Sciences Center, London, Ontario

Breast cancer: El Moheb et al. (2025)%® USA University of Virginia Medical Center

Skin lesion: Escalé-Besa et al. (2023)*, using study Spain Primary care centres managed by Institut Catala de la Salut,

protocol by Escalé-Besa et al. (2022)™' Catalonia

Emergency department: Fagar-Uz-Zaman et al. (2022)*°,  Germany University Hospital Frankfurt

using study protocol by Fagar-Uz-Zaman et al. (2021)"*

Skin cancer: Felmingham et al. (2022)°° and Australia Alfred Hospital and Skin Health Institute, Melbourne

results paper by Felmingham et al. (2023)'*

Chest: Feng et al. (2025)' China Tangshan People’s Hospital

Head injury: Hanley et al. (2017)% USA Allegheny General Hospital, Pittsburgh, PA; Baylor University Medical
Center, Dallas, TX; Detroit Receiving Hospital, Detroit, MI; Emory
University School of Medicine and Grady Memorial Hospital, Atlanta,
GA; Hartford Hospital, Hartford, CT; R Adams Cowley Shock Trauma
Center, Baltimore, MD; University of Rochester Medical Center,
Rochester, NY; University of Texas Memorial Hermann Hospital,
Houston, TX; University of Virginia Health System, Charlottesville, VA;
Washington University Barnes Jewish Medical Center, St. Louis, MO;
Wayne State University Sinai-Grace Hospital, Detroit, Ml

Sepsis: Hoang et al. (2025)* Australia N/A

Lymphoma: Im et al. (2018)* USA Massachusetts General Hospital, Boston, MA

Delirium: Jauk et al. (2020)" Austria LKH Graz Il

Chest: Kim et al. (2023)"° South Korea N/A

Pancreas: Korfiatis et al. (2023)%° USA N/A

Malnutrition: Kramer et al. (2024)%° Austria University Hospital Graz

Hydronephrosis: Kwong et al. (2022)*’ Canada Hospital for Sick Children, Toronto, Ontario

Pain prediction: Liu et al. (2023)* USA Massachusetts General Hospital, Boston, MA

Bone age: Liu et al. (2024)%° China Children’s Hospital of Zhejiang University School of Medicine,
Children’s Hospital of Fudan University, The First Affiliated Hospital
of Sun Yat-Sen University, Xian Children’s Hospital Affiliated to Xi'an
Jiaotong University, Tianjin Medical University General Hospital,
Children’s Hospital of Chongqging Medical University, Shenzhen
Children’s Hospital, The Second Affiliated Hospital of Nanchang
University, Tongji Hospital of Tongji Medical College of Huazhong
University of Science and Technology

Gastrointestinal: Luo et al. (2019)'*° China Sun Yat-sen University Cancer Center, North Guangdong People’s
Hospital, Shaoguan; Wuzhou’s Red Cross Hospital, Wuzhou; Jiangxi
Cancer Hospital, Nanchang; Puning People’s Hospital, Puning;
Jieyang People’s Hospital, Jieyang

COVID-19: Lupei et al. (2022)' USA N/A
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Table 3 (continued) | Demographic information of the included final 75 papers

Trial Country Institutions

Postoperative: Mahajan et al. (2023)'%? USA 20 hospitals in the University Pittsburgh Medical Center health
network

End of life: Major et al. (2020)'** USA NYU Langone Health

Morality: Manz et al. (2020)" USA University of Pennsylvania Health System (multiple practices)

Chest: Mir6 Catalina et al. (2024)'%, using protocol by  Spain Osana Primary Care Centre Catalonia

Miré Catalina et al. (2022)"**

Kidney disease: Morse et al. (2022)” USA Lucile Packard Children’s Hospital, Stanford University

Shock: Nemeth et al. (2023)* USA Mayo Clinic

Deterioration: O’Brien et al. (2020)'*® USA Duke University Hospital System

Cardiac: Ouyang et al. (2020)* USA Cedars-Sinai Medical Center

Traumatic brain injury: Pan et al. (2025)'® China Wuhan Yangtze River Shipping General Hospital

Early warning system: Pou-Prom et al. (2022)** Canada St Michael's Hospital, Toronto, Ontario

Type 2 diabetes: Pyrros et al. (2023)' USA Emory Hospital and 28 geographically unique locations

Enema: Qian et al. (2025)'%® China Children’s Hospital of Soochow University and Affiliated Changzhou
Children’s Hospital of Nantong University

Atrial fibrillation: Rajakariar et al. (2020)* Australia N/A

Bacterial infection: Rawson et al. (2021)'*° UK Three hospitals in northwest London

COVID-19: Razavian et al. (2020)* USA N/A

Paediatric: Ren et al. (2025)"° China Obstetrics & Gynecology Hospital of Fudan University

Blood cultures: Schinkel et al. (2022)™ The Netherlands Amsterdam UMC Location VU Medical Center

Deterioration: Shah et al. (2021)"? USA Four PennMedicine hospitals

COVID-19: Shamout et al. (2021)" USA NYU Langone Health Institute

Paediatric ICU: Shelov et al. (2018)*® USA Children’s Hospital of Philadelphia

Blood pressure: Sheppard et al. (2018)*, using study UK Ten general practice surgeries and one hospital trust

protocol by Sheppard et al. (2016)'*°

Polyps: Shi et al. (2025)™ China Hospital of Xuzhou Medical University

Breast: Smith et al. (2024)"™ UK Hospital—N/A

Pregnancy: Stamatopoulos et al. (2025)""° N/A N/A

Sepsis: Stephen et al. (2023)*° USA Hospital—N/A

COVID-19: Swinnerton et al. (2025)" USA EHR data from Veterans Affairs facilities nationwide

Burn: Tan et al. (2025)*° UK Newcastle upon Tyne and Manchester Adult Burn Centres

Bone density: Tariq et al. (2023)"" USA N/A

Neurological events: Titano et al. (2018)" USA Hospital—N/A

COVID-19: Vaid et al. (2020)'*° USA Five hospitals within the Mount Sinai Health System in New York
City: Mount Sinai Hospital (MSH) located in East Harlem, Manhattan;
Mount Sinai Morningside (MSM) located in Morningside Heights,
Manhattan; Mount Sinai West (MSW) located in Midtown West,
Manhattan; Mount Sinai Brooklyn (MSB) located in Midwood,
Brooklyn; and Mount Sinai Queens (MSQ) located in Astoria, Queens

Radiation therapy: Wall et al. (2022)"”' USA Unknown local institution

Breast cancer: Wan et al. (2025)'% China Renji Hospital

Lung cancer: Wang et al. (2019)'* USA Hospitals in Maine

Cardiology: Wang et al. (2025)'** China Zigong Fourth People’s Hospital

Epilepsy: Wissel et al. (2020)'* USA Cincinnati Children’s Hospital Medical Center

Respiratory failure: Wong et al. (2021)*° USA Emory Healthcare Network

Arthritis: Xie et al. (2025)%° China N/A

Mortality: Ye et al. (2019)"”’ USA Berkshire Health System

Liver surgery: Ye et al. (2020)% China Eastern Hepatobiliary Surgery Hospital (EHBH)

Sepsis: Yu et al. (2022)*° USA Single, tertiary-care academic medical centre in St. Louis, MO

Cardiovascular: Zhang et al. (2025)"*° China Shanghai Sixth People’s Hospital
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Many studies discussed data quality issues and their management
duringthe silent phase. While some studies described the process for
removing patients with incomplete data points, conflicting data or
nonstandardized data inputs, there was limited discussion on how
thiswould be managedinalive, real-world deployment context. Some
reported on elements around the data pipeline (thatis, the flow of data
from input to inference), including data quality issues (for example,
missingness) and ‘downtime’ (that is, when the data flow stopped or
was negatively affected, causing the model to become nonfunctional).
Few studies detailed the granular elements of data flow from the point
of contact through processing and analysis to generate predictions,
but any such descriptions were generally comprehensive. One study
describing the full processing stream for data flow noted the rationale
of needing to most closely approximate the conditions of clinical inte-
gration, noting that the ‘deployment server’ was on the same secure
private network as the clinical systems, with data pipelines monitored
and continually audited by a dedicated data science team**.

Some sstudies described modelscalability, either as aformal assess-
ment of the computational feasibility of the modelin the clinical pipe-
line or as astated assertion that the model was scalable. However, it was
not always clear what scalability meant in these papers.

Sociotechnical considerations

Sociotechnical considerations concern the ways in which humans
designand interact with Altools. Aminority of papers described some
element of user engagement either before or during the silent phase.

Most sociotechnical evaluations analysed subjective user experi-
ence related to the prediction/interface or the overall impact of the
model on workflow, either in the silent environment or presumably
before the model was deployed to end users. These evaluations were
often conducted in collaboration with clinicians and healthcare staff,
indicating that stakeholder expertise and preferences are important.
However, when these end users contributed to the usability and prefer-
ences of the model’*?*** it was often not explicitly stated that these
consumers were not exposed to model predictions on live patients
during the prospective testing phase to evaluate model usability.

We describe therole of human factorsinthesilent phase as ambig-
uous, muchlike earlier difficulties in describing model evaluators and
separating the model from care. As such, the evaluation of human
factors operates similarly to stakeholder engagement with end users,
where feedback is used to refine the later deployment of the system,
rather thanto comprehensively examine the relationship between the
model and the evaluator. Nevertheless, one of the papers considered
cognitive factors, suchasalert fatigue, inits human factors evaluation;
for example, “allowed for consideration of false alerts, alert fatigue,
andresources required for asepsis huddle when designing our model.
The Aware tier with high sensitivity was designed to enable situational
awareness and prompt discussions about sepsis risk at the individual
patient, clinical team, and unit level.” (ref. 20). Further, some studies
described the integration of explainability methods (for example,
SHAP (SHapley Additive exPlanations), heat maps) with model outputs
during the silent phase, with the aim of preparing forimproved adop-
tion following integration. However, no study assessed the potential
impact of visualizations on human decision-making, such as whether
the use of explainability mechanisms could prevent persuasion by
incorrect Al results.

Users and stakeholders were engaged in the process of testing or
designing the model most commonly through interview groups that
provided feedback on the context and facilitation of the tool, often as
multidisciplinary teams (for example, “This expert group was set up
in order to enhance participation of health professionals, including
senior physicians, ward nurses, technicians, and leading employees.”
(ref.19)). The reasons behind these evaluations, if described at all, were
usually to assess model accuracy, the feasibility of model integration
and user acceptance. Assessments of usability and Al evaluation were

conducted almost entirely before deployment. One study described an
evaluator developing potential automation bias following asilent phase
evaluation (referred to as the phenomenon of ‘induced belief revision”
(ref. 17)), which the authors note is important to address to ensure
scientifically rigorous evaluation and separation of the model’s testing
from care”. Inthe process of assessing the model’s performance against
real-world information, consideration of the potential for incidental
findingsin the data that could haveimplications for patient safety was
described in four papers'”*****  None of these studies described any
form of patient or consumer engagement.

Discussion

The vastness and diversity of literature reporting on silent evalua-
tions of Alindicate that there is undoubtedly a perceived value in this
paradigm for ensuring model performance in the prospective setting,
linked to motivations around ‘responsible Al'. The heterogeneity of the
currently reported practices highlights the immense opportunity to
coalesce around best practices; we hope that this work is one step inthis
regard. In this vein, we focus specifically on the silent phase, which is
bounded by good model development on one side* and first-in-human
studies (DECIDE-AI"), clinical trials (SPIRIT-AI**, CONSORT-AI**) and
other clinical evaluation studies on the other. Considering the silent
phase not only as ameans to assess the prospective performance of a
model but also as a mechanism to facilitate responsible and effective
downstream translation, our scoping study highlights several opportu-
nities for enhancing practice around this critical translational stage*'.

A consistent challenge in determining whether a paper described
a proper silent trial centred on the variability in the use of the term
silent. Some papers used the term silent trial but then described the
outputs asbeing visible to the care team (and thus were excluded). We
adopted the multiple-reviewer method for adjudication partly because
itwas difficult to discern whether the model outputs were truly silent.
It was common for silent evaluations to be reported in tandem with
retrospective testing and/or live deployment. Due to this combina-
tion, it was similarly challenging to discern which reported aspects of
the study design pertained to which of these stages. For instance, data
cleaning might be described, but it was unclear whether this occurred
during retrospective or prospective testing. Additionally, the number
of case observations or the time period was reported as an aggregate,
leaving the proportion during the silent phase unclear. In some cases,
reporting onthe model’s performance was aggregated across the silent
and live phasesin a manner similar to randomized controlled trials.

We propose that, as a first step, the field should consolidate the
notion of silent as astate inwhich the model’s outputs are not visible to
the treating team or clinician while the model’s performance is being
evaluated. This does not necessarily mean that the modelitselfis invis-
ible; for example, testing user interfaces may involve exposing some
staff to the system. We suggest that maintaining a silent trial requires
thatthese staff members are not caring for the same patients for whom
themodelinferenceisbeingrun, to prevent contamination of the trial
and thus ensure an objective evaluation”.

We further suggest that papers reporting on evaluations during
this phase should clearly distinguish between model evaluation and
the care environment. Understandably, resourcing canbe a challenge
to complete separation; in line with medical literature more broadly**,
transparency should be encouraged, withauthors able to comment on
the rationale for the choices they made.

Anintriguing finding—and one where we feel efforts ought to be
consolidated—is the gap between what is most commonly reported
and what those with extensive experience deploying Al systems know
tobeimportant. Specifically, there is an overwhelmingly strong focus
on model metrics (for example, AUROC and AUPRC (area under the
precision-recall curve)), with far more limited discussion of workflow
and systems integration, human factors, and verification of clinically
relevant ground truth labels. By contrast, the NICE (National Institute
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for Health and Care Excellence) standards for digital health technolo-
gies (including Al) emphasize the use of human factors and a broader
set of considerationsto evaluate such tools, whichis far morein keeping
with a healthcare environment®.

One possible explanation is that silent suggests invisibility, and
human factor evaluations require end users to engage with some
aspects of the model. However, we find that most reported usability
evaluations involve healthcare professionals, who we assume are the
intended end users of the model. Guidelines endorsed by regulatory
agencies, suchas Good Machine Learning Practices*’, recommend the
involvement of clinical staff in model development and evaluation,
andtheliterature we describe here indicates some recognition of this
guidance. Given that researchers are identifying emergent risks from
additions like explainability*®*, it seemsimportant to ensure that these
impacts are measured before exposing patients (and research partici-
pants) to the model’s influence over their care. There is an immense
opportunity to explore how human factors might be involved during
the silent stage, which could reduce risk once the model reaches the
integrationstagein addition toimproving the precision of the clinical
evaluation protocol 54,

Safety-oriented metrics for model testing can include failure
modes, model bias and data shift>°>~well-known limitations of Al
models once they proceed to real-time deployment, during which
model performance typically drops (to varying degrees)*'. Reasons
can include data quality (for example, feature set discrepancy, tem-
poral feature leakage, operational feature constraints®?), limitations
of model generalizability, mismatch between the data available for
development and the deployment environment, concept drift, and
unintended changes such as data drift®'***, Importantly, failure mode
testing supports the identification of systematic patterns of lower
performance. Inradiology, where Al tools have seen the most uptake
and have undergone rigorous research on their limitations*, failure
mode reporting was much more common than for nonimaging models
inour results.

Algorithmic bias is a known ethical threat in health Al, so it was
somewhat surprising to see limited reporting of subgroup-specific
performance testing in silent phase evaluations. It is possible that
developers conducted bias testing during the development phase, with
the presumption that fairness had already been addressed at that point.
However, the under-reporting of subgroup-specific performance has
been noted in machine learning studies® and randomized controlled
trials of AI**. Assumptions behind choices regarding algorithmic fair-
ness approaches must be verified in their real-world environments to
prevent algorithmic discrimination® . Thisis particularly important
given thatsome Al models may embed patterns that track patient race
even when this is not explicitly coded in the algorithm®°. Clinical use
of Al tools must be informed by details of the model’s performance
across particular subgroups so that clinicians can properly calibrate
how they weight the model’s output in their clinical decision-making
to avoid risk®*2, The silent phase is an ideal stage to test the real-time
failure modes of the model and to identify mitigation strategies to
prevent worsening inequities and missing clinically relevant gaps in
subgroup-specific performance.

While our charting framework extends beyond the original con-
ceptualization of silent trials®, we note that, across the 75 studies
reviewed, each element of charting was reported by some studies.
We consider this to support the notion of a silent phase as offering an
opportunity for more thanjustinsitu technical validation. We suggest
that, if this phaseis considered a key component of Al translation, there
would be considerable advantage inincorporating amore holistic set
of practices. Without aligning silent phase evaluations with real-world
needs, we risk implementing clinical applications incorrectly, poten-
tially causing the optimism and momentumaround Al to collapse and
leading to preventable harm. The concept of translational trials, as
advocated by ourteam", frames silent evaluation as afundamental step

inresponsible Al translation, with methodological practices guided pri-
marily by the intention of replicating as closely as possible the clinical
conditionsin which the tool will be used. This paradigm then provides
maximally relevant and nuanced information about the model’s per-
formance to support more effective and precise translation.

We acknowledge that our scoping review has the limitation of
being restricted to practices reported in the literature through pub-
lished studies and is subject to the typical limitations of such work,
includingrestriction to English-language papers and a subset of pub-
lication venues. It is possible that some elements we observed to be
under-reported were actually undertaken by teams to facilitate trans-
lation but were not reported in the paper. We accept this limitation,
although we also note that some teams did report these aspects. There-
fore, we view the choice to report or not as reflective of the inherent
values of the broader field. To address this limitation, our research team
has planned aseries of key informantinterviews to investigate whether
other practices were undertaken but simply not described in the paper.

Another limitation concerns the review process and the terminol-
ogy. Weinitially focused on the termsilent trial and its known variants,
butitis possible that we are unaware of other terms describing analo-
gous evaluative processes. Thus, by missing such works, this review
might have failed to cover some other aspects of silent evaluations.
Similarly, somesilent evaluations may have been conducted by industry
groups butnot publishedintheliterature, being available only through
internal technical reports.

If the ultimate goal of the silent evaluation phase is to bridge the
gap in the translation from bench to bedside, we need to ensure that
the practices undertaken during this phase most closely approximate
the needs of the translational environment. By intentionally designing
silent trialsto gather evidence thatincorporates asociotechnicaland
systems engineering®“*lens, there is good reason to believe that we can
improve the efficacy of translation for these complex interventions®.
What does this mean for the silent evaluation phase? We believe that by
broadening the scope of practices undertaken during this translation
stage, we canimprove the Alimplementation ecosystemin healthcare.
These practices should reflect, as closely as possible, the intended
implementation setting. A translational evaluation paradigm embod-
ies this framing by explicitly positioning translation as the end goal
and necessitating the collection of evidence that adequately informs
this state'. As more attentionis placed onsilent evaluations, we hope
to provide constructive guidance based on this work to improve the
preparation, conductand reporting of silent phase evaluations and to
move towards afocus on a translational evaluation paradigm.

Methods

This scoping review follows the framework for scoping review studies
outlined by Arksey and O’'Malley". This study complies with the meth-
odology from the JBI Manual for Evidence Synthesis guidelines®® and
adheres to the PRISMA-ScR checklist (PRISMA extension for scoping
reviews)®. This review study was preregistered with the Open Science
Framework (https://osf.io/63bhx/) rather than PROSPERO, as it did not
assess direct health-related outcomes. Institutional ethics approval
was not required.

Information sources and search strategy
Our initial scope was to search the literature for studies reporting on
asilent evaluation (including processes reported under analogous
terms) of an Al tool in healthcare settings. The full search strategy
was developed with a University of Adelaide librarianin collaboration
with M.D.McC. and L.T. (Supplementary Table 1). The first search was
conducted on 23 October 2024 and updated on 25 September 2025.
Controlled vocabulary terms for nondatabase searches were derived
fromthe database search terms.

Searches were conducted using the PubMed, Web of Science and
Scopus databases. We also used reference snowballing (using reference
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lists from the included papers) and hand searched the literature from
these lists, including papers that fit our inclusion criteria. We chose not
toinclude regulatory guidelines as a primary source in this review, as
our focus is less on the Al product itself and more on the design and
ecological validity of its local testing.

During the process, we recognized that some teams published
different components of a silent phase evaluation across multiple
papers (for example, one paper might describe the model evaluation
whileanother describes the evaluation of human factors or workflows).
Therefore, a complementary search strategy was added during the
extraction stage, in which the reviewer (L.T.) performed an adjacent
handsearchforeachincluded papertofind additional studies explor-
ing sociotechnical evaluations of the silently tested Al system in the
final set of included papers. The papers sought were primarily on
human factors, stakeholder engagement, qualitative evaluation, or
adjunct studies that contained trial information not discussed in the
original paper. We believe that these papers provide information about
the broader life cycle of translating Al into practice that may not be
immediately reportedin currentsilent phase evaluations; however, we
extracted only information pertaining to the silent phase.

Eligibility criteria

Weincluded articlesthat described the evaluation of an Al or machine
learning model during a silent phase evaluation in a healthcare envi-
ronment (for example, hospitals, clinics, outpatient settings or other
environments where healthcare is provided). Due to the ambiguous
nature of classifying algorithms as Al, we relied on the consensus of
members with technical expertise to categorize algorithms as eligible.
We define Al (or machine learning) broadly as any model that builds
predictive models from input-output data®, with training on datasets
asakey process. We recognize that there may be a variety of opinions
onwhether some models constitute machine learning or Al; asagroup,
we sought to be broad in our inclusion criteria to ensure that cases in
which thesilent trial paradigm was used were included (encompassing
many traditional machine learning approaches). Weincluded abroad
variety of machine learning and deep learning models, with more
details on how papers self-classified their models available in Table
2. We excluded studies that were not related to healthcare, did not
involve Al or machine learning methods, involved models unrelated
toaclinical target or clinician use (for example, research-based use of
machine learning in health), mentioned the silent phase but were not
primaryresearcharticles, or described plansto conductasilent evalu-
ation (for example, protocol papers). Articles not written in English,
aswellasthose published before1January 2015, were excluded, as we
sought to understand current practices. Two reviewers carried out
titleand abstract screening, as well as full-text screening (L.T.and A.M).
A third reviewer (M.D.McC.) resolved conflicts. A systematic review
software (Covidence, Veritas Health Innovation®’) was used for each
stage of screening. The study selection criteria were applied to (1) title
and abstract screening, (2) full-text screening with two pilot rounds
and (3) full-text extraction for papers that did not meet the criteria
during data charting.

While conducting theinitial review of articles, we noted that the
lack of consistent nomenclature and definitions made it difficult to
distinguish atruesilent phase from other paradigms, such as external
or internal validations (see Table 1and Box 1 for the nomenclature of
testing paradigms). Through an iterative and collaborative process
with extractors and the wider CANAIRIgroup, we identified the follow-
ing elements as minimum qualifications for a silent phase evaluation:
(1) thetrial of the Altool must be conducted inits intended use setting
or simulate this setting as closely as possible (live), and (2) the Al tool’s
outputs must not be acted on by the intended users and should not
beseenatthetime of treatment (silent). We note that the ‘live’ nature
of the silent phase may be limiting depending on the operational
constraints of its intended context; thus, we emphasize replicating

the live context as closely as possible as an important consideration.
Forinstance, inradiology, most scans are not analysed in real time by
the clinician. As such, algorithms can run on consecutive prospec-
tive patient scans, but the results can be analysed retrospectively by
evaluators to mimic real-time practice as closely as possible while
remaining realistic. Another important distinction of silent trials is the
separation of model evaluation and care, meaning that we excluded
studies in which changes were made to the patient’s experience of
caretosuitthe study’s aims. For example, indiagnostic studies, model
outputs may not beacted onby the treating team, but the patient may
undergo study-specific procedures such as new tests or interven-
tions’. Asthe primary objective of asilent period is to first assess the
ecological validity of the model*¢, changing the way care is delivered
would contradict this goal. It should be noted that, among the various
interpretations of the word ‘silent’, we opted for silence defined by the
model prediction’s lack of impact on care, not the model itself being
silentinthe sense of being invisible (Table 1). This distinction allowed
us to include studies that engage clinical end users to test different
workflow integrations, evaluate user interfaces, and conduct other
preclinical testing that exposes users to an Al algorithm while main-
taining atleast anintended separation between model evaluation and
clinical care. Very often, we needed to review the full text of the paper
in extensive detail to ensure that the above two criteria were met. We
used at least two, often three, team members to agree on including
each of the final papers.

Our above-described criteria were iteratively refined by L.T. and
M.D.McC., with input from our authorship team, until we were satis-
fied that the studies included in the final analysis met the described
conditions. While certain aspects of the evaluation’s conduct remain
somewhat uncertain (see further details in the Discussion), our final
list ofincluded papers represents evaluations of Al tools that were vali-
dated live or near live in their intended implementation environment
(also see Table 2 for inclusion and exclusion criteria).

Data charting process

Our data charting form was initially developed by L.T. and M.D.McC.,
withinputfrom X.L., and then reviewed by the CANAIRI Steering Group.
The charting process was initially drafted based on the authorship
team’s own experiences with running silent evaluations at their respec-
tiveinstitutions, and we included items that were commonly reported
in these protocols”. We triangulated these protocols with relevant
reporting guidelines (for example, DECIDE-AI, TRIPOD + Al), regulatory
guidance (US Food and Drug Administration, Health Canada, Thera-
peutic Goods Administration (Australia)) and authoritative guidance
documents (for example, NICE, World Health Organization). Theitem
categories of information for extraction are listed in Supplementary
Table1,and aglossary of terms s availablein Box 1.

A key assumption we made in our charting process is that Al is a
sociotechnical system’”. Under this framing, the evaluation of an Al tool
mustinclude notonly the algorithm’s technical performance but also
the entire system in which it operates, combined with the human ele-
ment that sustainsits performance. Thisassumptionis groundedin the
lived experience of many members of our CANAIRI collaboration team
in developing and deploying machine learning models in healthcare
settings—a perspective that is gaining increasing support within the
literature’”*. We chose to chartinformation related to the evaluators,
their perception of the interface, human adaptation influencing Al
evaluation and the engagement of relevant stakeholders throughout
the process as entry points for sociotechnical evaluation.

We completed two charting pilot rounds of six full-text papers, the
first on grey literature (reports) and the second on original research
from scientific journals (hand searched). Once consensus on these
extractions was reached by L.T., M.D.McC. and X.L., we progressed
to the official extraction. Data charting consisted of a colour-coded
scheme in which items that the reviewer was unable to find were
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highlighted in red, uncertain items were highlighted in orange, and
charting elements found in the text were either copied directly or
paraphrased by the reviewer. Data were extracted using a standard-
ized data collection form created in Google Sheets (Alphabet). Two
independent reviewers (L.T. and C.S.) charted data for 55 studies and
any accompanying metadata (for example, separately published study
protocols, supplementary materials) inthe same repository. After the
initial extraction was completed, the papers were split among seven
group members (L.E., L.J.P.,A.v.d.V.,S.B.,,N.P.,C.S., M. Mamdani, G.K.,
H.T,N.C.K, M.D.McC.) based on their areas of expertise (system, techni-
cal, sociotechnical), and the papers were accordingly categorized into
these groups by L.T. Therefore, these members had separate Google
Sheets with L.T.s original charting results and were required to read
the papers and compare the initial charting against their own find-
ings, resulting in each paper undergoing a minimum of two reviews.
Elements remained in red if both reviewers were unable to find them,
while any conflicting responses were discussed with and resolved by
M.D.McC.or X.L.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The study database, which describes our full extraction from the
included studies, is publicly available at https://docs.google.com/spr
eadsheets/d/17CFyfViMOIMPQYnBquQ16H-fqGtYVNT9D-wCX5zZ041/
edit?usp=sharing.
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