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A scoping review of silent trials for medical 
artificial intelligence

 

A ‘silent trial’ refers to the prospective, noninterventional testing of 
artificial intelligence (AI) models in the intended clinical setting without 
affecting patient care or institutional operations. The silent evaluation 
phase has received less attention than in silico algorithm development or 
formal clinical evaluations, despite its increasing recognition as a critical 
phase. There are no formal guidelines for performing silent AI evaluations 
in healthcare settings. We conducted a scoping review to identify silent AI 
evaluations described in the literature and to summarize current practices 
for performing silent testing. We screened the PubMed, Web of Science and 
Scopus databases for articles fitting our criteria for silent AI evaluations, 
or silent trials, published from 2015 to 2025. A total of 891 articles were 
identified, of which 75 met the criteria for inclusion in the final review. We 
found wide variance in terminology, description and rationale for silent 
evaluations, leading to substantial heterogeneity in the reported informa­
tion. Overwhelmingly, the papers reported measurements of area under 
the curve and similar metrics of technical performance. Far fewer studies 
reported verification of outputs against an in situ clinical ground truth; 
when reported, the approaches varied in comprehensiveness. We noted less 
discussion of sociotechnical components, such as stakeholder engagement 
and human–computer interaction elements. We conclude that there is an 
opportunity to bring together diverse evaluative practices (for example, 
from data science, human factors and other fields) if the silent evaluation 
phase is to be maximally effective. These gaps mirror challenges in the 
effective translation of AI tools from computer to bedside and identify 
opportunities to improve silent evaluation protocols that address key needs.

Despite the increasing deluge of papers describing the development of 
artificial intelligence (AI) models for healthcare applications, strikingly 
few of those models have proceeded to clinical use1. A translational gap2 
remains, partially due to the substantial difference between building a 
model that works in silico (that is, validation within a dataset) and cre­
ating one that is clinically useful, actionable and beneficial to patients 
or the healthcare system3.

One mechanism for bridging the translational gap is conducting 
an evaluation following algorithmic validation, but before the clinical 
evaluation of the model in practice. This phase is known as a ‘silent trial’ 

(a term with many variants, including ‘shadow evaluation’ or ‘silent 
testing’) and is common practice among many healthcare institutions 
with advanced internal AI teams4,5. ‘Silent’ traditionally refers to the 
notion that the model’s outputs are produced in parallel to (and thus 
separate from) the standard of care; therefore, they do not influence 
clinicians (Table 1).

Primarily, the silent phase of AI development is used to ascertain 
whether the model will maintain its performance in a live context6. The 
value of this phase is that it allows teams not only to test a model for 
potential utility (data pipeline stability and model drifts, among other 
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being undertaken during this phase? (3) What are the implications 
of the latter in relation to the larger goal of responsibly translating AI 
into healthcare systems? Scoping reviews map the existing literature 
on a topic, identify knowledge gaps and clarify concepts. We find this 
method valuable because we are addressing a nascent paradigm in 
AI with the goal of synthesizing and reflecting on the available litera­
ture. This Analysis aims to bring clarity and consistency to the silent 

concerns; see the glossary in Box 1) but also to assess the financial sus­
tainability of models in real-world evaluations without affecting care 
or operation7. During this stage, teams can make informed decisions 
about whether to discard a model, iteratively improve its performance 
or move to deployment based on local evidence8.

The importance of local evidence is perhaps more relevant to AI 
tools than to historical healthcare interventions. While we would not 
expect the performance of a drug or device to change substantially 
when tested in a hospital across the street with the same patient 
population, this is indeed the case for AI models6,8,9. Even for mod­
els that have received regulatory clearance or approval based on 
clinical evidence, substantial differences may be apparent in local 
performance such that their reliability may vary across settings10,11. 
Researchers have noted the challenges of bringing AI systems to 
market based solely on retrospective evidence12,13. The silent evalu­
ation stage may represent a low-risk bridge between retrospective 
and clinical evidence that may help developers decide whether a 
clinical trial is warranted. The regulatory science of AI involves the 
important consideration of which types of evidence are acceptable 
for determining the safety of AI as a medical device. The silent phase 
of translation offers a low-risk testing paradigm that reflects real-
world conditions by which one might judge the performance of an 
algorithm. This may be a critical step before determining whether 
(and what type of) clinical trials should be pursued—a judgement 
that may be made by regulatory professionals, ethics committees 
or AI oversight bodies.

Given that the silent phase of AI testing offers an opportunity to 
evaluate performance locally using precise metrics relevant to the 
population and institution, yet does not affect care (thus minimizing 
risk to health institutions and patients alike), it is perhaps surpris­
ing that this key phase does not receive more attention. Silent trials 
have equivalents in other fields (for example, beta testing in software 
engineering, silent review in aviation, and simulations in training, 
which are standard practices), but, to the best of our knowledge, no 
reporting guidelines or authoritative publications have addressed 
the silent phase in medical AI. Our project group, the Collaboration 
for Translational AI Trials (CANAIRI), has a particular focus on building 
knowledge and best practices around the silent phase to facilitate local 
capacity-building in AI evaluations and to demonstrate accountable AI 
integration14. We conducted a scoping review and critical analysis15 to 
explore the literature around the following key points: (1) How is the 
silent phase defined, described and justified? (2) What practices are 

Table 1 | Range of definitions and nomenclature given to 
silent trials

Study type Definition

Prospective clinical validation 
study (modern silent 
evaluation)

A prospective algorithmic validation 
involving an assessment of the model’s 
predictions against live expert annotations to 
verify facts about the patient or outcome of 
interest. Separation is maintained between 
care and model evaluation.

Prospective algorithmic 
validation (traditional silent 
trial)

Running the model live while maintaining 
a separation between care and model 
evaluation; assessing model performance 
but not assessing against live annotations 
of real-world information beyond the data 
obtained

Prospective validation study 
(internal validation)

Conducting a cross-sectional assessment of 
a model’s performance

Prospective observational 
study

Integrated into the clinical system; may or 
may not be observable to clinical users

Temporal validation Prospective algorithmic validation with a 
particular focus on the model’s performance 
over time

BOX 1

Glossary of terms
Algorithmic bias: a systematic discrepancy in a model’s 
performance based on a feature that would be considered unfair 
in relation to non-clinically relevant constructs

Automation bias: over-reliance of human decision-making on an  
AI model or system, leading to preventable consequences

Contextualized subgroups of interest: a group of individuals 
with shared relevant attributes that have known or suspected 
associations with disparate health outcomes related to the intended 
use of an AI health technology

Data drift: a usually unanticipated change in the statistical 
properties of a model that affects its performance

Data pipeline: the complete pathway by which information flows 
from its point of entry into a system to the output of that system

Data preprocessing: methods for addressing consistency and 
quality among data elements before training

Failure modes: systematic patterns of error in relation to a specific 
metric (for example, false positives)

Feature selection: the choice of model inputs

Human adaptation: a change in human behaviour in response to the 
presence of an AI system

Human factors: aspects pertaining to the user of technology that 
can affect how the technology is perceived, integrated, vetted for 
errors and used in a wider system

Incidental findings: the identification of an imminent and potentially 
harmful error in relation to a specific patient, which could prevent 
harm if acted on

Model downtime: the time when the model is unavailable 
unexpectedly due to technical issues

Scalability: whether an algorithm’s use can be expanded to the 
entire context of its intended use

Silent: the model’s outputs do not influence the act of care for 
patients or operational systems

Sociotechnical system: the wider system in which algorithms exist—
involving human expertise; the coordination of different healthcare 
professionals, infrastructures and technical systems; and patient 
considerations

Sociotechnical: the interdependence between technology  
and humans

Temporal generalizability: an algorithm’s applicability to new, 
incoming data prospectively

Verification: the process of manually or computationally 
assessing individual model outputs against a ‘ground truth’ 
label—whether a label captured in the health record or another 
clinical system—by expert evaluation (for example, reader 
studies), or an expert or group of experts selected to conduct a 
manual review
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phase while considering the implications of current practices for AI 
translation efforts.

Results
From September 2024 to October 2025, we scoped the published lit­
erature for primary research studies published in English that describe 
testing an AI model in a manner closely mimicking its intended use but 
without modifications to the standard of care, to validate the model 
in a ‘live’ context. From a total of 898 papers, we removed duplicates 
(n = 29) and screened 530 full-text articles for inclusion (Fig. 1). After 
excluding papers that did not describe a true live validation study, those 
involving substantial alterations to patient care, those with insufficient 
detail for us to assess the silent component of their study and those that 
did not involve an AI tool, we finally included 75 studies.

We then looked for papers related to the AI tools evaluated in 
that set of 75 studies. We identified six additional studies that pro­
vided further details about the silent evaluation. Of these, two16,17 
contained information about the original silent phase evaluation that 
was included in data charting, while four others18–21 explored the later 
clinical, stakeholder or human factors impacts of the algorithm after 
the silent evaluation, during its integration into patient care. As our 
unit of analysis is the silent phase itself, we combined only the informa­
tion retrieved about the practices undertaken during the silent phase, 
excluding postdeployment work. Therefore, we incorporated the 
information extracted from the first two papers and did not include 
the latter four, as they were conducted while the model was not silent 
(that is, live), thus falling under the exclusion criteria. The results of 
data charting are summarized in Table 2.
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References from other sources (n = 7)  
Hand search (n = 5)
Snowball search (n = 2)

Title and abstract screening (n = 869)

Studies sought for retrieval (n = 530) 

Full-text screening of studies (n = 530) 

References removed (n = 29) 
Duplicates identified manually (n = 9)
Duplicates identified by Covidence (n = 20) 

Studies excluded (n = 339) 

Studies excluded (n = 401)   
Not in English (n = 1)
Retrospective (n = 79)
Not healthcare-related (n = 7)
No AI component (n = 55)
Robotics study (n = 27)
Unable to determine (n = 7)
Irrelevant to a silent trial (n = 115)
Directly a�ects patient care (n = 109)
Duplicate (n = 1)
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Preliminary studies included in review (n = 129)    

Sc
re
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Studies from databases and registers (n = 891) 
Scopus (n = 805)
Web of Science (n = 68)
PubMed (n = 15)
Citation searching (n = 3)

Studies excluded after extraction (n = 54) 

Studies included in review (n = 75)

Fig. 1 | PRISMA diagram showing the identification of evidence sources from database searches and hand search methods. Following the data charting process, a 
further 54 papers did not meet the criteria.

http://www.nature.com/NatHealth


Nature Health

Analysis https://doi.org/10.1038/s44360-025-00048-z

Table 2 | General information about the included silent studies

Study Aim and rationale Model type and 
intended use

Model evaluation Additional considerations Categorization

Aakre et al. 
(2017)21

To assess an 
automated SOFA 
score calculation 
for patients in the 
ICU

Predictive 
machine learning

• Agreement between automated SOFA 
scoring and manual scoring calculation over 
a 1-month period
• Comparison of 215 ICU inpatients’ SOFA 
scores at 3 hospital sites, with 5,978 total 
scores compared
• 134 random spot checks on 27 unique 
patients to assess the real-time accuracy of 
automated SOFA score calculation
• Manual scoring performed independently 
by research team members, with a chart 
review for comparison

Interviewed clinicians 
about interface features 
to visualize SOFA 
subcomponents

Compared model 
outputs with clinician 
annotations

Afshar et al. 
(2023)28

To assess the AI 
tool’s predictive 
performance and 
evaluative human 
factors

Predictive deep 
learning

• Algorithm performance: sensitivity and 
specificity
• Observed 100 random encounters with 
adult patients
• Described data flow from and to the EHR
• Described scalability and computational 
infrastructure

• Interview guide and survey 
to assess user acceptability 
of the tool
• Determined barriers and 
facilitators to using the tool

Framework for 
the design and 
implementation of 
the model

Alrajhi et al. 
(2022)75

To assess a real-
time severity 
prediction tool 
for COVID-19 
management

Predictive 
machine learning

• Algorithm performance: AUC/ROC, F1
• 185 cases for the prospective validation set
• Imputed missing data; addressed class 
imbalances

Clinician feedback related 
to class imbalance issue

Algorithmic 
validation study

Aydın et al. 
(2025)76

To validate 
and compare 
an ML-based 
scoring system 
for paediatric 
appendicitis

Diagnostic 
machine learning

• Algorithm performance: AUC, sensitivity, 
specificity, PPV, NPV
• Applied to 3,036 paediatric patients across 
13 hospitals and 13 paediatric centres
• ML-based diagnosis assessed against 
histopathological examination (gold 
standard)
• Compared ML model performance against 
existing scoring methods

• Specified separation of 
care and model validation
• Assessed feature 
interactions and ranked 
importance

Algorithmic 
validation, 
comparative study

Bachelot et al. 
(2023)77

To compare model 
performance for 
testicular sperm 
extraction

Predictive 
machine learning

• Algorithm performance: AUC, sensitivity, 
specificity
• 26 patients for the prospective validation 
set
• Described data processing

Assessed feature 
importance across models

Algorithmic 
validation study

Bedoya et al. 
(2020)39

To validate a sepsis 
prediction model

Diagnostic deep 
learning

• Algorithm performance: compared with 
standard EWS, compared multiple models 
with the standard process
• 1,475 encounters over a 2-month silent trial
• Model development team tracked alarm 
volume, resolved technical issues and 
identified label leakage
• Calculated alarm volume

Stakeholder engagement 
with clinical teams used

Comparison of the 
model with the 
standard-of-care 
algorithm

Berg et al. 
(2023)78

To assess an 
AI software 
for classifying 
palpable breast 
masses in a low-
resource setting

Predictive AI • Algorithm performance: AUC, specificity, 
NPR
• 758 masses in breast tissue
• A single radiologist reader reviewed AI- and 
radiologist-assigned malignancies
• Minimal training for users to mimic the 
conditions of intended use

Compared 
diagnostic 
performance with 
human readers

Brajer et al. 
(2020)36

To assess the 
model’s ability 
to predict the 
risk of in-hospital 
mortality for adult 
patients

Predictive 
machine learning

• Algorithm performance: ROC, PR, AUROC
• 5,273 hospitalizations, 4,525 unique adult 
patients in the ICU
• Assessed subgroup-specific performance 
for sensitivity, specificity and PPV
• Assessed threshold setting in different 
environments
• Described data and model availability; 
updated predictions daily

• Partnered with clinical 
and operational leaders 
to design the model and 
evaluation
• Clinical partners provided 
feedback into the interface
• Model fact sheet 
iteratively designed with 
stakeholder input

Compared 
algorithmic 
prediction with 
human annotations

Butler et al. 
(2019)79

To clinically 
validate an AI tool 
for triaging brain 
cancer

Triage machine 
learning

• Algorithm performance: sensitivity, 
specificity
• 104 patients with brain cancer
• Outcome assessment was blinded to the 
algorithm
• Some subgroup-specific analysis of under-
represented cancer cases

Simulated workflow run 
within a research laboratory

Compared 
algorithmic 
prediction with 
independent 
clinician diagnosis
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Study Aim and rationale Model type and 
intended use

Model evaluation Additional considerations Categorization

Campanella et al. 
(2025)80

To conduct a 
prospective silent 
trial of a model 
for lung cancer 
detection

Predictive 
machine learning

• Algorithm performance: AUC, PPV, NPV, 
sensitivity, specificity
• Application of an open-source foundation 
model with local fine-tuning
• 4-month trial period
• Subgrouped analysis by sample type, 
failure mode testing of false negatives
• Assessed different thresholds against 
primary metrics
• Described data pipeline and real-time 
stream

Assessed the attention 
areas of the model

Prospective silent 
trial

Chen et al. 
(2025)81

To evaluate 
the utility of 
a radiomics 
nomogram 
to predict 
oesophageal 
pathological 
progression

Predictive 
machine learning

• Algorithm performance: AUC, sensitivity, 
specificity, accuracy, DCA
• 251 cases
• Ground truth was reviewed by a pathologist 
and compared and combined with the 
model for overall clinical utility
• Described the need for preprocessing due 
to equipment differences

DCA for utility Clinical validation

Cheng et al. 
(2025)82

To prospectively 
validate a 
hypertension risk 
model

Predictive 
machine learning

• Algorithm performance: AUC, precision, 
sensitivity, specificity, calibration curves
• 961,519 cases
• Assessed fairness across age and sex, 
BMI across different risk levels, model 
performance, and socioeconomic factors in 
the high-risk group
• Discussed managing data missingness 
and shift

Clinician-focused app 
to provide clinicians an 
opportunity to assess 
prediction utility and risk 
factor contributions

Algorithmic 
validation

Chiang et al. 
(2025)83

To prospectively 
validate an 
early warning 
haemodynamic risk 
model

Predictive 
machine learning

• Algorithm performance: AUROC, AUPRC, 
precision, recall, specificity, false alarm rate 
and missed alarm rate
• 18,438 patient cases
• Assessed sex and age, as well as 
respiratory, cardiovascular, gastrointestinal 
and trauma groups on AUROC and AUPRC
• Model updates hourly

Algorithmic 
validation

Chufal et al. 
(2025)84

To prospectively 
and temporally 
validate a model 
predicting 
ineligibility for 
radiotherapy 
treatment

Predictive 
machine learning

• Algorithm performance: AUC
• 47 patients
• Compared model prediction with clinical 
decision on a case-by-case basis, with 
only the research team seeing the model 
predictions
• Noted fairness concerns by 
sociodemographic groups; stated that these 
were addressed through consistency in the 
assessment method

Discussion of threshold 
setting based on clinical 
impact to patients and risk 
assessment

Prospective 
algorithmic 
validation with 
clinical verification

Coley et al. 
(2021)85

To assess an 
algorithm’s 
predictive 
accuracy of suicide 
attempt within 90 
days

Predictive 
machine learning

• Algorithm performance: sensitivity, 
specificity, PPV, NPV
• Prospective algorithmic validation 
concurrent with the testing set

Temporal validation, 
internal algorithmic 
validation

Corbin et al. 
(2023)86

To conduct a silent 
trial of the model’s 
prospective 
performance

Predictive 
machine learning

Algorithm performance: AUROC, ROC, 
calibration, net benefit, expected utility
• 10,000–20,000 unique patients
• Bias assessed across protected 
demographic classes
• Mapping of data inputs to outputs across 
the data stream workflow

Prospective 
algorithmic 
validation

Dave et al. 
(2023)87

To evaluate 
the accuracy 
of a real-time 
model detecting 
abnormal lung 
parenchyma

Predictive deep 
learning

• Algorithm performance: AUROC, F1
• 100 patients, sample size rationale 
provided
• Analysed by sex, race, ventilation strategy 
and BMI
• Functionality embedded into an ultrasound 
machine
• Assessed different classification and 
contiguity thresholds
• Human assessment independent from 
predictions

Compared 
algorithmic 
prediction with 
human annotations

Table 2 (continued) | General information about the included silent studies
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Study Aim and rationale Model type and 
intended use

Model evaluation Additional considerations Categorization

El Moheb et al. 
(2025)88

To validate a model 
for automated 
billing coding

Administrative 
deep learning

• Algorithm performance: precision, recall, 
F1, AUPRC
• 268 operative notes
• Trained to predict 19 CPT codes for 
automated coding, compared with expert 
medical coders
• Assessed overcoding and undercoding, as 
well as discrepancies against ground truth

Prospective 
algorithmic 
validation study

Escalé-Besa et al. 
(2023)24

To validate a 
model’s diagnostic 
accuracy for skin 
diseases

Diagnostic deep 
learning

• Algorithm performance: accuracy, 
sensitivity, specificity per disease; TP, FP, 
TN or FN based on the top 3 most likely 
diagnosis
• 100 patients
• Failure care analysis
• Clinician diagnosis and offered AI 
prediction

Satisfaction of GPs with 
AI as decision support for 
each case

Compared 
diagnostic 
performance with 
human readers

Faqar-Uz-Zaman 
et al. (2022)89

To evaluate 
the diagnostic 
accuracy of an app 
in the ED

Diagnostic (N/A) • Algorithm performance:
• 450 patients
• Compared diagnostic accuracy for the top 
4–5 diagnoses between the AI tool and the 
ED physician (matched between candidate 
diagnoses)

Compared 
algorithmic 
prediction with 
human annotations

Felmingham et 
al. (2022)90

To evaluate an AI 
tool’s diagnostic 
accuracy for skin 
cancer detection

Diagnostic deep 
learning

• Algorithm performance: AUROC, 
sensitivity, specificity, FNR
• 214 cases, 742 lesions
• Trained on the use of a camera and 
software before the study
• Compared diagnostic accuracy 
with independent diagnoses by 
teledermatologists
• Analysis of AI errors

Compared 
algorithmic 
prediction with 
independent 
clinician diagnosis

Feng et al. 
(2025)91

To validate a 
diagnostic model 
for distinguishing 
thymomas from 
other nodules

Diagnostic 
machine learning

• Algorithm performance: ROC, DCA, 
sensitivity, specificity
• 23 patients
• Expert evaluation panel provided ground 
truth
• Performance of 3 radiologists (mixed 
experience levels) compared with model 
performance using AUC
• No clinical information provided to the 
radiologists

Described a training 
process for radiologists

Prospective clinical 
validation (silent trial)

Hanley et al. 
(2017)92

To evaluate an AI 
tool for predicting 
the need for a CT 
scan in patients 
with TBI

Triage machine 
learning

• Algorithm performance: AUROC, 
sensitivity, specificity, NPV, PPV; clinical 
utility
• 720 patient CTs across 11 ED sites
• Assessed model outputs against clinical 
annotations as determined by laboratory 
reading and imaging specialist readers 
according to a prespecified statistical plan
• Failure mode analysis of false negatives

Compared 
algorithmic 
prediction with 
human annotations

Hoang et al. 
(2025)93

To evaluate SAFE-
WAIT in a silent trial

Predictive 
machine learning

• Algorithm performance: recall, specificity, 
accuracy, precision, NPV, FPR, FNR, F1 score
• Bias assessment conducted by sex (male, 
female) and age bracket (young, middle-
aged, older adult)

Utility value calculation 
articulated in terms of 
clinically relevant decisions 
and outcomes

Silent trial 
(algorithmic 
validation)

Im et al. (2018)94 To validate an AI 
tool for diagnosing 
aggressive 
lymphomas before 
deployment to 
LMICs

Diagnostic deep 
learning

• Algorithm performance: specificity, 
sensitivity, efficiency, size measurements, 
staining, reproducibility
• Described data quality controls
• Equipment detailed
• 40 patients

Computational time and 
system components, 
cost, computational 
infrastructure

Independent 
verification of AI 
labels against 
clinician assessment

Jauk et al. 
(2020)19

To evaluate a 
delirium prediction 
model in its clinical 
setting

Predictive 
machine learning

• Algorithm performance: AUROC, 
sensitivity, specificity, FPR, FNR, PPV, NPV
• Rated against nurse assessment of the 
delirium risk score and the Confusion 
Assessment Method
• Reported failure modes and exclusions
• Independent assessment by nurses on 33 
patients, 86 with exposure to the AI output

• Expert group of senior 
physicians, ward nurses, 
technicians, employees
• Offered training for users

Compared outcomes 
with expert ratings

Table 2 (continued) | General information about the included silent studies
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Study Aim and rationale Model type and 
intended use

Model evaluation Additional considerations Categorization

Kim et al. (2023)10 To validate a 
commercial AI 
tool for detecting 
chest radiographic 
abnormalities

Diagnostic AI • Algorithm performance: AUROC, 
sensitivity, specificity
• Assessed pathologies on 3,047 radiographs 
with and without AI output across two 
centres
• CE marking by the Ministry of Food and 
Drug Safety of Korea
• 4 first- and third-year radiology residents as 
target users
• Reading times and failure care analysis

Compared 
diagnostic accuracy 
with and without AI 
assistance

Korfiatis et al. 
(2023)95

To evaluate an AI 
tool detecting PDA 
from CT scans

Diagnostic deep 
learning

• Algorithm performance: AUROC, 
sensitivity, specificity, F1
• Simulated a screening sample of 297 
consecutive abdominal CTs for validation by 
radiologists
• Assessed failure modes using tumour-
related parameters

• Reported substantial 
impact to clinical workflow
• Used heat maps during the 
review process

Radiologist-verified 
diagnostic accuracy

Kramer et al. 
(2024)96

To validate a 
model predicting 
malnutrition 
in hospitalized 
patients

Predictive 
machine learning

• Algorithm performance: AUROC, 
sensitivity, specificity, accuracy
• 159 patients
• Dieticians assessed malnutrition in 
admitted patients, compared (masked) with 
real-time ML predictions

Compared 
algorithmic 
prediction with 
human annotations

Kwong et al. 
(2022)97

To evaluate a 
model predicting 
hydronephrosis in 
utero

Predictive deep 
learning

• Algorithm performance: AUROC, AUPRC
• Assessed failure modes by age, laterality, 
changes in image processing and 
ultrasound machine
• Assessed bias for sex and postal code
• Looked for potential causes of drift
• Recorded model downtime
• 1,234 cases with prediction at the desired 
implementation care point and compared 
with later decision to proceed with surgery
• Reported data stream for model evaluation 
related to patient data confidentiality and 
security

• Measured clinician 
engagement
• Assessed usability and 
disruption to workflow
• Used activation maps
• Conducted patient and 
family surveys to assess 
receptivity

Verification of the 
model against the 
outcome label

Liu et al. (2023)98 To validate a 
model predicting 
postoperative pain

Predictive deep 
learning

• Algorithm performance: ROC, AUC, RMSE, 
correlation
• Compared algorithmic prediction 
of maximum pain score with clinician 
preprocedure prediction in adult inpatients 
undergoing noncardiac surgery with general 
anaesthesia
• Included patient race in the model but did 
not report performance subgrouped by race
• Reported dataset drift

Compared 
algorithmic 
prediction with 
independent 
clinician rating

Liu et al. (2024)99 To evaluate an AI 
model estimating 
bone age

Decision support 
deep learning

• Algorithm performance: RMSE, MSE
• Assessed performance by patient age and 
sex, as well as radiography vendor
• 973 radiographs across 9 hospitals
• 3 expert reviewers as gold standard; inter-
rater reliability calculated

• Measured time to 
completion of reading, 
human versus AI
• Per-bone κ values to 
indicate disagreements

Clinical validation 
study comparing AI 
with gold standard

Luo et al. 
(2019)100

To validate a 
model detecting 
gastrointestinal 
cancers

Diagnostic deep 
learning

• Algorithm performance: AUC, ROC, PPV, 
NPV, sensitivity, specificity
• Reviewed false negatives plus a random 
subset assessed against an independent 
assessment by experts
• 175 patients, 4,532 images collected from 
5 hospitals
• Noted the presence and location of 
tumours

Measured processing time Algorithmic 
validation with 
verification of a 
random subset

Lupei et al. 
(2022)101

To evaluate 
the real-time 
performance 
of a COVID-19 
prognostic model

Predictive 
machine learning

• Algorithm performance: AUC, ROC, PPV, 
NPV, sensitivity, specificity
• 13,271 symptomatic patients with COVID-19
• Evaluated sensitivity and specificity across 
sex and race
• Assessed label drift as a result of improved 
outcomes for patients

Opted out of research 
requests, noted in the chart 
and honoured by the team

Prospective 
algorithmic 
validation
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Mahajan et al. 
(2023)102

To assess a 
model’s predictive 
accuracy 
for 30-day 
postoperative 
mortality and 
major adverse 
cardiac and 
cerebrovascular 
events

Predictive 
machine learning

• Algorithm performance: AUC, ROC, PPV, 
NPV, sensitivity, specificity
• 206,353 patient cases
• Compared performance with an algorithm 
already used in care

SHAP values applied to 
retrospective test only

Prospective 
algorithmic 
validation study

Major et al. 
(2020)103

To validate a model 
predicting short-
term in-hospital 
mortality

Predictive 
machine learning

• Algorithm performance: descriptive 
statistics (n patients meeting the primary 
outcome)
• 9-month trial with 41,728 
predictions + 12-week silent test in which 
hospitalists reviewed 104 alerts to determine 
whether the alert was actionable and 
appropriate
• Assessed bias by comparing algorithmic 
fairness approaches

• Clinical stakeholders 
selected 75% PPV as the 
desired threshold for the 
model
• Experimented with 
different thresholds, varied 
across sites to reflect 
population needs

Prospective 
algorithmic 
validation

Manz et al. 
(2020)16

To validate 
an algorithm 
predicting 180-day 
mortality risk in a 
general oncology 
cohort

Predictive 
machine learning

• Algorithm performance: AUC, AUPRC, Brier 
score, PPV, NPV, sensitivity, alert rate tested 
at different risk thresholds
• 24,582 patient cases over a 2-month period
• Calculated performance metrics across 
different groups (disease site, practice type, 
self-reported race, sex, insurance, stage of 
cancer); reported performance to be better 
for women or at a later stage of cancer for 
men
• Described the model being locked; no 
updates made

Use of a nudging strategy 
described in a companion 
paper

Prospective 
algorithmic 
validation

Miró Catalina et 
al. (2024)104

To validate 
a diagnostic 
algorithm in 
radiology

Diagnostic deep 
learning

• Algorithm performance: TP, TN, FP, FN, 
sensitivity, specificity
• 278 cases of 471 participants
• Researchers interpreted reference 
radiology reports before inputting to AI to 
obtain a diagnosis for comparison
• Error testing for certain pathologies

Compared 
diagnostic 
performance with 
human readers

Morse et al. 
(2022)27

To evaluate a 
model detecting 
CKD in a paediatric 
hospital

Evaluative 
machine learning

• Algorithm performance: AUROC
• ML model draws data directly from the EHR 
in near real time
• 1,270 patient admissions over ~6 months

Prospective 
algorithmic 
validation

Nemeth et al. 
(2023)37

To validate a model 
for detecting septic 
shock

Predictive 
machine learning

• Algorithm performance: AUC, PPV, NPV
• 5,384 hospital admissions in 4,804 patients 
during a 6-month silent test, comparing 
predictions with a clinician’s independent 
judgement
• Extensive failure case analysis
• Tested different time horizons
• Described data flow and infrastructure for 
the model

• Codesign using interviews 
with multiple stakeholders
• User acceptance testing
• Alignment of model use 
with practice guidelines

Compared model 
outputs with clinician 
annotations

O’Brien et al. 
(2020)105

To evaluate an 
EWS for patient 
deterioration

Predictive 
machine learning

• Algorithm performance: PPV, sensitivity, 
thresholding
• 4,210 encounters, 97 patients
• Set up data analytics to reflect real-time 
streaming of live data

• Alert risk presented using 
red, yellow and green 
colour codes
• Nursing consult on 
visualization

Algorithmic 
validation study

Ouyang et al. 
(2020)32

To validate a 
segmentation 
model assessing 
cardiac function

Predictive deep 
learning

• Algorithm performance: AUC, RMSE, R2

• Measurements of cardiac function in 1,288 
patients
• Compared model measurements with 
those by human annotators, with manual 
blinded re-evaluation by 5 experts for cases 
with a large discrepancy between the model 
and annotations

Compared model 
outputs with clinician 
annotations

Pan et al. 
(2025)106

To validate a model 
predicting the 
utility of CT for 
mTBI

Predictive 
machine learning

• Algorithm performance: AUC, accuracy, 
sensitivity, specificity, PPV, NPV, F1, DCA
• 86 patients
• ML model compared with serum 
biomarkers for TBI and a statistical 
regression model

• SHAP values
• DCA to assess clinical 
utility

Prospective clinical 
validation (silent trial)
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Pou-Prom et al. 
(2022)34

To validate an early 
warning system in 
inpatients

Predictive 
machine learning

• Algorithm performance: AUC, PPV, 
sensitivity
• Determined a composite outcome label
• Described the shift needed to 
accommodate changes due to onset of the 
COVID-19 pandemic
• Described a detailed preprocessing plan
• Evaluated the processing stream
• Initially planned a 4-month trial, which was 
extended to 6 months
• Conducted training with users

Weekly check-ins with 
stakeholders during the 
silent phase

Real-time algorithmic 
validation

Pyrros et al. 
(2023)107

To validate a model 
detecting type 
2 diabetes from 
chest radiographs 
and EHR data

Predictive deep 
learning

• Algorithm performance: AUROC, PPV, 
sensitivity, specificity, F1, Youden’s J index, 
PR, NPV, odds ratio, demographics
• 9,943 chest radiographs
• Noted the potential for health disparities; 
planned subgroup analysis by race/
ethnicity; mentioned the need for fine-
tuning due to fairness and robustness issues
• Data stream and infrastructure described

Used an animated 
technique through an 
autoencoder for feature 
highlighting

Algorithmic 
validation study

Qian et al. 
(2025)108

To validate a model 
predicting surgical 
intervention need 
for paediatric 
intussusception

Predictive deep 
learning

• Algorithm performance: AUC, accuracy, 
NPV, F1, ROC
• 50 patients
• Reported consistent performance across 
different patient populations by age

Algorithmic 
validation

Rajakariar et al. 
(2020)25

To validate a 
smartwatch device 
for detecting atrial 
fibrillation

Diagnostic 
machine learning

• Algorithm performance: sensitivity, 
specificity, TP, TN, Cohen’s κ for agreement
• Failure case analysis for unclassified 
tracings assessed by 2 electrophysiologists
• Described the data pipeline
• 200 consecutive patients over 6 months, 
439 ECGs
• Cardiologist diagnosis as the reference 
standard

Compared device 
output with clinician 
diagnosis

Rawson et al. 
(2021)109

To validate a 
model detecting 
secondary 
bacterial infection 
during COVID-19

Predictive 
machine learning

• Algorithm performance: AUROC, 
descriptive analysis

Prospective pilot test 
of the algorithm

Razavian et al. 
(2020)33

To validate a 
model predicting 
outcomes for 
hospitalized 
patients with 
COVID-19

Predictive 
machine learning

• Algorithm performance: AUROC, AUPRC, 
PPV, thresholded sensitivity, confidence 
intervals
• Integration through the EHR; data flow 
described
• Described the cleaning process, feature 
minimization, threshold selection and time 
horizon
• 445 patients over 474 admissions (109,913 
prediction instances)
• Medical students and practicing physicians 
assessed face validity, timing and clinical 
utility

• Review with medical 
students to assess 30 
patient encounters for 
impact on clinical decision-
making from model 
prediction
• Interface described
• Feature-level XAI

Prospective 
observational study 
(unclear of impact)

Ren et al. 
(2025)110

To evaluate a 
smartphone-based 
AI for classifying 
auricular 
deformities

Diagnostic deep 
learning

• Algorithm performance: AUC, ROC, 
sensitivity, specificity, precision, F1 score
• 272 cases
• Ground truth established by two 
independent professionals
• Compared human and model performance
• Scalable and low-cost diagnostic support
• Guidance for proper image acquisition
• Failure analysis identified discrepancies 
between retrospective and prospective 
validation sets
• Described the data pipeline and inference 
process

Clinical validation

Schinkel et al. 
(2022)111

To validate a 
model predicting 
a positive blood 
culture result

Predictive 
machine learning

• Algorithm performance: AUROC, AUPRC, 
calibration, feature contributions, DCA
• Described data processing in a live context
• 3-month period of real-time validation

Real-time 
prospective 
algorithmic 
validation
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Shah et al. 
(2021)112

To validate a model 
predicting clinical 
deterioration

Predictive 
machine learning

• Algorithm performance: AUPRC, AUROC, 
PPV, NNE
• Preplanned subgroup analysis by race, sex 
and age revealed discrepancies
• 146,446 hospitalizations in 103,930 unique 
patients
• Described data processing steps and 
feature importance calculations

Algorithmic 
validation study

Shamout et al. 
(2021)113

To validate a 
model predicting 
deterioration from 
COVID-19

Predictive 
machine learning

• Algorithm performance: AUC, PR, PPV, NPV
• 375 examinations
• Real-time extraction; addressed 
computational resources

Prospective 
algorithmic 
validation (silent trial)

Shelov et al. 
(2018)38

To validate a 
model predicting 
clinical acuity in a 
paediatric ICU

Machine learning 
decision support

• Algorithm performance: Littenberg 
Technology Assessment in Medicine 
framework
• Approximately 6-month verification phase 
before going live
• Measured the impact of the model in EHR 
on processing time
• Validation done through a survey for 
project team clinicians to complete (315 
forms for 182 patients)
• Retrospective analysis of data quality and 
patients meeting the at-risk criteria
• Reported on the availability of the 
algorithm

• Some interfaces included
• Design included a 
multidisciplinary team 
comprising physicians, 
nurses, informaticians, 
respiratory therapists and 
improvement advisors

Prospective 
verification of the 
model against 
clinical judgement

Sheppard et al. 
(2018)29

To validate 
an algorithm 
for triaging 
patients with 
suspected high 
BP for ambulatory 
pressure 
monitoring

Triage machine 
learning

• Algorithm performance: sensitivity, 
specificity, PPV, NPV, AUROC
• Compared the accuracy of the triaging 
strategy across subgroups (by setting, 
age, sex, smoking status, BMI, history of 
hypertension, diabetes, CKD, cardiovascular 
disease and BP measuring device)
• 887 eligible patients with 3 same-visit BP 
readings
• Described the rationale for excluding cases 
based on data missingness

Advised patients with 
hypertension history on 
the design of the project, 
recruitment and study 
literature before ethics 
submission

Comparison of 
algorithmic triaging 
approach against the 
standard

Shi et al. (2025)114 To evaluate a 
model predicting 
the risk of 
colorectal polyp 
recurrence

Predictive 
machine learning

• Algorithm performance: ROC, DCA, 
sensitivity, specificity
• 166 patients

• DCA to assess clinical 
utility
• Demonstrated the user 
interface

Prospective 
algorithmic 
validation study

Smith et al. 
(2024)115

To evaluate a 
model for breast 
cancer screening

AI decision 
support

• Algorithm performance: recall or no recall 
decision
• Assessed concordant and discordant cases
• 8,779 patients aged 50–70 years
• Trained film readers verified the results
• Assessed multiple features of patients and 
scan results

Regions of interest available 
during reviews

Compared 
diagnostic 
performance with 
human readers

Stamatopoulos 
et al. (2025)116

To validate a 
model predicting 
miscarriage risk

Predictive 
machine learning

• Algorithm performance: sensitivity, 
specificity, PPV, NPV
• Assessor had access to ground truth and 
compared algorithm predictions against 
short-term outcomes

Inferred a lack of clinical 
utility due to unreliable 
predictions

Prospective 
algorithmic 
validation study

Stephen et al. 
(2023)20

To validate a 
model detecting 
paediatric sepsis

Predictive 
machine learning

• Algorithm performance: AUC, PPV
• 8,608 cases (1-year period)
• Thresholding for alerts to consider false 
alerts, alert fatigue, resources for sepsis 
huddle

Team of clinicians, data 
scientists, improvement 
experts and clinical 
informaticians; regular 
meetings throughout the 
project

Real-time algorithmic 
validation

Swinnerton et al. 
(2025)117

To prospectively 
validate a 
prediction tool for 
severe COVID-19 
risk

Predictive 
machine learning

• Algorithm performance: AUC, calibration
• 51,587 infections
• Assessed subgroup performance

Feature importance Prospective 
algorithmic 
validation study
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Tan et al. (2025)26 To clinically 
validate AI-based 
multispectral 
imaging for burn 
wound assessment

Classification 
deep learning

• Algorithm performance: sensitivity, 
specificity, accuracy
• 40 patients, 70 burn images
• Failure mode analysis affecting 
overdiagnosis
• Bias assessment by skin pigmentation and 
tattoo presence
• Reported on availability, feasibility and time 
to diagnostic result
• Described the user interface
• UKCA class I medical device, ISO 13485

• Reported evaluator 
training
• Described the user 
interface

Prospective clinical 
validation study

Tariq et al. 
(2023)118

To validate a model 
screening for low 
bone density

Screening 
machine learning

• Algorithm performance: image label, 
precision, recall, F score, AUROC
• For 2 consecutive days, curated 344 scans 
(with and without contrast) from patients 
aged ≥50 years
• Some analysis of lower-performing areas

Heat maps for regions of 
interest

Algorithmic 
validation study

Titano et al. 
(2018)119

To simulate 
the clinical 
implementation of 
a triage algorithm 
for radiology

Triage deep 
learning

• Algorithm performance: AUC, sensitivity, 
specificity, accuracy, time to notify about 
critical findings, runtime
• 180 images reviewed by a radiologist and 
a surgeon (50/50 split); 2 radiologists and 
a neurosurgeon reviewed images without 
access to the EMR or prior images

Prospective 
simulated trial with 
human readers

Vaid et al. 
(2020)120

To validate 
an outcome 
prediction model 
for COVID-19

Predictive 
machine learning

• Algorithm performance: AUROC, AUPRC, 
F1, sensitivity, specificity
• 21-day trial
• Assessed race as a potential contributing 
variable to outcome prediction

SHAP scores Prospective 
algorithmic 
validation (silent trial)

Wall et al. 
(2022)121

To evaluate 
a model for 
supporting 
radiation therapy 
plans

Predictive 
machine learning

• Algorithm performance: prediction error, 
ROC, concordance
• VQA application provides failures for 
features, top 5 features and ‘total gain’
• Reported runtime and compute power
• Physicists measured 445 VMAT plans over 
3 months
• VQA predictions recorded alongside PSQA 
measurements

Prospective 
validation including 
comparison with the 
standard of care

Wan et al. 
(2025)122

To validate a 
model predicting 
neoadjuvant 
treatment response

Predictive 
machine learning

• Algorithm performance: AIC, ROC, PPV, 
NPV, DCA, calibration
• 76 patients
• Compared the performance of a clinical–
radiomics model to that of a radiomics 
model, a clinical model and a radiologist’s 
subjective assessment

DCA to assess potential 
clinical benefit

Clinical validation

Wang et al. 
(2019)123

To validate a model 
predicting new-
onset lung cancer

Predictive 
machine learning

• Algorithm performance: AUC, ROC, PPV, 
sensitivity, specificity
• Performance within each risk category
• 836,659 patient records

Algorithmic 
validation study

Wang et al. 
(2025)124

To validate a model 
for cardiovascular 
disease diagnosis

Diagnostic deep 
learning

• Algorithmic validation: AUC, sensitivity, 
specificity, F1, accuracy
• 62 patients
• Ground truth established by 3 emergency 
physicians reviewing the data, compared 
with algorithm outputs

SHAP values Algorithmic 
validation with 
clinical verification

Wissel et al. 
(2020)125

To validate an 
NLP application 
to assign surgical 
candidacy for 
epilepsy

Decision support 
machine learning

• Algorithm performance: AUC, sensitivity, 
specificity, PPV, NPV, NNS, number of 
prospective surgical candidates
• Retrained the model weekly on the most 
recent training set based on free text notes
• Verification on 100 randomly selected 
patient cases
• Tested the inter-rater reliability of clinicians’ 
manual classifications versus the algorithm

Interpretability analysis 
revealed wording 
associated with surgical 
candidacy

Algorithmic 
validation with 
verification of a 
random subset

Wong et al. 
(2021)30

To temporally 
validate a model 
predicting acute 
respiratory failure

Predictive 
machine learning

• Algorithm performance: AUROC, AUPRC, 
sensitivity, specificity, PPV, NPV
• Event horizon
• 122,842 encounters, 112,740 controls

Temporal validation 
study
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Composition of silent evaluations
The geographical locations and institutions of the included silent 
evaluations were extracted. From the 75 final papers (excluding sister 
studies, as they share the same characteristics), we found silent evalu­
ations performed in Australia, Austria, Canada, China, France, India, 
Germany, Mexico, the Netherlands, Saudi Arabia, Spain, South Korea, 
Taiwan, Turkey, the UK and the USA, with demographic information 
obtainable for 74 of the 75 papers (as shown in Fig. 2, generated using 
R software22 and RStudio23). Most silent evaluations were conducted 
in the USA (48%), China (19%) and the UK (7%). A list of institutions 
(hospitals and research centres) where silent evaluations were per­
formed is provided in Table 3. Nine studies reported the evaluation of 
a commercially available AI system. Four of the nine studies reported 
the approval regime10,24–26 (for example, CE-marked, cleared device, or 
approved device and class rating), while the remaining papers did not 
provide details about the system.

Study design and purpose
Our eligibility criteria led us to papers that self-identified as silent 
trials, as well as to model validations under other names and forms 
that paralleled the silent trial methods. Importantly, only 15 studies 
explicitly used the term silent to describe their evaluation, highlight­
ing that similar methodologies exhibit substantial variation in their 
nomenclature and conceptualization.

Definitions varied along a spectrum, ranging from technical valida­
tion of the algorithm in a live clinical environment to broad, multistage 

silent evaluations of the clinical setting. We note that algorithmic valida­
tion, clinical validation, temporal validation and prospective validation 
were often used interchangeably to describe similar methodologies but 
with varying scopes of evaluation (Table 2). Variation in the clinical veri­
fication of the model (human or automated annotation of ground truth 
for model comparison) was less predictive of the breadth and depth 
of clinical evaluation than the purpose of the trial itself. For instance, 
some papers aimed to prospectively validate the technical performance 
of a model (for example, “…to evaluate the ability of three metrics to 
monitor for a reduction in performance of a CKD model deployed at a 
paediatric hospital.” (ref. 27)), while others purported to evaluate the 
potential clinical utility of the algorithm across a wider array of elements 
(for example, “…to assess the AI system’s predictive performance in a 
retrospective setting and evaluate the human factors surrounding the 
BPA before initiating the quasi-experimental clinical study.” (ref. 28)).

While we only included papers for which we could be relatively 
confident that there was a separation between model evaluation and 
clinical care, this core component of the silent phase was often not 
clearly articulated. When not articulated as such, we inferred separa­
tion from contextual information within the paper (for example, “Clini­
cians assessed patients as per usual practice.”), grammatical tense (for 
example, “This algorithm would have identified X patients in practice.”) 
and minor methodological cues (for example, “The research team did 
not intervene in the clinical management of these patients.”).

The length of the evaluation phase was consistently reported, 
either as a specified date range or as a quantitative number of patients 

Study Aim and rationale Model type and 
intended use

Model evaluation Additional considerations Categorization

Xie et al. (2025)126 To validate a model 
diagnosing axial 
spondyloarthritis

Diagnostic deep 
learning

• Algorithmic validation: AUC, accuracy, 
sensitivity, specificity, F1, precision
• 209 patients
• Diagnostic accuracy compared with 
accepted clinical classification criteria for 
each patient

SHAP values Algorithmic 
validation

Ye et al. (2019)127 To validate a real-
time early warning 
system predicting 
high risk of 
inpatient mortality

Predictive 
machine learning

• Algorithm performance: sensitivity, 
specificity, PPV, ROC, C-statistic, hazard 
ratios
• 11,762 patients with an assigned EWS

Top 50 important features Algorithmic 
validation study

Ye et al. (2020)128 To validate a 
nomogram for 
predicting liver 
failure

Predictive 
machine learning

• Algorithm performance: precision, recall, 
accuracy, F1
• 120 patients undergoing hepatectomy

Algorithmic 
validation study

Yu et al. (2022)129 To validate a sepsis 
prediction model

Predictive 
machine learning

• Algorithm performance: F1, sensitivity, 
specificity, AUROC, AUPRC
• 3,532 alerts; 388 met the sepsis criteria
• Analysed model successes and failures
• Considered scalability through compute 
requirements

SHAP values for a ‘lite’ 
version of the model

Algorithmic 
validation study

Zhang et al. 
(2025)130

To validate a model 
identifying atrial 
fibrillation after 
ischaemic stroke

Diagnostic deep 
learning

• Algorithm performance: AUC, sensitivity, 
specificity, PPC, NPV
• 73 patients
• Assessed model performance by patient 
age bracket
• An independent researcher conducted a 
blinded review of predicted atrial fibrillation 
status and actual diagnosis after clinical 
workup
• Described data cleaning and patient 
inclusion criteria

Algorithmic 
validation

AIC, Akaike information criterion; AUC, area under the curve; BMI, body mass index; BP, blood pressure; COVID-19, coronavirus disease 2019; CKD, chronic kidney disease; CPT, Current 
Procedural Terminology; CT, computed tomography; DCA, decision curve analysis; ECG, electrocardiogram; ED, emergency department; EMR, electronic medical record; EWS, early warning 
score; FN, false negative; FNR, false negative rate; FP, false positive; GP, general physician; ICU, intensive care unit; ISO, International Organization for Standardization; LMICs, low- to middle-
income countries; ML, machine learning; MSE, mean square error; mTBI, mild traumatic brain injury; N/A, not applicable, NLP, natural language processing; NNE, number needed to evaluate; 
NNS, number needed to screen; NPR, negative prediction rate; NPV, negative predictive value; PDA, pancreatic ductal adenocarcinoma; PPV, positive predictive value; PR, precision–recall; 
PSQA, patient-specific quality assurance; RMSE, root mean square error; ROC, receiver operating characteristic; SOFA, sequential organ failure assessment; TBI, traumatic brain injury; TN, true 
negative; TP, true positive; UKCA, UK Conformity Assessed; VMAT, volumetric modulated arc therapy; VQA, virtual quality assurance; XAI, explainable AI.
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or cases; however, a justification or rationale for these choices was 
rarely provided. The total time period for silent evaluations ranged 
from 2 days to 18 months.

Model evaluation during the silent phase
Most studies described the input data and their form (for example, 
tabular data and images), and more than half described how the inputs 
were selected during the development stage. Some studies focused 
explicitly on technical performance-related reasons for feature selec­
tion, while others reported clinical justifications for specific variables, 
including the feasibility of using these variables relative to the intended 
use environment (and thus their relevance to evaluation during the 
silent phase).

Metrics of model performance included AUROC (area under the 
receiver operating characteristic curve), sensitivity, specificity, nega­
tive predictive value and positive predictive value, with all studies 
describing at least one of these. Some studies, often predominant in 
medical imaging, examined model performance in greater depth and 
included an assessment of failure modes—for example, descriptive 
performance on subgroups within disease categories or an explora­
tion of a specific class of suboptimal performance, such as describing 
all false-negative cases.

Few studies that reported feedback to recalibrate the model 
included changing model thresholds to improve sensitivity or specificity, 
as well as updating the model based on changing demographics or fea­
tures of the prospective patients. Some papers16,29,30 reported not updat­
ing the model during the evaluation (for example, “Models were not 
retrained for both validations for fair assessment.” (ref. 30)). Rarely did 
studies describe data shifts or the steps taken to address performance 
shifts; often, these were simply observed during the evaluation period.

A minority of studies addressed potential algorithmic biases. Typi­
cally, this meant exploring model performance among contextualized 
subgroups of interest (that is, algorithmic bias), which involves assess­
ing an algorithm’s performance against identified clinical (for example, 
specific health conditions) or demographically defined (for example, 
age, sex, race and ethnicity) subgroups at risk of disparate health out­
comes based on the intended use of the AI tool (that is, marginalized, 
vulnerable or under-represented groups)31. Race and sex were the 
most common subgroups of interest; rarely was a link made to health 
inequities or other structural issues as a rationale for conducting this 
testing, and when justified, it included only a general appeal.

In addition to subgroup analyses, a subset of studies examined 
algorithmic bias that appeared at test time when development and eval­
uation settings did not match. Some reported drops in performance 
linked to noisy or incomplete data and inconsistencies in electronic 
health record (EHR) coding, while others noted reduced accuracy 
due to differences in data acquisition, patient populations and clinical 
practices. Some studies specifically linked these issues to temporal or 
distributional shifts between training and deployment data. A common 
conclusion across all studies was that a performance drop is apparent 
when moving from retrospective to live evaluation, showing that mod­
els often perform less reliably during silent or prospective evaluation.

A key process during the silent phase is verifying the correctness 
of the model’s predictions in a live environment, which we have termed 
‘verification of model outputs’. Such verification could refer to any of 
the following: agreement between a model’s prediction and information 
noted or coded in the medical record; an expert evaluator’s (for example, 
a physician’s or nurse’s) assessment of the model prediction; or a case-
by-case evaluation by experts independently compared with the model’s 
outputs to determine agreement, conducted blind to the model output 
for comparison purposes. We categorize verification in our papers as 
human annotation versus automatic annotation, in which trials used 
either automated annotation of ground truth (obtaining algorithm per­
formance (AUROC) by comparing with a test set of clinical information 
that was not transparently defined) or live human annotation (compar­
ing the algorithm with clinical ground truth obtained through expert or 
novice consensus panels during the trial). When human annotation was 
used, only a small minority of these studies described the characteristics 
of evaluators, such as qualifications, role or whether they received any 
formal instructions for review. However, the evaluator of the algorithm—
who was responsible for comparing the model with annotations and for 
viewing the system during the trial—was often invisible and was rarely 
reported. When alluded to, evaluators were used either to provide an 
independent assessment of the same outcome the model was predicting 
(for example, “Variance between performance of senior sonographers 
and AI measurements was compared.” (ref. 32)) or to evaluate aspects of 
the tool itself, such as establishing clinical utility (for example, “assessed 
the face validity, timing, and clinical utility of predictions” (ref. 33)). In 
some cases, it was not clearly described whether the evaluator’s role was 
to conduct an independent (blind) assessment of the same outcome the 
model was meant to predict or whether they were viewing the model 
output and meant to verify its accuracy.
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1
5
10
15
20
25
30
35
40

Fig. 2 | World map showing the number of silent trials identified by country. 
The countries of silent trials were counted once for each paper, if available  
(74 of 75 papers). The USA was the most represented country (36 trials),  

followed by China (14 trials), the UK (5 trials) and Canada (3 trials). In total,  
16 countries were represented in the silent trials. Figure created using R software 
and RStudio (2025).
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Table 3 | Demographic information of the included final 75 papers

Trial Country Institutions

Organ failure: Aakre et al. (2017)21 USA Mayo Clinic hospitals in Rochester, MN, and Jacksonville, FL

NLP for opioid use: Afshar et al. (2023)28 USA University of Wisconsin Hospital

COVID-19: Alrajhi et al. (2022)75 Kingdom of Saudi Arabia King Faisal Specialist Hospital and Research Centre

Appendicitis: Aydın et al. (2025)76 Turkey 13 tertiary paediatric hospitals across Turkey

Sperm: Bachelot et al. (2023)77 France Assistance Publique-Hopitaux de Paris, Sorbonne University, Paris

Sepsis: Bedoya et al. (2020)39 USA A hospital in the Duke University Health System

Breast: Berg et al. (2023)78 Mexico Hospital Valentin Gomez Farias and Hospital General de Tijuana

Mortality: Brajer et al. (2020)36 USA Duke University Health System

Brain cancer: Butler et al. (2019)79 UK Western General Hospital, Edinburgh

Lung cancer: Campanella et al. (2025)80 USA N/A

Neoplasia: Chen et al. (2025)81 China N/A

Hypertension: Cheng et al. (2025)82 China 4 Taklamakan Desert-adjacent regions in northwest China

Haemodynamic instability: Chiang et al. (2025)83 Taiwan Taipei Veterans General Hospital

Breast cancer: Chufal et al. (2025)84 India Rajiv Gandhi Cancer Institute & Research Centre

Suicide risk: Coley et al. (2021)85 USA HealthPartners, Henry Ford Health System, Kaiser Permanente

DEPLOYR (also a framework): Corbin et al. (2023)86 USA Stanford Health Care, Stanford, CA

Lung: Dave et al. (2023)87 Canada London Health Sciences Center, London, Ontario

Breast cancer: El Moheb et al. (2025)88 USA University of Virginia Medical Center

Skin lesion: Escalé-Besa et al. (2023)24, using study 
protocol by Escalé-Besa et al. (2022)131

Spain Primary care centres managed by Institut Catala de la Salut, 
Catalonia

Emergency department: Faqar-Uz-Zaman et al. (2022)89, 
using study protocol by Faqar-Uz-Zaman et al. (2021)132

Germany University Hospital Frankfurt

Skin cancer: Felmingham et al. (2022)90 and  
results paper by Felmingham et al. (2023)133

Australia Alfred Hospital and Skin Health Institute, Melbourne

Chest: Feng et al. (2025)91 China Tangshan People’s Hospital

Head injury: Hanley et al. (2017)92 USA Allegheny General Hospital, Pittsburgh, PA; Baylor University Medical 
Center, Dallas, TX; Detroit Receiving Hospital, Detroit, MI; Emory 
University School of Medicine and Grady Memorial Hospital, Atlanta, 
GA; Hartford Hospital, Hartford, CT; R Adams Cowley Shock Trauma 
Center, Baltimore, MD; University of Rochester Medical Center, 
Rochester, NY; University of Texas Memorial Hermann Hospital, 
Houston, TX; University of Virginia Health System, Charlottesville, VA; 
Washington University Barnes Jewish Medical Center, St. Louis, MO; 
Wayne State University Sinai-Grace Hospital, Detroit, MI

Sepsis: Hoang et al. (2025)93 Australia N/A

Lymphoma: Im et al. (2018)94 USA Massachusetts General Hospital, Boston, MA

Delirium: Jauk et al. (2020)19 Austria LKH Graz II

Chest: Kim et al. (2023)10 South Korea N/A

Pancreas: Korfiatis et al. (2023)95 USA N/A

Malnutrition: Kramer et al. (2024)96 Austria University Hospital Graz

Hydronephrosis: Kwong et al. (2022)97 Canada Hospital for Sick Children, Toronto, Ontario

Pain prediction: Liu et al. (2023)98 USA Massachusetts General Hospital, Boston, MA

Bone age: Liu et al. (2024)99 China Children’s Hospital of Zhejiang University School of Medicine, 
Children’s Hospital of Fudan University, The First Affiliated Hospital 
of Sun Yat-Sen University, Xi’an Children’s Hospital Affiliated to Xi’an 
Jiaotong University, Tianjin Medical University General Hospital, 
Children’s Hospital of Chongqing Medical University, Shenzhen 
Children’s Hospital, The Second Affiliated Hospital of Nanchang 
University, Tongji Hospital of Tongji Medical College of Huazhong 
University of Science and Technology

Gastrointestinal: Luo et al. (2019)100 China Sun Yat-sen University Cancer Center, North Guangdong People’s 
Hospital, Shaoguan; Wuzhou’s Red Cross Hospital, Wuzhou; Jiangxi 
Cancer Hospital, Nanchang; Puning People’s Hospital, Puning; 
Jieyang People’s Hospital, Jieyang

COVID-19: Lupei et al. (2022)101 USA N/A
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Trial Country Institutions

Postoperative: Mahajan et al. (2023)102 USA 20 hospitals in the University Pittsburgh Medical Center health 
network

End of life: Major et al. (2020)103 USA NYU Langone Health

Morality: Manz et al. (2020)16 USA University of Pennsylvania Health System (multiple practices)

Chest: Miró Catalina et al. (2024)104, using protocol by 
Miró Catalina et al. (2022)134

Spain Osana Primary Care Centre Catalonia

Kidney disease: Morse et al. (2022)27 USA Lucile Packard Children’s Hospital, Stanford University

Shock: Nemeth et al. (2023)37 USA Mayo Clinic

Deterioration: O’Brien et al. (2020)105 USA Duke University Hospital System

Cardiac: Ouyang et al. (2020)32 USA Cedars-Sinai Medical Center

Traumatic brain injury: Pan et al. (2025)106 China Wuhan Yangtze River Shipping General Hospital

Early warning system: Pou-Prom et al. (2022)34 Canada St Michael’s Hospital, Toronto, Ontario

Type 2 diabetes: Pyrros et al. (2023)107 USA Emory Hospital and 28 geographically unique locations

Enema: Qian et al. (2025)108 China Children’s Hospital of Soochow University and Affiliated Changzhou 
Children’s Hospital of Nantong University

Atrial fibrillation: Rajakariar et al. (2020)25 Australia N/A

Bacterial infection: Rawson et al. (2021)109 UK Three hospitals in northwest London

COVID-19: Razavian et al. (2020)33 USA N/A

Paediatric: Ren et al. (2025)110 China Obstetrics & Gynecology Hospital of Fudan University

Blood cultures: Schinkel et al. (2022)111 The Netherlands Amsterdam UMC Location VU Medical Center

Deterioration: Shah et al. (2021)112 USA Four PennMedicine hospitals

COVID-19: Shamout et al. (2021)113 USA NYU Langone Health Institute

Paediatric ICU: Shelov et al. (2018)38 USA Children’s Hospital of Philadelphia

Blood pressure: Sheppard et al. (2018)29, using study 
protocol by Sheppard et al. (2016)135

UK Ten general practice surgeries and one hospital trust

Polyps: Shi et al. (2025)114 China Hospital of Xuzhou Medical University

Breast: Smith et al. (2024)115 UK Hospital—N/A

Pregnancy: Stamatopoulos et al. (2025)116 N/A N/A

Sepsis: Stephen et al. (2023)20 USA Hospital—N/A

COVID-19: Swinnerton et al. (2025)117 USA EHR data from Veterans Affairs facilities nationwide

Burn: Tan et al. (2025)26 UK Newcastle upon Tyne and Manchester Adult Burn Centres

Bone density: Tariq et al. (2023)118 USA N/A

Neurological events: Titano et al. (2018)119 USA Hospital—N/A

COVID-19: Vaid et al. (2020)120 USA Five hospitals within the Mount Sinai Health System in New York 
City: Mount Sinai Hospital (MSH) located in East Harlem, Manhattan; 
Mount Sinai Morningside (MSM) located in Morningside Heights, 
Manhattan; Mount Sinai West (MSW) located in Midtown West, 
Manhattan; Mount Sinai Brooklyn (MSB) located in Midwood, 
Brooklyn; and Mount Sinai Queens (MSQ) located in Astoria, Queens

Radiation therapy: Wall et al. (2022)121 USA Unknown local institution

Breast cancer: Wan et al. (2025)122 China Renji Hospital

Lung cancer: Wang et al. (2019)123 USA Hospitals in Maine

Cardiology: Wang et al. (2025)124 China Zigong Fourth People’s Hospital

Epilepsy: Wissel et al. (2020)125 USA Cincinnati Children’s Hospital Medical Center

Respiratory failure: Wong et al. (2021)30 USA Emory Healthcare Network

Arthritis: Xie et al. (2025)126 China N/A

Mortality: Ye et al. (2019)127 USA Berkshire Health System

Liver surgery: Ye et al. (2020)128 China Eastern Hepatobiliary Surgery Hospital (EHBH)

Sepsis: Yu et al. (2022)129 USA Single, tertiary-care academic medical centre in St. Louis, MO

Cardiovascular: Zhang et al. (2025)130 China Shanghai Sixth People’s Hospital

Table 3 (continued) | Demographic information of the included final 75 papers
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Many studies discussed data quality issues and their management 
during the silent phase. While some studies described the process for 
removing patients with incomplete data points, conflicting data or 
nonstandardized data inputs, there was limited discussion on how 
this would be managed in a live, real-world deployment context. Some 
reported on elements around the data pipeline (that is, the flow of data 
from input to inference), including data quality issues (for example, 
missingness) and ‘downtime’ (that is, when the data flow stopped or 
was negatively affected, causing the model to become nonfunctional). 
Few studies detailed the granular elements of data flow from the point 
of contact through processing and analysis to generate predictions, 
but any such descriptions were generally comprehensive. One study 
describing the full processing stream for data flow noted the rationale 
of needing to most closely approximate the conditions of clinical inte­
gration, noting that the ‘deployment server’ was on the same secure 
private network as the clinical systems, with data pipelines monitored 
and continually audited by a dedicated data science team34.

Some studies described model scalability, either as a formal assess­
ment of the computational feasibility of the model in the clinical pipe­
line or as a stated assertion that the model was scalable. However, it was 
not always clear what scalability meant in these papers.

Sociotechnical considerations
Sociotechnical considerations concern the ways in which humans 
design and interact with AI tools. A minority of papers described some 
element of user engagement either before or during the silent phase.

Most sociotechnical evaluations analysed subjective user experi­
ence related to the prediction/interface or the overall impact of the 
model on workflow, either in the silent environment or presumably 
before the model was deployed to end users. These evaluations were 
often conducted in collaboration with clinicians and healthcare staff, 
indicating that stakeholder expertise and preferences are important. 
However, when these end users contributed to the usability and prefer­
ences of the model20,28,35–39, it was often not explicitly stated that these 
consumers were not exposed to model predictions on live patients 
during the prospective testing phase to evaluate model usability.

We describe the role of human factors in the silent phase as ambig­
uous, much like earlier difficulties in describing model evaluators and 
separating the model from care. As such, the evaluation of human 
factors operates similarly to stakeholder engagement with end users, 
where feedback is used to refine the later deployment of the system, 
rather than to comprehensively examine the relationship between the 
model and the evaluator. Nevertheless, one of the papers considered 
cognitive factors, such as alert fatigue, in its human factors evaluation; 
for example, “allowed for consideration of false alerts, alert fatigue, 
and resources required for a sepsis huddle when designing our model. 
The Aware tier with high sensitivity was designed to enable situational 
awareness and prompt discussions about sepsis risk at the individual 
patient, clinical team, and unit level.” (ref. 20). Further, some studies 
described the integration of explainability methods (for example, 
SHAP (SHapley Additive exPlanations), heat maps) with model outputs 
during the silent phase, with the aim of preparing for improved adop­
tion following integration. However, no study assessed the potential 
impact of visualizations on human decision-making, such as whether 
the use of explainability mechanisms could prevent persuasion by 
incorrect AI results.

Users and stakeholders were engaged in the process of testing or 
designing the model most commonly through interview groups that 
provided feedback on the context and facilitation of the tool, often as 
multidisciplinary teams (for example, “This expert group was set up 
in order to enhance participation of health professionals, including 
senior physicians, ward nurses, technicians, and leading employees.” 
(ref. 19)). The reasons behind these evaluations, if described at all, were 
usually to assess model accuracy, the feasibility of model integration 
and user acceptance. Assessments of usability and AI evaluation were 

conducted almost entirely before deployment. One study described an 
evaluator developing potential automation bias following a silent phase 
evaluation (referred to as the phenomenon of ‘induced belief revision’ 
(ref. 17)), which the authors note is important to address to ensure 
scientifically rigorous evaluation and separation of the model’s testing 
from care17. In the process of assessing the model’s performance against 
real-world information, consideration of the potential for incidental 
findings in the data that could have implications for patient safety was 
described in four papers17,24,34,39. None of these studies described any 
form of patient or consumer engagement.

Discussion
The vastness and diversity of literature reporting on silent evalua­
tions of AI indicate that there is undoubtedly a perceived value in this 
paradigm for ensuring model performance in the prospective setting, 
linked to motivations around ‘responsible AI’. The heterogeneity of the 
currently reported practices highlights the immense opportunity to 
coalesce around best practices; we hope that this work is one step in this 
regard. In this vein, we focus specifically on the silent phase, which is 
bounded by good model development on one side40 and first-in-human 
studies (DECIDE-AI41), clinical trials (SPIRIT-AI42, CONSORT-AI43) and 
other clinical evaluation studies on the other. Considering the silent 
phase not only as a means to assess the prospective performance of a 
model but also as a mechanism to facilitate responsible and effective 
downstream translation, our scoping study highlights several opportu­
nities for enhancing practice around this critical translational stage41.

A consistent challenge in determining whether a paper described 
a proper silent trial centred on the variability in the use of the term 
silent. Some papers used the term silent trial but then described the 
outputs as being visible to the care team (and thus were excluded). We 
adopted the multiple-reviewer method for adjudication partly because 
it was difficult to discern whether the model outputs were truly silent. 
It was common for silent evaluations to be reported in tandem with 
retrospective testing and/or live deployment. Due to this combina­
tion, it was similarly challenging to discern which reported aspects of 
the study design pertained to which of these stages. For instance, data 
cleaning might be described, but it was unclear whether this occurred 
during retrospective or prospective testing. Additionally, the number 
of case observations or the time period was reported as an aggregate, 
leaving the proportion during the silent phase unclear. In some cases, 
reporting on the model’s performance was aggregated across the silent 
and live phases in a manner similar to randomized controlled trials.

We propose that, as a first step, the field should consolidate the 
notion of silent as a state in which the model’s outputs are not visible to 
the treating team or clinician while the model’s performance is being 
evaluated. This does not necessarily mean that the model itself is invis­
ible; for example, testing user interfaces may involve exposing some 
staff to the system. We suggest that maintaining a silent trial requires 
that these staff members are not caring for the same patients for whom 
the model inference is being run, to prevent contamination of the trial 
and thus ensure an objective evaluation17.

We further suggest that papers reporting on evaluations during 
this phase should clearly distinguish between model evaluation and 
the care environment. Understandably, resourcing can be a challenge 
to complete separation; in line with medical literature more broadly44, 
transparency should be encouraged, with authors able to comment on 
the rationale for the choices they made.

An intriguing finding—and one where we feel efforts ought to be 
consolidated—is the gap between what is most commonly reported 
and what those with extensive experience deploying AI systems know 
to be important. Specifically, there is an overwhelmingly strong focus 
on model metrics (for example, AUROC and AUPRC (area under the 
precision–recall curve)), with far more limited discussion of workflow 
and systems integration, human factors, and verification of clinically 
relevant ground truth labels. By contrast, the NICE (National Institute 
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for Health and Care Excellence) standards for digital health technolo­
gies (including AI) emphasize the use of human factors and a broader 
set of considerations to evaluate such tools, which is far more in keeping 
with a healthcare environment45.

One possible explanation is that silent suggests invisibility, and 
human factor evaluations require end users to engage with some 
aspects of the model. However, we find that most reported usability 
evaluations involve healthcare professionals, who we assume are the 
intended end users of the model. Guidelines endorsed by regulatory 
agencies, such as Good Machine Learning Practices40, recommend the 
involvement of clinical staff in model development and evaluation, 
and the literature we describe here indicates some recognition of this 
guidance. Given that researchers are identifying emergent risks from 
additions like explainability46,47, it seems important to ensure that these 
impacts are measured before exposing patients (and research partici­
pants) to the model’s influence over their care. There is an immense 
opportunity to explore how human factors might be involved during 
the silent stage, which could reduce risk once the model reaches the 
integration stage in addition to improving the precision of the clinical 
evaluation protocol41,48,49.

Safety-oriented metrics for model testing can include failure 
modes, model bias and data shift50—well-known limitations of AI 
models once they proceed to real-time deployment, during which 
model performance typically drops (to varying degrees)51. Reasons 
can include data quality (for example, feature set discrepancy, tem­
poral feature leakage, operational feature constraints52), limitations 
of model generalizability, mismatch between the data available for 
development and the deployment environment, concept drift, and 
unintended changes such as data drift6,14,53. Importantly, failure mode 
testing supports the identification of systematic patterns of lower 
performance. In radiology, where AI tools have seen the most uptake 
and have undergone rigorous research on their limitations54, failure 
mode reporting was much more common than for nonimaging models 
in our results.

Algorithmic bias is a known ethical threat in health AI, so it was 
somewhat surprising to see limited reporting of subgroup-specific 
performance testing in silent phase evaluations. It is possible that 
developers conducted bias testing during the development phase, with 
the presumption that fairness had already been addressed at that point. 
However, the under-reporting of subgroup-specific performance has 
been noted in machine learning studies55 and randomized controlled 
trials of AI56. Assumptions behind choices regarding algorithmic fair­
ness approaches must be verified in their real-world environments to 
prevent algorithmic discrimination57–59. This is particularly important 
given that some AI models may embed patterns that track patient race 
even when this is not explicitly coded in the algorithm60. Clinical use 
of AI tools must be informed by details of the model’s performance 
across particular subgroups so that clinicians can properly calibrate 
how they weight the model’s output in their clinical decision-making 
to avoid risk61,62. The silent phase is an ideal stage to test the real-time 
failure modes of the model and to identify mitigation strategies to 
prevent worsening inequities and missing clinically relevant gaps in 
subgroup-specific performance.

While our charting framework extends beyond the original con­
ceptualization of silent trials6, we note that, across the 75 studies 
reviewed, each element of charting was reported by some studies. 
We consider this to support the notion of a silent phase as offering an 
opportunity for more than just in situ technical validation. We suggest 
that, if this phase is considered a key component of AI translation, there 
would be considerable advantage in incorporating a more holistic set 
of practices. Without aligning silent phase evaluations with real-world 
needs, we risk implementing clinical applications incorrectly, poten­
tially causing the optimism and momentum around AI to collapse and 
leading to preventable harm. The concept of translational trials, as 
advocated by our team14, frames silent evaluation as a fundamental step 

in responsible AI translation, with methodological practices guided pri­
marily by the intention of replicating as closely as possible the clinical 
conditions in which the tool will be used. This paradigm then provides 
maximally relevant and nuanced information about the model’s per­
formance to support more effective and precise translation.

We acknowledge that our scoping review has the limitation of 
being restricted to practices reported in the literature through pub­
lished studies and is subject to the typical limitations of such work, 
including restriction to English-language papers and a subset of pub­
lication venues. It is possible that some elements we observed to be 
under-reported were actually undertaken by teams to facilitate trans­
lation but were not reported in the paper. We accept this limitation, 
although we also note that some teams did report these aspects. There­
fore, we view the choice to report or not as reflective of the inherent 
values of the broader field. To address this limitation, our research team 
has planned a series of key informant interviews to investigate whether 
other practices were undertaken but simply not described in the paper.

Another limitation concerns the review process and the terminol­
ogy. We initially focused on the term silent trial and its known variants, 
but it is possible that we are unaware of other terms describing analo­
gous evaluative processes. Thus, by missing such works, this review 
might have failed to cover some other aspects of silent evaluations. 
Similarly, some silent evaluations may have been conducted by industry 
groups but not published in the literature, being available only through 
internal technical reports.

If the ultimate goal of the silent evaluation phase is to bridge the 
gap in the translation from bench to bedside, we need to ensure that 
the practices undertaken during this phase most closely approximate 
the needs of the translational environment. By intentionally designing 
silent trials to gather evidence that incorporates a sociotechnical and 
systems engineering63,64 lens, there is good reason to believe that we can 
improve the efficacy of translation for these complex interventions65. 
What does this mean for the silent evaluation phase? We believe that by 
broadening the scope of practices undertaken during this translation 
stage, we can improve the AI implementation ecosystem in healthcare. 
These practices should reflect, as closely as possible, the intended 
implementation setting. A translational evaluation paradigm embod­
ies this framing by explicitly positioning translation as the end goal 
and necessitating the collection of evidence that adequately informs 
this state14. As more attention is placed on silent evaluations, we hope 
to provide constructive guidance based on this work to improve the 
preparation, conduct and reporting of silent phase evaluations and to 
move towards a focus on a translational evaluation paradigm.

Methods
This scoping review follows the framework for scoping review studies 
outlined by Arksey and O’Malley15. This study complies with the meth­
odology from the JBI Manual for Evidence Synthesis guidelines66 and 
adheres to the PRISMA-ScR checklist (PRISMA extension for scoping 
reviews)67. This review study was preregistered with the Open Science 
Framework (https://osf.io/63bhx/) rather than PROSPERO, as it did not 
assess direct health-related outcomes. Institutional ethics approval 
was not required.

Information sources and search strategy
Our initial scope was to search the literature for studies reporting on 
a silent evaluation (including processes reported under analogous 
terms) of an AI tool in healthcare settings. The full search strategy 
was developed with a University of Adelaide librarian in collaboration 
with M.D.McC. and L.T. (Supplementary Table 1). The first search was 
conducted on 23 October 2024 and updated on 25 September 2025. 
Controlled vocabulary terms for nondatabase searches were derived 
from the database search terms.

Searches were conducted using the PubMed, Web of Science and 
Scopus databases. We also used reference snowballing (using reference 

http://www.nature.com/NatHealth
https://osf.io/63bhx/


Nature Health

Analysis https://doi.org/10.1038/s44360-025-00048-z

lists from the included papers) and hand searched the literature from 
these lists, including papers that fit our inclusion criteria. We chose not 
to include regulatory guidelines as a primary source in this review, as 
our focus is less on the AI product itself and more on the design and 
ecological validity of its local testing.

During the process, we recognized that some teams published 
different components of a silent phase evaluation across multiple 
papers (for example, one paper might describe the model evaluation 
while another describes the evaluation of human factors or workflows). 
Therefore, a complementary search strategy was added during the 
extraction stage, in which the reviewer (L.T.) performed an adjacent 
hand search for each included paper to find additional studies explor­
ing sociotechnical evaluations of the silently tested AI system in the 
final set of included papers. The papers sought were primarily on 
human factors, stakeholder engagement, qualitative evaluation, or 
adjunct studies that contained trial information not discussed in the 
original paper. We believe that these papers provide information about 
the broader life cycle of translating AI into practice that may not be 
immediately reported in current silent phase evaluations; however, we 
extracted only information pertaining to the silent phase.

Eligibility criteria
We included articles that described the evaluation of an AI or machine 
learning model during a silent phase evaluation in a healthcare envi­
ronment (for example, hospitals, clinics, outpatient settings or other 
environments where healthcare is provided). Due to the ambiguous 
nature of classifying algorithms as AI, we relied on the consensus of 
members with technical expertise to categorize algorithms as eligible. 
We define AI (or machine learning) broadly as any model that builds 
predictive models from input–output data68, with training on datasets 
as a key process. We recognize that there may be a variety of opinions 
on whether some models constitute machine learning or AI; as a group, 
we sought to be broad in our inclusion criteria to ensure that cases in 
which the silent trial paradigm was used were included (encompassing 
many traditional machine learning approaches). We included a broad 
variety of machine learning and deep learning models, with more 
details on how papers self-classified their models available in Table 
2. We excluded studies that were not related to healthcare, did not 
involve AI or machine learning methods, involved models unrelated 
to a clinical target or clinician use (for example, research-based use of 
machine learning in health), mentioned the silent phase but were not 
primary research articles, or described plans to conduct a silent evalu­
ation (for example, protocol papers). Articles not written in English, 
as well as those published before 1 January 2015, were excluded, as we 
sought to understand current practices. Two reviewers carried out 
title and abstract screening, as well as full-text screening (L.T. and A.M). 
A third reviewer (M.D.McC.) resolved conflicts. A systematic review 
software (Covidence, Veritas Health Innovation69) was used for each 
stage of screening. The study selection criteria were applied to (1) title 
and abstract screening, (2) full-text screening with two pilot rounds 
and (3) full-text extraction for papers that did not meet the criteria 
during data charting.

While conducting the initial review of articles, we noted that the 
lack of consistent nomenclature and definitions made it difficult to 
distinguish a true silent phase from other paradigms, such as external 
or internal validations (see Table 1 and Box 1 for the nomenclature of 
testing paradigms). Through an iterative and collaborative process 
with extractors and the wider CANAIRI group, we identified the follow­
ing elements as minimum qualifications for a silent phase evaluation: 
(1) the trial of the AI tool must be conducted in its intended use setting 
or simulate this setting as closely as possible (live), and (2) the AI tool’s 
outputs must not be acted on by the intended users and should not 
be seen at the time of treatment (silent). We note that the ‘live’ nature 
of the silent phase may be limiting depending on the operational 
constraints of its intended context; thus, we emphasize replicating 

the live context as closely as possible as an important consideration. 
For instance, in radiology, most scans are not analysed in real time by 
the clinician. As such, algorithms can run on consecutive prospec­
tive patient scans, but the results can be analysed retrospectively by 
evaluators to mimic real-time practice as closely as possible while 
remaining realistic. Another important distinction of silent trials is the 
separation of model evaluation and care, meaning that we excluded 
studies in which changes were made to the patient’s experience of 
care to suit the study’s aims. For example, in diagnostic studies, model 
outputs may not be acted on by the treating team, but the patient may 
undergo study-specific procedures such as new tests or interven­
tions70. As the primary objective of a silent period is to first assess the 
ecological validity of the model4,6, changing the way care is delivered 
would contradict this goal. It should be noted that, among the various 
interpretations of the word ‘silent’, we opted for silence defined by the 
model prediction’s lack of impact on care, not the model itself being 
silent in the sense of being invisible (Table 1). This distinction allowed 
us to include studies that engage clinical end users to test different 
workflow integrations, evaluate user interfaces, and conduct other 
preclinical testing that exposes users to an AI algorithm while main­
taining at least an intended separation between model evaluation and 
clinical care. Very often, we needed to review the full text of the paper 
in extensive detail to ensure that the above two criteria were met. We 
used at least two, often three, team members to agree on including 
each of the final papers.

Our above-described criteria were iteratively refined by L.T. and 
M.D.McC., with input from our authorship team, until we were satis­
fied that the studies included in the final analysis met the described 
conditions. While certain aspects of the evaluation’s conduct remain 
somewhat uncertain (see further details in the Discussion), our final 
list of included papers represents evaluations of AI tools that were vali­
dated live or near live in their intended implementation environment 
(also see Table 2 for inclusion and exclusion criteria).

Data charting process
Our data charting form was initially developed by L.T. and M.D.McC., 
with input from X.L., and then reviewed by the CANAIRI Steering Group. 
The charting process was initially drafted based on the authorship 
team’s own experiences with running silent evaluations at their respec­
tive institutions, and we included items that were commonly reported 
in these protocols71. We triangulated these protocols with relevant 
reporting guidelines (for example, DECIDE-AI, TRIPOD + AI), regulatory 
guidance (US Food and Drug Administration, Health Canada, Thera­
peutic Goods Administration (Australia)) and authoritative guidance 
documents (for example, NICE, World Health Organization). The item 
categories of information for extraction are listed in Supplementary 
Table 1, and a glossary of terms is available in Box 1.

A key assumption we made in our charting process is that AI is a 
sociotechnical system72. Under this framing, the evaluation of an AI tool 
must include not only the algorithm’s technical performance but also 
the entire system in which it operates, combined with the human ele­
ment that sustains its performance. This assumption is grounded in the 
lived experience of many members of our CANAIRI collaboration team 
in developing and deploying machine learning models in healthcare 
settings—a perspective that is gaining increasing support within the 
literature73,74. We chose to chart information related to the evaluators, 
their perception of the interface, human adaptation influencing AI 
evaluation and the engagement of relevant stakeholders throughout 
the process as entry points for sociotechnical evaluation.

We completed two charting pilot rounds of six full-text papers, the 
first on grey literature (reports) and the second on original research 
from scientific journals (hand searched). Once consensus on these 
extractions was reached by L.T., M.D.McC. and X.L., we progressed 
to the official extraction. Data charting consisted of a colour-coded 
scheme in which items that the reviewer was unable to find were 
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highlighted in red, uncertain items were highlighted in orange, and 
charting elements found in the text were either copied directly or 
paraphrased by the reviewer. Data were extracted using a standard­
ized data collection form created in Google Sheets (Alphabet). Two 
independent reviewers (L.T. and C.S.) charted data for 55 studies and 
any accompanying metadata (for example, separately published study 
protocols, supplementary materials) in the same repository. After the 
initial extraction was completed, the papers were split among seven 
group members (L.E., L.J.P., A.v.d.V., S.B., N.P., C.S., M. Mamdani, G.K., 
H.T, N.C.K, M.D.McC.) based on their areas of expertise (system, techni­
cal, sociotechnical), and the papers were accordingly categorized into 
these groups by L.T. Therefore, these members had separate Google 
Sheets with L.T.’s original charting results and were required to read 
the papers and compare the initial charting against their own find­
ings, resulting in each paper undergoing a minimum of two reviews. 
Elements remained in red if both reviewers were unable to find them, 
while any conflicting responses were discussed with and resolved by 
M.D.McC. or X.L.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The study database, which describes our full extraction from the 
included studies, is publicly available at https://docs.google.com/spr
eadsheets/d/17CFyfViM0IMPQYnBquQ16H-fqGtYvNT9D-wCX5zZO4I/
edit?usp=sharing.
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