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Scattering matrices of two-dimensional
complex acoustic media
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Wave propagation in complex media has long been a captivating research topic with diverse
applications. The accurate determination of scattering matrices (S-matrices) is crucial for the effective
characterization of wave scattering phenomena in such media. This paper presents a detailed
exposition of the formulation of S-matrices for two-dimensional acoustic complex mediain a
multimode waveguide, using channel and point bases. We explore the conversion relationships
between these bases and the factors affecting their accuracy and reliability. The effectiveness of the
proposed methods for extracting S-matrices is validated by numerical simulations on a complex
medium consisting of randomly arranged cylinder scatterers. We successfully achieved acoustic wave
focusing in both bases via wavefront shaping. We also reveal that the non-unitary characteristic of the
conversion relations is linked to the absence of open channels in the point basis. Our results establish
the theoretical and methodological foundation for further study of multiple-scattering phenomena in

acoustics.

Wave propagation in complex media undergoes multiple scattering'.
Multiple-scattering waves possess rich degrees of freedom that can be
harnessed for diverse functionalities””. Notable examples include coherent
perfect absorption®, laser performance enhancement’, targeted energy
delivery’, manipulation of complex fields”", and wave-based analog
computation'*"”’. However, multiple-scattering waves are substantially more
difficult to control compared to ordered waveforms, such as plane waves or
Gaussian beams. The scattering matrix (S-matrix) is a powerful tool to
handle the transport of waves through complex media. An S-matrix is a
connection between input and output waves'*"”. It simplifies the multiple-
scattering transport to a linear operator. This enables the description of wave
characteristics using linear algebra, which forms the basis for the develop-
ment of wavefront shaping techniques™ . The S-matrix possesses essential
information about the system relating to the Green’s function™**, as the two
can be converted into each other, and the Wigner-Smith operator™”™’
related to the gradient of the S-matrix is also related to the density of states.
At the same time, it has been shown that the zeros and poles of the S-matrix
can reflect the system’s topological properties™ ™. By exploring the prop-
erties of S-matrices, significant progress has been made in the control of light
and microwaves in complex media®'"'***'**, As an important branch of
wave physics, acoustics studies the propagation of sound waves that are not
only ubiquitous in our daily life but also play important roles in numerous
scientific and engineering scenarios. However, until now, the control of
multiple-scattering acoustic waves has not experienced the same degree of
development—only a handful of works exist for ultrasound in open

environments'® and controlling reverberating sound fields in rooms using
active acoustic metamaterials and metasurfaces'*'*"”. To date, there is no
systematic exposition of the S-matrix in the context of acoustic waveguides,
nor has the conversion relationship between the two matrix bases been
found. Therefore, rigorous derivation of these methods and formulas is
essential for future acoustic research involving complex media in
waveguides.

In this paper, we present the mathematical formulation of the acoustic
S-matrix of a complex medium in a two-dimensional (2D) acoustic mul-
timode waveguide. Two different forms of S-matrices are presented, which
are based on different choices of bases: channel basis (or waveguide mode
basis) and point basis (or point-to-point basis), respectively. The definitions
of these bases are similar to those used in optics and microwaves™’, and they
will be given later. The conversion relations of S-matrices in different bases
are also derived. Based on the non-unitary property of the conversion
matrix, the differences between the two transmission matrices in exciting
open channels are analyzed, and it reveals the reason why the point basis
transfer matrix cannot be directly used to excite open channels. Addition-
ally, we provide numerical methods for extracting S-matrices in the channel
basis and the point basis. The validity of our results is demonstrated by a case
study that numerically synthesizes a wavefront that focuses through a
complex medium.

The rest of the paper is structured as follows. In the Results section, we
first give a brief introduction to the theory of 2D acoustic waveguides. Then,
the channel-basis and point-basis S-matrices are formally derived, followed
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by a detailed discussion of the basis conversion relations, which is the core
result of this paper. We then validate the conversion relations by considering
focusing through a random medium. We then focus on the non-unitary
characteristics of the conversion relations by considering the cause of the
absence of an open channel in the point-basis S-matrix. Lastly, we wrap up
with a miscellaneous discussion.

Results
Acoustic S-matrices for multimode waveguides
Our discussion starts with the theory of acoustic waveguides. The waveguide
is formed by sound-hard boundaries on both the xy and xz-planes,
extending infinitely in the x-direction, as depicted in Fig. 1a. The waveguide
has a uniform rectangular cross-section with a height of H in the z-direction
and a width of W in the y-direction. The height (H) is chosen to be smaller
than half the wavelength of the sound wave being considered, such that the
sound field is approximately uniform in the z-direction. The sound field in
the waveguide can thus be treated as two-dimensional (2D). In this study,
sound waves are confined within the waveguide by sound-hard boundaries,
resulting in the presence of only guided modes. The number of these modes
is determined by the waveguide’s lateral size (as detailed later). Since
acoustic waves are scalar longitudinal waves, there are no bulk modes or
transverse electric/vertical (TV) modes like those found in electromagnetic
waves. In the absence of scatterers, sound propagation within the waveguide
is described by a 2D Helmholtz equation
V2P + kP = (1)
Here, P represents the pressure field in the frequency domain, k, = w/c, is
the magnitude of the wavevector, ¢, is the speed of sound, and w = 27f is
the angular frequency. The solution of Eq. (1) can be expressed as a series of
waveguide modes

Pu(x,y) = (A7 + B,e"5) ¥, () )

where 7 is a positive integer that represents the modal number, and A, and
B, are the complex amplitudes of the n th mode. The x-component
wavevector for the n th waveguide mode can be determined using

kK =y/w/d - (kﬁ)z, with &), = (n—1)n/W as the y-component
wavevector. In this paper, we focus solely on modes where k, has a real

value, indicating propagating waves. The positive (negative) sign in front of
k}, in Eq. (2) denotes the left-propagating (right-propagating) waves. The

distribution in the y-direction of the n th waveguide mode, ¥, (), is given

by
B VI/W  on=1
lJ[/}1(}})_{\/2/Wcoskny nx2 @

valid for all positive integers n. Two fundamental differences between
acoustics and optics (or electromagnetism) are immediately obvious here.
First, owing to the longitudinal nature of acoustic waves in fluids, ¥, is a
plane-wave mode that does not have a cutoff frequency. Second, sound-hard
boundary conditions dictate that the pressure fields peak at the boundary in
the normal direction (£ y in Eq. (3)), so ¥,,,, are cosine functions. These
waveguide modes are both normalized and orthogonal, satisfying

[

where §,,, is the Kronecker delta symbol. The requirement for k; to be real
constrains the total number of propagating waveguide modes to

(y)dy =9, )

N=1+ |oW/(cm)] (5)
where | - | denotes floor operation, i.e., rounding down to the closest integer.

Next, the scattering medium occupies a region of 0 < x < L, as shown
in Fig. la. Unlike an empty waveguide, different propagation modes in the
waveguide will be mixed due to the influence of the scattering medium. The
explicit form of the S-matrix depends on the chosen basis. One common
choice of basis is called ‘the channels’, which are associated with waveguide
modes

Lneﬂf”x

N
P = X (40 + a2 )
1 (cii;? A ) v,()

Here, the superscript L(R) denotes the left (right) lead. It should be noted
that this decomposition slightly differs from the waveguide modes described
in Eq. (2) due to the additional normalization factor 1/, whose purpose is
to ensure equal energy flux in different scattering modes (see Supplementary
Note 1 for more details). These adjusted waveguide modes are usually
referred to as the scattering channels. The amplitudes of incoming and

(©)
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outgoing scattering channels are represented by the column vectors y,, =

L R\T _ /L1l LN R]I RN\T _ (L RN\ _
(cin'/ Cin) - (Cin »o+o3Gn 5 Cn 5ee 5 Cin ) and ll]out - (cout7 Cout) -
L1 LN Rl RN\T . . .
(coﬁt, ey Cont s Couts - -+ » Cont ) , respectively. The channel-basis S-matrix

(S) is defined as

ll’out = Sv’in (7)

where the dimensions of y;, and v, are both 2N x 1 and the S-matrix has
dimensions of 2N x 2N. This indicates a total of 2N scattering channels on
the left and right leads of the waveguide. The entries S,,, specify the
scattering amplitude from the n-th incoming channel to the m th outgoing
channel.

It is useful to lay down some general properties of the channel-basis S-
matrix. In the absence of loss and gain, the total outgoing energy flux must
eq{ual to the total incident energy flux, that is Wlutwom =
v! $'Sy. = v v, . Therefore, the channel-basis S-matrix must be unitary

sfs =1 (8)

where I is the identity matrix of dimensions 2N x 2N. Additionally, in the
presence of time-reversal symmetry, there is v} = Sy . Here, the
superscript “+’ represents the conjugate. Substituting this relationship into
Eq. (8) leads to $*S = I. Therefore,

s=¢T 9)

This implies that in this context, the S-matrix is a symmetric unitary
matrix. The S-matrix can be expressed as a combination of four block

matrices
rn t
g— | &
L

Here, the diagonal blocks, r; and ry, correspond to the reflection matrices
for left and right incidence, respectively. The off-diagonal blocks, t; and ty,
correspond to the left-to-right and right-to-left transmission matrices,
respectively. Naturally, these block matrices are also transpose invariant, i.e.,
r, =ri,rg =y, t; = ti. The traces of | t; and r{r;, denoted as T and R,
are

(10)

M=
:“!

T=Tr(tft,) =

32
I

(11)

M=
>

R= Tr(r{rL) =

3
I

where 7, and p,, are the eigenvalues of t] t; and r}r;, respectively. N is the
total number of propagating waveguide modes in the system. Obviously,

T + R = N. Singular value decomposition can be applied to the trans-
mission matrix in the channel basis as t, = UDV' = "N guv],
where the unitary matrices U and V (of size N x N) contain the left (#;) and
right (v;) singular vectors of t; as columns, respectively. The singular vectors
have a norm of 1, and any two left (or right) singular vectors are orthogonal.
The matrix D is a diagonal matrix with the diagonal elements being the N
singular values 0, = /7, arranged in descending order. Hence, there exists
the relationship t{t; = VD>V’ = V1V, with 7 being a diagonal
matrix with 7, 7,, . . ., Ty as diagonal entries. According to random matrix
t
of channels approaches infinity, where L is the thickness of complex med-
ium along the waveguide, /, is the transport mean free path’. The effective
number of open channels can be estimated as N = 3 (T'), which means the

effective number of channels contributing to the transmitted field*.

theory, {7, } obeys a bimodal distribution p(7) = #\/: as the number

The channel-basis S-matrix has been widely applied in theoretical
analyses due to its advantageous characteristics. In addition, in Supple-
mentary Note 2, we provide a detailed explanation for retrieving the
channel-basis S-matrix through numerical simulations.

The S-matrix can also be expressed in the point-to-point basis, or
simply the point basis, denoted as §'. On this basis, the S-matrix connects the
input and output physical fields at a set of coordinate points™*”. In this
paper, M points are strategically selected at the boundaries x = 0 and x =
L. on both sides of the scattering region, totaling 2M points. The selection
of points follows two rules: First, the condition M > N must be satisfied to
ensure that the point-basis S-matrix captures all channel information.
Second, all points must be symmetrically distributed with respect to the
centerline. This symmetry ensures accurate conversion between the point-
basis and channel-basis S-matrices (see Supplementary Note 4). For sim-
plicity, the sequence of y-coordinates of the points on both leads is chosen to
be the same, and given by {y,, y,, ..., ¥/}, which can be expressed as

w w
7= mf Tam 12)
where, 1<p<M. The separation between two adjacent points is
Ay = W /M, with W representing the width of the waveguide. Monopole
sources are placed at each point for excitation, with each monopole source
emitting a field governed by the inhomogeneous Helmholtz equation
(V* + k)P = Q3(x — x’). Here Q denotes the source strength with units
of Pa,andx’ = (x', ) is the position of the monopole source. The resulting
scattered sound pressure P_(x, y) is recorded at 2M points to construct the

) T
output vector, ie, P, = (P(L,uuPORm) = (Psc(O,yl)7 <, P(0,3,0),
Po(Lyyyy)s -5 Po(Ly, vap))"- The point-basis S-matrix reads

Pout = S/Qin (13)

This equation, S’ relates the set of monopole source Q,, = ( L Qﬁ)T =
(Q(O7y1)7 M Q(anM)a Q(L557y1)7 tety Q(LsmyM)) to the Scattered
sound pressure p,, at the 2M points. Naturally, §' generally does not exhibit
unitary properties. The dimension of §' is 2M x 2M, which can also be
expressed in a block form as

o[t
6on

where the diagonal blocks correspond to the reflection matrices under left
(r)) and right (ry) incidence, and the off-diagonal blocks correspond to the
transmission matrices from left to right (t; ) and from right to left (t,). All
four blocks are M x M in dimension.

(14)

Conversion of S-matrices between channel and point bases
The theoretical foundation for this conversion lies in the connection
between the system Green’s function and the S-matrix. The Green’s func-
tion describes the response of a system to a point source or point pertur-
bation. In the case of wave propagation within a waveguide containing
multiple scattering media, the Green’s function can be used to calculate the
sound field at any point in the system, given the source and boundary
conditions. Once the sound field is determined by Green’s function, it can be
decomposed into scattering channels. Thus, the conversion of channel-
based and point-based S-matrix is achieved. The detailed description is
presented in Supplementary Note 3.

Here, we focus only on converting the left-incident reflection matrix (ry )
and the left-to-right transmission matrix (t; ) from the channel basis to the
point basis. The conversion relations are the same for the case of incidence
from the right side. To simplify the expression, we omit the subscript ‘L’. Same
as the previous section, the x-coordinates of the input and output planes are

x = 0 and x = L, which also serve as the reference zero phase surface for
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the left and right ports, respectively. This choice aligns with the definition of
the scattering channels as presented in Eq. (6). It is worth noting that this
choice of the zero-phase plane also simplifies the relationship between the
S-matrix in the channel basis and the point basis. Since we are considering the
left-incidence case, we first assume that a monopole source with strength
Q(0,y,) is placed at the left boundary of the scattering region with coordi-
nates (0, y q), and then the scattered sound pressure P (x, y) is detected at
positions (0,y,) and (L, y,), denoted as P.(0,y,) and Py(Ly,y,),
respectively. According to Egs. (13) and (14), we can define the entries of the
point-basis reflection matrix r’ as r;, g = P (0, yp) /Q(0,y q), and the entries
of the point-basis transmission matrix t' as t;,, = Py (L, y,)/Q(0,,). They
can be expressed using the Green’s function. The Green’s function for the
empty waveguide (Please refer to Supplementary Note 3 for details) can be
expanded using the waveguide modes

+00

Gy =0,y =y) = 2;3‘ ¥, (3) ¥, (e

n=1

(15)

where G(x,y;x',)') represents the response at (x,y) by excitation at
(x,y)=(0,y )»and ¥, (y) is the n th waveguide mode as defined in Eq.
(3). It follows that the sound field excited by a monopole sourceat (0, y, ) can
be expressed as

w o]
P(x,y) = / / G(x,y;x/,y/)5(x’)5(y/ —yq)dx/dy’
JoJ -
+o0

. | (16)
=3 O
Then, we can express the left incident field as
too
Pa(09) = D55 Vi Ta0) (7)

The left incident field can then be straightforwardly expressed using the
scattering channels

N
Pin (07)/) = Zan ly" (yx) (18)

n=1

E

Here, the summation is truncated at # = N to omit the waveguide modes
that are evanescent in x. The expression of a,, is obtained by computing the
inner product of P, (0,y) and ¥,(y), that is

[0 e (o = [ ) e

m=1

We arrive at

j
a, =——=Y
n 2 k;; n(yq)

(20)
The coefficients of the left-outgoing waves in scattering channels are
given by

N N .
b, = Zrmnan = Z rmn#k_x.‘l’n(yq) (21)

n=1 n=1

where r,,, is the reflection coefficient from the # th to m th channels.
Therefore, the left scattered pressure

N Va0
Pe(0,3,) =) by (22)
By substituting Eq. (21) into Eq. (22), we obtain
LKV Y0y
/ ] TmYp nVq
Tpq = Psc(0,,)/Q(0, 7)) = S T (23)
m ? ! ; n=1 2 k/r(n kn

Here, we have defaulted Q(0, y,) = 1Pa. To simplify, we define matrix ®
with entries @, = ¥, (y,), having dimensions N x M. According to the
orthogonality condition, ®®" = 221, . We also define a diagonal matrix
R with entries R,,,, = \/la 8,.» having dimensions N x N. Here, k, is the
x-component wavevector for the n-th waveguide mode. Furthermore, we
introduce a transformation matrix K = % (1 + j) R 1@, with its entries

given by K,,, = 11+ ])i\/g) and a dimension of N x M (see Supple-

m

mentary Note 5 for details). Eq. (23) can be rewritten in matrix form as

r = K'rK (24)

where, r and r/, respectively represent the reflection matrix in the channel
basis and point basis. Similarly, we can obtain similar formulas for the left-
to-right transmission matrix in the point basis (tl’,q) as

V0, V0,

(25)

wheret,,, is the transmission coefficient from the n th to m th channels. And
we arrive at

t = K'tK (26)

We remark that the dimensions of t and t' can be different, so the
matrix K is generically a rectangular matrix.

The conversion from point to channel basis is equivalent to obtaining
the pseudo-inverse of KT, which is J = (K*KT)_IK* = (1 —j) %R(D,
such that JKT = I, . (The pseudo-inverse matrix of a column full rank
matrix A is given by (ATA)flAT. K" has a dimension of M x N with
M=N, and it is column full rank"). The entries of J are
Tomp = (1—j) ¥ VK, ¥,,(¥,)- Similarly, it can be shown that matrix K is
the pseudo-inverse matrix of J*, as KJ* = I;, . Consequently, the con-
version from point basis to channel basis is given by

r=JrJ’ 27)

t=Jt" (28)

It is important to note that this conversion is accurate only when the
number of points M is sufficient (M = N) and they are selected symme-
trically about the central line of the waveguide, i.e., with locations following
Eq. (12). For further details and a proof, please refer to Supplementary Note
4 and Note 5.
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Fig. 2 | The retrieval of the transmission matrix. a Illustration of the problem

setting. b Amplitude of the total pressure field in a complex medium illuminated by
an acoustic plane wave, revealing a speckle-like sound field distribution, with a local
magnification inset. ¢ Real parts of the transmission matrices in the channel basis

(upper left panel) and the point basis (lower left panel), respectively. The trans-
mission matrix is then transformed into the point basis (channel basis) through
basis conversion, as shown in the lower right panel (upper right panel).

We remark that an implicit assumption for the accurate conversion is
that the effect of evanescent modes is negligible. The channel basis, by
definition, considers only propagative modes and ignores any evanescent
modes. But the point basis can indeed pick up evanescent modes from the
scattering. So, the measurement plane needs to be sufficiently far (>1/2)
from the scattering media for evanescent modes to be negligible.

Focusing using acoustic complex media

This section presents a numerical case study of focusing spatially modulated
acoustic waves through a complex medium. The purpose of this case study is
to validate the basis conversion relations and to demonstrate the application
of S-matrices in channel and point bases.

The complex medium consists of 100 rigid cylinder scatterers, each
with a diameter of 0.02 m, randomly distributed within a 2D air-filled
waveguide of width W = 1m (see Fig. 2a, b). The sound frequency
employed is f, = 8500 Hz, corresponding to a sound wave wavelength of
approximately 1, = 0.04m, so the waveguide sustains 50 propagative
modes, ie., the number of channels is N = 50. The complex medium
occupies a rectangular region of d,x W in the waveguide, with d . =
0.50m extending along the x-direction. To safely neglect the evanescent
waves, the measurement planes are positioned at a distance of approxi-
mately /,,, = 0.25 m = 6], away from both the left and right-hand sides of
the complex medium. The separation between the two measurement planes
is L. = 21, + d,. = 1 m. For simplicity, the number of sampling points is
chosen to be equal to the number of channels, ie, M = N = 50. Our
calculation indicates T' &~ 18.60, and the effective number of open channels
can be estimated as N i ~ 3 (T) ~ 28, while the remaining N — N = 22
channels are classified as closed (i.e., T &~ 0 for them)". Given these para-
meters, the transmission mean free path” is estimated to be approximately
{4, ~ 0.18 m. Additionally, the scattering mean free path of the complex
medium can be estimated about ¢, & 0.16 m (see Methods for details).

In Fig. 2b, the scattering behavior of a plane wave is depicted, show-
casing the notable distortion of the wavefront due to the presence of the
complex medium. The transmission matrices are directly acquired in both

the channel and point bases, and the real components of these matrices are
depicted in the left two panels of Fig. 2c. Then, the channel-basis trans-
mission matrix is transformed into the point basis using Eq. (26). And
conversely, the point-basis transmission matrix is transformed into the
channel basis using Eq. (28). The corresponding results are shown in the
right two panels of Fig. 2c. Excellent agreement is seen. This successful
alignment validates the accuracy of our basis conversion relationships.

Next, based on the transmission matrices in the two different bases, we
use the technique of inverse filtering® to synthesize acoustic wavefronts to
achieve focusing through the complex medium. The target is to generate one
focal spot at a distance Ly = 0.2m away from the output plane. The
wavefield (P;(x, y)) at the output plane (x = L) is chosen as®

P (L., y) = oV O-wr) i) (29)
Expand this equation using the channels
N
b4
Pi(Ley) = com— L) (30)

out X
n=1 V kn
R,

Here, ;¢ represents the output channel coefficients. By multiplying both
sides of Eq. (30) by ¥,,, (7) and integrating across the cross-section, with the
orthogonality, we arrive at

w
R, /
Cou:l - k;/o Pf(Lsz)an(y)dy (31)
T
Utilizing the relationship ¢}, = tck, wherec®, = (cORl’n1 , ci;ﬁ . ,coRl;f])
T
and ¢k = (chl, cﬁf, e C;N ) . Therefore, we can express the amplitudes of

the incident channels as

(32)
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a Demonstration of the focusing principle. b Focusing effect using channel basis
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input plane, is excluded from the input plane due to infinite pressure from the
monopole excitation of the point-based method. Plane B represents the focal plane,
where red lines indicate the results in channel basis, and blue lines represent the
results in point basis.

where the matrix t is the same as shown in Fig. 2c. The resulting focusing
effect based on the channel basis can be observed in the upper panels of Fig.
3b, .

A similar focusing can be obtained using the point-based transmission
matrix. To this end, we discretize the output wavefield (Eq. (29)) at a set of
discrete points {y,,,, ...y}, obtaining the point-basis output vector

PRy = (Pe(Lery)s Pe(Li 3s) - - Pe (L, yyy) ) > which s the result of a

set of monopole sources Q% = (Q(0,,),Q(0,y,), ..., Q(O,yM))T atthe
input plane (x = 0), given by

Q. =)"p, (33)

The focusing effect based on the point-basis method is shown in the
lower panels in Fig. 3b, c.

Examining the results in Fig. 3b-e, excellent agreement is seen
between the results obtained using the channel and point bases in
both the overall field map and the pressure distribution on various
planes. The slight degree of discrepancy in Fig. 3d, e will diminish
with the further increase of the number of channels and sampling
points.

The open channel of the transmission matrix

Here, we compare open channels in the two types of bases and analyze their
differences in transmission efficiency. According to the theory of random
matrices, channels with transmittance close to 1 almost always exist in
complex media. However, these channels are typically excited only within
the transmission matrix in channel basis (t;). The open channel (full
transmission) takes the first right singular vector v, as the input wavefront,
which is associated with the largest singular value ¢, and its transmittance
approaches unity in the channel basis. This results in the first left singular
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Fig. 4 | Acoustic fields excited by the first right singular vectors as input. a An open channel in the channel basis, b the point-basis input vector with the maximum

singular value.

vector u, as the output wavefront, ie.,

v =0 Xy (34
Equation (26) describes a mapping from channel to point basis, noting
that

1

. 1M
KK' = E1?:1<1><1>T1?:‘ = Eer2 ) (35)

Due to the varying propagation wave vectors across different modes in
multimode waveguides, R is not a unitary matrix, and K is also non-unitary
(see Note 5 in the Supplementary Information for details). Consequently,
the conversion alters the magnitudes of the singular values, which may also
shuffle the order of the singular vectors. To be more specific, when ¢, is the
first right singular vector of t, the corresponding channel coefficient is not
necessarily the first right singular vector v, of t (or proportional to it).
Therefore, using the singular vectors associated with the largest singular
value for excitation, the transmission matrix in point basis generally cannot
achieve full transmission (see Note 6 in the Supplementary Information for
details).

Here, we employ the same complex medium utilized in the focusing to
validate this conclusion. In Fig. 4, we present the acoustic fields generated by
aleft-hand side input vector with the first singular value of the transmission
matrices in the two bases. In the case of channel basis, this is an open channel
with a singular value > 0.99 (Fig. 4a). Total transmission is seen. In contrast,
in the point basis scenario, the maximum singular value is only ~0.32, so
transmission is much weaker (transmitted flux ~0.56) and there is notable
reflection (Fig. 4b). Consequently, open channels generally cannot be
obtained using the point basis.

Discussion

In this study, we present the mathematical foundation for establishing
S-matrices for acoustic wave propagation in complex media in 2D. The
S-matrices are constructed in two different bases, the channel basis and the
point basis. The conversion between S-matrices in the two bases is rigor-
ously derived. The effectiveness and accuracy of our results are demon-
strated through a case study of focusing through a complex medium.

In practice, the S-matrix comprehensively provides the information of
the multiple scattering media, which enables a wide array of applications
and functionalities. The focus demonstrated in our work is just one simple
example. However, obtaining the complete S-matrix usually requires
measurement of sufficient accuracy and a good signal-to-noise ratio, which
can be challenging in experiments. In comparison, the time-reversal
method™*"**¥, as a different approach, does not require a complete char-
acterization of the medium, which is easier to implement but is less flexible

in achieving diverse functionalities. These methods complement each other
and shall be used selectively or collectively for the best possible results.

By providing a systematic description of the acoustic S-matrix in
acoustic waveguides, our work provides the foundation for future research
in acoustic complex media and acoustic wavefront shaping. We anticipate
our results will be useful for future studies on controlling multiple scattering
of acoustic waves in complex or random media. The results can be further
generalized to handle acoustic multiple-scattering propagation in three
dimensions. By including higher-order, non-propagative waveguide modes
as channels or by further refining the spatial sampling rate of the point basis,
it is also possible to modify the theory for handling evanescent waves.

Methods

Numerical simulation

Finite element simulations were performed with the pressure acoustics
module and the Livelink for MATLAB module of the COMSOL Multi-
physics software. The sound speed is 343 m/s, and the acoustic impedance
of air is 411.6 Pas/m. The retrieval methods for the S-matrices in channel
and point bases are described in detail in Supplementary Note 3.

The scattering mean free path

The scattering mean free path in the two-dimensional region was estimated
using both a simplified theoretical method and a more detailed computa-
tional approach. Initially, the theoretical approximation was calculated
using the formula £, = A /L, where A is the area available for sound wave
propagation and L is the total length of all scattering boundaries®. The
rectangular region containing 100 scatterers, A was calculated as 0.4686 m’
(the area of the rectangular region minus the total area of all the circular
scatterers) and L was calculated as 9.283 m (perimeter of the rectangular
region plus the total perimeter of the scatterers). This gives an approximate
mean free path of 0.1586 m. To refine this estimate, the ray tracing module
of COMSOL was employed, which statistically estimates the mean free path
by tracking scattering events and path lengths in the simulation. One
hundred simulations with randomly distributed scatterers were averaged,
resulting in a mean free path of 0.1597 m, aligning closely with the theo-
retical estimate. The simulations considered only the scattering region,
defining both the rectangular and scatterer boundaries as acoustically hard,
without accounting for losses.

Data availability
The data that generated the results of this study are available from the
corresponding authors upon request.

Code availability
The codes supporting the findings of this study are available from the
corresponding authors upon request.
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