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Scattering matrices of two-dimensional
complex acoustic media
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Wave propagation in complex media has long been a captivating research topic with diverse
applications. The accurate determination of scatteringmatrices (S-matrices) is crucial for the effective
characterization of wave scattering phenomena in such media. This paper presents a detailed
exposition of the formulation of S-matrices for two-dimensional acoustic complex media in a
multimode waveguide, using channel and point bases. We explore the conversion relationships
between these bases and the factors affecting their accuracy and reliability. The effectiveness of the
proposed methods for extracting S-matrices is validated by numerical simulations on a complex
mediumconsistingof randomly arrangedcylinder scatterers.Wesuccessfully achievedacousticwave
focusing in both bases via wavefront shaping.We also reveal that the non-unitary characteristic of the
conversion relations is linked to the absence of open channels in the point basis. Our results establish
the theoretical and methodological foundation for further study of multiple-scattering phenomena in
acoustics.

Wave propagation in complex media undergoes multiple scattering1.
Multiple-scattering waves possess rich degrees of freedom that can be
harnessed for diverse functionalities2–5. Notable examples include coherent
perfect absorption6, laser performance enhancement7, targeted energy
delivery8, manipulation of complex fields9–13, and wave-based analog
computation14,15.However,multiple-scatteringwaves are substantiallymore
difficult to control compared to ordered waveforms, such as plane waves or
Gaussian beams. The scattering matrix (S-matrix) is a powerful tool to
handle the transport of waves through complex media. An S-matrix is a
connection between input and output waves16–19. It simplifies the multiple-
scattering transport to a linear operator.This enables thedescriptionofwave
characteristics using linear algebra, which forms the basis for the develop-
ment of wavefront shaping techniques20–23. The S-matrix possesses essential
information about the system relating to theGreen’s function2,5,24, as the two
can be converted into each other, and the Wigner–Smith operator2,25–27

related to the gradient of the S-matrix is also related to the density of states.
At the same time, it has been shown that the zeros and poles of the S-matrix
can reflect the system’s topological properties28–30. By exploring the prop-
erties of S-matrices, significantprogress hasbeenmade in the control of light
and microwaves in complex media8,11,12,26,31–39. As an important branch of
wave physics, acoustics studies the propagation of sound waves that are not
only ubiquitous in our daily life but also play important roles in numerous
scientific and engineering scenarios. However, until now, the control of
multiple-scattering acoustic waves has not experienced the same degree of
development—only a handful of works exist for ultrasound in open

environments16 and controlling reverberating sound fields in rooms using
active acoustic metamaterials and metasurfaces10,12,13. To date, there is no
systematic exposition of the S-matrix in the context of acoustic waveguides,
nor has the conversion relationship between the two matrix bases been
found. Therefore, rigorous derivation of these methods and formulas is
essential for future acoustic research involving complex media in
waveguides.

In this paper, we present themathematical formulation of the acoustic
S-matrix of a complex medium in a two-dimensional (2D) acoustic mul-
timode waveguide. Two different forms of S-matrices are presented, which
are based on different choices of bases: channel basis (or waveguide mode
basis) and point basis (or point-to-point basis), respectively. The definitions
of these bases are similar to those used in optics andmicrowaves2,5, and they
will be given later. The conversion relations of S-matrices in different bases
are also derived. Based on the non-unitary property of the conversion
matrix, the differences between the two transmission matrices in exciting
open channels are analyzed, and it reveals the reason why the point basis
transfer matrix cannot be directly used to excite open channels. Addition-
ally, we provide numericalmethods for extracting S-matrices in the channel
basis and thepoint basis. The validity of our results is demonstratedby a case
study that numerically synthesizes a wavefront that focuses through a
complex medium.

The rest of the paper is structured as follows. In the Results section, we
first give a brief introduction to the theory of 2D acoustic waveguides. Then,
the channel-basis and point-basis S-matrices are formally derived, followed
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by a detailed discussion of the basis conversion relations, which is the core
result of this paper.We thenvalidate the conversion relationsby considering
focusing through a random medium. We then focus on the non-unitary
characteristics of the conversion relations by considering the cause of the
absence of an open channel in the point-basis S-matrix. Lastly, we wrap up
with a miscellaneous discussion.

Results
Acoustic S-matrices for multimode waveguides
Ourdiscussion startswith the theory of acousticwaveguides. Thewaveguide
is formed by sound-hard boundaries on both the xy and xz-planes,
extending infinitely in the x-direction, as depicted in Fig. 1a. The waveguide
has a uniform rectangular cross-sectionwith a height ofH in the z-direction
and a width ofW in the y-direction. The height (H) is chosen to be smaller
than half the wavelength of the sound wave being considered, such that the
sound field is approximately uniform in the z-direction. The sound field in
the waveguide can thus be treated as two-dimensional (2D). In this study,
soundwaves are confinedwithin the waveguide by sound-hard boundaries,
resulting in the presence of only guidedmodes. The number of thesemodes
is determined by the waveguide’s lateral size (as detailed later). Since
acoustic waves are scalar longitudinal waves, there are no bulk modes or
transverse electric/vertical (TV) modes like those found in electromagnetic
waves. In the absence of scatterers, sound propagationwithin thewaveguide
is described by a 2D Helmholtz equation

∇2P þ k20P ¼ 0 ð1Þ

Here, P represents the pressure field in the frequency domain, k0 ¼ ω=c0 is
the magnitude of the wavevector, c0 is the speed of sound, and ω ¼ 2πf is
the angular frequency. The solution of Eq. (1) can be expressed as a series of
waveguide modes

Pn x; y
� � ¼ Ane

�jkxnx þ Bne
þjkxnx

� �
Ψn y

� � ð2Þ

where n is a positive integer that represents the modal number, and An and
Bn are the complex amplitudes of the n th mode. The x-component
wavevector for the n th waveguide mode can be determined using

kxn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2=c20 � kyn

� �2q
, with kyn ¼ n� 1ð Þπ=W as the y-component

wavevector. In this paper, we focus solely on modes where kxn has a real
value, indicating propagating waves. The positive (negative) sign in front of
kxn in Eq. (2) denotes the left-propagating (right-propagating) waves. The

distribution in the y-direction of the n th waveguide mode, Ψn y
� �

, is given
by

Ψn y
� � ¼

ffiffiffiffiffiffiffiffiffiffi
1=W

p
n ¼ 1ffiffiffiffiffiffiffiffiffiffi

2=W
p

cos kyny n≥ 2

(
ð3Þ

valid for all positive integers n. Two fundamental differences between
acoustics and optics (or electromagnetism) are immediately obvious here.
First, owing to the longitudinal nature of acoustic waves in fluids, Ψ1 is a
plane-wavemode thatdoesnothave a cutoff frequency. Second, sound-hard
boundary conditions dictate that the pressure fields peak at the boundary in
the normal direction ( ± ŷ in Eq. (3)), so Ψn > 1 are cosine functions. These
waveguide modes are both normalized and orthogonal, satisfying

Z W

0
Ψm y

� �
Ψn y

� �
dy ¼ δmn ð4Þ

where δmn is the Kronecker delta symbol. The requirement for kxn to be real
constrains the total number of propagating waveguide modes to

N ¼ 1þ ωW= c0π
� �� � ð5Þ

where b�c denotesfloor operation, i.e., rounding down to the closest integer.
Next, the scatteringmedium occupies a region of 0≤ x ≤ Lsc, as shown

in Fig. 1a. Unlike an empty waveguide, different propagation modes in the
waveguide will bemixed due to the influence of the scatteringmedium. The
explicit form of the S-matrix depends on the chosen basis. One common
choice of basis is called ‘the channels’, which are associated with waveguide
modes

PL x; y
� � ¼ PN

n¼1
cL;nin

e�jkxnxffiffiffiffi
kxn

p þ cL;nout
ejk

x
nxffiffiffiffi
kxn

p
	 


Ψn y
� �

PR x; y
� � ¼ PN

n¼1
cR;nout

e�jkxn x�Lscð Þffiffiffiffi
kxn

p þ cR;nin
ejk

x
n x�Lscð Þffiffiffiffi

kxn
p

	 

Ψn y

� � ð6Þ

Here, the superscript L(R) denotes the left (right) lead. It should be noted
that this decomposition slightly differs from thewaveguidemodes described
in Eq. (2) due to the additional normalization factor

ffiffiffiffiffi
kxn

p
, whose purpose is

to ensure equal energyflux indifferent scatteringmodes (see Supplementary
Note 1 for more details). These adjusted waveguide modes are usually
referred to as the scattering channels. The amplitudes of incoming and

Fig. 1 | Representation of the S-matrix in
different bases. a Schematic diagram of a 2D rec-
tangular waveguide with a multiple-scattering
medium depicted as black cylinders. b, c Schematic
diagrams depicting the physical meaning of the
S-matrices in channel and point bases, respectively.
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outgoing scattering channels are represented by the column vectors ψ in ¼
cLin; c

R
in

� �T ¼ cL;1in ; . . . ; cL;Nin ; cR;1in ; . . . ; cR;Nin

� �T
and ψout ¼ cLout; c

R
out

� �T ¼
cL;1out; . . . ; c

L;N
out ; c

R;1
out ; . . . ; c

R;N
out

� �T
, respectively. The channel-basis S-matrix

Sð Þ is defined as

ψout ¼ Sψ in ð7Þ

where the dimensions of ψ in and ψout are both 2N × 1 and the S-matrix has
dimensions of 2N × 2N . This indicates a total of 2N scattering channels on
the left and right leads of the waveguide. The entries Smn specify the
scattering amplitude from the n-th incoming channel to them th outgoing
channel.

It is useful to lay down some general properties of the channel-basis S-
matrix. In the absence of loss and gain, the total outgoing energy flux must
equal to the total incident energy flux, that is ψy

outψout ¼
ψy
inS

ySψ in ¼ ψy
inψ in. Therefore, the channel-basis S-matrixmust be unitary

SyS ¼ I ð8Þ

where I is the identity matrix of dimensions 2N × 2N . Additionally, in the
presence of time-reversal symmetry, there is ψ�

in ¼ Sψ�
out. Here, the

superscript ‘�’ represents the conjugate. Substituting this relationship into
Eq. (8) leads to S�S ¼ I. Therefore,

S ¼ ST ð9Þ

This implies that in this context, the S-matrix is a symmetric unitary
matrix. The S-matrix can be expressed as a combination of four block
matrices

S ¼ rL tR
tL rR

� �
ð10Þ

Here, the diagonal blocks, rL and rR, correspond to the reflection matrices
for left and right incidence, respectively. The off-diagonal blocks, tL and tR,
correspond to the left-to-right and right-to-left transmission matrices,
respectively.Naturally, these blockmatrices are also transpose invariant, i.e.,
rL ¼ rTL , rR ¼ rTR, tL ¼ tTR. The traces of t

†
LtL and r

†
LrL, denoted as T and R,

are

T ¼ Tr t†LtL
� � ¼ PN

n¼1
τn

R ¼ Tr r†LrL
� � ¼ PN

n¼1
ρn

ð11Þ

where τn and ρn are the eigenvalues of t
†
LtL and r

†
LrL, respectively. N is the

total number of propagating waveguide modes in the system. Obviously,
T þ R ¼ N . Singular value decomposition can be applied to the trans-

mission matrix in the channel basis as tL ¼ UDV† ¼ PN
i¼1 σ iuiv

y
i ,

where the unitarymatricesU andV (of sizeN ×N) contain the left (ui) and
right (vi) singular vectors of tL as columns, respectively. The singular vectors
have a norm of 1, and any two left (or right) singular vectors are orthogonal.
The matrixD is a diagonal matrix with the diagonal elements being the N
singular valuesσn ¼

ffiffiffiffiffi
τn

p
, arranged indescendingorder.Hence, there exists

the relationship t†LtL ¼ VD2V† ¼ VτV†, with τ being a diagonal
matrixwith τ1; τ2; . . . ; τN as diagonal entries. According to randommatrix

theory, τn

 �

obeys a bimodal distribution ρ τð Þ ¼ ‘t
L

1
2τ

ffiffiffiffiffiffi
1�τ

p as the number

of channels approaches infinity, where L is the thickness of complex med-
ium along the waveguide, ‘t is the transport mean free path2. The effective
numberof openchannels canbe estimatedasNeff � 3

2 Th i, whichmeans the
effective number of channels contributing to the transmitted field40.

The channel-basis S-matrix has been widely applied in theoretical
analyses due to its advantageous characteristics. In addition, in Supple-
mentary Note 2, we provide a detailed explanation for retrieving the
channel-basis S-matrix through numerical simulations.

The S-matrix can also be expressed in the point-to-point basis, or
simply thepoint basis, denoted asS0.On this basis, the S-matrix connects the
input and output physical fields at a set of coordinate points2,19,39. In this
paper,M points are strategically selected at the boundaries x ¼ 0 and x ¼
Lsc on both sides of the scattering region, totaling 2M points. The selection
of points follows two rules: First, the conditionM ≥N must be satisfied to
ensure that the point-basis S-matrix captures all channel information.
Second, all points must be symmetrically distributed with respect to the
centerline. This symmetry ensures accurate conversion between the point-
basis and channel-basis S-matrices (see Supplementary Note 4). For sim-
plicity, the sequence of y-coordinates of the points on both leads is chosen to
be the same, and given by fy1; y2; . . . ; yMg, which can be expressed as

yp ¼
W
M

p� W
2M

ð12Þ

where, 1 ≤ p≤M. The separation between two adjacent points is
Δy ¼ W=M, withW representing the width of the waveguide. Monopole
sources are placed at each point for excitation, with each monopole source
emitting a field governed by the inhomogeneous Helmholtz equation
∇2 þ k20
� �

P ¼ Qδ x � x0ð Þ. Here Q denotes the source strength with units
of Pa, and x0 ¼ x0; y0

� �
is thepositionof themonopole source.The resulting

scattered sound pressure Pscðx; yÞ is recorded at 2M points to construct the
output vector, i.e., pout ¼ pLout; p

R
out

� �T ¼ Pscð0; y1Þ; . . . ; Pscð0; yMÞ;
�

PscðLsc; y1Þ; . . . ; PscðLsc; yMÞÞT. The point-basis S-matrix reads

pout ¼ S0Qin ð13Þ

This equation, S0 relates the set of monopole source Qin ¼ QL
in;Q

R
in

� �T ¼
Qð0; y1Þ; . . . ;Qð0; yMÞ;QðLsc; y1Þ; . . . ;QðLsc; yMÞ
� �T

to the scattered
soundpressurepout at the 2Mpoints.Naturally,S0 generally doesnot exhibit
unitary properties. The dimension of S0 is 2M × 2M, which can also be
expressed in a block form as

S0 ¼ r0L t0R
t0L r0R

� �
ð14Þ

where the diagonal blocks correspond to the reflection matrices under left
(r0L) and right (r

0
R) incidence, and the off-diagonal blocks correspond to the

transmission matrices from left to right (t0L) and from right to left (t0R). All
four blocks areM ×M in dimension.

Conversion of S-matrices between channel and point bases
The theoretical foundation for this conversion lies in the connection
between the system Green’s function and the S-matrix. The Green’s func-
tion describes the response of a system to a point source or point pertur-
bation. In the case of wave propagation within a waveguide containing
multiple scattering media, the Green’s function can be used to calculate the
sound field at any point in the system, given the source and boundary
conditions.Once the soundfield is determinedbyGreen’s function, it canbe
decomposed into scattering channels. Thus, the conversion of channel-
based and point-based S-matrix is achieved. The detailed description is
presented in Supplementary Note 3.

Here,we focusonlyonconverting the left-incident reflectionmatrix (rL)
and the left-to-right transmission matrix (tL) from the channel basis to the
point basis. The conversion relations are the same for the case of incidence
fromthe right side.To simplify the expression,weomit the subscript ‘L’. Same
as the previous section, the x-coordinates of the input and output planes are
x ¼ 0 and x ¼ Lsc, which also serve as the reference zero phase surface for
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the left and right ports, respectively. This choice aligns with the definition of
the scattering channels as presented in Eq. (6). It is worth noting that this
choice of the zero-phase plane also simplifies the relationship between the
S-matrix in the channel basis and thepoint basis. Sincewe are considering the
left-incidence case, we first assume that a monopole source with strength
Qð0; yqÞ is placed at the left boundary of the scattering region with coordi-
nates ð0; yqÞ, and then the scattered sound pressure Psc x; y

� �
is detected at

positions ð0; ypÞ and ðLsc; ypÞ, denoted as Pscð0; ypÞ and PscðLsc; ypÞ,
respectively. According to Eqs. (13) and (14), we can define the entries of the
point-basis reflectionmatrix r0 as r0pq ¼ Pscð0; ypÞ =Qð0; yqÞ, and the entries
of the point-basis transmissionmatrix t0 as t0pq ¼ PscðLsc; ypÞ=Qð0; yqÞ. They
can be expressed using the Green’s function. The Green’s function for the
empty waveguide (Please refer to Supplementary Note 3 for details) can be
expanded using the waveguide modes

Gðx; y;x0 ¼ 0; y0 ¼ yqÞ ¼
Xþ1
n¼1

j
2kxn

Ψn y
� �

ΨnðyqÞe�jkxn xj j ð15Þ

where G x; y;x0; y0
� �

represents the response at (x; y) by excitation at

x0; y0
� � ¼ ð0; yqÞ, and Ψn y

� �
is the n th waveguide mode as defined in Eq.

(3). It follows that the soundfield excitedby amonopole source at ð0; yqÞ can
be expressed as

Pðx; yÞ ¼
Z W

0

Z 1

�1
G x; y;x0; y0
� �

δ x0ð Þδðy0 � yqÞdx0dy0

¼
Xþ1

n¼1

j
2kxn

ΨnðyÞΨnðyqÞe�jkxnjxj
ð16Þ

Then, we can express the left incident field as

Pin 0; y
� � ¼ Xþ1

n¼1

j
2kxn

ΨnðyÞΨnðyqÞ ð17Þ

The left incidentfield can thenbe straightforwardly expressedusing the
scattering channels

Pin 0; y
� � ¼ XN

n¼1

an
Ψn y

� �
ffiffiffiffiffi
kxn

p ð18Þ

Here, the summation is truncated at n ¼ N to omit the waveguide modes
that are evanescent in x. The expression of an is obtained by computing the
inner product of Pin 0; y

� �
and Ψ i y

� �
, that is

Z W

0
Ψ i y

� �XN
m¼1

j
2kxm

Ψm y
� �

Ψm yq

� �
dy ¼

Z W

0
Ψ i y

� �XN
n¼1

an
Ψn y

� �
ffiffiffiffiffi
kxn

p dy

ð19Þ

We arrive at

an ¼
j

2
ffiffiffiffiffi
kxn

p ΨnðyqÞ ð20Þ

The coefficients of the left-outgoing waves in scattering channels are
given by

bm ¼
XN
n¼1

rmnan ¼
XN
n¼1

rmn
j

2
ffiffiffiffiffi
kxn

p ΨnðyqÞ ð21Þ

where rmn is the reflection coefficient from the n th to m th channels.
Therefore, the left scattered pressure

Pscð0; ypÞ ¼
XN
m¼1

bm
ΨmðypÞffiffiffiffiffiffi

kxm
p ð22Þ

By substituting Eq. (21) into Eq. (22), we obtain

r0pq ¼ Pscð0; ypÞ=Qð0; yqÞ ¼
XN
m¼1

XN
n¼1

j
2

ΨmðypÞffiffiffiffiffiffi
kxm

p rmn

ΨnðyqÞffiffiffiffiffi
kxn

p ð23Þ

Here, we have defaulted Qð0; yqÞ ¼ 1Pa. To simplify, we define matrix Φ

with entries Φnq ¼ ΨnðyqÞ, having dimensions N ×M. According to the

orthogonality condition,ΦΦT ¼ M
W IN ×N .We also define a diagonalmatrix

R with entries Rmn ¼
ffiffiffiffiffiffi
kxm

p
δmn, having dimensions N ×N . Here, kxm is the

x-component wavevector for the n-th waveguide mode. Furthermore, we
introduce a transformation matrix K ¼ 1

2 1þ j
� �

R�1Φ, with its entries

given by Kmp ¼ 1
2 ð1þ jÞ Ψm yp

� �
ffiffiffiffi
kxm

p and a dimension of N ×M (see Supple-

mentary Note 5 for details). Eq. (23) can be rewritten in matrix form as

r0 ¼ KTrK ð24Þ

where, r and r0, respectively represent the reflection matrix in the channel
basis and point basis. Similarly, we can obtain similar formulas for the left-
to-right transmission matrix in the point basis (t0pq) as

t0pq ¼
XN
m¼1

XN
n¼1

j
2

ΨmðypÞffiffiffiffiffiffi
kxm

p tmn
ΨnðyqÞffiffiffiffiffi

kxn
p ð25Þ

where tmn is the transmission coefficient fromthen th tom th channels.And
we arrive at

t0 ¼ KTtK ð26Þ

We remark that the dimensions of t and t0 can be different, so the
matrix K is generically a rectangular matrix.

The conversion from point to channel basis is equivalent to obtaining

the pseudo-inverse of KT, which is J ¼ K�KT
� ��1

K� ¼ 1� j
� �

W
M RΦ,

such that JKT ¼ IN ×N . (The pseudo-inverse matrix of a column full rank

matrix A is given by AyA
� ��1

Ay. KT has a dimension of M ×N with
M ≥N , and it is column full rank41). The entries of J are
Jmp ¼ 1� j

� �
W
M

ffiffiffiffiffiffi
kxm

p
ΨmðypÞ. Similarly, it can be shown that matrix K is

the pseudo-inverse matrix of JT, as KJT ¼ IN ×N . Consequently, the con-
version from point basis to channel basis is given by

r ¼ Jr0JT ð27Þ

t ¼ Jt0JT ð28Þ
It is important to note that this conversion is accurate only when the

number of points M is sufficient (M ≥N) and they are selected symme-
trically about the central line of the waveguide, i.e., with locations following
Eq. (12). For further details and a proof, please refer to SupplementaryNote
4 and Note 5.
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We remark that an implicit assumption for the accurate conversion is
that the effect of evanescent modes is negligible. The channel basis, by
definition, considers only propagative modes and ignores any evanescent
modes. But the point basis can indeed pick up evanescent modes from the
scattering. So, the measurement plane needs to be sufficiently far ( > λ=2)
from the scattering media for evanescent modes to be negligible.

Focusing using acoustic complex media
This section presents a numerical case study of focusing spatiallymodulated
acousticwaves througha complexmedium.Thepurpose of this case study is
to validate the basis conversion relations and to demonstrate the application
of S-matrices in channel and point bases.

The complex medium consists of 100 rigid cylinder scatterers, each
with a diameter of 0.02m, randomly distributed within a 2D air-filled
waveguide of width W ¼ 1m (see Fig. 2a, b). The sound frequency
employed is f 0 ¼ 8500Hz, corresponding to a sound wave wavelength of
approximately λ0 ¼ 0:04m, so the waveguide sustains 50 propagative
modes, i.e., the number of channels is N ¼ 50. The complex medium
occupies a rectangular region of dsc ×W in the waveguide, with dsc ¼
0:50m extending along the x-direction. To safely neglect the evanescent
waves, the measurement planes are positioned at a distance of approxi-
mately lair ¼ 0:25m � 6λ0 away from both the left and right-hand sides of
the complexmedium. The separation between the twomeasurement planes
is Lsc ¼ 2lair þ dsc ¼ 1m. For simplicity, the number of sampling points is
chosen to be equal to the number of channels, i.e., M ¼ N ¼ 50. Our
calculation indicatesT � 18:60, and the effective number of open channels
can be estimated asNeff � 3

2 Th i � 28, while the remainingN � Neff ¼ 22
channels are classified as closed (i.e., τ � 0 for them)19. Given these para-
meters, the transmission mean free path2 is estimated to be approximately
‘tr � 0:18m. Additionally, the scattering mean free path of the complex
medium can be estimated about ‘sc � 0:16m (see Methods for details).

In Fig. 2b, the scattering behavior of a plane wave is depicted, show-
casing the notable distortion of the wavefront due to the presence of the
complex medium. The transmission matrices are directly acquired in both

the channel and point bases, and the real components of these matrices are
depicted in the left two panels of Fig. 2c. Then, the channel-basis trans-
mission matrix is transformed into the point basis using Eq. (26). And
conversely, the point-basis transmission matrix is transformed into the
channel basis using Eq. (28). The corresponding results are shown in the
right two panels of Fig. 2c. Excellent agreement is seen. This successful
alignment validates the accuracy of our basis conversion relationships.

Next, based on the transmissionmatrices in the two different bases, we
use the technique of inverse filtering42 to synthesize acoustic wavefronts to
achieve focusing through the complexmedium.The target is to generate one
focal spot at a distance Lf ¼ 0:2m away from the output plane. The
wavefield (Pf x; y

� �
) at the output plane (x ¼ LscÞ is chosen as43

Pf Lsc; y
� � ¼ ejk0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y�W=2ð Þ2þL2f

p
�Lf

� �
ð29Þ

Expand this equation using the channels

Pf Lsc; y
� � ¼ XN

n¼1

cR;nout
Ψn y

� �
ffiffiffiffiffi
kxn

p ð30Þ

Here, cR;nout represents the output channel coefficients. By multiplying both
sides of Eq. (30) byΨm y

� �
and integrating across the cross-section, with the

orthogonality, we arrive at

cR;nout ¼
ffiffiffiffiffi
kxn

q Z W

0
Pf Lsc; y
� �

Ψn y
� �

dy ð31Þ

UtilizingtherelationshipcRout ¼ tcLin,wherec
R
out ¼ cR;1out ; c

R;2
out ; . . . ; c

R;N
out

� �T
and cLin ¼ cL;1in ; cL;2in ; . . . ; cL;Nin

� �T
. Therefore, we can express the amplitudes of

the incident channels as

cLin ¼ t�1cRout ð32Þ

Fig. 2 | The retrieval of the transmission matrix. a Illustration of the problem
setting. bAmplitude of the total pressure field in a complex medium illuminated by
an acoustic plane wave, revealing a speckle-like sound field distribution, with a local
magnification inset. c Real parts of the transmission matrices in the channel basis

(upper left panel) and the point basis (lower left panel), respectively. The trans-
mission matrix is then transformed into the point basis (channel basis) through
basis conversion, as shown in the lower right panel (upper right panel).
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where the matrix t is the same as shown in Fig. 2c. The resulting focusing
effect based on the channel basis can be observed in the upper panels of Fig.
3b, c.

A similar focusing can be obtained using the point-based transmission
matrix. To this end, we discretize the output wavefield (Eq. (29)) at a set of
discrete points y1; y2; . . . yM


 �
, obtaining the point-basis output vector

pRout ¼ Pf Lsc; y1
� �

; Pf Lsc; y2
� �

; . . . ; Pf Lsc; yM
� �� �T

, which is the result of a

set ofmonopole sourcesQL
in ¼ Q 0; y1

� �
;Q 0; y2

� �
; . . . ;Q 0; yM

� �� �T
at the

input plane ðx ¼ 0Þ, given by

QL
in ¼ t0ð Þ�1pRout ð33Þ

The focusing effect based on the point-basis method is shown in the
lower panels in Fig. 3b, c.

Examining the results in Fig. 3b–e, excellent agreement is seen
between the results obtained using the channel and point bases in
both the overall field map and the pressure distribution on various
planes. The slight degree of discrepancy in Fig. 3d, e will diminish
with the further increase of the number of channels and sampling
points.

The open channel of the transmission matrix
Here, we compare open channels in the two types of bases and analyze their
differences in transmission efficiency. According to the theory of random
matrices, channels with transmittance close to 1 almost always exist in
complex media. However, these channels are typically excited only within
the transmission matrix in channel basis (tL). The open channel (full
transmission) takes the first right singular vector v1 as the input wavefront,
which is associated with the largest singular value σ1, and its transmittance
approaches unity in the channel basis. This results in the first left singular

Fig. 3 | Simulation results of focusing using the complex medium.
a Demonstration of the focusing principle. b Focusing effect using channel basis
(upper) and point basis (lower) with a logarithmic colormap. c Sound pressure
distribution in the focal area shown with a linear colormap. d, e Amplitude and
phase distributions on planes A and B, respectively. Plane A, situated 0.1 m from the

input plane, is excluded from the input plane due to infinite pressure from the
monopole excitation of the point-based method. Plane B represents the focal plane,
where red lines indicate the results in channel basis, and blue lines represent the
results in point basis.
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vector u1 as the output wavefront, i.e.,

tL � v1 ¼ σ1u1 � u1 ð34Þ

Equation (26) describes amapping from channel to point basis, noting
that

KKy ¼ 1
2
R�1ΦΦTR�1 ¼ 1

2
M
W

R�2 ≠ IN ×N ð35Þ

Due to the varying propagation wave vectors across differentmodes in
multimodewaveguides,R is not a unitarymatrix, andK is also non-unitary
(see Note 5 in the Supplementary Information for details). Consequently,
the conversion alters the magnitudes of the singular values, whichmay also
shuffle the order of the singular vectors. To be more specific, when q1 is the
first right singular vector of t0, the corresponding channel coefficient is not
necessarily the first right singular vector v1 of t (or proportional to it).
Therefore, using the singular vectors associated with the largest singular
value for excitation, the transmissionmatrix in point basis generally cannot
achieve full transmission (see Note 6 in the Supplementary Information for
details).

Here, we employ the same complexmedium utilized in the focusing to
validate this conclusion. In Fig. 4, we present the acousticfields generated by
a left-hand side input vector with the first singular value of the transmission
matrices in the twobases. In the case of channel basis, this is anopenchannel
with a singular value > 0.99 (Fig. 4a). Total transmission is seen. In contrast,
in the point basis scenario, the maximum singular value is only ~0.32, so
transmission is much weaker (transmitted flux ~0.56) and there is notable
reflection (Fig. 4b). Consequently, open channels generally cannot be
obtained using the point basis.

Discussion
In this study, we present the mathematical foundation for establishing
S-matrices for acoustic wave propagation in complex media in 2D. The
S-matrices are constructed in two different bases, the channel basis and the
point basis. The conversion between S-matrices in the two bases is rigor-
ously derived. The effectiveness and accuracy of our results are demon-
strated through a case study of focusing through a complex medium.

In practice, the S-matrix comprehensively provides the information of
the multiple scattering media, which enables a wide array of applications
and functionalities. The focus demonstrated in our work is just one simple
example. However, obtaining the complete S-matrix usually requires
measurement of sufficient accuracy and a good signal-to-noise ratio, which
can be challenging in experiments. In comparison, the time-reversal
method22,31,44–47, as a different approach, does not require a complete char-
acterization of the medium, which is easier to implement but is less flexible

in achieving diverse functionalities. Thesemethods complement each other
and shall be used selectively or collectively for the best possible results.

By providing a systematic description of the acoustic S-matrix in
acoustic waveguides, our work provides the foundation for future research
in acoustic complex media and acoustic wavefront shaping. We anticipate
our results will be useful for future studies on controllingmultiple scattering
of acoustic waves in complex or random media. The results can be further
generalized to handle acoustic multiple-scattering propagation in three
dimensions. By including higher-order, non-propagative waveguidemodes
as channels or by further refining the spatial sampling rate of the point basis,
it is also possible to modify the theory for handling evanescent waves.

Methods
Numerical simulation
Finite element simulations were performed with the pressure acoustics
module and the Livelink for MATLAB module of the COMSOL Multi-
physics software. The sound speed is 343m=s, and the acoustic impedance
of air is 411:6 Pa s=m. The retrieval methods for the S-matrices in channel
and point bases are described in detail in Supplementary Note 3.

The scattering mean free path
The scatteringmean free path in the two-dimensional region was estimated
using both a simplified theoretical method and a more detailed computa-
tional approach. Initially, the theoretical approximation was calculated
using the formula ‘sc ¼ πA=L, whereA is the area available for soundwave
propagation and L is the total length of all scattering boundaries48. The
rectangular region containing 100 scatterers, A was calculated as 0.4686m2

(the area of the rectangular region minus the total area of all the circular
scatterers) and L was calculated as 9.283m (perimeter of the rectangular
region plus the total perimeter of the scatterers). This gives an approximate
mean free path of 0.1586m. To refine this estimate, the ray tracing module
of COMSOLwas employed, which statistically estimates themean free path
by tracking scattering events and path lengths in the simulation. One
hundred simulations with randomly distributed scatterers were averaged,
resulting in a mean free path of 0.1597m, aligning closely with the theo-
retical estimate. The simulations considered only the scattering region,
defining both the rectangular and scatterer boundaries as acoustically hard,
without accounting for losses.

Data availability
The data that generated the results of this study are available from the
corresponding authors upon request.

Code availability
The codes supporting the findings of this study are available from the
corresponding authors upon request.
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Fig. 4 | Acoustic fields excited by the first right singular vectors as input. a An open channel in the channel basis, b the point-basis input vector with the maximum
singular value.
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